1
|
Villada-Balbuena M, Carbajal-Tinoco MD. Mechanical unfolding of RNA molecules using a knowledge-based model. J Chem Phys 2024; 161:165104. [PMID: 39445621 DOI: 10.1063/5.0231573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
We revisit a coarse-grained model to study the dynamics of ribonucleic acid (RNA). In our model, each nucleotide is replaced by an interaction center located at the center of mass. The interaction between nucleotides is carried out by a series of effective pair potentials obtained from the statistical analysis of 501 RNA molecules of high molecular weight from the Protein Data Bank. In addition to the Watson-Crick interactions, we also include non-canonical interactions, which provide stability to the three-dimensional (3D) structure of the molecule. The resulting knowledge-based interactions for the nucleotides (KIN) model allow us to perform efficient Brownian dynamics simulations under different conditions. First, we simulate the stretch of a set of hairpins at a loading rate similar to the values employed in unfolding experiments near equilibrium using optical tweezers. Additionally, we explore unfolding a set of pseudoknots under conditions farther from equilibrium, namely, at loading rates higher than the experimental equilibrium values. The results of our simulations are compared with those obtained from experimental measurements and theoretical models intended to estimate transition states and activation energies. Our KIN model is able to reproduce the intermediate states observed during mechanical unfolding experiments. Moreover, the results of the KIN model are in good agreement with the measured data.
Collapse
Affiliation(s)
- Mario Villada-Balbuena
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN No. 2508, Col. San Pedro Zacatenco, CP 07360 Cd. de México, Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León 64849, Mexico
| | - Mauricio D Carbajal-Tinoco
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN No. 2508, Col. San Pedro Zacatenco, CP 07360 Cd. de México, Mexico
| |
Collapse
|
2
|
Abstract
Protein synthesis by the ribosome is the final stage of biological information transfer and represents an irreversible commitment to gene expression. Accurate translation of messenger RNA is therefore essential to all life, and spontaneous errors by the translational machinery are highly infrequent (∼1/100,000 codons). Programmed -1 ribosomal frameshifting (-1PRF) is a mechanism in which the elongating ribosome is induced at high frequency to slip backward by one nucleotide at a defined position and to continue translation in the new reading frame. This is exploited as a translational regulation strategy by hundreds of RNA viruses, which rely on -1PRF during genome translation to control the stoichiometry of viral proteins. While early investigations of -1PRF focused on virological and biochemical aspects, the application of X-ray crystallography and cryo-electron microscopy (cryo-EM), and the advent of deep sequencing and single-molecule approaches have revealed unexpected structural diversity and mechanistic complexity. Molecular players from several model systems have now been characterized in detail, both in isolation and, more recently, in the context of the elongating ribosome. Here we provide a summary of recent advances and discuss to what extent a general model for -1PRF remains a useful way of thinking.
Collapse
Affiliation(s)
- Chris H Hill
- York Structural Biology Laboratory, York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom;
| | - Ian Brierley
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom;
| |
Collapse
|
3
|
Omar SI, Zhao M, Sekar RV, Moghadam SA, Tuszynski JA, Woodside MT. Modeling the structure of the frameshift-stimulatory pseudoknot in SARS-CoV-2 reveals multiple possible conformers. PLoS Comput Biol 2021; 17:e1008603. [PMID: 33465066 PMCID: PMC7845960 DOI: 10.1371/journal.pcbi.1008603] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/29/2021] [Accepted: 12/02/2020] [Indexed: 01/26/2023] Open
Abstract
The coronavirus causing the COVID-19 pandemic, SARS-CoV-2, uses -1 programmed ribosomal frameshifting (-1 PRF) to control the relative expression of viral proteins. As modulating -1 PRF can inhibit viral replication, the RNA pseudoknot stimulating -1 PRF may be a fruitful target for therapeutics treating COVID-19. We modeled the unusual 3-stem structure of the stimulatory pseudoknot of SARS-CoV-2 computationally, using multiple blind structural prediction tools followed by μs-long molecular dynamics simulations. The results were compared for consistency with nuclease-protection assays and single-molecule force spectroscopy measurements of the SARS-CoV-1 pseudoknot, to determine the most likely conformations. We found several possible conformations for the SARS-CoV-2 pseudoknot, all having an extended stem 3 but with different packing of stems 1 and 2. Several conformations featured rarely-seen threading of a single strand through junctions formed between two helices. These structural models may help interpret future experiments and support efforts to discover ligands inhibiting -1 PRF in SARS-CoV-2.
Collapse
Affiliation(s)
- Sara Ibrahim Omar
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Meng Zhao
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | | | | | - Jack A. Tuszynski
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
4
|
Neupane K, Munshi S, Zhao M, Ritchie DB, Ileperuma SM, Woodside MT. Anti-Frameshifting Ligand Active against SARS Coronavirus-2 Is Resistant to Natural Mutations of the Frameshift-Stimulatory Pseudoknot. J Mol Biol 2020; 432:5843-5847. [PMID: 32920049 PMCID: PMC7483078 DOI: 10.1016/j.jmb.2020.09.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 01/23/2023]
Abstract
SARS-CoV-2 uses −1 programmed ribosomal frameshifting (−1 PRF) to control expression of key viral proteins. Because modulating −1 PRF can attenuate the virus, ligands binding to the RNA pseudoknot that stimulates −1 PRF may have therapeutic potential. Mutations in the pseudoknot have occurred during the pandemic, but how they affect −1 PRF efficiency and ligand activity is unknown. Studying a panel of six mutations in key regions of the pseudoknot, we found that most did not change −1 PRF levels, even when base-pairing was disrupted, but one led to a striking 3-fold decrease, suggesting SARS-CoV-2 may be less sensitive to −1 PRF modulation than expected. Examining the effects of a small-molecule −1 PRF inhibitor active against SARS-CoV-2, it had a similar effect on all mutants tested, regardless of basal −1 PRF efficiency, indicating that anti-frameshifting activity can be resistant to natural pseudoknot mutations. These results have important implications for therapeutic strategies targeting SARS-CoV-2 through modulation of −1 PRF.
Collapse
Affiliation(s)
- Krishna Neupane
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Sneha Munshi
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Meng Zhao
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Dustin B Ritchie
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | | | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
5
|
3dRNA v2.0: An Updated Web Server for RNA 3D Structure Prediction. Int J Mol Sci 2019; 20:ijms20174116. [PMID: 31450739 PMCID: PMC6747482 DOI: 10.3390/ijms20174116] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/11/2019] [Accepted: 08/15/2019] [Indexed: 12/19/2022] Open
Abstract
3D structures of RNAs are the basis for understanding their biological functions. However, experimentally solved RNA 3D structures are very limited in comparison with known RNA sequences up to now. Therefore, many computational methods have been proposed to solve this problem, including our 3dRNA. In recent years, 3dRNA has been greatly improved by adding several important features, including structure sampling, structure ranking and structure optimization under residue-residue restraints. Particularly, the optimization procedure with restraints enables 3dRNA to treat pseudoknots in a new way. These new features of 3dRNA can greatly promote its performance and have been integrated into the 3dRNA v2.0 web server. Here we introduce these new features in the 3dRNA v2.0 web server for the users.
Collapse
|
6
|
Khalil F, Yueyu X, Naiyan X, Di L, Tayyab M, Hengbo W, Islam W, Rauf S, Pinghua C. Genome characterization of Sugarcane Yellow Leaf Virus with special reference to RNAi based molecular breeding. Microb Pathog 2018; 120:187-197. [PMID: 29730517 DOI: 10.1016/j.micpath.2018.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 12/28/2022]
Abstract
Sugarcane is an essential crop for sugar and biofuel. Globally, its production is severely affected by sugarcane yellow leaf disease (SCYLD) caused by Sugarcane Yellow Leaf Virus (SCYLV). Many aphid vectors are involved in the spread of the disease which reduced the effectiveness of cultural and chemical management. Empirical methods of plant breeding such as introgression from wild and cultivated germplasm were not possible or at least challenging due to the absence of resistance in cultivated and wild germplasm of sugarcane. RNA interference (RNAi) transformation is an effective method to create virus-resistant varieties. Nevertheless, limited progress has been made due to lack of comprehensive research program on SCYLV based on RNAi technique. In order to show improvement and to propose future strategies for the feasibility of the RNAi technique to cope SCYLV, genome-wide consensus sequences of SCYLV were analyzed through GenBank. The coverage rates of every consensus sequence in SCYLV isolates were calculated to evaluate their practicability. Our analysis showed that single consensus sequence from SCYLV could not work well for RNAi based sugarcane breeding programs. This may be due to high mutation rate and continuous recombination within and between various viral strains. Alternative multi-target RNAi strategy is suggested to combat several strains of the viruses and to reduce the silencing escape. The multi-target small interfering RNA (siRNA) can be used together to construct RNAi plant expression plasmid, and to transform sugarcane tissues to develop new sugarcane varieties resistant to SCYLV.
Collapse
Affiliation(s)
- Farghama Khalil
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xu Yueyu
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiao Naiyan
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Liu Di
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Muhammad Tayyab
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wang Hengbo
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Waqar Islam
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Govt. of Punjab, Agriculture Department, Lahore, Pakistan; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Saeed Rauf
- University College of Agriculture, University of Sargodha, Pakistan
| | - Chen Pinghua
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; GMOs LAB of Quality Supervision Inspection &Testing Center for Sugarcane and Derived Products, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
7
|
Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res 2016; 44:7007-78. [PMID: 27436286 PMCID: PMC5009743 DOI: 10.1093/nar/gkw530] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
Genetic decoding is not ‘frozen’ as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational ‘correction’ of problem or ‘savior’ indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5′ or 3′ of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3′ from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression.
Collapse
Affiliation(s)
- John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland School of Microbiology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pramod R Bhatt
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
8
|
Gupta A, Bansal M. Local structural and environmental factors define the efficiency of an RNA pseudoknot involved in programmed ribosomal frameshift process. J Phys Chem B 2014; 118:11905-20. [PMID: 25226454 DOI: 10.1021/jp507154u] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In programmed -1 ribosomal frameshift, an RNA pseudoknot stalls the ribosome at specific sequence and restarts translation in a new reading frame. A precise understanding of structural characteristics of these pseudoknots and their PRF inducing ability has not been clear to date. To investigate this phenomenon, we have studied various structural aspects of a -1 PRF inducing RNA pseudoknot from BWYV using extensive molecular dynamics simulations. A set of functional and poorly functional forms, for which previous mutational data were available, were chosen for analysis. These structures differ from each other by either single base substitutions or base-pair replacements from the native structure. We have rationalized how certain mutations in RNA pseudoknot affect its function; e.g., a specific base substitution in loop 2 stabilizes the junction geometry by forming multiple noncanonical hydrogen bonds, leading to a highly rigid structure that could effectively resist ribosome-induced unfolding, thereby increasing efficiency. While, a CG to AU pair substitution in stem 1 leads to loss of noncanonical hydrogen bonds between stems and loop, resulting in a less stable structure and reduced PRF inducing ability, inversion of a pair in stem 2 alters specific base-pair geometry that might be required in ribosomal recognition of nucleobase groups, negatively affecting pseudoknot functioning. These observations illustrate that the ability of an RNA pseudoknot to induce -1 PRF with an optimal rate depends on several independent factors that contribute to either the local conformational variability or geometry.
Collapse
Affiliation(s)
- Asmita Gupta
- Molecular Biophysics Unit, Indian Institute of Science , Bangalore, Karnataka 560012, India
| | | |
Collapse
|
9
|
Bailey BL, Visscher K, Watkins J. A stochastic model of translation with -1 programmed ribosomal frameshifting. Phys Biol 2014; 11:016009. [PMID: 24501223 DOI: 10.1088/1478-3975/11/1/016009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many viruses produce multiple proteins from a single mRNA sequence by encoding overlapping genes. One mechanism to decode both genes, which reside in alternate reading frames, is -1 programmed ribosomal frameshifting. Although recognized for over 25 years, the molecular and physical mechanism of -1 frameshifting remains poorly understood. We have developed a mathematical model that treats mRNA translation and associated -1 frameshifting as a stochastic process in which the transition probabilities are based on the energetics of local molecular interactions. The model predicts both the location and efficiency of -1 frameshift events in HIV-1. Moreover, we compute -1 frameshift efficiencies upon mutations in the viral mRNA sequence and variations in relative tRNA abundances, predictions that are directly testable in experiment.
Collapse
Affiliation(s)
- Brenae L Bailey
- Program in Applied Mathematics, University of Arizona, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
10
|
Yu CH, Luo J, Iwata-Reuyl D, Olsthoorn RCL. Exploiting preQ(1) riboswitches to regulate ribosomal frameshifting. ACS Chem Biol 2013; 8:733-40. [PMID: 23327288 DOI: 10.1021/cb300629b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Knowing the molecular details of the interaction between riboswitch aptamers and their corresponding metabolites is important to understand gene expression. Here we report on a novel in vitro assay to study preQ(1) riboswitch aptamers upon binding of 7-aminomethyl-7-deazaguanine (preQ(1)). The assay is based on the ability of the preQ(1) aptamer to fold, upon ligand binding, into a pseudoknotted structure that is capable of stimulating -1 ribosomal frameshifting (-1 FS). Aptamers from three different species were found to induce between 7% and 20% of -1 FS in response to increasing preQ(1) levels, whereas preQ(1) analogues were 100-1000-fold less efficient. In depth mutational analysis of the Fusobacterium nucleatum aptamer recapitulates most of the structural details previously identified for preQ(1) aptamers from other bacteria by crystallography and/or NMR spectroscopy. In addition to providing insight into the role of individual nucleotides of the preQ(1) riboswitch aptamer in ligand binding, the presented system provides a valuable tool to screen small molecules against bacterial riboswitches in a eukaryotic background.
Collapse
Affiliation(s)
| | | | - Dirk Iwata-Reuyl
- Department of Chemistry, Portland State University, Portland, Oregon 97201,
United States
| | | |
Collapse
|
11
|
Programmed -1 frameshifting efficiency correlates with RNA pseudoknot conformational plasticity, not resistance to mechanical unfolding. Proc Natl Acad Sci U S A 2012; 109:16167-72. [PMID: 22988073 DOI: 10.1073/pnas.1204114109] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Programmed -1 frameshifting, whereby the reading frame of a ribosome on messenger RNA is shifted in order to generate an alternate gene product, is often triggered by a pseudoknot structure in the mRNA in combination with an upstream slippery sequence. The efficiency of frameshifting varies widely for different sites, but the factors that determine frameshifting efficiency are not yet fully understood. Previous work has suggested that frameshifting efficiency is related to the resistance of the pseudoknot against mechanical unfolding. We tested this hypothesis by studying the mechanical properties of a panel of pseudoknots with frameshifting efficiencies ranging from 2% to 30%: four pseudoknots from retroviruses, two from luteoviruses, one from a coronavirus, and a nonframeshifting bacteriophage pseudoknot. Using optical tweezers to apply tension across the RNA, we measured the distribution of forces required to unfold each pseudoknot. We found that neither the average unfolding force, nor the unfolding kinetics, nor the parameters describing the energy landscape for mechanical unfolding of the pseudoknot (energy barrier height and distance to the transition state) could be correlated to frameshifting efficiency. These results indicate that the resistance of pseudoknots to mechanical unfolding is not a primary determinant of frameshifting efficiency. However, increased frameshifting efficiency was correlated with an increased tendency to form alternate, incompletely folded structures, suggesting a more complex picture of the role of the pseudoknot involving the conformational dynamics.
Collapse
|
12
|
An RNA pseudoknot is required for production of yellow fever virus subgenomic RNA by the host nuclease XRN1. J Virol 2010; 84:11395-406. [PMID: 20739539 DOI: 10.1128/jvi.01047-10] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells and mice infected with arthropod-borne flaviviruses produce a small subgenomic RNA that is colinear with the distal part of the viral 3'-untranslated region (UTR). This small subgenomic flavivirus RNA (sfRNA) results from the incomplete degradation of the viral genome by the host 5'-3' exonuclease XRN1. Production of the sfRNA is important for the pathogenicity of the virus. This study not only presents a detailed description of the yellow fever virus (YFV) sfRNA but, more importantly, describes for the first time the molecular characteristics of the stalling site for XRN1 in the flavivirus genome. Similar to the case for West Nile virus, the YFV sfRNA was produced by XRN1. However, in contrast to the case for other arthropod-borne flaviviruses, not one but two sfRNAs were detected in YFV-infected mammalian cells. The smaller of these two sfRNAs was not observed in infected mosquito cells. The larger sfRNA could also be produced in vitro by incubation with purified XRN1. These two YFV sfRNAs formed a 5'-nested set. The 5' ends of the YFV sfRNAs were found to be just upstream of the previously predicted RNA pseudoknot PSK3. RNA structure probing and mutagenesis studies provided strong evidence that this pseudoknot structure was formed and served as the molecular signal to stall XRN1. The sequence involved in PSK3 formation was cloned into the Sinrep5 expression vector and shown to direct the production of an sfRNA-like RNA. These results underscore the importance of the RNA pseudoknot in stalling XRN1 and also demonstrate that it is the sole viral requirement for sfRNA production.
Collapse
|
13
|
Yu CH, Noteborn MHM, Olsthoorn RCL. Stimulation of ribosomal frameshifting by antisense LNA. Nucleic Acids Res 2010; 38:8277-83. [PMID: 20693527 PMCID: PMC3001050 DOI: 10.1093/nar/gkq650] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Programmed ribosomal frameshifting is a translational recoding mechanism commonly used by RNA viruses to express two or more proteins from a single mRNA at a fixed ratio. An essential element in this process is the presence of an RNA secondary structure, such as a pseudoknot or a hairpin, located downstream of the slippery sequence. Here, we have tested the efficiency of RNA oligonucleotides annealing downstream of the slippery sequence to induce frameshifting in vitro. Maximal frameshifting was observed with oligonucleotides of 12-18 nt. Antisense oligonucleotides bearing locked nucleic acid (LNA) modifications also proved to be efficient frameshift-stimulators in contrast to DNA oligonucleotides. The number, sequence and location of LNA bases in an otherwise DNA oligonucleotide have to be carefully manipulated to obtain optimal levels of frameshifting. Our data favor a model in which RNA stability at the entrance of the ribosomal tunnel is the major determinant of stimulating slippage rather than a specific three-dimensional structure of the stimulating RNA element.
Collapse
Affiliation(s)
- Chien-Hung Yu
- Department of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | | | |
Collapse
|
14
|
Liu B, Shankar N, Turner DH. Fluorescence competition assay measurements of free energy changes for RNA pseudoknots. Biochemistry 2010; 49:623-34. [PMID: 19921809 PMCID: PMC2808147 DOI: 10.1021/bi901541j] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
RNA pseudoknots have important functions, and thermodynamic stability is a key to predicting pseudoknots in RNA sequences and to understanding their functions. Traditional methods, such as UV melting and differential scanning calorimetry, for measuring RNA thermodynamics are restricted to temperature ranges around the melting temperature for a pseudoknot. Here, we report RNA pseudoknot free energy changes at 37 °C measured by fluorescence competition assays. Sequence-dependent studies for the loop 1−stem 2 region reveal (1) the individual nearest-neighbor hydrogen bonding (INN-HB) model provides a reasonable estimate for the free energy change when a Watson−Crick base pair in stem 2 is changed, (2) the loop entropy can be estimated by a statistical polymer model, although some penalty for certain loop sequences is necessary, and (3) tertiary interactions can significantly stabilize pseudoknots and extending the length of stem 2 may alter tertiary interactions such that the INN-HB model does not predict the net effect of adding a base pair. The results can inform writing of algorithms for predicting and/or designing RNA secondary structures.
Collapse
Affiliation(s)
- Biao Liu
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | | | | |
Collapse
|
15
|
Chou MY, Chang KY. An intermolecular RNA triplex provides insight into structural determinants for the pseudoknot stimulator of -1 ribosomal frameshifting. Nucleic Acids Res 2010; 38:1676-85. [PMID: 20007152 PMCID: PMC2836554 DOI: 10.1093/nar/gkp1107] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 11/08/2009] [Accepted: 11/10/2009] [Indexed: 01/03/2023] Open
Abstract
An efficient -1 programmed ribosomal frameshifting (PRF) signal requires an RNA slippery sequence and a downstream RNA stimulator, and the hairpin-type pseudoknot is the most common stimulator. However, a pseudoknot is not sufficient to promote -1 PRF. hTPK-DU177, a pseudoknot derived from human telomerase RNA, shares structural similarities with several -1 PRF pseudoknots and is used to dissect the roles of distinct structural features in the stimulator of -1 PRF. Structure-based mutagenesis on hTPK-DU177 reveals that the -1 PRF efficiency of this stimulator can be modulated by sequential removal of base-triple interactions surrounding the helical junction. Further analysis of the junction-flanking base triples indicates that specific stem-loop interactions and their relative positions to the helical junction play crucial roles for the -1 PRF activity of this pseudoknot. Intriguingly, a bimolecular pseudoknot approach based on hTPK-DU177 reveals that continuing triplex structure spanning the helical junction, lacking one of the loop-closure features embedded in pseudoknot topology, can stimulate -1 PRF. Therefore, the triplex structure is an essential determinant for the DU177 pseudoknot to stimulate -1 PRF. Furthermore, it suggests that -1 PRF, induced by an in-trans RNA via specific base-triple interactions with messenger RNAs, can be a plausible regulatory function for non-coding RNAs.
Collapse
Affiliation(s)
| | - Kung-Yao Chang
- Graduate Institute of Biochemistry, National Chung-Hsing University, 250 Kuo-Kung Road, Taichung 402, Taiwan
| |
Collapse
|
16
|
Mazauric MH, Seol Y, Yoshizawa S, Visscher K, Fourmy D. Interaction of the HIV-1 frameshift signal with the ribosome. Nucleic Acids Res 2010; 37:7654-64. [PMID: 19812214 PMCID: PMC2794165 DOI: 10.1093/nar/gkp779] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ribosomal frameshifting on viral RNAs relies on the mechanical properties of structural elements, often pseudoknots and more rarely stem-loops, that are unfolded by the ribosome during translation. In human immunodeficiency virus (HIV)-1 type B a long hairpin containing a three-nucleotide bulge is responsible for efficient frameshifting. This three-nucleotide bulge separates the hairpin in two domains: an unstable lower stem followed by a GC-rich upper stem. Toeprinting and chemical probing assays suggest that a hairpin-like structure is retained when ribosomes, initially bound at the slippery sequence, were allowed multiple EF-G catalyzed translocation cycles. However, while the upper stem remains intact the lower stem readily melts. After the first, and single step of translocation of deacylated tRNA to the 30 S P site, movement of the mRNA stem-loop in the 5′ direction is halted, which is consistent with the notion that the downstream secondary structure resists unfolding. Mechanical stretching of the hairpin using optical tweezers only allows clear identification of unfolding of the upper stem at a force of 12.8 ± 1.0 pN. This suggests that the lower stem is unstable and may indeed readily unfold in the presence of a translocating ribosome.
Collapse
Affiliation(s)
- Marie-Hélène Mazauric
- Laboratoire de Chimie et Biologie Structurales, FRC 3115 ICSN-CNRS 1 ave de la terrasse, 91190 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
17
|
Abstract
RNA pseudoknots are important for function. Three-dimensional structural information is available, insights into factors affecting pseudoknot stability are being reported, and computer programs are available for predicting pseudoknots.
Collapse
Affiliation(s)
- Biao Liu
- Department of Chemistry120 Trustee RoadUniversity of RochesterRochester, NY 14627USA
| | - David H Mathews
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry601 Elmwood AveUniversity of RochesterRochester, NY 14642USA
- Center for RNA Biology, School of Medicine and Dentistry, University of RochesterRochester, NY 14642USA
| | - Douglas H Turner
- Department of Chemistry120 Trustee RoadUniversity of RochesterRochester, NY 14627USA
- Center for RNA Biology, School of Medicine and Dentistry, University of RochesterRochester, NY 14642USA
| |
Collapse
|
18
|
Mazauric MH, Leroy JL, Visscher K, Yoshizawa S, Fourmy D. Footprinting analysis of BWYV pseudoknot-ribosome complexes. RNA (NEW YORK, N.Y.) 2009; 15:1775-1786. [PMID: 19625386 PMCID: PMC2743054 DOI: 10.1261/rna.1385409] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Accepted: 05/26/2009] [Indexed: 05/28/2023]
Abstract
Many viruses regulate translation of polycistronic mRNA using a -1 ribosomal frameshift induced by an RNA pseudoknot. When the ribosome encounters the pseudoknot barrier that resists unraveling, transient mRNA-tRNA dissociation at the decoding site, results in a shift of the reading frame. The eukaryotic frameshifting pseudoknot from the beet western yellow virus (BWYV) has been well characterized, both structurally and functionally. Here, we show that in order to obtain eukaryotic levels of frameshifting efficiencies using prokaryotic Escherichia coli ribosomes, which depend upon the structural integrity of the BWYV pseudoknot, it is necessary to shorten the mRNA spacer between the slippery sequence and the pseudoknot by 1 or 2 nucleotides (nt). Shortening of the spacer is likely to re-establish tension and/or ribosomal contacts that were otherwise lost with the smaller E. coli ribosomes. Chemical probing experiments for frameshifting and nonframeshifting BWYV constructs were performed to investigate the structural integrity of the pseudoknot confined locally at the mRNA entry site. These data, obtained in the pretranslocation state, show a compact overall pseudoknot structure, with changes in the conformation of nucleotides (i.e., increase in reactivity to chemical probes) that are first "hit" by the ribosomal helicase center. Interestingly, with the 1-nt shortened spacer, this increase of reactivity extends to a downstream nucleotide in the first base pair (bp) of stem 1, consistent with melting of this base pair. Thus, the 3 bp that will unfold upon translocation are different in both constructs with likely consequences on unfolding kinetics.
Collapse
Affiliation(s)
- Marie-Hélène Mazauric
- Laboratoire de Chimie et Biologie Structurales, FRC3115, ICSN-CNRS, Gif-sur-Yvette 91190, France
| | | | | | | | | |
Collapse
|
19
|
Triplex structures in an RNA pseudoknot enhance mechanical stability and increase efficiency of -1 ribosomal frameshifting. Proc Natl Acad Sci U S A 2009; 106:12706-11. [PMID: 19628688 DOI: 10.1073/pnas.0905046106] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Many viruses use programmed -1 ribosomal frameshifting to express defined ratios of structural and enzymatic proteins. Pseudoknot structures in messenger RNAs stimulate frameshifting in upstream slippery sequences. The detailed molecular determinants of pseudoknot mechanical stability and frameshifting efficiency are not well understood. Here we use single-molecule unfolding studies by optical tweezers, and frameshifting assays to elucidate how mechanical stability of a pseudoknot and its frameshifting efficiency are regulated by tertiary stem-loop interactions. Mechanical unfolding of a model pseudoknot and mutants designed to dissect specific interactions reveals that mechanical stability depends strongly on triplex structures formed by stem-loop interactions. Combining single-molecule and mutational studies facilitates the identification of pseudoknot folding intermediates. Average unfolding forces of the pseudoknot and mutants ranging from 50 to 22 picoNewtons correlated with frameshifting efficiencies ranging from 53% to 0%. Formation of major-groove and minor-groove triplex structures enhances pseudoknot stem stability and torsional resistance, and may thereby stimulate frameshifting. Better understanding of the molecular determinants of frameshifting efficiency may facilitate the development of anti-virus therapeutics targeting frameshifting.
Collapse
|
20
|
Atkins JF, Gesteland RF. Ribosomal Frameshifting in Decoding Plant Viral RNAs. RECODING: EXPANSION OF DECODING RULES ENRICHES GENE EXPRESSION 2009; 24. [PMCID: PMC7122378 DOI: 10.1007/978-0-387-89382-2_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Frameshifting provides an elegant mechanism by which viral RNA both encodes overlapping genes and controls expression levels of those genes. As in animal viruses, the −1 ribosomal frameshift site in the viral mRNA consists of a canonical shifty heptanucleotide followed by a highly structured frameshift stimulatory element, and the gene translated as a result of frameshifting usually encodes the RNA-dependent RNA polymerase. In plant viruses, the −1 frameshift stimulatory element consists of either (i) a small pseudoknot stabilized by many triple-stranded regions and a triple base pair containing a protonated cytidine at the helical junction, (ii) an unusual apical loop–internal loop interaction in which a stem-loop in the 3′ untranslated region 4 kb downstream base pairs to a bulged stem-loop at the frameshift site, or (iii) a potential simple stem-loop. Other less well-characterized changes in reading frame occur on plant viral RNAs, including a possible +1 frameshift, and net −1 reading frame changes that do not utilize canonical frameshift signals. All these studies reveal the remarkable ways in which plant viral RNAs interact with ribosomes to precisely control protein expression at the ratios needed to sustain virus replication.
Collapse
Affiliation(s)
- John F. Atkins
- grid.223827.e0000000121930096Molecular Biology Program, University of Utah, N. 2030 E. 15, Salt Late City, 84112-5330 U.S.A.
| | - Raymond F. Gesteland
- grid.223827.e0000000121930096Dept. Bioengineering, University of Utah, Salt Lake City, 84112 U.S.A.
| |
Collapse
|
21
|
Atkins JF, Gesteland RF, Pennell S. Pseudoknot-Dependent Programmed —1 Ribosomal Frameshifting: Structures, Mechanisms and Models. RECODING: EXPANSION OF DECODING RULES ENRICHES GENE EXPRESSION 2009; 24. [PMCID: PMC7119991 DOI: 10.1007/978-0-387-89382-2_7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Programmed —1 ribosomal frameshifting is a translational recoding strategy that takes place during the elongation phase of protein biosynthesis. Frameshifting occurs in response to specific signals in the mRNA; a slippery sequence, where the ribosome changes frame, and a stimulatory RNA secondary structure, usually a pseudoknot, located immediately downstream. During the frameshift the ribosome slips backwards by a single nucleotide (in the 5′-wards/—1 direction) and continues translation in the new, overlapping reading frame, generating a fusion protein composed of the products of both the original and the —1 frame coding regions. In eukaryotes, frameshifting is largely a phenomenon of virus gene expression and associated predominantly with the expression of viral replicases. Research on frameshifting impacts upon diverse topics, including the ribosomal elongation cycle, RNA structure and function, tRNA modification, virus replication, antiviral intervention, evolution and bioinformatics. This chapter focuses on the structure and function of frameshift-stimulatory RNA pseudoknots and mechanistic aspects of ribosomal frameshifting. A variety of models of the frameshifting process are discussed in the light of recent advances in our understanding of ribosome structure and the elongation cycle.
Collapse
Affiliation(s)
- John F. Atkins
- grid.223827.e0000000121930096Molecular Biology Program, University of Utah, N. 2030 E. 15, Salt Late City, 84112-5330 U.S.A.
| | - Raymond F. Gesteland
- grid.223827.e0000000121930096Dept. Bioengineering, University of Utah, Salt Lake City, 84112 U.S.A.
| | | |
Collapse
|
22
|
Advances in RNA structure prediction from sequence: new tools for generating hypotheses about viral RNA structure-function relationships. J Virol 2009; 83:6326-34. [PMID: 19369331 DOI: 10.1128/jvi.00251-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
23
|
Structural Elements Contributing to Efficient -1 Ribosomal Frameshifting in BWYV Pseudoknot. B KOREAN CHEM SOC 2009. [DOI: 10.5012/bkcs.2009.30.2.509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Abstract
RNA pseudoknots are structural elements found in almost all classes of RNA. Pseudoknots form when a single-stranded region in the loop of a hairpin base-pairs with a stretch of complementary nucleotides elsewhere in the RNA chain. This simple folding strategy is capable of generating a large number of stable three-dimensional folds that display a diverse range of highly specific functions in a variety of biological processes. The present review focuses on pseudoknots that act in the regulation of protein synthesis using cellular and viral examples to illustrate their versatility. Emphasis is placed on structurally well-defined pseudoknots that play a role in internal ribosome entry, autoregulation of initiation, ribosomal frameshifting during elongation and trans-translation.
Collapse
|
25
|
Hart JM, Kennedy SD, Mathews DH, Turner DH. NMR-assisted prediction of RNA secondary structure: identification of a probable pseudoknot in the coding region of an R2 retrotransposon. J Am Chem Soc 2008; 130:10233-9. [PMID: 18613678 PMCID: PMC2646634 DOI: 10.1021/ja8026696] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Indexed: 12/30/2022]
Abstract
As the rate of functional RNA sequence discovery escalates, high-throughput techniques for reliable structural determination are becoming crucial for revealing the essential features of these RNAs in a timely fashion. Computational predictions of RNA secondary structure quickly generate reasonable models but suffer from several approximations, including overly simplified models and incomplete knowledge of significant interactions. Similar problems limit the accuracy of predictions for other self-folding polymers, including DNA and peptide nucleic acid (PNA). The work presented here demonstrates that incorporating unassigned data from simple nuclear magnetic resonance (NMR) experiments into a dynamic folding algorithm greatly reduces the potential folding space of a given RNA and therefore increases the confidence and accuracy of modeling. This procedure has been packaged into an NMR-assisted prediction of secondary structure (NAPSS) algorithm that can produce pseudoknotted as well as non-pseudoknotted secondary structures. The method reveals a probable pseudoknot in the part of the coding region of the R2 retrotransposon from Bombyx mori that orchestrates second-strand DNA cleavage during insertion into the genome.
Collapse
Affiliation(s)
- James M Hart
- Department of Chemistry, University of Rochester, RC Box 270216, Rochester, New York 14627, USA
| | | | | | | |
Collapse
|
26
|
Abstract
Programmed ribosomal frameshifting (PRF) is one of the multiple translational recoding processes that fundamentally alters triplet decoding of the messenger RNA by the elongating ribosome. The ability of the ribosome to change translational reading frames in the −1 direction (−1 PRF) is employed by many positive strand RNA viruses, including economically important plant viruses and many human pathogens, such as retroviruses, e.g., HIV-1, and coronaviruses, e.g., the causative agent of severe acute respiratory syndrome (SARS), in order to properly express their genomes. −1 PRF is programmed by a bipartite signal embedded in the mRNA and includes a heptanucleotide “slip site” over which the paused ribosome “backs up” by one nucleotide, and a downstream stimulatory element, either an RNA pseudoknot or a very stable RNA stem–loop. These two elements are separated by six to eight nucleotides, a distance that places the 5′ edge of the downstream stimulatory element in direct contact with the mRNA entry channel of the 30S ribosomal subunit. The precise mechanism by which the downstream RNA stimulates −1 PRF by the translocating ribosome remains unclear. This review summarizes the recent structural and biophysical studies of RNA pseudoknots and places this work in the context of our evolving mechanistic understanding of translation elongation. Support for the hypothesis that the downstream stimulatory element provides a kinetic barrier to the ribosome-mediated unfolding is discussed.
Collapse
|
27
|
Pennell S, Manktelow E, Flatt A, Kelly G, Smerdon SJ, Brierley I. The stimulatory RNA of the Visna-Maedi retrovirus ribosomal frameshifting signal is an unusual pseudoknot with an interstem element. RNA (NEW YORK, N.Y.) 2008; 14:1366-77. [PMID: 18495941 PMCID: PMC2441976 DOI: 10.1261/rna.1042108] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The stimulatory RNA of the Visna-Maedi virus (VMV) -1 ribosomal frameshifting signal has not previously been characterized but can be modeled either as a two-stem helix, reminiscent of the HIV-1 frameshift-stimulatory RNA, or as an RNA pseudoknot. The pseudoknot is unusual in that it would include a 7 nucleotide loop (termed here an interstem element [ISE]) between the two stems. In almost all frameshift-promoting pseudoknots, ISEs are absent or comprise a single adenosine residue. Using a combination of RNA structure probing, site directed mutagenesis, NMR, and phylogenetic sequence comparisons, we show here that the VMV stimulatory RNA is indeed a pseudoknot, conforming closely to the modeled structure, and that the ISE is essential for frameshifting. Pseudoknot function was predictably sensitive to changes in the length of the ISE, yet altering its sequence to alternate pyrimidine/purine bases was also detrimental to frameshifting, perhaps through modulation of local tertiary interactions. How the ISE is placed in the context of an appropriate helical junction conformation is not known, but its presence impacts on other elements of the pseudoknot, for example, the necessity for a longer than expected loop 1. This may be required to accommodate an increased flexibility of the pseudoknot brought about by the ISE. In support of this, (1)H NMR analysis at increasing temperatures revealed that stem 2 of the VMV pseudoknot is more labile than stem 1, perhaps as a consequence of its connection to stem 1 solely via flexible single-stranded loops.
Collapse
Affiliation(s)
- Simon Pennell
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | | | | | | | | | | |
Collapse
|
28
|
Kierzek E, Kierzek R, Moss WN, Christensen SM, Eickbush TH, Turner DH. Isoenergetic penta- and hexanucleotide microarray probing and chemical mapping provide a secondary structure model for an RNA element orchestrating R2 retrotransposon protein function. Nucleic Acids Res 2008; 36:1770-82. [PMID: 18252773 PMCID: PMC2346776 DOI: 10.1093/nar/gkm1085] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
LNA (locked nucleic acids, i.e. oligonucleotides with a methyl bridge between the 2′ oxygen and 4′ carbon of ribose) and 2,6-diaminopurine were incorporated into 2′-O-methyl RNA pentamer and hexamer probes to make a microarray that binds unpaired RNA approximately isoenergetically. That is, binding is roughly independent of target sequence if target is unfolded. The isoenergetic binding and short probe length simplify interpretation of binding to a structured RNA to provide insight into target RNA secondary structure. Microarray binding and chemical mapping were used to probe the secondary structure of a 323 nt segment of the 5′ coding region of the R2 retrotransposon from Bombyx mori (R2Bm 5′ RNA). This R2Bm 5′ RNA orchestrates functioning of the R2 protein responsible for cleaving the second strand of DNA during insertion of the R2 sequence into the genome. The experimental results were used as constraints in a free energy minimization algorithm to provide an initial model for the secondary structure of the R2Bm 5′ RNA.
Collapse
Affiliation(s)
- Elzbieta Kierzek
- Department of Chemistry, University of Rochester, RC Box 270216, Rochester, NY 14627-0216, USA
| | | | | | | | | | | |
Collapse
|
29
|
Li L, Kang H, Liu P, Makkinje N, Williamson ST, Leibowitz JL, Giedroc DP. Structural lability in stem-loop 1 drives a 5' UTR-3' UTR interaction in coronavirus replication. J Mol Biol 2008; 377:790-803. [PMID: 18289557 PMCID: PMC2652258 DOI: 10.1016/j.jmb.2008.01.068] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 01/21/2008] [Accepted: 01/23/2008] [Indexed: 11/18/2022]
Abstract
The leader RNA of the 5′ untranslated region (UTR) of coronaviral genomes contains two stem–loop structures denoted SL1 and SL2. Herein, we show that SL1 is functionally and structurally bipartite. While the upper region of SL1 is required to be paired, we observe strong genetic selection against viruses that contain a deletion of A35, an extrahelical nucleotide that destabilizes SL1, in favor of genomes that contain a diverse panel of destabilizing second-site mutations, due to introduction of a noncanonical base pair near A35. Viruses containing destabilizing SL1-ΔA35 mutations also contain one of two specific mutations in the 3′ UTR. Thermal denaturation and imino proton solvent exchange experiments reveal that the lower half of SL1 is unstable and that second-site SL1-ΔA35 substitutions are characterized by one or more features of the wild-type SL1. We propose a “dynamic SL1” model, in which the base of SL1 has an optimized lability required to mediate a physical interaction between the 5′ UTR and the 3′ UTR that stimulates subgenomic RNA synthesis. Although not conserved at the nucleotide sequence level, these general structural characteristics of SL1 appear to be conserved in other coronaviral genomes.
Collapse
Affiliation(s)
- Lichun Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
| | - Hyojeung Kang
- Department of Microbial and Molecular Pathogenesis, Texas A&M University System Health Science Center, College Station, TX 77843-4467, USA
| | - Pinghua Liu
- Department of Microbial and Molecular Pathogenesis, Texas A&M University System Health Science Center, College Station, TX 77843-4467, USA
| | - Nick Makkinje
- Department of Microbial and Molecular Pathogenesis, Texas A&M University System Health Science Center, College Station, TX 77843-4467, USA
| | - Shawn T. Williamson
- Department of Microbial and Molecular Pathogenesis, Texas A&M University System Health Science Center, College Station, TX 77843-4467, USA
| | - Julian L. Leibowitz
- Department of Microbial and Molecular Pathogenesis, Texas A&M University System Health Science Center, College Station, TX 77843-4467, USA
- Corresponding authors. David P. Giedroc is to be contacted at Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405-7102, USA. Tel.: +1 812 856 5449; fax: +1 812 855 8300. Julian L. Leibowitz, Tel.: +1 979 845 7288; fax: +1 979 845 1299.
| | - David P. Giedroc
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
- Corresponding authors. David P. Giedroc is to be contacted at Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405-7102, USA. Tel.: +1 812 856 5449; fax: +1 812 855 8300. Julian L. Leibowitz, Tel.: +1 979 845 7288; fax: +1 979 845 1299.
| |
Collapse
|
30
|
Brierley I, Pennell S, Gilbert RJC. Viral RNA pseudoknots: versatile motifs in gene expression and replication. Nat Rev Microbiol 2007; 5:598-610. [PMID: 17632571 PMCID: PMC7096944 DOI: 10.1038/nrmicro1704] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
RNA pseudoknots are structural motifs in RNA that are increasingly recognized in viral and cellular RNAs. They have been shown to have a various roles in virus and cellular gene expression. Pseudoknots are formed upon base pairing of a single-stranded region of RNA in the loop of a hairpin to a stretch of complementary nucleotides elsewhere in the RNA chain. This simple folding strategy can generate a large number of stable three-dimensional folds, which display a diverse range of highly specific functions. Pseudoknot function is frequently associated with interactions with ribosomes. The inclusion of pseudoknots in an mRNA can thus confer unusual translational properties. Many RNA viruses use pseudoknots in the control of viral RNA translation, replication and the switch between the two processes. Some satellite viruses encode ribozymes with active sites that are folded by a pseudoknot. In cellular RNAs, pseudoknots are associated with all aspects of mRNA function and also ribosome function, as ribosomal RNAs contain numerous pseudoknots. Other essential cellular pseudoknots have been described in telomerase RNA and transfer messenger RNA. Future research into pseudoknots will focus on structure–function relationships and bioinformatics identification of pseudoknots in genomes. The use of pseudoknots in antiviral applications could also become more widespread.
RNA pseudoknots have been identified in many different viral and cellular RNAs and are known to have various roles in virus and cellular gene expression. Here, Ian Brierley and colleagues review viral pseudoknots and the role of these structural motifs in virus gene expression and genome replication. RNA pseudoknots are structural elements found in almost all classes of RNA. First recognized in the genomes of plant viruses, they are now established as a widespread motif with diverse functions in various biological processes. This Review focuses on viral pseudoknots and their role in virus gene expression and genome replication. Although emphasis is placed on those well defined pseudoknots that are involved in unusual mechanisms of viral translational initiation and elongation, the broader roles of pseudoknots are also discussed, including comparisons with relevant cellular counterparts. The relationship between RNA pseudoknot structure and function is also addressed.
Collapse
Affiliation(s)
- Ian Brierley
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, CB2 1QP Cambridge UK
| | - Simon Pennell
- Division of Molecular Structure, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA UK
| | - Robert J. C. Gilbert
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN UK
| |
Collapse
|
31
|
Cornish PV, Giedroc DP. Pairwise coupling analysis of helical junction hydrogen bonding interactions in luteoviral RNA pseudoknots. Biochemistry 2006; 45:11162-71. [PMID: 16964977 PMCID: PMC2573051 DOI: 10.1021/bi060430n] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A 28-nucleotide mRNA pseudoknot that overlaps the P1 and P2 genes of sugarcane yellow leaf virus (ScYLV) stimulates -1 ribosomal frameshifting. The in vitro frameshifting efficiency is decreased >or=8-fold upon substitution of the 3'-most loop 2 nucleotide (C27) with adenosine, which accepts a hydrogen bond from the 2'-OH group of C14 in stem S1. The solution structures of the wild-type (WT) and C27A ScYLV RNA pseudoknots show that while the RNAs adopt virtually identical overall structures, there are significant structural differences at the helical junctions of the two RNAs. Specifically, C8(+) in loop L1 in the C8(+).(G12.C28) L1-S2 major groove base triple is displaced by approximately 2.3 A relative to the accepting stem 2 base pair (G12.C28) in the C27A RNA. Here, we use a double mutant cycle approach to analyze the pairwise coupling of the C8(+).(G12.C28)...C27.(C14-G7) and ...A27.(C14-G7) hydrogen bonds in the WT and C27A ScYLV RNAs, respectively, and compare these findings with previous results from the beet western yellows virus (BWYV) RNA. We find that the pairwise coupling free energy (delta(AB)(i)) is favorable for the WT RNA (-0.7 +/- 0.1 kcal/mol), thus revealing that formation of these two hydrogen bonds is positively cooperative. In contrast, delta(AB)(i) is 0.9 +/- 0.4 kcal/mol for the poorly functional C27A ScYLV RNA, indicative of nonadditive hydrogen bond formation. These results reveal that cooperative hydrogen bond formation across the helical stem junction in H-type pseudoknots correlates with enhanced frameshift stimulation by luteoviral mRNA pseudoknots.
Collapse
Affiliation(s)
| | - David P. Giedroc
- To whom correspondence should be addressed: Phone: 979-845-4231; Fax: 979-845-4946;
| |
Collapse
|