1
|
Shen X, Sun T, Dai M, Aslam MMA, Peng C. Performance and mechanistic study of biochar and magnesium-enhanced phytoremediation in cadmium-contaminated soil by alfalfa. CHEMOSPHERE 2024; 362:142737. [PMID: 38950747 DOI: 10.1016/j.chemosphere.2024.142737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Recently, phytoremediation has been regarded as a green and environment friendly technique to treat metals contaminated soils. Thus, in this study, pot experiments were designed to investigate the combine effects of biochar and magnesium (MPs) to purify cadmium (Cd)-contaminated soils by Medicago sativa L. (alfalfa). The results showed that the combined use of biochar and Mg significantly increased the accumulation of Cd and promoted the transport of Cd from root to shoot in alfalfa, simultaneously. Importantly, the combined use of biochar and Mg could increase the accumulation of Cd in shoot and whole plant (shoot + root) of alfalfa up-to 59.1% and 23.1%, respectively. Moreover, the enhancement mechanism can be analyzed from several aspects. Firstly, the photosynthesis was enhanced, which was beneficial to plant growth. The product of photosynthesis provided energy for uptake and transport of Cd. Meanwhile, its transport in phloem could promote the transport of Cd. Secondly, the enhancement of antioxidant capacity of alfalfa effectively protected the membrane structure of alfalfa, which indicated that Cd could enter alfalfa from the channel on the cell membrane. Lastly, the chemical form of Cd and microbial community structure in soil were changed. Overall, these changes reduced the Cd toxicity in soil, enhanced the resistance capability of alfalfa, increased the Cd uptake by alfalfa and promoted the growth of alfalfa. Thus, the obtained results suggested that the combined use of biochar and Mg is an effective approach to enhance phytoremediation performance for purifying Cd-contaminated soils.
Collapse
Affiliation(s)
- Xing Shen
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Taotao Sun
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, China; Observation and Research Station of Seawater Intrusion and Soil Salinization, Laizhou Bay, Ministry of Natural Resources, Qingdao, Shandong Province, 266061, China
| | - Min Dai
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China
| | - Mian M Ahson Aslam
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, China; Observation and Research Station of Seawater Intrusion and Soil Salinization, Laizhou Bay, Ministry of Natural Resources, Qingdao, Shandong Province, 266061, China
| | - Changsheng Peng
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China.
| |
Collapse
|
2
|
Wang W, Song Y, Tian Y, Chen B, Liang Y, Liang Y, Li C, Li Y. TCPP/MgO-loaded PLGA microspheres combining photodynamic antibacterial therapy with PBM-assisted fibroblast activation to treat periodontitis. Biomater Sci 2023; 11:2828-2844. [PMID: 36857622 DOI: 10.1039/d2bm01959k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Bacteria eradication and subsequent periodontal tissue reconstruction is the primary task for periodontitis treatment. Commonly used antibiotic therapy suffers from antibiotic resistance. Meanwhile, promoting fibroblast activity is crucial for re-establishing a damaged periodontal structure. In addition to the fibroblast activation property of Mg2+, photobiomodulation (PBM) has recently attracted increasing attention in wound healing. Using the same 635 nm laser resource, PBM could simultaneously work with antibacterial photodynamic therapy (aPDT) to achieve antibacterial function and fibroblast activation effect. Herein, multifunctional microspheres were designed by employing poly (lactic-co-glycolic acid) (PLGA) microspheres to load tetrakis (4-carboxyphenyl) porphyrin (TCPP) and magnesium oxide (MgO) nanoparticles, named as PMT, with sustained Mg2+ release for 20 days. PMT achieved excellent antibacterial photodynamic effect for periodontal pathogens F. nucleatum and P. gingivalis by generating reactive oxygen species, which increases cell membrane permeability and destroys bacteria integrity to cause bacteria death. Meanwhile, PMT itself exhibited improved fibroblast viability and adhesion, with the PMT + light group revealing further activation of fibroblast cells, suggesting the coordinated action of Mg2+ and PBM effects. The underlying molecular mechanism might be the elevated gene expressions of Fibronectin 1, Col1a1, and Vinculin. In addition, the in vivo rat periodontitis model proved the superior therapeutic effects of PMT with laser illumination using micro-computed tomography analysis and histological staining, which presented decreased inflammatory cells, increased collagen production, and higher alveolar bone level in the PMT group. Our study sheds light on a promising strategy to fight periodontitis using versatile microspheres, which combine aPDT and PBM-assisted fibroblast activation functions.
Collapse
Affiliation(s)
- Wanmeng Wang
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| | - Yunjia Song
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| | - Yuan Tian
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| | - Bo Chen
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| | - Yunkai Liang
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| | - Yu Liang
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| | - Changyi Li
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| | - Ying Li
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
3
|
Preinitiation Complex Loading onto mRNAs with Long versus Short 5' TLs. Int J Mol Sci 2022; 23:ijms232113369. [PMID: 36362157 PMCID: PMC9658832 DOI: 10.3390/ijms232113369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
The first step in translation initiation consists in the recruitment of the small ribosome onto the mRNA. This preinitiation complex (PIC) loads via interactions with eIF4F that has assembled on the 5' cap. It then scans the 5' TL (transcript leader) to locate a start site. The molecular architecture of the PIC-mRNA complex over the cap is beginning to be resolved. As part of this, we have been examining the role of the 5' TL length. We observed in vivo initiation events on AUG codons positioned within 3 nts of the 5' cap and robust initiation in vitro at start sites immediately downstream of the 5' end. Ribosomal toe-printing confirmed the positioning of these codons within the P site, indicating that the ribosome reads from the +1 position. To explore differences in the eIF4E-5' cap interaction in the context of long versus short TL, we followed the fate of the eIF4E-cap interaction using a novel solid phase in vitro expression assay. We observed that ribosome recruitment onto a short TL disrupts the eIF4E-cap contact releasing all the mRNA from the solid phase, whereas with a long the mRNA distributes between both phases. These results are discussed in the context of current recruitment models.
Collapse
|
4
|
Uszczynska-Ratajczak B, Sugunan S, Kwiatkowska M, Migdal M, Carbonell-Sala S, Sokol A, Winata CL, Chacinska A. Profiling subcellular localization of nuclear-encoded mitochondrial gene products in zebrafish. Life Sci Alliance 2022; 6:6/1/e202201514. [PMID: 36283702 PMCID: PMC9595208 DOI: 10.26508/lsa.202201514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/08/2022] Open
Abstract
Most mitochondrial proteins are encoded by nuclear genes, synthetized in the cytosol and targeted into the organelle. To characterize the spatial organization of mitochondrial gene products in zebrafish (Danio rerio), we sequenced RNA from different cellular fractions. Our results confirmed the presence of nuclear-encoded mRNAs in the mitochondrial fraction, which in unperturbed conditions, are mainly transcripts encoding large proteins with specific properties, like transmembrane domains. To further explore the principles of mitochondrial protein compartmentalization in zebrafish, we quantified the transcriptomic changes for each subcellular fraction triggered by the chchd4a -/- mutation, causing the disorders in the mitochondrial protein import. Our results indicate that the proteostatic stress further restricts the population of transcripts on the mitochondrial surface, allowing only the largest and the most evolutionary conserved proteins to be synthetized there. We also show that many nuclear-encoded mitochondrial transcripts translated by the cytosolic ribosomes stay resistant to the global translation shutdown. Thus, vertebrates, in contrast to yeast, are not likely to use localized translation to facilitate synthesis of mitochondrial proteins under proteostatic stress conditions.
Collapse
Affiliation(s)
- Barbara Uszczynska-Ratajczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland .,Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Sreedevi Sugunan
- ReMedy International Research Agenda Unit, University of Warsaw, Warsaw, Poland,International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Monika Kwiatkowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland,Centre of New Technologies, University of Warsaw, Warsaw, Poland,International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Maciej Migdal
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Silvia Carbonell-Sala
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Sokol
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany,Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Cecilia L Winata
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Agnieszka Chacinska
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
5
|
Tian XY, He DD, Bai S, Zeng WZ, Wang Z, Wang M, Wu LQ, Chen ZC. Physiological and molecular advances in magnesium nutrition of plants. PLANT AND SOIL 2021; 468:1-17. [PMID: 0 DOI: 10.1007/s11104-021-05139-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/25/2021] [Indexed: 05/27/2023]
|
6
|
Feng Z, Nagao H, Li B, Sotta N, Shikanai Y, Yamaguchi K, Shigenobu S, Kamiya T, Fujiwara T. An SMU Splicing Factor Complex Within Nuclear Speckles Contributes to Magnesium Homeostasis in Arabidopsis. PLANT PHYSIOLOGY 2020; 184:428-442. [PMID: 32601148 PMCID: PMC7479882 DOI: 10.1104/pp.20.00109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/11/2020] [Indexed: 05/06/2023]
Abstract
Mg2+ is among the most abundant divalent cations in living cells. In plants, investigations on magnesium (Mg) homeostasis are restricted to the functional characterization of Mg2+ transporters. Here, we demonstrate that the splicing factors SUPPRESSORS OF MEC-8 AND UNC-52 1 (SMU1) and SMU2 mediate Mg homeostasis in Arabidopsis (Arabidopsis thaliana). A low-Mg sensitive Arabidopsis mutant was isolated, and the causal gene was identified as SMU1 Disruption of SMU2, a protein that can form a complex with SMU1, resulted in a similar low-Mg sensitive phenotype. In both mutants, an Mg2+ transporter gene, Mitochondrial RNA Splicing 2 (MRS2-7), showed altered splicing patterns. Genetic evidence indicated that MRS2-7 functions in the same pathway as SMU1 and SMU2 for low-Mg adaptation. In contrast with previous results showing that the SMU1-SMU2 complex is the active form in RNA splicing, MRS2-7 splicing was promoted in the smu2 mutant overexpressing SMU1, indicating that complex formation is not a prerequisite for the splicing. We found here that formation of the SMU1-SMU2 complex is an essential step for their compartmentation in the nuclear speckles, a type of nuclear body enriched with proteins that participate in various aspects of RNA metabolism. Taken together, our study reveals the involvement of the SMU splicing factors in plant Mg homeostasis and provides evidence that complex formation is required for their intranuclear compartmentation.
Collapse
Affiliation(s)
- Zhihang Feng
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hiroshi Nagao
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Baohai Li
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Naoyuki Sotta
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yusuke Shikanai
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | - Shuji Shigenobu
- National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Takehiro Kamiya
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
7
|
Hepatitis C Virus Translation Regulation. Int J Mol Sci 2020; 21:ijms21072328. [PMID: 32230899 PMCID: PMC7178104 DOI: 10.3390/ijms21072328] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
Translation of the hepatitis C virus (HCV) RNA genome is regulated by the internal ribosome entry site (IRES), located in the 5’-untranslated region (5′UTR) and part of the core protein coding sequence, and by the 3′UTR. The 5′UTR has some highly conserved structural regions, while others can assume different conformations. The IRES can bind to the ribosomal 40S subunit with high affinity without any other factors. Nevertheless, IRES activity is modulated by additional cis sequences in the viral genome, including the 3′UTR and the cis-acting replication element (CRE). Canonical translation initiation factors (eIFs) are involved in HCV translation initiation, including eIF3, eIF2, eIF1A, eIF5, and eIF5B. Alternatively, under stress conditions and limited eIF2-Met-tRNAiMet availability, alternative initiation factors such as eIF2D, eIF2A, and eIF5B can substitute for eIF2 to allow HCV translation even when cellular mRNA translation is downregulated. In addition, several IRES trans-acting factors (ITAFs) modulate IRES activity by building large networks of RNA-protein and protein–protein interactions, also connecting 5′- and 3′-ends of the viral RNA. Moreover, some ITAFs can act as RNA chaperones that help to position the viral AUG start codon in the ribosomal 40S subunit entry channel. Finally, the liver-specific microRNA-122 (miR-122) stimulates HCV IRES-dependent translation, most likely by stabilizing a certain structure of the IRES that is required for initiation.
Collapse
|
8
|
Auslander N, Wolf YI, Shabalina SA, Koonin EV. A unique insert in the genomes of high-risk human papillomaviruses with a predicted dual role in conferring oncogenic risk. F1000Res 2019; 8:1000. [PMID: 31448109 PMCID: PMC6685453 DOI: 10.12688/f1000research.19590.2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
The differences between high risk and low risk human papillomaviruses (HR-HPV and LR-HPV, respectively) that contribute to the tumorigenic potential of HR-HPV are not well understood but can be expected to involve the HPV oncoproteins, E6 and E7. We combine genome comparison and machine learning techniques to identify a previously unnoticed insert near the 3’-end of the E6 oncoprotein gene that is unique to HR-HPV. Analysis of the insert sequence suggests that it exerts a dual effect, by creating a PDZ domain-binding motif at the C-terminus of E6, as well as eliminating the overlap between the E6 and E7 coding regions in HR-HPV. We show that, as a result, the insert might enable coupled termination-reinitiation of the E6 and E7 genes, supported by motifs complementary to the human 18S rRNA. We hypothesize that the added functionality of E6 and positive regulation of E7 expression jointly account for the tumorigenic potential of HR-HPV.
Collapse
Affiliation(s)
- Noam Auslander
- National Center for Biotechnology Information, National Institutes of Health, USA, Bethesda, Maryland, 20814, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Institutes of Health, USA, Bethesda, Maryland, 20814, USA
| | - Svetlana A Shabalina
- National Center for Biotechnology Information, National Institutes of Health, USA, Bethesda, Maryland, 20814, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Institutes of Health, USA, Bethesda, Maryland, 20814, USA
| |
Collapse
|
9
|
Mailliot J, Martin F. Viral internal ribosomal entry sites: four classes for one goal. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9. [PMID: 29193740 DOI: 10.1002/wrna.1458] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/19/2017] [Accepted: 10/02/2017] [Indexed: 12/22/2022]
Abstract
To ensure efficient propagation, viruses need to rapidly produce viral proteins after cell entrance. Since viral genomes do not encode any components of the protein biosynthesis machinery, viral proteins must be produced by the host cell. To hi-jack the host cellular translation, viruses use a great variety of distinct strategies. Many single-stranded positive-sensed RNA viruses contain so-called internal ribosome entry sites (IRESs). IRESs are structural RNA motifs that have evolved to specific folds that recruit the host ribosomes on the viral coding sequences in order to synthesize viral proteins. In host canonical translation, recruitment of the translation machinery components is essentially guided by the 5' cap (m7 G) of mRNA. In contrast, IRESs are able to promote efficient ribosome assembly internally and in cap-independent manner. IRESs have been categorized into four classes, based on their length, nucleotide sequence, secondary and tertiary structures, as well as their mode of action. Classes I and II require the assistance of cellular auxiliary factors, the eukaryotic intiation factors (eIF), for efficient ribosome assembly. Class III IRESs require only a subset of eIFs whereas Class IV, which are the more compact, can promote translation without any eIFs. Extensive functional and structural investigations of IRESs over the past decades have allowed a better understanding of their mode of action for viral translation. Because viral translation has a pivotal role in the infectious program, IRESs are therefore attractive targets for therapeutic purposes. WIREs RNA 2018, 9:e1458. doi: 10.1002/wrna.1458 This article is categorized under: Translation > Ribosome Structure/Function Translation > Translation Mechanisms RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Justine Mailliot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Illkirch-Graffenstaden, France
| | - Franck Martin
- Institut de Biologie Moléculaire et Cellulaire, "Architecture et Réactivité de l'ARN" CNRS UPR9002, Université De Strasbourg, Strasbourg, France
| |
Collapse
|
10
|
Johnson AG, Grosely R, Petrov AN, Puglisi JD. Dynamics of IRES-mediated translation. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0177. [PMID: 28138065 DOI: 10.1098/rstb.2016.0177] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 12/19/2022] Open
Abstract
Viral internal ribosome entry sites (IRESs) are unique RNA elements, which use stable and dynamic RNA structures to recruit ribosomes and drive protein synthesis. IRESs overcome the high complexity of the canonical eukaryotic translation initiation pathway, often functioning with a limited set of eukaryotic initiation factors. The simplest types of IRESs are typified by the cricket paralysis virus intergenic region (CrPV IGR) and hepatitis C virus (HCV) IRESs, both of which independently form high-affinity complexes with the small (40S) ribosomal subunit and bypass the molecular processes of cap-binding and scanning. Owing to their simplicity and ribosomal affinity, the CrPV and HCV IRES have been important models for structural and functional studies of the eukaryotic ribosome during initiation, serving as excellent targets for recent technological breakthroughs in cryogenic electron microscopy (cryo-EM) and single-molecule analysis. High-resolution structural models of ribosome : IRES complexes, coupled with dynamics studies, have clarified decades of biochemical research and provided an outline of the conformational and compositional trajectory of the ribosome during initiation. Here we review recent progress in the study of HCV- and CrPV-type IRESs, highlighting important structural and dynamics insights and the synergy between cryo-EM and single-molecule studies.This article is part of the themed issue 'Perspectives on the ribosome'.
Collapse
Affiliation(s)
- Alex G Johnson
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA.,Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Rosslyn Grosely
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Alexey N Petrov
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Neu-Yilik G, Raimondeau E, Eliseev B, Yeramala L, Amthor B, Deniaud A, Huard K, Kerschgens K, Hentze MW, Schaffitzel C, Kulozik AE. Dual function of UPF3B in early and late translation termination. EMBO J 2017; 36:2968-2986. [PMID: 28899899 PMCID: PMC5641913 DOI: 10.15252/embj.201797079] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/07/2017] [Accepted: 08/10/2017] [Indexed: 11/09/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a cellular surveillance pathway that recognizes and degrades mRNAs with premature termination codons (PTCs). The mechanisms underlying translation termination are key to the understanding of RNA surveillance mechanisms such as NMD and crucial for the development of therapeutic strategies for NMD-related diseases. Here, we have used a fully reconstituted in vitro translation system to probe the NMD proteins for interaction with the termination apparatus. We discovered that UPF3B (i) interacts with the release factors, (ii) delays translation termination and (iii) dissociates post-termination ribosomal complexes that are devoid of the nascent peptide. Furthermore, we identified UPF1 and ribosomes as new interaction partners of UPF3B. These previously unknown functions of UPF3B during the early and late phases of translation termination suggest that UPF3B is involved in the crosstalk between the NMD machinery and the PTC-bound ribosome, a central mechanistic step of RNA surveillance.
Collapse
Affiliation(s)
- Gabriele Neu-Yilik
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany.,Hopp Kindertumorzentrum am NCT Heidelberg, Heidelberg, Germany
| | | | - Boris Eliseev
- European Molecular Biology Laboratory, Grenoble, France
| | | | - Beate Amthor
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Karine Huard
- European Molecular Biology Laboratory, Grenoble, France
| | - Kathrin Kerschgens
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
| | - Matthias W Hentze
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany .,European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christiane Schaffitzel
- European Molecular Biology Laboratory, Grenoble, France .,School of Biochemistry, University of Bristol, Bristol, UK
| | - Andreas E Kulozik
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany .,Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany.,Hopp Kindertumorzentrum am NCT Heidelberg, Heidelberg, Germany
| |
Collapse
|
12
|
Kranawetter C, Brady S, Sun L, Schroeder M, Chen SJ, Heng X. Nuclear Magnetic Resonance Study of RNA Structures at the 3'-End of the Hepatitis C Virus Genome. Biochemistry 2017; 56:4972-4984. [PMID: 28829576 DOI: 10.1021/acs.biochem.7b00573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The 3'-end of the genomic RNA of the hepatitis C virus (HCV) embeds conserved elements that regulate viral RNA synthesis and protein translation by mechanisms that have yet to be elucidated. Previous studies with oligo-RNA fragments have led to multiple, mutually exclusive secondary structure predictions, indicating that HCV RNA structure may be context-dependent. Here we employed a nuclear magnetic resonance (NMR) approach that involves long-range adenosine interaction detection, coupled with site-specific 2H labeling, to probe the structure of the intact 3'-end of the HCV genome (385 nucleotides). Our data reveal that the 3'-end exists as an equilibrium mixture of two conformations: an open conformation in which the 98 nucleotides of the 3'-tail (3'X) form a two-stem-loop structure with the kissing-loop residues sequestered and a closed conformation in which the 3'X rearranges its structure and forms a long-range kissing-loop interaction with an upstream cis-acting element 5BSL3.2. The long-range kissing species is favored under high-Mg2+ conditions, and the intervening sequences do not affect the equilibrium as their secondary structures remain unchanged. The open and closed conformations are consistent with the reported function regulation of viral RNA synthesis and protein translation, respectively. Our NMR detection of these RNA conformations and the structural equilibrium in the 3'-end of the HCV genome support its roles in coordinating various steps of HCV replication.
Collapse
Affiliation(s)
- Clayton Kranawetter
- Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - Samantha Brady
- Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - Lizhen Sun
- Department of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri , Columbia, Missouri 65211, United States
| | - Mark Schroeder
- Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri , Columbia, Missouri 65211, United States
| | - Xiao Heng
- Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| |
Collapse
|
13
|
Thermodynamic and Kinetic Analyses of Iron Response Element (IRE)-mRNA Binding to Iron Regulatory Protein, IRP1. Sci Rep 2017; 7:8532. [PMID: 28819260 PMCID: PMC5561112 DOI: 10.1038/s41598-017-09093-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/21/2017] [Indexed: 11/08/2022] Open
Abstract
Comparison of kinetic and thermodynamic properties of IRP1 (iron regulatory protein1) binding to FRT (ferritin) and ACO2 (aconitase2) IRE-RNAs, with or without Mn2+, revealed differences specific to each IRE-RNA. Conserved among animal mRNAs, IRE-RNA structures are noncoding and bind Fe2+ to regulate biosynthesis rates of the encoded, iron homeostatic proteins. IRP1 protein binds IRE-RNA, inhibiting mRNA activity; Fe2+ decreases IRE-mRNA/IRP1 binding, increasing encoded protein synthesis. Here, we observed heat, 5 °C to 30 °C, increased IRP1 binding to IRE-RNA 4-fold (FRT IRE-RNA) or 3-fold (ACO2 IRE-RNA), which was enthalpy driven and entropy favorable. Mn2+ (50 µM, 25 °C) increased IRE-RNA/IRP1 binding (Kd) 12-fold (FRT IRE-RNA) or 6-fold (ACO2 IRE-RNA); enthalpic contributions decreased ~61% (FRT) or ~32% (ACO2), and entropic contributions increased ~39% (FRT) or ~68% (ACO2). IRE-RNA/IRP1 binding changed activation energies: FRT IRE-RNA 47.0 ± 2.5 kJ/mol, ACO2 IRE-RNA 35.0 ± 2.0 kJ/mol. Mn2+ (50 µM) decreased the activation energy of RNA-IRP1 binding for both IRE-RNAs. The observations suggest decreased RNA hydrogen bonding and changed RNA conformation upon IRP1 binding and illustrate how small, conserved, sequence differences among IRE-mRNAs selectively influence thermodynamic and kinetic selectivity of the protein/RNA interactions.
Collapse
|
14
|
Chen ZC, Peng WT, Li J, Liao H. Functional dissection and transport mechanism of magnesium in plants. Semin Cell Dev Biol 2017; 74:142-152. [PMID: 28822768 DOI: 10.1016/j.semcdb.2017.08.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/24/2017] [Accepted: 08/01/2017] [Indexed: 01/15/2023]
Abstract
Magnesium (Mg) is the second most abundant cation in plants, and, as such, is involved in numerous physiological and biochemical processes, including photosynthesis, enzyme activation, and synthesis of nucleic acids and proteins. Due to its relatively small ionic radius and large hydrated radius, Mg binds weakly to soil and root surfaces, and thereby is easily leached from soil. Mg deficiency not only affects crop productivity and quality, but also contributes to numerous chronic human diseases. Therefore, Mg nutrition in plants is an important issue in nutrition and food security. To acquire and maintain high concentrations of Mg, plants have evolved highly-efficient systems for Mg uptake, storage and translocation. Advances in the understanding of fundamental principles of Mg nutrition and physiology are required in order to improve Mg nutrient management, Mg stress diagnosis, and genetic marker assisted breeding efforts. The aims of this review are to highlight physiological and molecular mechanisms underlying Mg biological functions and to summarize recent developments in the elucidation of Mg transport systems in plants.
Collapse
Affiliation(s)
- Zhi Chang Chen
- Root Biology Center, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China.
| | - Wen Ting Peng
- Root Biology Center, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China; College of Resources and Environment, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China
| | - Jian Li
- Root Biology Center, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China; College of Life Sciences, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China
| | - Hong Liao
- Root Biology Center, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China
| |
Collapse
|
15
|
Terenin IM, Smirnova VV, Andreev DE, Dmitriev SE, Shatsky IN. A researcher's guide to the galaxy of IRESs. Cell Mol Life Sci 2017; 74:1431-1455. [PMID: 27853833 PMCID: PMC11107752 DOI: 10.1007/s00018-016-2409-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 12/25/2022]
Abstract
The idea of internal initiation is frequently exploited to explain the peculiar translation properties or unusual features of some eukaryotic mRNAs. In this review, we summarize the methods and arguments most commonly used to address cases of translation governed by internal ribosome entry sites (IRESs). Frequent mistakes are revealed. We explain why "cap-independent" does not readily mean "IRES-dependent" and why the presence of a long and highly structured 5' untranslated region (5'UTR) or translation under stress conditions cannot be regarded as an argument for appealing to internal initiation. We carefully describe the known pitfalls and limitations of the bicistronic assay and artefacts of some commercially available in vitro translation systems. We explain why plasmid DNA transfection should not be used in IRES studies and which control experiments are unavoidable if someone decides to use it anyway. Finally, we propose a workflow for the validation of IRES activity, including fast and simple experiments based on a single genetic construct with a sequence of interest.
Collapse
Affiliation(s)
- Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Victoria V Smirnova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Dmitri E Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
16
|
Failmezger J, Nitschel R, Sánchez-Kopper A, Kraml M, Siemann-Herzberg M. Site-Specific Cleavage of Ribosomal RNA in Escherichia coli-Based Cell-Free Protein Synthesis Systems. PLoS One 2016; 11:e0168764. [PMID: 27992588 PMCID: PMC5167549 DOI: 10.1371/journal.pone.0168764] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/06/2016] [Indexed: 01/12/2023] Open
Abstract
Cell-free protein synthesis, which mimics the biological protein production system, allows rapid expression of proteins without the need to maintain a viable cell. Nevertheless, cell-free protein expression relies on active in vivo translation machinery including ribosomes and translation factors. Here, we examined the integrity of the protein synthesis machinery, namely the functionality of ribosomes, during (i) the cell-free extract preparation and (ii) the performance of in vitro protein synthesis by analyzing crucial components involved in translation. Monitoring the 16S rRNA, 23S rRNA, elongation factors and ribosomal protein S1, we show that processing of a cell-free extract results in no substantial alteration of the translation machinery. Moreover, we reveal that the 16S rRNA is specifically cleaved at helix 44 during in vitro translation reactions, resulting in the removal of the anti-Shine-Dalgarno sequence. These defective ribosomes accumulate in the cell-free system. We demonstrate that the specific cleavage of the 16S rRNA is triggered by the decreased concentrations of Mg2+. In addition, we provide evidence that helix 44 of the 30S ribosomal subunit serves as a point-of-entry for ribosome degradation in Escherichia coli. Our results suggest that Mg2+ homeostasis is fundamental to preserving functional ribosomes in cell-free protein synthesis systems, which is of major importance for cell-free protein synthesis at preparative scale, in order to create highly efficient technical in vitro systems.
Collapse
MESH Headings
- Cell-Free System/chemistry
- Cell-Free System/metabolism
- Escherichia coli/chemistry
- Escherichia coli/metabolism
- Magnesium/chemistry
- Magnesium/metabolism
- Protein Biosynthesis
- RNA Processing, Post-Transcriptional
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/metabolism
- Ribosome Subunits, Small, Bacterial/chemistry
- Ribosome Subunits, Small, Bacterial/metabolism
Collapse
Affiliation(s)
- Jurek Failmezger
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Robert Nitschel
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | | | - Michael Kraml
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | | |
Collapse
|
17
|
Akulich KA, Andreev DE, Terenin IM, Smirnova VV, Anisimova AS, Makeeva DS, Arkhipova VI, Stolboushkina EA, Garber MB, Prokofjeva MM, Spirin PV, Prassolov VS, Shatsky IN, Dmitriev SE. Four translation initiation pathways employed by the leaderless mRNA in eukaryotes. Sci Rep 2016; 6:37905. [PMID: 27892500 PMCID: PMC5124965 DOI: 10.1038/srep37905] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/02/2016] [Indexed: 01/09/2023] Open
Abstract
mRNAs lacking 5′ untranslated regions (leaderless mRNAs) are molecular relics of an ancient translation initiation pathway. Nevertheless, they still represent a significant portion of transcriptome in some taxons, including a number of eukaryotic species. In bacteria and archaea, the leaderless mRNAs can bind non-dissociated 70 S ribosomes and initiate translation without protein initiation factors involved. Here we use the Fleeting mRNA Transfection technique (FLERT) to show that translation of a leaderless reporter mRNA is resistant to conditions when eIF2 and eIF4F, two key eukaryotic translation initiation factors, are inactivated in mammalian cells. We report an unconventional translation initiation pathway utilized by the leaderless mRNA in vitro, in addition to the previously described 80S-, eIF2-, or eIF2D-mediated modes. This mechanism is a bacterial-like eIF5B/IF2-assisted initiation that has only been reported for hepatitis C virus-like internal ribosome entry sites (IRESs). Therefore, the leaderless mRNA is able to take any of four different translation initiation pathways in eukaryotes.
Collapse
Affiliation(s)
- Kseniya A Akulich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Dmitry E Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ilya M Terenin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Victoria V Smirnova
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Aleksandra S Anisimova
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Desislava S Makeeva
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Valentina I Arkhipova
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Elena A Stolboushkina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Maria B Garber
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Maria M Prokofjeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Pavel V Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Vladimir S Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Sergey E Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.,Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
18
|
Zhen Z, Luthringer B, Yang L, Xi T, Zheng Y, Feyerabend F, Willumeit R, Lai C, Ge Z. Proteomic profile of mouse fibroblasts exposed to pure magnesium extract. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:522-31. [PMID: 27612743 DOI: 10.1016/j.msec.2016.06.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/13/2016] [Accepted: 06/29/2016] [Indexed: 11/24/2022]
Abstract
Magnesium and its alloys gain wide attention as degradable biomaterials. In order to reveal the molecular mechanism of the influence of biodegradable magnesium on cells, proteomics analysis was performed in this work. After mouse fibroblasts (L929) were cultured with or without Mg degradation products (Mg-extract) for 8, 24, and 48h, changes in protein expression profiles were obtained using isobaric tags for relative and absolute quantitation (iTRAQ) coupled two dimensional liquid chromatography-tandem mass spectrometry (2D LC MS/MS). A total of 867 proteins were identified (relying on at least two peptides). Compared to the control group, 205, 282, and 217 regulated proteins were identified at 8, 24, and 48h, respectively. 65 common proteins were up or down- regulated within all the three time points, which were involved in various physiological and metabolic activities. Consistent with viability, proliferation, and cell cycle analysis, stimulated energy metabolism as well as protein synthesis pathways were discussed, indicating a possible effect of Mg-extract on L929 proliferation. Furthermore, endocytosis and focal adhesion processes were also discussed. This proteomics study uncovers early cellular mechanisms triggered by Mg degradation products and highlights the cytocompatibility of biodegradable metallic materials for biomedical applications such as stents or orthopaedic implants.
Collapse
Affiliation(s)
- Zhen Zhen
- Shenzhen Institute, Peking University, Shenzhen 518057, China; College of Engineering, Peking University, Beijing 100871, China
| | - Bérengère Luthringer
- Institute of Material Research, Helmholtz-Zentrum Geesthacht, Hamburg 21502, Germany.
| | - Li Yang
- College of Engineering, Peking University, Beijing 100871, China
| | - Tingfei Xi
- Shenzhen Institute, Peking University, Shenzhen 518057, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | - Yufeng Zheng
- Shenzhen Institute, Peking University, Shenzhen 518057, China; College of Engineering, Peking University, Beijing 100871, China
| | - Frank Feyerabend
- Institute of Material Research, Helmholtz-Zentrum Geesthacht, Hamburg 21502, Germany
| | - Regine Willumeit
- Institute of Material Research, Helmholtz-Zentrum Geesthacht, Hamburg 21502, Germany
| | - Chen Lai
- Shenzhen Institute, Peking University, Shenzhen 518057, China
| | - Zigang Ge
- College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
19
|
Lozano G, Fernandez N, Martinez-Salas E. Modeling Three-Dimensional Structural Motifs of Viral IRES. J Mol Biol 2016; 428:767-776. [PMID: 26778619 DOI: 10.1016/j.jmb.2016.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 01/08/2016] [Accepted: 01/08/2016] [Indexed: 01/23/2023]
Abstract
RNA virus genomes are reservoirs of a wide diversity of RNA structural elements. In particular, specific regions of the viral genome have evolved to adopt specialized three-dimensional (3D) structures, which can act in concert with host factors and/or viral proteins to recruit the translation machinery on viral RNA using a mechanism that is independent on the 5' end. This strategy relies on cis-acting RNA sequences designated as internal ribosome entry site (IRES) elements. IRES elements that are found in the genome of different groups of RNA viruses perform the same function despite differing in primary sequence and secondary RNA structure and host factor requirement to recruit the translation machinery internally. Evolutionarily conserved motifs tend to preserve sequences in each group of RNA viruses impacting on RNA structure and RNA-protein interactions important for IRES function. However, due to the lack of sequence homology among genetically distant IRES elements, accurate modeling of 3D IRES structure is currently a challenging task. In addition, as a universal RNA motif unique to IRES elements has not been found, a better understanding of viral IRES structural motifs could greatly assist in the detection of IRES-like motifs hidden in genome sequences. The focus of this review is to describe recent advances in modeling viral IRES tertiary structural motifs and also novel approaches to detect sequences potentially folding as IRES-like motifs.
Collapse
Affiliation(s)
- Gloria Lozano
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Nicolas Cabrera 1, 28049 Madrid, Spain
| | - Noemi Fernandez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Nicolas Cabrera 1, 28049 Madrid, Spain
| | - Encarnacion Martinez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Nicolas Cabrera 1, 28049 Madrid, Spain.
| |
Collapse
|
20
|
Chakraborty B, Bhakta S, Sengupta J. Disassembly of yeast 80S ribosomes into subunits is a concerted action of ribosome-assisted folding of denatured protein. Biochem Biophys Res Commun 2016; 469:923-9. [DOI: 10.1016/j.bbrc.2015.12.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 12/22/2015] [Indexed: 11/27/2022]
|
21
|
Engineering degrons of yeast ornithine decarboxylase as vehicles for efficient targeted protein degradation. Biochim Biophys Acta Gen Subj 2015; 1850:2452-63. [DOI: 10.1016/j.bbagen.2015.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/03/2015] [Accepted: 09/08/2015] [Indexed: 11/18/2022]
|
22
|
Angulo J, Ulryck N, Deforges J, Chamond N, Lopez-Lastra M, Masquida B, Sargueil B. LOOP IIId of the HCV IRES is essential for the structural rearrangement of the 40S-HCV IRES complex. Nucleic Acids Res 2015; 44:1309-25. [PMID: 26626152 PMCID: PMC4756818 DOI: 10.1093/nar/gkv1325] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/11/2015] [Indexed: 12/14/2022] Open
Abstract
As obligatory intracellular parasites, viruses rely on cellular machines to complete their life cycle, and most importantly they recruit the host ribosomes to translate their mRNA. The Hepatitis C viral mRNA initiates translation by directly binding the 40S ribosomal subunit in such a way that the initiation codon is correctly positioned in the P site of the ribosome. Such a property is likely to be central for many viruses, therefore the description of host-pathogen interaction at the molecular level is instrumental to provide new therapeutic targets. In this study, we monitored the 40S ribosomal subunit and the viral RNA structural rearrangement induced upon the formation of the binary complex. We further took advantage of an IRES viral mutant mRNA deficient for translation to identify the interactions necessary to promote translation. Using a combination of structure probing in solution and molecular modeling we establish a whole atom model which appears to be very similar to the one obtained recently by cryoEM. Our model brings new information on the complex, and most importantly reveals some structural rearrangement within the ribosome. This study suggests that the formation of a ‘kissing complex’ between the viral RNA and the 18S ribosomal RNA locks the 40S ribosomal subunit in a conformation proficient for translation.
Collapse
Affiliation(s)
- Jenniffer Angulo
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Nathalie Ulryck
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | - Jules Deforges
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | - Nathalie Chamond
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | - Marcelo Lopez-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Benoît Masquida
- UMR 7156 Génétique Moléculaire Génomique Microbiologie, CNRS - Université de Strasbourg, Strasbourg, France
| | - Bruno Sargueil
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
| |
Collapse
|
23
|
When Too Much ATP Is Bad for Protein Synthesis. J Mol Biol 2015; 427:2586-2594. [PMID: 26150063 DOI: 10.1016/j.jmb.2015.06.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/30/2015] [Accepted: 06/30/2015] [Indexed: 01/17/2023]
Abstract
Adenosine triphosphate (ATP) is the energy currency of living cells. Even though ATP powers virtually all energy-dependent activities, most cellular ATP is utilized in protein synthesis via tRNA aminoacylation and guanosine triphosphate regeneration. Magnesium (Mg(2+)), the most common divalent cation in living cells, plays crucial roles in protein synthesis by maintaining the structure of ribosomes, participating in the biochemistry of translation initiation and functioning as a counterion for ATP. A non-physiological increase in ATP levels hinders growth in cells experiencing Mg(2+) limitation because ATP is the most abundant nucleotide triphosphate in the cell, and Mg(2+) is also required for the stabilization of the cytoplasmic membrane and as a cofactor for essential enzymes. We propose that organisms cope with Mg(2+) limitation by decreasing ATP levels and ribosome production, thereby reallocating Mg(2+) to indispensable cellular processes.
Collapse
|
24
|
Khatter H, Myasnikov AG, Natchiar SK, Klaholz BP. Structure of the human 80S ribosome. Nature 2015; 520:640-5. [PMID: 25901680 DOI: 10.1038/nature14427] [Citation(s) in RCA: 362] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/26/2015] [Indexed: 01/21/2023]
Abstract
Ribosomes are translational machineries that catalyse protein synthesis. Ribosome structures from various species are known at the atomic level, but obtaining the structure of the human ribosome has remained a challenge; efforts to address this would be highly relevant with regard to human diseases. Here we report the near-atomic structure of the human ribosome derived from high-resolution single-particle cryo-electron microscopy and atomic model building. The structure has an average resolution of 3.6 Å, reaching 2.9 Å resolution in the most stable regions. It provides unprecedented insights into ribosomal RNA entities and amino acid side chains, notably of the transfer RNA binding sites and specific molecular interactions with the exit site tRNA. It reveals atomic details of the subunit interface, which is seen to remodel strongly upon rotational movements of the ribosomal subunits. Furthermore, the structure paves the way for analysing antibiotic side effects and diseases associated with deregulated protein synthesis.
Collapse
Affiliation(s)
- Heena Khatter
- 1] Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France [2] Centre National de la Recherche Scientifique (CNRS), UMR 7104, 67404 Illkirch, France [3] Institut National de la Santé et de la Recherche Médicale (INSERM) U964, 67404 Illkirch, France [4] Université de Strasbourg, 67081 Strasbourg, France
| | - Alexander G Myasnikov
- 1] Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France [2] Centre National de la Recherche Scientifique (CNRS), UMR 7104, 67404 Illkirch, France [3] Institut National de la Santé et de la Recherche Médicale (INSERM) U964, 67404 Illkirch, France [4] Université de Strasbourg, 67081 Strasbourg, France
| | - S Kundhavai Natchiar
- 1] Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France [2] Centre National de la Recherche Scientifique (CNRS), UMR 7104, 67404 Illkirch, France [3] Institut National de la Santé et de la Recherche Médicale (INSERM) U964, 67404 Illkirch, France [4] Université de Strasbourg, 67081 Strasbourg, France
| | - Bruno P Klaholz
- 1] Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France [2] Centre National de la Recherche Scientifique (CNRS), UMR 7104, 67404 Illkirch, France [3] Institut National de la Santé et de la Recherche Médicale (INSERM) U964, 67404 Illkirch, France [4] Université de Strasbourg, 67081 Strasbourg, France
| |
Collapse
|
25
|
García-Sacristán A, Moreno M, Ariza-Mateos A, López-Camacho E, Jáudenes RM, Vázquez L, Gómez J, Martín-Gago JÁ, Briones C. A magnesium-induced RNA conformational switch at the internal ribosome entry site of hepatitis C virus genome visualized by atomic force microscopy. Nucleic Acids Res 2014; 43:565-80. [PMID: 25510496 PMCID: PMC4288189 DOI: 10.1093/nar/gku1299] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The 5' untranslated region of hepatitis C virus (HCV) genomic RNA contains an internal ribosome entry site (IRES) element, composed of domains II-IV, which is required for cap-independent translation initiation. Little information on the 3D structure of the whole functional HCV IRES is still available. Here, we use atomic force microscopy to visualize the HCV IRES conformation in its natural sequence context, which includes the upstream domain I and the essential, downstream domains V and VI. The 574 nt-long molecule analyzed underwent an unexpected, Mg(2+)-induced switch between two alternative conformations: from 'open', elongated morphologies at 0-2 mM Mg(2+) concentration to a 'closed', comma-shaped conformation at 4-6 mM Mg(2+). This sharp transition, confirmed by gel-shift analysis and partial RNase T1 cleavage, was hindered by the microRNA miR-122. The comma-shaped IRES-574 molecules visualized at 4-6 mM Mg(2+) in the absence of miR-122 showed two arms. Our data support that the first arm would contain domain III, while the second one would be composed of domains (I-II)+(V-VI) thanks to a long-range RNA interaction between the I-II spacer and the basal region of domain VI. This reinforces the previously described structural continuity between the HCV IRES and its flanking domains I, V and VI.
Collapse
Affiliation(s)
- Ana García-Sacristán
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid 28850, Spain Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas, (CIBERehd), Spain
| | - Miguel Moreno
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid 28850, Spain
| | - Ascensión Ariza-Mateos
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas, (CIBERehd), Spain Laboratory of RNA Archaeology, Instituto de Parasitología y Biomedicina 'López-Neyra' (CSIC), Parque Tecnológico Ciencias de la Salud, Armilla, Granada 18016, Spain
| | - Elena López-Camacho
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid 28850, Spain Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, Madrid 28049, Spain
| | - Rosa M Jáudenes
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid 28850, Spain
| | - Luis Vázquez
- Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, Madrid 28049, Spain
| | - Jordi Gómez
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas, (CIBERehd), Spain Laboratory of RNA Archaeology, Instituto de Parasitología y Biomedicina 'López-Neyra' (CSIC), Parque Tecnológico Ciencias de la Salud, Armilla, Granada 18016, Spain
| | - José Ángel Martín-Gago
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid 28850, Spain Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, Madrid 28049, Spain
| | - Carlos Briones
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid 28850, Spain Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas, (CIBERehd), Spain
| |
Collapse
|
26
|
Base pairing between hepatitis C virus RNA and 18S rRNA is required for IRES-dependent translation initiation in vivo. Proc Natl Acad Sci U S A 2014; 111:15385-9. [PMID: 25313046 DOI: 10.1073/pnas.1413472111] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Degeneracy in eukaryotic translation initiation is evident in the initiation strategies of various viruses. Hepatitis C virus (HCV) provides an exceptional example--translation of the HCV RNA is facilitated by an internal ribosome entry site (IRES) that can autonomously bind a 40S ribosomal subunit and accurately position it at the initiation codon. This binding involves both ribosomal protein and 18S ribosomal RNA (rRNA) interactions. In this study, we evaluate the functional significance of the rRNA interaction and show that HCV IRES activity requires a 3-nt Watson-Crick base-pairing interaction between the apical loop of subdomain IIId in the IRES and helix 26 in 18S rRNA. Mutations of these nucleotides in either RNA dramatically disrupted IRES activity. The activities of the mutated HCV IRESs could be restored by compensatory mutations in the 18S rRNA. The effects of the 18S rRNA mutations appeared to be specific inasmuch as ribosomes containing these mutations did not support translation mediated by the wild-type HCV IRES, but did not block translation mediated by the cap structure or other viral IRESs. The present study provides, to our knowledge, the first functional demonstration of mRNA-rRNA base pairing in mammalian cells. By contrast with other rRNA-binding sites in mRNAs that can enhance translation as independent elements, e.g., the Shine-Dalgarno sequence in prokaryotes, the rRNA-binding site in the HCV IRES functions as an essential component of a more complex interaction.
Collapse
|
27
|
Hector RD, Burlacu E, Aitken S, Le Bihan T, Tuijtel M, Zaplatina A, Cook AG, Granneman S. Snapshots of pre-rRNA structural flexibility reveal eukaryotic 40S assembly dynamics at nucleotide resolution. Nucleic Acids Res 2014; 42:12138-54. [PMID: 25200078 PMCID: PMC4231735 DOI: 10.1093/nar/gku815] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ribosome assembly in eukaryotes involves the activity of hundreds of assembly factors that direct the hierarchical assembly of ribosomal proteins and numerous ribosomal RNA folding steps. However, detailed insights into the function of assembly factors and ribosomal RNA folding events are lacking. To address this, we have developed ChemModSeq, a method that combines structure probing, high-throughput sequencing and statistical modeling, to quantitatively measure RNA structural rearrangements during the assembly of macromolecular complexes. By applying ChemModSeq to purified 40S assembly intermediates we obtained nucleotide-resolution maps of ribosomal RNA flexibility revealing structurally distinct assembly intermediates and mechanistic insights into assembly dynamics not readily observed in cryo-electron microscopy reconstructions. We show that RNA restructuring events coincide with the release of assembly factors and predict that completion of the head domain is required before the Rio1 kinase enters the assembly pathway. Collectively, our results suggest that 40S assembly factors regulate the timely incorporation of ribosomal proteins by delaying specific folding steps in the 3' major domain of the 20S pre-ribosomal RNA.
Collapse
Affiliation(s)
- Ralph D Hector
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh, EH9 3JD, UK
| | - Elena Burlacu
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh, EH9 3JD, UK Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3JR, UK
| | - Stuart Aitken
- MRC Human Genetics Unit, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Thierry Le Bihan
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh, EH9 3JD, UK
| | - Maarten Tuijtel
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh, EH9 3JD, UK
| | - Alina Zaplatina
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh, EH9 3JD, UK
| | - Atlanta G Cook
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3JR, UK
| | - Sander Granneman
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh, EH9 3JD, UK
| |
Collapse
|
28
|
Lozano G, Fernandez N, Martinez-Salas E. Magnesium-dependent folding of a picornavirus IRES element modulates RNA conformation and eIF4G interaction. FEBS J 2014; 281:3685-700. [PMID: 24961997 PMCID: PMC4163634 DOI: 10.1111/febs.12890] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/12/2014] [Accepted: 06/20/2014] [Indexed: 12/24/2022]
Abstract
Internal ribosome entry site (IRES) elements are high-order RNA structures that promote internal initiation of translation to allow protein synthesis under situations that compromise the general cap-dependent translation mechanism. Picornavirus IRES elements are highly efficient elements with a modular RNA structure organization. Here we investigated the effect of Mg(2+) concentration on the local flexibility and solvent accessibility of the foot-and-mouth disease virus (FMDV) IRES element measured on the basis of selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) reactivity and hydroxyl radical cleavage. We have found that Mg(2+) concentration affects the organization of discrete IRES regions, mainly the apical region of domain 3, the 10 nt loop of domain 4, and the pyrimidine tract of domain 5. In support of the effect of RNA structure on IRES activity, substitution or deletion mutants of the 10 nt loop of domain 4 impair internal initiation. In addition, divalent cations affect the binding of eIF4G, a eukaryotic initiation factor that is essential for IRES-dependent translation that interacts with domain 4. Binding of eIF4G is favored by the local RNA flexibility adopted at low Mg(2+) concentration, while eIF4B interacts with the IRES independently of the compactness of the RNA structure. Our study shows that the IRES element adopts a near-native structure in the absence of proteins, shedding light on the influence of Mg(2+) ions on the local flexibility and binding of eIF4G in a model IRES element.
Collapse
Affiliation(s)
- Gloria Lozano
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Cantoblanco, Spain
| | | | | |
Collapse
|
29
|
Khan MA, Ma J, Walden WE, Merrick WC, Theil EC, Goss DJ. Rapid kinetics of iron responsive element (IRE) RNA/iron regulatory protein 1 and IRE-RNA/eIF4F complexes respond differently to metal ions. Nucleic Acids Res 2014; 42:6567-77. [PMID: 24728987 PMCID: PMC4041422 DOI: 10.1093/nar/gku248] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Metal ion binding was previously shown to destabilize IRE-RNA/IRP1 equilibria and enhanced IRE-RNA/eIF4F equilibria. In order to understand the relative importance of kinetics and stability, we now report rapid rates of protein/RNA complex assembly and dissociation for two IRE-RNAs with IRP1, and quantitatively different metal ion response kinetics that coincide with the different iron responses in vivo. kon, for FRT IRE-RNA binding to IRP1 was eight times faster than ACO2 IRE-RNA. Mn2+ decreased kon and increased koff for IRP1 binding to both FRT and ACO2 IRE-RNA, with a larger effect for FRT IRE-RNA. In order to further understand IRE-mRNA regulation in terms of kinetics and stability, eIF4F kinetics with FRT IRE-RNA were determined. kon for eIF4F binding to FRT IRE-RNA in the absence of metal ions was 5-times slower than the IRP1 binding to FRT IRE-RNA. Mn2+ increased the association rate for eIF4F binding to FRT IRE-RNA, so that at 50 µM Mn2+ eIF4F bound more than 3-times faster than IRP1. IRP1/IRE-RNA complex has a much shorter life-time than the eIF4F/IRE-RNA complex, which suggests that both rate of assembly and stability of the complexes are important, and that allows this regulatory system to respond rapidly to change in cellular iron.
Collapse
Affiliation(s)
- Mateen A Khan
- Department of Chemistry and Biochemistry, Hunter College, City University of New York, New York, NY 10065, USA
| | - Jia Ma
- Department of Chemistry and Biochemistry, Hunter College, City University of New York, New York, NY 10065, USA
| | - William E Walden
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612-7334, USA
| | - William C Merrick
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Elizabeth C Theil
- Childeren's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Dixie J Goss
- Department of Chemistry and Biochemistry, Hunter College, City University of New York, New York, NY 10065, USA
| |
Collapse
|
30
|
Khatter H, Myasnikov AG, Mastio L, Billas IML, Birck C, Stella S, Klaholz BP. Purification, characterization and crystallization of the human 80S ribosome. Nucleic Acids Res 2014; 42:e49. [PMID: 24452798 PMCID: PMC3973290 DOI: 10.1093/nar/gkt1404] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ribosomes are key macromolecular protein synthesis machineries in the cell. Human ribosomes have so far not been studied to atomic resolution because of their particularly complex structure as compared with other eukaryotic or prokaryotic ribosomes, and they are difficult to prepare to high homogeneity, which is a key requisite for high-resolution structural work. We established a purification protocol for human 80S ribosomes isolated from HeLa cells that allows obtaining large quantities of homogenous samples as characterized by biophysical methods using analytical ultracentrifugation and multiangle laser light scattering. Samples prepared under different conditions were characterized by direct single particle imaging using cryo electron microscopy, which helped optimizing the preparation protocol. From a small data set, a 3D reconstruction at subnanometric resolution was obtained showing all prominent structural features of the human ribosome, and revealing a salt concentration dependence of the presence of the exit site tRNA, which we show is critical for obtaining crystals. With these well-characterized samples first human 80S ribosome crystals were obtained from several crystallization conditions in capillaries and sitting drops, which diffract to 26 Å resolution at cryo temperatures and for which the crystallographic parameters were determined, paving the way for future high-resolution work.
Collapse
Affiliation(s)
- Heena Khatter
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre National de la Recherche Scientifique (CNRS) UMR 7104/Institut National de la Santé de la Recherche Médicale (INSERM) U964/Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Malygin AA, Kossinova OA, Shatsky IN, Karpova GG. HCV IRES interacts with the 18S rRNA to activate the 40S ribosome for subsequent steps of translation initiation. Nucleic Acids Res 2013; 41:8706-14. [PMID: 23873958 PMCID: PMC3794592 DOI: 10.1093/nar/gkt632] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Previous analyses of complexes of 40S ribosomal subunits with the hepatitis C virus (HCV) internal ribosome entry site (IRES) have revealed contacts made by the IRES with ribosomal proteins. Here, using chemical probing, we show that the HCV IRES also contacts the backbone and bases of the CCC triplet in the 18S ribosomal RNA (rRNA) expansion segment 7. These contacts presumably provide interplay between IRES domain II and the AUG codon close to ribosomal protein S5, which causes a rearrangement of 18S rRNA structure in the vicinity of the universally conserved nucleotide G1639. As a result, G1639 becomes exposed and the corresponding site of the 40S subunit implicated in transfer RNA discrimination can select . These data are the first demonstration at nucleotide resolution of direct IRES–rRNA interactions and how they induce conformational transition in the 40S subunit allowing the HCV IRES to function without AUG recognition initiation factors.
Collapse
Affiliation(s)
- Alexey A Malygin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | | | | | | |
Collapse
|
32
|
Ma X, Kim EJ, Kook I, Ma F, Voshall A, Moriyama E, Cerutti H. Small interfering RNA-mediated translation repression alters ribosome sensitivity to inhibition by cycloheximide in Chlamydomonas reinhardtii. THE PLANT CELL 2013; 25:985-98. [PMID: 23512853 PMCID: PMC3634701 DOI: 10.1105/tpc.113.109256] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Small RNAs (sRNAs; ∼20 to 30 nucleotides in length) play important roles in gene regulation as well as in defense responses against transposons and viruses in eukaryotes. Their biogenesis and modes of action have attracted great attention in recent years. However, many aspects of sRNA function, such as the mechanism(s) of translation repression at postinitiation steps, remain poorly characterized. In the unicellular green alga Chlamydomonas reinhardtii, sRNAs derived from genome-integrated inverted repeat transgenes, perfectly complementary to the 3' untranslated region of a target transcript, can inhibit protein synthesis without or with only minimal mRNA destabilization. Here, we report that the sRNA-repressed transcripts are not altered in their polyadenylation status and they remain associated with polyribosomes, indicating inhibition at a postinitiation step of translation. Interestingly, ribosomes associated with sRNA-repressed transcripts show reduced sensitivity to translation inhibition by some antibiotics, such as cycloheximide, both in ribosome run-off assays and in in vivo experiments. Our results suggest that sRNA-mediated repression of protein synthesis in C. reinhardtii may involve alterations to the function/structural conformation of translating ribosomes. Additionally, sRNA-mediated translation inhibition is now known to occur in a number of phylogenetically diverse eukaryotes, suggesting that this mechanism may have been a feature of an ancestral RNA interference machinery.
Collapse
|
33
|
Goss DJ, Theil EC. Iron responsive mRNAs: a family of Fe2+ sensitive riboregulators. Acc Chem Res 2011; 44:1320-8. [PMID: 22026512 DOI: 10.1021/ar2001149] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Messenger RNAs (mRNAs) are emerging as prime targets for small-molecule drugs. They afford an opportunity to assert control over an enormous range of biological processes: mRNAs regulate protein synthesis rates, have specific 3-D regulatory structures, and, in nucleated cells, are separated from DNA in space and time. All of the many steps between DNA copying (transcription) and ribosome binding (translation) represent potential control points. Messenger RNAs can fold into complex, 3-D shapes, such as tRNAs and rRNAs, providing an added dimension to the 2-D RNA structure (base pairing) targeted in many mRNA interference approaches. In this Account, we describe the structural and functional properties of the IRE (iron-responsive element) family, one of the few 3-D mRNA regulatory elements with known 3-D structure. This family of related base sequences regulates the mRNAs that encode proteins for iron metabolism. We begin by considering the IRE-RNA structure, which consists of a short (~30-nucleotide) RNA helix. Nature tuned the structure by combining a conserved AGU pseudotriloop, a closing C-G base pair, and a bulge C with various RNA helix base pairs. The result is a set of IRE-mRNAs with individual iron responses. The physiological iron signal is hexahydrated ferrous ion; in vivo iron responses vary over 10-fold depending on the individual IRE-RNA structure. We then discuss the interaction between the IRE-RNA structure and the proteins associated with it. IRE-RNA structures, which are usually noncoding, tightly bind specific proteins called IRPs. These repressor proteins are bound to IRE-RNA through C-bulge and AGU contacts that flip out a loop AG and a bulge C, bending the RNA helix. After binding, the exposed RNA surface then invites further interactions, such as with iron and other proteins. Binding of the IRE-RNA and the IRP also changes the IRP conformation. IRP binding stabilities vary 10-fold within the IRE family, reflecting individual IRE-RNA paired and unpaired bases. This variation contributes to the graded (hierarchical) iron responses in vivo. We also consider the mechanisms of IRE-mRNA control. The binding of Fe(2+) to IRE-RNA facilitates IRP release and the binding of eukaryotic initiation factors (eIFs), which are proteins that assemble mRNA, ribosomes, and tRNA for translation. IRE-RNAs are riboregulators for the inorganic metabolic signal, Fe(2+); they control protein synthesis rates by changing the distribution of the iron metabolic mRNAs between complexes with enhancing eIFs and inhibitory IRPs. The regulation of mRNA in the cytoplasm of eukaryotic cells is a burgeoning frontier in biomedicine. The evolutionarily refined IRE-RNAs, although absent in plants and bacteria, constitute a model system for 3-D mRNAs in all organisms. IRE-mRNAs have yielded "proof of principle" data for small-molecule targeting of mRNA structures, demonstrating tremendous potential for chemical manipulation of mRNA and protein synthesis in living systems.
Collapse
Affiliation(s)
- Dixie J. Goss
- Department of Chemistry, Hunter College CUNY, 695 Park Avenue, New York, New York 10065, United States
| | - Elizabeth C. Theil
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King, Jr. Way, Oakland, California 94609, United States
| |
Collapse
|
34
|
Dunkle JA, Wang L, Feldman MB, Pulk A, Chen VB, Kapral GJ, Noeske J, Richardson JS, Blanchard SC, Cate JHD. Structures of the bacterial ribosome in classical and hybrid states of tRNA binding. Science 2011; 332:981-4. [PMID: 21596992 PMCID: PMC3176341 DOI: 10.1126/science.1202692] [Citation(s) in RCA: 307] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
During protein synthesis, the ribosome controls the movement of tRNA and mRNA by means of large-scale structural rearrangements. We describe structures of the intact bacterial ribosome from Escherichia coli that reveal how the ribosome binds tRNA in two functionally distinct states, determined to a resolution of ~3.2 angstroms by means of x-ray crystallography. One state positions tRNA in the peptidyl-tRNA binding site. The second, a fully rotated state, is stabilized by ribosome recycling factor and binds tRNA in a highly bent conformation in a hybrid peptidyl/exit site. The structures help to explain how the ratchet-like motion of the two ribosomal subunits contributes to the mechanisms of translocation, termination, and ribosome recycling.
Collapse
MESH Headings
- Anticodon/chemistry
- Anticodon/metabolism
- Crystallography, X-Ray
- Escherichia coli
- Escherichia coli Proteins/metabolism
- Models, Molecular
- Nucleic Acid Conformation
- Protein Biosynthesis
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/metabolism
- Ribosomal Proteins/metabolism
- Ribosome Subunits, Large, Bacterial/chemistry
- Ribosome Subunits, Large, Bacterial/metabolism
- Ribosome Subunits, Large, Bacterial/ultrastructure
- Ribosome Subunits, Small, Bacterial/chemistry
- Ribosome Subunits, Small, Bacterial/metabolism
- Ribosome Subunits, Small, Bacterial/ultrastructure
Collapse
Affiliation(s)
- Jack A Dunkle
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Pisarev AV, Skabkin MA, Pisareva VP, Skabkina OV, Rakotondrafara AM, Hentze MW, Hellen CUT, Pestova TV. The role of ABCE1 in eukaryotic posttermination ribosomal recycling. Mol Cell 2010; 37:196-210. [PMID: 20122402 DOI: 10.1016/j.molcel.2009.12.034] [Citation(s) in RCA: 258] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 11/23/2009] [Accepted: 12/23/2009] [Indexed: 01/20/2023]
Abstract
After termination, eukaryotic 80S ribosomes remain associated with mRNA, P-site deacylated tRNA, and release factor eRF1 and must be recycled by dissociating these ligands and separating ribosomes into subunits. Although recycling of eukaryotic posttermination complexes (post-TCs) can be mediated by initiation factors eIF3, eIF1, and eIF1A (Pisarev et al., 2007), this energy-free mechanism can function only in a narrow range of low Mg(2+) concentrations. Here, we report that ABCE1, a conserved and essential member of the ATP-binding cassette (ABC) family of proteins, promotes eukaryotic ribosomal recycling over a wide range of Mg(2+) concentrations. ABCE1 dissociates post-TCs into free 60S subunits and mRNA- and tRNA-bound 40S subunits. It can hydrolyze ATP, GTP, UTP, and CTP. NTP hydrolysis by ABCE1 is stimulated by post-TCs and is required for its recycling activity. Importantly, ABCE1 dissociates only post-TCs obtained with eRF1/eRF3 (or eRF1 alone), but not post-TCs obtained with puromycin in eRF1's absence.
Collapse
Affiliation(s)
- Andrey V Pisarev
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Meyer AE, Hoover LA, Craig EA. The cytosolic J-protein, Jjj1, and Rei1 function in the removal of the pre-60 S subunit factor Arx1. J Biol Chem 2009; 285:961-8. [PMID: 19901025 DOI: 10.1074/jbc.m109.038349] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the biogenesis of ribosomal subunits occurs predominantly in the nucleus, final remodeling steps take place in the cytosol. One cytosolic step has two components: 1) the removal of the maturation factor Arx1, which transits from the nucleus to the cytosol with the pre-60 S subunit, and 2) its subsequent transport back into the nucleus. Two cytosolic proteins, Rei1 and Jjj1, are required, but their individual contributions to this step are not understood. Here we report that Rei1 and Jjj1 directly interact. This interaction is mediated by a C-terminal segment of Jjj1 encompassing a region rich in charged residues, flanked by C(2)H(2)-type zinc fingers. Deletion of the charged region results in defects in 60 S subunit biogenesis in vivo. In addition, we report resolution of an apparent contradiction in the literature regarding the association of Arx1 with the pre-60 S subunit in the absence of Rei1. The association of Arx1 with ribosomes is sensitive to the concentration of magnesium ions when Rei1 is absent. At near physiological concentrations, Arx1 remains associated with the pre-60 S particle, as it does in the absence of Jjj1; at higher concentrations, Arx1 dissociates in the absence of Rei1 but not in the absence of Jjj1. As both Rei1 and Jjj1 are required for dissociation of Arx1 from the pre-60 S subunit, and the region of Jjj1 that mediates interaction with Rei1 is required in vivo for 60 S subunit biogenesis, our data support the idea that the primary role of both Rei1 and Jjj1 is the first step of the Arx1 removal/recycling process.
Collapse
Affiliation(s)
- Alison E Meyer
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
37
|
Khan MA, Walden WE, Goss DJ, Theil EC. Direct Fe2+ sensing by iron-responsive messenger RNA:repressor complexes weakens binding. J Biol Chem 2009; 284:30122-8. [PMID: 19720833 DOI: 10.1074/jbc.m109.041061] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fe(2+) is now shown to weaken binding between ferritin and mitochondrial aconitase messenger RNA noncoding regulatory structures ((iron-responsive element) (IRE)-RNAs) and the regulatory proteins (IRPs), which adds a direct role of iron to regulation that can complement the well known regulatory protein modification and degradative pathways related to iron-induced mRNA translation. We observe that the K(d) value increases 17-fold in 5'-untranslated region IRE-RNA:repressor complexes; Fe(2+), is studied in the absence of O(2). Other metal ions, Mn(2+) and Mg(2+) have similar effects to Fe(2+) but the required Mg(2+) concentration is 100 times greater than for Fe(2+) or Mn(2+). Metal ions also weaken ethidium bromide binding to IRE-RNA with no effect on IRP fluorescence, using Mn(2+) as an O(2)-resistant surrogate for Fe(2+), indicating that metal ions bound IRE-RNA but not IRP: Fe(2+) decreases IRP repressor complex stability of ferritin IRE-RNA 5-10 times compared with 2-5 times for mitochondrial aconitase IRE-RNA, over the same concentration range, suggesting that differences among IRE-RNA structures contribute to the differences in the iron responses observed in vivo. The results show the IRE-RNA:repressor complex literally responds to Fe(2+), selectively for each IRE-mRNA.
Collapse
Affiliation(s)
- Mateen A Khan
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10065, USA
| | | | | | | |
Collapse
|
38
|
Xing C, Bitzer DL, Alexander WE, Vouk MA, Stomp AM. Identification of protein-coding sequences using the hybridization of 18S rRNA and mRNA during translation. Nucleic Acids Res 2008; 37:591-601. [PMID: 19073698 PMCID: PMC2632891 DOI: 10.1093/nar/gkn917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We introduce a new approach in this article to distinguish protein-coding sequences from non-coding sequences utilizing a period-3, free energy signal that arises from the interactions of the 3′-terminal nucleotides of the 18S rRNA with mRNA. We extracted the special features of the amplitude and the phase of the period-3 signal in protein-coding regions, which is not found in non-coding regions, and used them to distinguish protein-coding sequences from non-coding sequences. We tested on all the experimental genes from Saccharomyces cerevisiae and Schizosaccharomyces pombe. The identification was consistent with the corresponding information from GenBank, and produced better performance compared to existing methods that use a period-3 signal. The primary tests on some fly, mouse and human genes suggests that our method is applicable to higher eukaryotic genes. The tests on pseudogenes indicated that most pseudogenes have no period-3 signal. Some exploration of the 3′-tail of 18S rRNA and pattern analysis of protein-coding sequences supported further our assumption that the 3′-tail of 18S rRNA has a role of synchronization throughout translation elongation process. This, in turn, can be utilized for the identification of protein-coding sequences.
Collapse
Affiliation(s)
- Chuanhua Xing
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695-7911, USA.
| | | | | | | | | |
Collapse
|
39
|
Abstract
The ribosome is a dynamic machine that undergoes many conformational rearrangements during the initiation of protein synthesis. Significant differences exist between the process of protein synthesis initiation in eubacteria and eukaryotes. In particular, the initiation of eukaryotic protein synthesis requires roughly an order of magnitude more initiation factors to promote efficient mRNA recruitment and ribosomal recognition of the start codon than are needed for eubacterial initiation. The mechanisms by which these initiation factors promote ribosome conformational changes during stages of initiation have been studied using cross-linking, footprinting, site-directed probing, cryo-electron microscopy, X-ray crystallography, fluorescence spectroscopy and single-molecule techniques. Here, we review how the results of these different approaches have begun to converge to yield a detailed molecular understanding of the dynamic motions that the eukaryotic ribosome cycles through during the initiation of protein synthesis.
Collapse
|
40
|
Demeshkina N, Hirokawa G, Kaji A, Kaji H. Novel activity of eukaryotic translocase, eEF2: dissociation of the 80S ribosome into subunits with ATP but not with GTP. Nucleic Acids Res 2007; 35:4597-607. [PMID: 17586816 PMCID: PMC1950535 DOI: 10.1093/nar/gkm468] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Ribosomes must dissociate into subunits in order to begin protein biosynthesis. The enzymes that catalyze this fundamental process in eukaryotes remained unknown. Here, we demonstrate that eukaryotic translocase, eEF2, which catalyzes peptide elongation in the presence of GTP, dissociates yeast 80S ribosomes into subunits in the presence of ATP but not GTP or other nucleoside triphosphates. Dissociation was detected by light scattering or ultracentrifugation after the split subunits were stabilized. ATP was hydrolyzed during the eEF2-dependent dissociation, while a non-hydrolyzable analog of ATP was inactive in ribosome splitting by eEF2. GTP inhibited not only ATP hydrolysis but also dissociation. Sordarin, a fungal eEF2 inhibitor, averted the splitting but stimulated ATP hydrolysis. Another elongation inhibitor, cycloheximide, also prevented eEF2/ATP-dependent splitting, while the inhibitory effect of fusidic acid on the splitting was nominal. Upon dissociation of the 80S ribosome, eEF2 was found on the subunits. We propose that the dissociation activity of eEF2/ATP plays a role in mobilizing 80S ribosomes for protein synthesis during the shift up of physiological conditions.
Collapse
Affiliation(s)
- Natalia Demeshkina
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107 and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Go Hirokawa
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107 and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Akira Kaji
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107 and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hideko Kaji
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107 and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- *To whom correspondence should be addressed.+1 215 503 6547+1 215 923 7343
| |
Collapse
|
41
|
Berk V, Zhang W, Pai RD, Cate JHD. Structural basis for mRNA and tRNA positioning on the ribosome. Proc Natl Acad Sci U S A 2006; 103:15830-4. [PMID: 17038497 PMCID: PMC1635088 DOI: 10.1073/pnas.0607541103] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Indexed: 12/23/2022] Open
Abstract
Protein synthesis requires the accurate positioning of mRNA and tRNA in the peptidyl-tRNA site of the ribosome. Here we describe x-ray crystal structures of the intact bacterial ribosome from Escherichia coli in a complex with mRNA and the anticodon stem-loop of P-site tRNA. At 3.5-A resolution, these structures reveal rearrangements in the intact ribosome that clamp P-site tRNA and mRNA on the small ribosomal subunit. Binding of the anticodon stem-loop of P-site tRNA to the ribosome is sufficient to lock the head of the small ribosomal subunit in a single conformation, thereby preventing movement of mRNA and tRNA before mRNA decoding.
Collapse
Affiliation(s)
- Veysel Berk
- Departments of *Molecular and Cell Biology, and
| | - Wen Zhang
- Chemistry, University of California, Berkeley, CA 94720; and
| | - Raj D. Pai
- Departments of *Molecular and Cell Biology, and
| | - Jamie H. D. Cate
- Departments of *Molecular and Cell Biology, and
- Chemistry, University of California, Berkeley, CA 94720; and
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
42
|
Lancaster AM, Jan E, Sarnow P. Initiation factor-independent translation mediated by the hepatitis C virus internal ribosome entry site. RNA (NEW YORK, N.Y.) 2006; 12:894-902. [PMID: 16556939 PMCID: PMC1440913 DOI: 10.1261/rna.2342306] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The hepatitis C viral mRNA initiates translation using an internal ribosome entry site (IRES) located in the 5' noncoding region of the viral genome. At physiological magnesium ion concentrations, the HCV IRES forms a binary complex with the 40S ribosomal subunit, recruits initiation factor eIF3 and the ternary eIF2/GTP/Met-tRNA(i)Met complex, and joins 60S subunits to assemble translation-competent 80S ribosomes. Here we show that in the presence of 5 mM MgCl2, the HCV IRES can initiate translation by an alternative mechanism that does not require known initiation factors. Specifically, the HCV IRES was shown to initiate translation in a reconstituted system consisting only of purified 40S and 60S subunits, elongation factors, and aminoacylated tRNAs at high magnesium concentration. Analyses of assembled complexes supported a mechanism by which preformed 80S ribosomes can assemble directly on the HCV IRES at high cation concentrations. This mechanism is reminiscent of that employed by the divergent IRES elements in the Dicistroviridae, exemplified by the cricket paralysis virus, which mediates initiation of protein synthesis without initiator tRNA.
Collapse
Affiliation(s)
- Alissa M Lancaster
- Department of Microbiology and Immunology, Stanford University School of Medicine, California 94305, USA
| | | | | |
Collapse
|