1
|
Bacusmo JM, Babor J, Hu J, Cao B, Kellner S, Szkrybalo S, Yuan Y, Sander S, Kuipers P, deMott M, Mori H, Dedon P, de Crécy-Lagard V. Synergistic effects of tRNA modification defects in Escherichia coli K12. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.622971. [PMID: 39605456 PMCID: PMC11601361 DOI: 10.1101/2024.11.12.622971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
tRNAs are the central adaptor molecule in translation and require a wide variety of post-transcriptional modifications to fulfill their functions. The model gram-negative Escherichia coli K-12 is one of the handfuls of bacteria where all the tRNA modifications and corresponding genes have been characterized. This work dissects epistatic relationships between tRNA modification genes in E. coli by conducting a synthetic lethal screen revealing 5 pairs of modifications that cannot be deleted in combination when cells are grown in rich media, and 15 pairs of modifications that lead to growth defects when deleted in combination. The truA gene involved in the insertion of Psi residues at positions 38 to 40 in multiple tRNAs gave the highest number of synthetic lethality phenotypes that could be complemented by the expression of the truA gene in trans and in some cases suppressed by the overexpression of target tRNAs. A pilot phenotype screen of strains lacking two tRNA modifications genes viable in rich media lead to the identification of growth conditions that exhibited poor growth. This work lays the foundation to dissect the role of modifications in tRNA quality control.
Collapse
|
2
|
Shaw E, Thomas N, Jones J, Abu-Shumays R, Vaaler A, Akeson M, Koutmou K, Jain M, Garcia D. Combining Nanopore direct RNA sequencing with genetics and mass spectrometry for analysis of T-loop base modifications across 42 yeast tRNA isoacceptors. Nucleic Acids Res 2024; 52:12074-12092. [PMID: 39340295 PMCID: PMC11514469 DOI: 10.1093/nar/gkae796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Transfer RNAs (tRNAs) contain dozens of chemical modifications. These modifications are critical for maintaining tRNA tertiary structure and optimizing protein synthesis. Here we advance the use of Nanopore direct RNA-sequencing (DRS) to investigate the synergy between modifications that are known to stabilize tRNA structure. We sequenced the 42 cytosolic tRNA isoacceptors from wild-type yeast and five tRNA-modifying enzyme knockout mutants. These data permitted comprehensive analysis of three neighboring and conserved modifications in T-loops: 5-methyluridine (m5U54), pseudouridine (Ψ55), and 1-methyladenosine (m1A58). Our results were validated using direct measurements of chemical modifications by mass spectrometry. We observed concerted T-loop modification circuits-the potent influence of Ψ55 for subsequent m1A58 modification on more tRNA isoacceptors than previously observed. Growing cells under nutrient depleted conditions also revealed a novel condition-specific increase in m1A58 modification on some tRNAs. A global and isoacceptor-specific classification strategy was developed to predict the status of T-loop modifications from a user-input tRNA DRS dataset, applicable to other conditions and tRNAs in other organisms. These advancements demonstrate how orthogonal technologies combined with genetics enable precise detection of modification landscapes of individual, full-length tRNAs, at transcriptome-scale.
Collapse
Affiliation(s)
- Ethan A Shaw
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Niki K Thomas
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Joshua D Jones
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robin L Abu-Shumays
- Biomolecular Engineering Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Abigail L Vaaler
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Mark Akeson
- Biomolecular Engineering Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Kristin S Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Miten Jain
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
- Department of Physics, Northeastern University, Boston, MA 02115, USA
- Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, USA
| | - David M Garcia
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
3
|
Schultz SK, Kothe U. RNA modifying enzymes shape tRNA biogenesis and function. J Biol Chem 2024; 300:107488. [PMID: 38908752 PMCID: PMC11301382 DOI: 10.1016/j.jbc.2024.107488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/24/2024] Open
Abstract
Transfer RNAs (tRNAs) are the most highly modified cellular RNAs, both with respect to the proportion of nucleotides that are modified within the tRNA sequence and with respect to the extraordinary diversity in tRNA modification chemistry. However, the functions of many different tRNA modifications are only beginning to emerge. tRNAs have two general clusters of modifications. The first cluster is within the anticodon stem-loop including several modifications essential for protein translation. The second cluster of modifications is within the tRNA elbow, and roles for these modifications are less clear. In general, tRNA elbow modifications are typically not essential for cell growth, but nonetheless several tRNA elbow modifications have been highly conserved throughout all domains of life. In addition to forming modifications, many tRNA modifying enzymes have been demonstrated or hypothesized to also play an important role in folding tRNA acting as tRNA chaperones. In this review, we summarize the known functions of tRNA modifying enzymes throughout the lifecycle of a tRNA molecule, from transcription to degradation. Thereby, we describe how tRNA modification and folding by tRNA modifying enzymes enhance tRNA maturation, tRNA aminoacylation, and tRNA function during protein synthesis, ultimately impacting cellular phenotypes and disease.
Collapse
Affiliation(s)
- Sarah K Schultz
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada.
| | - Ute Kothe
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada.
| |
Collapse
|
4
|
Sigal M, Matsumoto S, Beattie A, Katoh T, Suga H. Engineering tRNAs for the Ribosomal Translation of Non-proteinogenic Monomers. Chem Rev 2024; 124:6444-6500. [PMID: 38688034 PMCID: PMC11122139 DOI: 10.1021/acs.chemrev.3c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Ribosome-dependent protein biosynthesis is an essential cellular process mediated by transfer RNAs (tRNAs). Generally, ribosomally synthesized proteins are limited to the 22 proteinogenic amino acids (pAAs: 20 l-α-amino acids present in the standard genetic code, selenocysteine, and pyrrolysine). However, engineering tRNAs for the ribosomal incorporation of non-proteinogenic monomers (npMs) as building blocks has led to the creation of unique polypeptides with broad applications in cellular biology, material science, spectroscopy, and pharmaceuticals. Ribosomal polymerization of these engineered polypeptides presents a variety of challenges for biochemists, as translation efficiency and fidelity is often insufficient when employing npMs. In this Review, we will focus on the methodologies for engineering tRNAs to overcome these issues and explore recent advances both in vitro and in vivo. These efforts include increasing orthogonality, recruiting essential translation factors, and creation of expanded genetic codes. After our review on the biochemical optimizations of tRNAs, we provide examples of their use in genetic code manipulation, with a focus on the in vitro discovery of bioactive macrocyclic peptides containing npMs. Finally, an analysis of the current state of tRNA engineering is presented, along with existing challenges and future perspectives for the field.
Collapse
Affiliation(s)
- Maxwell Sigal
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satomi Matsumoto
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Adam Beattie
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Jaroch M, Sun G, Tsui HCT, Reed C, Sun J, Jörg M, Winkler ME, Rice KC, Dziergowska A, Stich TA, Dedon PC, Dos Santos PC, de Crécy-Lagard V. Alternate routes to mnm 5s 2U synthesis in Gram-positive bacteria. J Bacteriol 2024; 206:e0045223. [PMID: 38551342 PMCID: PMC11025329 DOI: 10.1128/jb.00452-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/09/2024] [Indexed: 04/09/2024] Open
Abstract
The wobble bases of tRNAs that decode split codons are often heavily modified. In bacteria, tRNAGlu, Gln, Asp contains a variety of xnm5s2U derivatives. The synthesis pathway for these modifications is complex and fully elucidated only in a handful of organisms, including the Gram-negative Escherichia coli K12 model. Despite the ubiquitous presence of mnm5s2U modification, genomic analysis shows the absence of mnmC orthologous genes, suggesting the occurrence of alternate biosynthetic schemes for the conversion of cmnm5s2U to mnm5s2U. Using a combination of comparative genomics and genetic studies, a member of the YtqA subgroup of the radical Sam superfamily was found to be involved in the synthesis of mnm5s2U in both Bacillus subtilis and Streptococcus mutans. This protein, renamed MnmL, is encoded in an operon with the recently discovered MnmM methylase involved in the methylation of the pathway intermediate nm5s2U into mnm5s2U in B. subtilis. Analysis of tRNA modifications of both S. mutans and Streptococcus pneumoniae shows that growth conditions and genetic backgrounds influence the ratios of pathway intermediates owing to regulatory loops that are not yet understood. The MnmLM pathway is widespread along the bacterial tree, with some phyla, such as Bacilli, relying exclusively on these two enzymes. Although mechanistic details of these newly discovered components are not fully resolved, the occurrence of fusion proteins, alternate arrangements of biosynthetic components, and loss of biosynthetic branches provide examples of biosynthetic diversity to retain a conserved tRNA modification in Nature.IMPORTANCEThe xnm5s2U modifications found in several tRNAs at the wobble base position are widespread in bacteria where they have an important role in decoding efficiency and accuracy. This work identifies a novel enzyme (MnmL) that is a member of a subgroup of the very versatile radical SAM superfamily and is involved in the synthesis of mnm5s2U in several Gram-positive bacteria, including human pathogens. This is another novel example of a non-orthologous displacement in the field of tRNA modification synthesis, showing how different solutions evolve to retain U34 tRNA modifications.
Collapse
Affiliation(s)
- Marshall Jaroch
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Guangxin Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Singapore-MIT Alliance for Research and Technology, CREATE Tower, Singapore
| | | | - Colbie Reed
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Jingjing Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Singapore-MIT Alliance for Research and Technology, CREATE Tower, Singapore
| | - Marko Jörg
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Malcolm E. Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Kelly C. Rice
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | | | - Troy A. Stich
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Singapore-MIT Alliance for Research and Technology, CREATE Tower, Singapore
| | | | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
- University of Florida Genetics Institute, Gainesville, Florida, USA
| |
Collapse
|
6
|
Wang J, Wu S, Ye K. Complicated target recognition by archaeal box C/D guide RNAs. SCIENCE CHINA. LIFE SCIENCES 2024; 67:631-644. [PMID: 38041781 DOI: 10.1007/s11427-022-2412-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/14/2022] [Indexed: 12/03/2023]
Abstract
Box C/D RNAs guide the site-specific formation of 2'-O-methylated nucleotides (Nm) of RNAs in eukaryotes and archaea. Although C/D RNAs have been profiled in several archaea, their targets have not been experimentally determined. Here, we mapped Nm in rRNAs, tRNAs, and abundant small RNAs (sRNAs) and profiled C/D RNAs in the crenarchaeon Sulfolobus islandicus. The targets of C/D RNAs were assigned by analysis of base-pairing interactions, in vitro modification assays, and gene deletion experiments, revealing a complicated landscape of C/D RNA-target interactions. C/D RNAs widely use dual antisense elements to target adjacent sites in rRNAs, enhancing modification at weakly bound sites. Two consecutive sites can be guided with the same antisense element upstream of box D or D', a phenomenon known as double-specificity that is exclusive to internal box D' in eukaryotic C/D RNAs. Several C/D RNAs guide modification at a single non-canonical site. This study reveals the global landscape of RNA-guided 2'-O-methylation in an archaeon and unexpected targeting rules employed by C/D RNA.
Collapse
Affiliation(s)
- Jiayin Wang
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Songlin Wu
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keqiong Ye
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Quaiyum S, Sun J, Marchand V, Sun G, Reed CJ, Motorin Y, Dedon PC, Minnick MF, de Crécy-Lagard V. Mapping the tRNA modification landscape of Bartonella henselae Houston I and Bartonella quintana Toulouse. Front Microbiol 2024; 15:1369018. [PMID: 38544857 PMCID: PMC10965804 DOI: 10.3389/fmicb.2024.1369018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Transfer RNA (tRNA) modifications play a crucial role in maintaining translational fidelity and efficiency, and they may function as regulatory elements in stress response and virulence. Despite their pivotal roles, a comprehensive mapping of tRNA modifications and their associated synthesis genes is still limited, with a predominant focus on free-living bacteria. In this study, we employed a multidisciplinary approach, incorporating comparative genomics, mass spectrometry, and next-generation sequencing, to predict the set of tRNA modification genes responsible for tRNA maturation in two intracellular pathogens-Bartonella henselae Houston I and Bartonella quintana Toulouse, which are causative agents of cat-scratch disease and trench fever, respectively. This analysis presented challenges, particularly because of host RNA contamination, which served as a potential source of error. However, our approach predicted 26 genes responsible for synthesizing 23 distinct tRNA modifications in B. henselae and 22 genes associated with 23 modifications in B. quintana. Notably, akin to other intracellular and symbiotic bacteria, both Bartonella species have undergone substantial reductions in tRNA modification genes, mostly by simplifying the hypermodifications present at positions 34 and 37. Bartonella quintana exhibited the additional loss of four modifications and these were linked to examples of gene decay, providing snapshots of reductive evolution.
Collapse
Affiliation(s)
- Samia Quaiyum
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Jingjing Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Virginie Marchand
- Université de Lorraine, UAR2008/US40 IBSLor, EpiRNA-Seq Core Facility and UMR7365 IMoPA, CNRS-Inserm, Biopôle UL, Nancy, France
| | - Guangxin Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Colbie J. Reed
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Yuri Motorin
- Université de Lorraine, UAR2008/US40 IBSLor, EpiRNA-Seq Core Facility and UMR7365 IMoPA, CNRS-Inserm, Biopôle UL, Nancy, France
| | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Michael F. Minnick
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
- Genetic Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
Handler S, Kirkpatrick CL. New layers of regulation of the general stress response sigma factor RpoS. Front Microbiol 2024; 15:1363955. [PMID: 38505546 PMCID: PMC10948607 DOI: 10.3389/fmicb.2024.1363955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024] Open
Abstract
The general stress response (GSR) sigma factor RpoS from Escherichia coli has emerged as one of the key paradigms for study of how numerous signal inputs are accepted at multiple levels into a single pathway for regulation of gene expression output. While many studies have elucidated the key pathways controlling the production and activity of this sigma factor, recent discoveries have uncovered still more regulatory mechanisms which feed into the network. Moreover, while the regulon of this sigma factor comprises a large proportion of the E. coli genome, the downstream expression levels of all the RpoS target genes are not identically affected by RpoS upregulation but respond heterogeneously, both within and between cells. This minireview highlights the most recent developments in our understanding of RpoS regulation and expression, in particular those which influence the regulatory network at different levels from previously well-studied pathways.
Collapse
|
9
|
Quaiyum S, Sun J, Marchand V, Sun G, Reed CJ, Motorin Y, Dedon PC, Minnick MF, de Crécy-Lagard V. Mapping the tRNA Modification Landscape of Bartonella henselae Houston I and Bartonella quintana Toulouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574729. [PMID: 38260440 PMCID: PMC10802484 DOI: 10.1101/2024.01.08.574729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Transfer RNA (tRNA) modifications play a crucial role in maintaining translational fidelity and efficiency, and they may function as regulatory elements in stress response and virulence. Despite their pivotal roles, a comprehensive mapping of tRNA modifications and their associated synthesis genes is still limited, with a predominant focus on free-living bacteria. In this study, we employed a multidisciplinary approach, incorporating comparative genomics, mass spectrometry, and next-generation sequencing, to predict the set of tRNA modification genes responsible for tRNA maturation in two intracellular pathogens- Bartonella henselae Houston I and Bartonella quintana Toulouse, which are causative agents of cat-scratch disease and trench fever, respectively. This analysis presented challenges, particularly because of host RNA contamination, which served as a potential source of error. However, our approach predicted 26 genes responsible for synthesizing 23 distinct tRNA modifications in B. henselae and 22 genes associated with 23 modifications in B. quintana . Notably, akin to other intracellular and symbiotic bacteria, both Bartonella species have undergone substantial reductions in tRNA modification genes, mostly by simplifying the hypermodifications present at positions 34 and 37. B. quintana exhibited the additional loss of four modifications and these were linked to examples of gene decay, providing snapshots of reductive evolution.
Collapse
|
10
|
Jaroch M, Sun G, Tsui HCT, Reed C, Sun J, Jörg M, Winkler ME, Rice KC, Stich TA, Dedon PC, Dos Santos PC, de Crécy-Lagard V. Alternate routes to mnm 5 s 2 U synthesis in Gram-positive bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572861. [PMID: 38187551 PMCID: PMC10769405 DOI: 10.1101/2023.12.21.572861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The wobble bases of tRNAs that decode split codons are often heavily modified. In Bacteria tRNA Glu, Gln, Asp contain a variety of xnm 5 s 2 U derivatives. The synthesis pathway for these modifications is complex and fully elucidated only in a handful of organisms, including the Gram-negative Escherichia coli K12 model. Despite the ubiquitous presence of mnm 5 s 2 U modification, genomic analysis shows the absence of mnmC orthologous genes, suggesting the occurrence of alternate biosynthetic schemes for the installation of this modification. Using a combination of comparative genomics and genetic studies, a member of the YtqA subgroup of the Radical Sam superfamily was found to be involved in the synthesis of mnm 5 s 2 U in both Bacillus subtilis and Streptococcus mutans . This protein, renamed MnmL, is encoded in an operon with the recently discovered MnmM methylase involved in the methylation of the pathway intermediate nm 5 s 2 U into mnm 5 s 2 U in B. subtilis . Analysis of tRNA modifications of both S. mutans and Streptococcus pneumoniae shows that growth conditions and genetic backgrounds influence the ratios of pathways intermediates in regulatory loops that are not yet understood. The MnmLM pathway is widespread along the bacterial tree, with some phyla, such as Bacilli, relying exclusively on these two enzymes. The occurrence of fusion proteins, alternate arrangements of biosynthetic components, and loss of biosynthetic branches provide examples of biosynthetic diversity to retain a conserved tRNA modification in nature. Importance The xnm 5 s 2 U modifications found in several tRNAs at the wobble base position are widespread in Bacteria where they have an important role in decoding efficiency and accuracy. This work identifies a novel enzyme (MnmL) that is a member of a subgroup of the very versatile Radical SAM superfamily and is involved in the synthesis of mnm 5 s 2 U in several Gram-positive bacteria, including human pathogens. This is another novel example of a non-orthologous displacement in the field of tRNA modification synthesis, showing how different solutions evolve to retain U34 tRNA modifications.
Collapse
|
11
|
Kohno Y, Ito A, Okamoto A, Yamagami R, Hirata A, Hori H. Escherichia coli tRNA (Gm18) methyltransferase (TrmH) requires the correct localization of its methylation site (G18) in the D-loop for efficient methylation. J Biochem 2023; 175:43-56. [PMID: 37844264 PMCID: PMC11640301 DOI: 10.1093/jb/mvad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/08/2023] [Accepted: 09/27/2023] [Indexed: 10/18/2023] Open
Abstract
TrmH is a eubacterial tRNA methyltransferase responsible for formation of 2'-O-methylguaosine at position 18 (Gm18) in tRNA. In Escherichia coli cells, only 14 tRNA species possess the Gm18 modification. To investigate the substrate tRNA selection mechanism of E. coli TrmH, we performed biochemical and structural studies. Escherichia coli TrmH requires a high concentration of substrate tRNA for efficient methylation. Experiments using native tRNA SerCGA purified from a trmH gene disruptant strain showed that modified nucleosides do not affect the methylation. A gel mobility-shift assay reveals that TrmH captures tRNAs without distinguishing between relatively good and very poor substrates. Methylation assays using wild-type and mutant tRNA transcripts revealed that the location of G18 in the D-loop is very important for efficient methylation by E. coli TrmH. In the case of tRNASer, tRNATyrand tRNALeu, the D-loop structure formed by interaction with the long variable region is important. For tRNAGln, the short distance between G18 and A14 is important. Thus, our biochemical study explains all Gm18 modification patterns in E. coli tRNAs. The crystal structure of E. coli TrmH has also been solved, and the tRNA binding mode of E. coli TrmH is discussed based on the structure.
Collapse
Affiliation(s)
- Yoh Kohno
- Department of Materials Science and Biotechnology, Graduate school of Science and
Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime
790-8577, Japan
| | - Asako Ito
- Department of Materials Science and Biotechnology, Graduate school of Science and
Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime
790-8577, Japan
| | - Aya Okamoto
- Department of Materials Science and Biotechnology, Graduate school of Science and
Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime
790-8577, Japan
| | - Ryota Yamagami
- Department of Materials Science and Biotechnology, Graduate school of Science and
Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime
790-8577, Japan
| | - Akira Hirata
- Department of Natural Science, Graduate School of Technology, Industrial and Social
Science, Tokushima University, 2-1 Minamijosanjimacho,
Tokushima, Tokushima 770-8506, Japan
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate school of Science and
Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime
790-8577, Japan
| |
Collapse
|
12
|
Bommisetti P, Bandarian V. Insights into the Mechanism of Installation of 5-Carboxymethylaminomethyl Uridine Hypermodification by tRNA-Modifying Enzymes MnmE and MnmG. J Am Chem Soc 2023; 145:26947-26961. [PMID: 38050996 PMCID: PMC10723064 DOI: 10.1021/jacs.3c10182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
The evolutionarily conserved bacterial proteins MnmE and MnmG (and their homologues in Eukarya) install a 5-carboxymethylaminomethyl (cmnm5) or a 5-taurinomethyl (τm5) group onto wobble uridines of several tRNA species. The Escherichia coli MnmE binds guanosine-5'-triphosphate (GTP) and methylenetetrahydrofolate (CH2THF), while MnmG binds flavin adenine dinucleotide (FAD) and a reduced nicotinamide adenine dinucleotide (NADH). Together with glycine, MnmEG catalyzes the installation of cmnm5 in a reaction that also requires hydrolysis of GTP. In this letter, we investigated key steps of the MnmEG reaction using a combination of biochemical techniques. We show multiple lines of evidence supporting flavin-iminium FADH[N5═CH2]+ as a central intermediate in the MnmEG reaction. Using a synthetic FADH[N5═CD2]+ analogue, the intermediacy of the FAD in the transfer of the methylene group from CH2THF to the C5 position of U34 was unambiguously demonstrated. Further, MnmEG reactions containing the deuterated flavin-iminium intermediate and alternate nucleophiles such as taurine and ammonia also led to the formation of the anticipated U34-modified tRNAs, showing FAD[N5═CH2]+ as the universal intermediate for all MnmEG homologues. Additionally, an RNA-protein complex stable to urea-denaturing polyacrylamide gel electrophoresis was identified. Studies involving a series of nuclease (RNase T1) and protease (trypsin) digestions along with reverse transcription experiments suggest that the complex may be noncovalent. While the conserved MnmG cysteine C47 and C277 mutant variants were shown to reduce FAD, they were unable to promote the modified tRNA formation. Overall, this study provides critical insights into the biochemical mechanism underlying tRNA modification by the MnmEG.
Collapse
Affiliation(s)
- Praneeth Bommisetti
- Department of Chemistry, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Vahe Bandarian
- Department of Chemistry, University of Utah, Salt Lake
City, Utah 84112, United States
| |
Collapse
|
13
|
Yared MJ, Yoluç Y, Catala M, Tisné C, Kaiser S, Barraud P. Different modification pathways for m1A58 incorporation in yeast elongator and initiator tRNAs. Nucleic Acids Res 2023; 51:10653-10667. [PMID: 37650648 PMCID: PMC10602860 DOI: 10.1093/nar/gkad722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
As essential components of the protein synthesis machinery, tRNAs undergo a tightly controlled biogenesis process, which include the incorporation of numerous posttranscriptional modifications. Defects in these tRNA maturation steps may lead to the degradation of hypomodified tRNAs by the rapid tRNA decay (RTD) and nuclear surveillance pathways. We previously identified m1A58 as a late modification introduced after modifications Ψ55 and T54 in yeast elongator tRNAPhe. However, previous reports suggested that m1A58 is introduced early during the tRNA modification process, in particular on primary transcripts of initiator tRNAiMet, which prevents its degradation by RNA decay pathways. Here, aiming to reconcile this apparent inconsistency on the temporality of m1A58 incorporation, we examined its introduction into yeast elongator and initiator tRNAs. We used specifically modified tRNAs to report on the molecular aspects controlling the Ψ55 → T54 → m1A58 modification circuit in elongator tRNAs. We also show that m1A58 is efficiently introduced on unmodified tRNAiMet, and does not depend on prior modifications. Finally, we show that m1A58 has major effects on the structural properties of initiator tRNAiMet, so that the tRNA elbow structure is only properly assembled when this modification is present. This observation provides a structural explanation for the degradation of hypomodified tRNAiMet lacking m1A58 by the nuclear surveillance and RTD pathways.
Collapse
Affiliation(s)
- Marcel-Joseph Yared
- Expression génétique microbienne, Université Paris Cité, CNRS, Institut de biologie physico-chimique, Paris, France
| | - Yasemin Yoluç
- Department of Chemistry, Ludwig Maximilians University, Munich, Germany
| | - Marjorie Catala
- Expression génétique microbienne, Université Paris Cité, CNRS, Institut de biologie physico-chimique, Paris, France
| | - Carine Tisné
- Expression génétique microbienne, Université Paris Cité, CNRS, Institut de biologie physico-chimique, Paris, France
| | - Stefanie Kaiser
- Department of Chemistry, Ludwig Maximilians University, Munich, Germany
- Institute of Pharmaceutical Chemistry, Goethe-University, Frankfurt, Germany
| | - Pierre Barraud
- Expression génétique microbienne, Université Paris Cité, CNRS, Institut de biologie physico-chimique, Paris, France
| |
Collapse
|
14
|
Hori H. Transfer RNA Modification Enzymes with a Thiouridine Synthetase, Methyltransferase and Pseudouridine Synthase (THUMP) Domain and the Nucleosides They Produce in tRNA. Genes (Basel) 2023; 14:genes14020382. [PMID: 36833309 PMCID: PMC9957541 DOI: 10.3390/genes14020382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
The existence of the thiouridine synthetase, methyltransferase and pseudouridine synthase (THUMP) domain was originally predicted by a bioinformatic study. Since the prediction of the THUMP domain more than two decades ago, many tRNA modification enzymes containing the THUMP domain have been identified. According to their enzymatic activity, THUMP-related tRNA modification enzymes can be classified into five types, namely 4-thiouridine synthetase, deaminase, methyltransferase, a partner protein of acetyltransferase and pseudouridine synthase. In this review, I focus on the functions and structures of these tRNA modification enzymes and the modified nucleosides they produce. Biochemical, biophysical and structural studies of tRNA 4-thiouridine synthetase, tRNA methyltransferases and tRNA deaminase have established the concept that the THUMP domain captures the 3'-end of RNA (in the case of tRNA, the CCA-terminus). However, in some cases, this concept is not simply applicable given the modification patterns observed in tRNA. Furthermore, THUMP-related proteins are involved in the maturation of other RNAs as well as tRNA. Moreover, the modified nucleosides, which are produced by the THUMP-related tRNA modification enzymes, are involved in numerous biological phenomena, and the defects of genes for human THUMP-related proteins are implicated in genetic diseases. In this review, these biological phenomena are also introduced.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
| |
Collapse
|
15
|
Strassler SE, Bowles IE, Dey D, Jackman JE, Conn GL. Tied up in knots: Untangling substrate recognition by the SPOUT methyltransferases. J Biol Chem 2022; 298:102393. [PMID: 35988649 PMCID: PMC9508554 DOI: 10.1016/j.jbc.2022.102393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 10/25/2022] Open
Abstract
The SpoU-TrmD (SPOUT) methyltransferase superfamily was designated when structural similarity was identified between the transfer RNA-modifying enzymes TrmH (SpoU) and TrmD. SPOUT methyltransferases are found in all domains of life and predominantly modify transfer RNA or ribosomal RNA substrates, though one instance of an enzyme with a protein substrate has been reported. Modifications placed by SPOUT methyltransferases play diverse roles in regulating cellular processes such as ensuring translational fidelity, altering RNA stability, and conferring bacterial resistance to antibiotics. This large collection of S-adenosyl-L-methionine-dependent methyltransferases is defined by a unique α/β fold with a deep trefoil knot in their catalytic (SPOUT) domain. Herein, we describe current knowledge of SPOUT enzyme structure, domain architecture, and key elements of catalytic function, including S-adenosyl-L-methionine co-substrate binding, beginning with a new sequence alignment that divides the SPOUT methyltransferase superfamily into four major clades. Finally, a major focus of this review will be on our growing understanding of how these diverse enzymes accomplish the molecular feat of specific substrate recognition and modification, as highlighted by recent advances in our knowledge of protein-RNA complex structures and the discovery of the dependence of one SPOUT methyltransferase on metal ion binding for catalysis. Considering the broad biological roles of RNA modifications, developing a deeper understanding of the process of substrate recognition by the SPOUT enzymes will be critical for defining many facets of fundamental RNA biology with implications for human disease.
Collapse
Affiliation(s)
- Sarah E Strassler
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA; Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia, USA
| | - Isobel E Bowles
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, Columbus, Ohio, USA
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jane E Jackman
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, Columbus, Ohio, USA.
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA; Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia, USA.
| |
Collapse
|
16
|
Bommisetti P, Young A, Bandarian V. Elucidation of the substrate of tRNA-modifying enzymes MnmEG leads to in vitro reconstitution of an evolutionarily conserved uridine hypermodification. J Biol Chem 2022; 298:102548. [PMID: 36181794 PMCID: PMC9626948 DOI: 10.1016/j.jbc.2022.102548] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022] Open
Abstract
The evolutionarily conserved bacterial proteins MnmE and MnmG collectively install a carboxymethylaminomethyl (cmnm) group at the fifth position of wobble uridines of several tRNA species. While the reaction catalyzed by MnmEG is one of the central steps in the biosynthesis of the methylaminomethyl (mnm) posttranscriptional tRNA modification, details of the reaction remain elusive. Glycine is known to be the source of the carboxy methylamino moiety of cmnm, and a tetrahydrofolate (THF) analog is thought to supply the one carbon that is appended to the fifth position of U. However, the nature of the folate analog remains unknown. This article reports the in vitro biochemical reconstitution of the MnmEG reaction. Using isotopically labeled methyl and methylene THF analogs, we demonstrate that methylene THF is the true substrate. We also show that reduced FAD is required for the reaction and that DTT can replace the NADH in its role as a reductant. We discuss the implications of these methylene-THF and reductant requirements on the mechanism of this key tRNA modification catalyzed by MnmEG.
Collapse
Affiliation(s)
- Praneeth Bommisetti
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Anthony Young
- Soliome Inc, 479 Jessie Street, San Francisco, CA 94103, United States
| | - Vahe Bandarian
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States.
| |
Collapse
|
17
|
Shafik AM, Allen EG, Jin P. Epitranscriptomic dynamics in brain development and disease. Mol Psychiatry 2022; 27:3633-3646. [PMID: 35474104 PMCID: PMC9596619 DOI: 10.1038/s41380-022-01570-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/08/2023]
Abstract
Distinct cell types are generated at specific times during brain development and are regulated by epigenetic, transcriptional, and newly emerging epitranscriptomic mechanisms. RNA modifications are known to affect many aspects of RNA metabolism and have been implicated in the regulation of various biological processes and in disease. Recent studies imply that dysregulation of the epitranscriptome may be significantly associated with neuropsychiatric, neurodevelopmental, and neurodegenerative disorders. Here we review the current knowledge surrounding the role of the RNA modifications N6-methyladenosine, 5-methylcytidine, pseudouridine, A-to-I RNA editing, 2'O-methylation, and their associated machinery, in brain development and human diseases. We also highlight the need for the development of new technologies in the pursuit of directly mapping RNA modifications in both genome- and single-molecule-level approach.
Collapse
Affiliation(s)
- Andrew M Shafik
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Emily G Allen
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
18
|
Motorin Y, Helm M. RNA nucleotide methylation: 2021 update. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1691. [PMID: 34913259 DOI: 10.1002/wrna.1691] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022]
Abstract
Among RNA modifications, transfer of methylgroups from the typical cofactor S-adenosyl-l-methionine by methyltransferases (MTases) to RNA is by far the most common reaction. Since our last review about a decade ago, the field has witnessed the re-emergence of mRNA methylation as an important mechanism in gene regulation. Attention has then spread to many other RNA species; all being included into the newly coined concept of the "epitranscriptome." The focus moved from prokaryotes and single cell eukaryotes as model organisms to higher eukaryotes, in particular to mammals. The perception of the field has dramatically changed over the past decade. A previous lack of phenotypes in knockouts in single cell organisms has been replaced by the apparition of MTases in numerous disease models and clinical investigations. Major driving forces of the field include methylation mapping techniques, as well as the characterization of the various MTases, termed "writers." The latter term has spilled over from DNA modification in the neighboring epigenetics field, along with the designations "readers," applied to mediators of biological effects upon specific binding to a methylated RNA. Furthermore "eraser" enzymes effect the newly discovered oxidative removal of methylgroups. A sense of reversibility and dynamics has replaced the older perception of RNA modification as a concrete-cast, irreversible part of RNA maturation. A related concept concerns incompletely methylated residues, which, through permutation of each site, lead to inhomogeneous populations of numerous modivariants. This review recapitulates the major developments of the past decade outlined above, and attempts a prediction of upcoming trends. This article is categorized under: RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, Nancy, France.,Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy, France
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Mainz, Germany
| |
Collapse
|
19
|
Li H, Zhu D, Wu J, Ma Y, Cai C, Chen Y, Qin M, Dai H. New substrates and determinants for tRNA recognition of RNA methyltransferase DNMT2/TRDMT1. RNA Biol 2021; 18:2531-2545. [PMID: 34110975 PMCID: PMC8632113 DOI: 10.1080/15476286.2021.1930756] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/16/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Methylation is a common post-transcriptional modification of tRNAs, particularly in the anticodon loop region. The cytosine 38 (C38) in tRNAs, such as tRNAAsp-GUC, tRNAGly-GCC, tRNAVal-AAC, and tRNAGlu-CUC, can be methylated by human DNMT2/TRDMT1 and some homologs found in bacteria, plants, and animals. However, the substrate properties and recognition mechanism of DNMT2/TRDMT1 remain to be explored. Here, taking into consideration common features of the four known substrate tRNAs, we investigated methylation activities of DNMT2/TRDMT1 on the tRNAGly-GCC truncation and point mutants, and conformational changes of mutants. The results demonstrated that human DNMT2/TRDMT1 preferred substrate tRNAGly-GCC in vitro. L-shaped conformation of classical tRNA could be favourable for DNMT2/TRDMT1 activity. The complete sequence and structure of tRNA were dispensable for DNMT2/TRDMT1 activity, whereas T-arm was indispensable to this activity. G19, U20, and A21 in D-loop were identified as the important bases for DNMT2/TRDMT1 activity, while G53, C56, A58, and C61 in T-loop were found as the critical bases. The conserved CUXXCAC sequence in the anticodon loop was confirmed to be the most critical determinant, and it could stabilize C38-flipping to promote C38 methylation. Based on these tRNA properties, new substrates, tRNAVal-CAC and tRNAGln-CUG, were discovered in vitro. Moreover, a single nucleotide substitute, U32C, could convert non-substrate tRNAAla-AGC into a substrate for DNMT2/TRDMT1. Altogether, our findings imply that DNMT2/TRDMT1 relies on a delicate network involving both the primary sequence and tertiary structure of tRNA for substrate recognition.
Collapse
Affiliation(s)
- Huari Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Daiyun Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jian Wu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yunfei Ma
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chao Cai
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yong Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Mian Qin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hanchuan Dai
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
20
|
GeZi G, Liu R, Du D, Wu N, Bao N, Fan L, Morigen M. YfiF, an unknown protein, affects initiation timing of chromosome replication in Escherichia coli. J Basic Microbiol 2021; 61:883-899. [PMID: 34486756 DOI: 10.1002/jobm.202100265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/03/2021] [Accepted: 08/21/2021] [Indexed: 11/09/2022]
Abstract
The Escherichia coli YfiF protein is functionally unknown, being predicted as a transfer RNA/ribosomal RNA (tRNA/rRNA) methyltransferase. We find that absence of the yfiF gene delays initiation of chromosome replication and the delay is reversed by ectopic expression of YfiF, whereas excess YfiF causes an early initiation. A slight decrease in both cell size and number of origin per mass is observed in ΔyfiF cells. YfiF does not genetically interact with replication proteins such as DnaA, DnaB, and DnaC. Interestingly, YfiF is associated with ribosome modulation factor (RMF), hibernation promotion factor (HPF), and the tRNA methyltransferase TrmL. Defects in replication initiation of Δrmf, Δhpf, and ΔtrmL can be rescued by overexpression of YfiF, indicating that YfiF is functionally identical to RMF, HPF, and TrmL in terms of replication initiation. Also, YfiF interacts with the rRNA methyltransferase RsmC. Moreover, the total amount of proteins and DnaA content per cell decreases or increases in the absence of YfiF or the presence of excess YfiF. These facts suggest that YfiF is a ribosomal dormancy-like factor, affecting ribosome function. Thus, we propose that YfiF is involved in the correct timing of chromosome replication by changing the DnaA content per cell as a result of affecting ribosome function.
Collapse
Affiliation(s)
- GeZi GeZi
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Rui Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Dongdong Du
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Nier Wu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Narisu Bao
- Institute of Mongolian Medicinal Chemistry, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Lifei Fan
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Morigen Morigen
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
21
|
Schauerte M, Pozhydaieva N, Höfer K. Shaping the Bacterial Epitranscriptome-5'-Terminal and Internal RNA Modifications. Adv Biol (Weinh) 2021; 5:e2100834. [PMID: 34121369 DOI: 10.1002/adbi.202100834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/07/2021] [Indexed: 11/11/2022]
Abstract
All domains of life utilize a diverse set of modified ribonucleotides that can impact the sequence, structure, function, stability, and the fate of RNAs, as well as their interactions with other molecules. Today, more than 160 different RNA modifications are known that decorate the RNA at the 5'-terminus or internal RNA positions. The boost of next-generation sequencing technologies sets the foundation to identify and study the functional role of RNA modifications. The recent advances in the field of RNA modifications reveal a novel regulatory layer between RNA modifications and proteins, which is central to developing a novel concept called "epitranscriptomics." The majority of RNA modifications studies focus on the eukaryotic epitranscriptome. In contrast, RNA modifications in prokaryotes are poorly characterized. This review outlines the current knowledge of the prokaryotic epitranscriptome focusing on mRNA modifications. Here, it is described that several internal and 5'-terminal RNA modifications either present or likely present in prokaryotic mRNA. Thereby, the individual techniques to identify these epitranscriptomic modifications, their writers, readers and erasers, and their proposed functions are explored. Besides that, still unanswered questions in the field of prokaryotic epitranscriptomics are pointed out, and its future perspectives in the dawn of next-generation sequencing technologies are outlined.
Collapse
Affiliation(s)
- Maik Schauerte
- Max-Planck-Institute for terrestrial Microbiology, Marburg, Hessen, 35043, Germany
| | - Nadiia Pozhydaieva
- Max-Planck-Institute for terrestrial Microbiology, Marburg, Hessen, 35043, Germany
| | - Katharina Höfer
- Max-Planck-Institute for terrestrial Microbiology, Marburg, Hessen, 35043, Germany
| |
Collapse
|
22
|
RNA methylations in human cancers. Semin Cancer Biol 2020; 75:97-115. [DOI: 10.1016/j.semcancer.2020.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/23/2020] [Accepted: 11/08/2020] [Indexed: 12/24/2022]
|
23
|
Piejko M, Niewieczerzal S, Sulkowska JI. The Folding of Knotted Proteins: Distinguishing the Distinct Behavior of Shallow and Deep Knots. Isr J Chem 2020. [DOI: 10.1002/ijch.202000036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Maciej Piejko
- Faculty of ChemistryUniversity of Warsaw Pasteura 1 Warsaw 02-093 Poland
- Centre of New TechnologiesUniversity of Warsaw Banacha 2c Warsaw 02-097 Poland
| | | | - Joanna I. Sulkowska
- Faculty of ChemistryUniversity of Warsaw Pasteura 1 Warsaw 02-093 Poland
- Centre of New TechnologiesUniversity of Warsaw Banacha 2c Warsaw 02-097 Poland
| |
Collapse
|
24
|
Hirata A, Okada K, Yoshii K, Shiraishi H, Saijo S, Yonezawa K, Shimizu N, Hori H. Structure of tRNA methyltransferase complex of Trm7 and Trm734 reveals a novel binding interface for tRNA recognition. Nucleic Acids Res 2020; 47:10942-10955. [PMID: 31586407 PMCID: PMC6847430 DOI: 10.1093/nar/gkz856] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/20/2019] [Accepted: 10/02/2019] [Indexed: 12/18/2022] Open
Abstract
The complex between Trm7 and Trm734 (Trm7–Trm734) from Saccharomyces cerevisiae catalyzes 2′-O-methylation at position 34 in tRNA. We report biochemical and structural studies of the Trm7–Trm734 complex. Purified recombinant Trm7–Trm734 preferentially methylates tRNAPhe transcript variants possessing two of three factors (Cm32, m1G37 and pyrimidine34). Therefore, tRNAPhe, tRNATrp and tRNALeu are specifically methylated by Trm7–Trm734. We have solved the crystal structures of the apo and S-adenosyl-L-methionine bound forms of Trm7–Trm734. Small angle X-ray scattering reveals that Trm7–Trm734 exists as a hetero-dimer in solution. Trm7 possesses a Rossmann-fold catalytic domain, while Trm734 consists of three WD40 β-propeller domains (termed BPA, BPB and BPC). BPA and BPC form a unique V-shaped cleft, which docks to Trm7. The C-terminal region of Trm7 is required for binding to Trm734. The D-arm of substrate tRNA is required for methylation by Trm7–Trm734. If the D-arm in tRNAPhe is docked onto the positively charged area of BPB in Trm734, the anticodon-loop is located near the catalytic pocket of Trm7. This model suggests that Trm734 is required for correct positioning of tRNA for methylation. Additionally, a point-mutation in Trm7, which is observed in FTSJ1 (human Trm7 ortholog) of nosyndromic X-linked intellectual disability patients, decreases the methylation activity.
Collapse
Affiliation(s)
- Akira Hirata
- Department of Materials Science and Biotechnology, Graduate school of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Keisuke Okada
- Department of Materials Science and Biotechnology, Graduate school of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Kazuaki Yoshii
- Department of Materials Science and Biotechnology, Graduate school of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Hiroyuki Shiraishi
- Department of Materials Science and Biotechnology, Graduate school of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Shinya Saijo
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Kento Yonezawa
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Nobutaka Shimizu
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate school of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
- To whom correspondence should be addressed. Tel: +81 89 927 8548; Fax: +81 89 927 9941;
| |
Collapse
|
25
|
Barraud P, Tisné C. To be or not to be modified: Miscellaneous aspects influencing nucleotide modifications in tRNAs. IUBMB Life 2019; 71:1126-1140. [PMID: 30932315 PMCID: PMC6850298 DOI: 10.1002/iub.2041] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/10/2019] [Indexed: 12/12/2022]
Abstract
Transfer RNAs (tRNAs) are essential components of the cellular protein synthesis machineries, but are also implicated in many roles outside translation. To become functional, tRNAs, initially transcribed as longer precursor tRNAs, undergo a tightly controlled biogenesis process comprising the maturation of their extremities, removal of intronic sequences if present, addition of the 3'-CCA amino-acid accepting sequence, and aminoacylation. In addition, the most impressive feature of tRNA biogenesis consists in the incorporation of a large number of posttranscriptional chemical modifications along its sequence. The chemical nature of these modifications is highly diverse, with more than hundred different modifications identified in tRNAs to date. All functions of tRNAs in cells are controlled and modulated by modifications, making the understanding of the mechanisms that determine and influence nucleotide modifications in tRNAs an essential point in tRNA biology. This review describes the different aspects that determine whether a certain position in a tRNA molecule is modified or not. We describe how sequence and structural determinants, as well as the presence of prior modifications control modification processes. We also describe how environmental factors and cellular stresses influence the level and/or the nature of certain modifications introduced in tRNAs, and report situations where these dynamic modulations of tRNA modification levels are regulated by active demodification processes. © 2019 IUBMB Life, 71(8):1126-1140, 2019.
Collapse
Affiliation(s)
- Pierre Barraud
- Expression génétique microbienneInstitut de biologie physico‐chimique (IBPC), UMR 8261, CNRS, Université Paris DiderotParisFrance
| | - Carine Tisné
- Expression génétique microbienneInstitut de biologie physico‐chimique (IBPC), UMR 8261, CNRS, Université Paris DiderotParisFrance
| |
Collapse
|
26
|
Hori H. Regulatory Factors for tRNA Modifications in Extreme- Thermophilic Bacterium Thermus thermophilus. Front Genet 2019; 10:204. [PMID: 30906314 PMCID: PMC6418473 DOI: 10.3389/fgene.2019.00204] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/26/2019] [Indexed: 01/02/2023] Open
Abstract
Thermus thermophilus is an extreme-thermophilic bacterium that can grow at a wide range of temperatures (50-83°C). To enable T. thermophilus to grow at high temperatures, several biomolecules including tRNA and tRNA modification enzymes show extreme heat-resistance. Therefore, the modified nucleosides in tRNA from T. thermophilus have been studied mainly from the view point of tRNA stabilization at high temperatures. Such studies have shown that several modifications stabilize the structure of tRNA and are essential for survival of the organism at high temperatures. Together with tRNA modification enzymes, the modified nucleosides form a network that regulates the extent of different tRNA modifications at various temperatures. In this review, I describe this network, as well as the tRNA recognition mechanism of individual tRNA modification enzymes. Furthermore, I summarize the roles of other tRNA stabilization factors such as polyamines and metal ions.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Sciences and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| |
Collapse
|
27
|
Dixit S, Henderson JC, Alfonzo JD. Multi-Substrate Specificity and the Evolutionary Basis for Interdependence in tRNA Editing and Methylation Enzymes. Front Genet 2019; 10:104. [PMID: 30838029 PMCID: PMC6382703 DOI: 10.3389/fgene.2019.00104] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/30/2019] [Indexed: 12/12/2022] Open
Abstract
Among tRNA modification enzymes there is a correlation between specificity for multiple tRNA substrates and heteromultimerization. In general, enzymes that modify a conserved residue in different tRNA sequences adopt a heterodimeric structure. Presumably, such changes in the oligomeric state of enzymes, to gain multi-substrate recognition, are driven by the need to accommodate and catalyze a particular reaction in different substrates while maintaining high specificity. This review focuses on two classes of enzymes where the case for multimerization as a way to diversify molecular recognition can be made. We will highlight several new themes with tRNA methyltransferases and will also discuss recent findings with tRNA editing deaminases. These topics will be discussed in the context of several mechanisms by which heterodimerization may have been achieved during evolution and how these mechanisms might impact modifications in different systems.
Collapse
Affiliation(s)
| | | | - Juan D. Alfonzo
- Department of Microbiology, The Ohio State Biochemistry Program, The Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
28
|
Dimitrova DG, Teysset L, Carré C. RNA 2'-O-Methylation (Nm) Modification in Human Diseases. Genes (Basel) 2019; 10:E117. [PMID: 30764532 PMCID: PMC6409641 DOI: 10.3390/genes10020117] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 12/24/2022] Open
Abstract
Nm (2'-O-methylation) is one of the most common modifications in the RNA world. It has the potential to influence the RNA molecules in multiple ways, such as structure, stability, and interactions, and to play a role in various cellular processes from epigenetic gene regulation, through translation to self versus non-self recognition. Yet, building scientific knowledge on the Nm matter has been hampered for a long time by the challenges in detecting and mapping this modification. Today, with the latest advancements in the area, more and more Nm sites are discovered on RNAs (tRNA, rRNA, mRNA, and small non-coding RNA) and linked to normal or pathological conditions. This review aims to synthesize the Nm-associated human diseases known to date and to tackle potential indirect links to some other biological defects.
Collapse
Affiliation(s)
- Dilyana G Dimitrova
- Sorbonne Université, Institut de Biologie Paris Seine, Centre National de la Recherche Scientifique, Transgenerational Epigenetics & Small RNA Biology, Laboratoire de Biologie du Développement, 75005 Paris, France.
| | - Laure Teysset
- Sorbonne Université, Institut de Biologie Paris Seine, Centre National de la Recherche Scientifique, Transgenerational Epigenetics & Small RNA Biology, Laboratoire de Biologie du Développement, 75005 Paris, France.
| | - Clément Carré
- Sorbonne Université, Institut de Biologie Paris Seine, Centre National de la Recherche Scientifique, Transgenerational Epigenetics & Small RNA Biology, Laboratoire de Biologie du Développement, 75005 Paris, France.
| |
Collapse
|
29
|
Ayadi L, Galvanin A, Pichot F, Marchand V, Motorin Y. RNA ribose methylation (2'-O-methylation): Occurrence, biosynthesis and biological functions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:253-269. [PMID: 30572123 DOI: 10.1016/j.bbagrm.2018.11.009] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 01/01/2023]
Abstract
Methylation of riboses at 2'-OH group is one of the most common RNA modifications found in number of cellular RNAs from almost any species which belong to all three life domains. This modification was extensively studied for decades in rRNAs and tRNAs, but recent data revealed the presence of 2'-O-methyl groups also in low abundant RNAs, like mRNAs. Ribose methylation is formed in RNA by two alternative enzymatic mechanisms: either by stand-alone protein enzymes or by complex assembly of proteins associated with snoRNA guides (sno(s)RNPs). In that case one catalytic subunit acts at various RNA sites, the specificity is provided by base pairing of the sno(s)RNA guide with the target RNA. In this review we compile available information on 2'-OH ribose methylation in different RNAs, enzymatic machineries involved in their biosynthesis and dynamics, as well as on the physiological functions of these modified residues.
Collapse
Affiliation(s)
- Lilia Ayadi
- UMR7365 IMoPA CNRS-Lorraine University, Biopôle, 9 avenue de la forêt de haye, 54505 Vandoeuvre-les-Nancy, France
| | - Adeline Galvanin
- UMR7365 IMoPA CNRS-Lorraine University, Biopôle, 9 avenue de la forêt de haye, 54505 Vandoeuvre-les-Nancy, France
| | - Florian Pichot
- UMS2008 IBSLor CNRS-INSERM-Lorraine University, Biopôle, 9 avenue de la forêt de haye, 54505 Vandoeuvre-les-Nancy, France
| | - Virginie Marchand
- UMS2008 IBSLor CNRS-INSERM-Lorraine University, Biopôle, 9 avenue de la forêt de haye, 54505 Vandoeuvre-les-Nancy, France
| | - Yuri Motorin
- UMR7365 IMoPA CNRS-Lorraine University, Biopôle, 9 avenue de la forêt de haye, 54505 Vandoeuvre-les-Nancy, France.
| |
Collapse
|
30
|
Krishnamohan A, Jackman JE. A Family Divided: Distinct Structural and Mechanistic Features of the SpoU-TrmD (SPOUT) Methyltransferase Superfamily. Biochemistry 2018; 58:336-345. [PMID: 30457841 DOI: 10.1021/acs.biochem.8b01047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The SPOUT family of enzymes makes up the second largest of seven structurally distinct groups of methyltransferases and is named after two evolutionarily related RNA methyltransferases, SpoU and TrmD. A deep trefoil knotted domain in the tertiary structures of member enzymes defines the SPOUT family. For many years, formation of a homodimeric quaternary structure was thought to be a strict requirement for all SPOUT enzymes, critical for substrate binding and formation of the active site. However, recent structural characterization of two SPOUT members, Trm10 and Sfm1, revealed that they function as monomers without the requirement of this critical dimerization. This unusual monomeric form implies that these enzymes must exhibit a nontraditional substrate binding mode and active site architecture and may represent a new division in the SPOUT family with distinct properties removed from the dimeric enzymes. Here we discuss the mechanistic features of SPOUT enzymes with an emphasis on the monomeric members and implications of this "novel" monomeric structure on cofactor and substrate binding.
Collapse
Affiliation(s)
- Aiswarya Krishnamohan
- The Ohio State Biochemistry Program, Center for RNA Biology, and Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Jane E Jackman
- The Ohio State Biochemistry Program, Center for RNA Biology, and Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
31
|
Hori H, Kawamura T, Awai T, Ochi A, Yamagami R, Tomikawa C, Hirata A. Transfer RNA Modification Enzymes from Thermophiles and Their Modified Nucleosides in tRNA. Microorganisms 2018; 6:E110. [PMID: 30347855 PMCID: PMC6313347 DOI: 10.3390/microorganisms6040110] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
To date, numerous modified nucleosides in tRNA as well as tRNA modification enzymes have been identified not only in thermophiles but also in mesophiles. Because most modified nucleosides in tRNA from thermophiles are common to those in tRNA from mesophiles, they are considered to work essentially in steps of protein synthesis at high temperatures. At high temperatures, the structure of unmodified tRNA will be disrupted. Therefore, thermophiles must possess strategies to stabilize tRNA structures. To this end, several thermophile-specific modified nucleosides in tRNA have been identified. Other factors such as RNA-binding proteins and polyamines contribute to the stability of tRNA at high temperatures. Thermus thermophilus, which is an extreme-thermophilic eubacterium, can adapt its protein synthesis system in response to temperature changes via the network of modified nucleosides in tRNA and tRNA modification enzymes. Notably, tRNA modification enzymes from thermophiles are very stable. Therefore, they have been utilized for biochemical and structural studies. In the future, thermostable tRNA modification enzymes may be useful as biotechnology tools and may be utilized for medical science.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Takuya Kawamura
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Takako Awai
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Anna Ochi
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Ryota Yamagami
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Chie Tomikawa
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Akira Hirata
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
32
|
Moukadiri I, Villarroya M, Benítez-Páez A, Armengod ME. Bacillus subtilis exhibits MnmC-like tRNA modification activities. RNA Biol 2018; 15:1167-1173. [PMID: 30249152 PMCID: PMC6284559 DOI: 10.1080/15476286.2018.1517012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The MnmE-MnmG complex of Escherichia coli uses either ammonium or glycine as a substrate to incorporate the 5-aminomethyl or 5-carboxymethylaminomethyl group into the wobble uridine of certain tRNAs. Both modifications can be converted into a 5-methylaminomethyl group by the independent oxidoreductase and methyltransferase activities of MnmC, which respectively reside in the MnmC(o) and MnmC(m) domains of this bifunctional enzyme. MnmE and MnmG, but not MnmC, are evolutionarily conserved. Bacillus subtilis lacks genes encoding MnmC(o) and/or MnmC(m) homologs. The glycine pathway has been considered predominant in this typical gram-positive species because only the 5-carboxymethylaminomethyl group has been detected in tRNALysUUU and bulk tRNA to date. Here, we show that the 5-methylaminomethyl modification is prevalent in B. subtilis tRNAGlnUUG and tRNAGluUUC. Our data indicate that B. subtilis has evolved MnmC(o)- and MnmC(m)-like activities that reside in non MnmC homologous protein(s), which suggests that both activities provide some sort of biological advantage.
Collapse
Affiliation(s)
- Ismaïl Moukadiri
- a Laboratory of RNA Modification and Mitochondrial Diseases , Centro de Investigación Príncipe Felipe , Valencia , Spain
| | - Magda Villarroya
- a Laboratory of RNA Modification and Mitochondrial Diseases , Centro de Investigación Príncipe Felipe , Valencia , Spain
| | - Alfonso Benítez-Páez
- a Laboratory of RNA Modification and Mitochondrial Diseases , Centro de Investigación Príncipe Felipe , Valencia , Spain
| | - M-Eugenia Armengod
- a Laboratory of RNA Modification and Mitochondrial Diseases , Centro de Investigación Príncipe Felipe , Valencia , Spain
| |
Collapse
|
33
|
Singh RK, Feller A, Roovers M, Van Elder D, Wauters L, Droogmans L, Versées W. Structural and biochemical analysis of the dual-specificity Trm10 enzyme from Thermococcus kodakaraensis prompts reconsideration of its catalytic mechanism. RNA (NEW YORK, N.Y.) 2018; 24:1080-1092. [PMID: 29848639 PMCID: PMC6049504 DOI: 10.1261/rna.064345.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
tRNA molecules get heavily modified post-transcriptionally. The N-1 methylation of purines at position 9 of eukaryal and archaeal tRNA is catalyzed by the SPOUT methyltranferase Trm10. Remarkably, while certain Trm10 orthologs are specific for either guanosine or adenosine, others show a dual specificity. Structural and functional studies have been performed on guanosine- and adenosine-specific enzymes. Here we report the structure and biochemical analysis of the dual-specificity enzyme from Thermococcus kodakaraensis (TkTrm10). We report the first crystal structure of a construct of this enzyme, consisting of the N-terminal domain and the catalytic SPOUT domain. Moreover, crystal structures of the SPOUT domain, either in the apo form or bound to S-adenosyl-l-methionine or S-adenosyl-l-homocysteine reveal the conformational plasticity of two active site loops upon substrate binding. Kinetic analysis shows that TkTrm10 has a high affinity for its tRNA substrates, while the enzyme on its own has a very low methyltransferase activity. Mutation of either of two active site aspartate residues (Asp206 and Asp245) to Asn or Ala results in only modest effects on the N-1 methylation reaction, with a small shift toward a preference for m1G formation over m1A formation. Only a double D206A/D245A mutation severely impairs activity. These results are in line with the recent finding that the single active-site aspartate was dispensable for activity in the guanosine-specific Trm10 from yeast, and suggest that also dual-specificity Trm10 orthologs use a noncanonical tRNA methyltransferase mechanism without residues acting as general base catalysts.
Collapse
Affiliation(s)
- Ranjan Kumar Singh
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- VIB-VUB Center For Structural Biology, 1050 Brussels, Belgium
| | - André Feller
- Laboratoire de Microbiologie, Université libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Martine Roovers
- Institut de Recherches Microbiologiques Jean-Marie Wiame - Labiris, 1070 Brussels, Belgium
| | - Dany Van Elder
- Laboratoire de Microbiologie, Université libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Lina Wauters
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- VIB-VUB Center For Structural Biology, 1050 Brussels, Belgium
- Department of Cell Biochemistry, University of Groningen, Groningen 9747 AG, Netherlands
| | - Louis Droogmans
- Laboratoire de Microbiologie, Université libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Wim Versées
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- VIB-VUB Center For Structural Biology, 1050 Brussels, Belgium
| |
Collapse
|
34
|
McKenney KM, Rubio MAT, Alfonzo JD. Binding synergy as an essential step for tRNA editing and modification enzyme codependence in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2018; 24:56-66. [PMID: 29042505 PMCID: PMC5733570 DOI: 10.1261/rna.062893.117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/02/2017] [Indexed: 05/10/2023]
Abstract
Transfer RNAs acquire a variety of naturally occurring chemical modifications during their maturation; these fine-tune their structure and decoding properties in a manner critical for protein synthesis. We recently reported that in the eukaryotic parasite, Trypanosoma brucei, a methylation and deamination event are unexpectedly interconnected, whereby the tRNA adenosine deaminase (TbADAT2/3) and the 3-methylcytosine methyltransferase (TbTrm140) strictly rely on each other for activity, leading to formation of m3C and m3U at position 32 in several tRNAs. Still however, it is not clear why these two enzymes, which work independently in other systems, are strictly codependent in T. brucei Here, we show that these enzymes exhibit binding synergism, or a mutual increase in binding affinity, that is more than the sum of the parts, when added together in a reaction. Although these enzymes interact directly with each other, tRNA binding assays using enzyme variants mutated in critical binding and catalytic sites indicate that the observed binding synergy stems from contributions from tRNA-binding domains distal to their active sites. These results provide a rationale for the known interactions of these proteins, while also speaking to the modulation of substrate specificity between seemingly unrelated enzymes. This information should be of value in furthering our understanding of how tRNA modification enzymes act together to regulate gene expression at the post-transcriptional level and provide a basis for the interdependence of such activities.
Collapse
Affiliation(s)
- Katherine M McKenney
- Department of Microbiology, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
| | - Mary Anne T Rubio
- Department of Microbiology, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Juan D Alfonzo
- Department of Microbiology, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
35
|
Pang P, Deng X, Wang Z, Xie W. Structural and biochemical insights into the 2′-O
-methylation of pyrimidines 34 in tRNA. FEBS J 2017; 284:2251-2263. [DOI: 10.1111/febs.14120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 04/26/2017] [Accepted: 05/22/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Panjiao Pang
- School of Pharmaceutical Sciences; The Sun Yat-Sen University; Guangzhou China
- Center for Cellular & Structural Biology; The Sun Yat-Sen University; Guangzhou China
| | - Xiangyu Deng
- Center for Cellular & Structural Biology; The Sun Yat-Sen University; Guangzhou China
- State Key Laboratory for Biocontrol; School of Life Sciences; The Sun Yat-Sen University; Guangzhou China
| | - Zhong Wang
- School of Pharmaceutical Sciences; The Sun Yat-Sen University; Guangzhou China
- Center for Cellular & Structural Biology; The Sun Yat-Sen University; Guangzhou China
| | - Wei Xie
- Center for Cellular & Structural Biology; The Sun Yat-Sen University; Guangzhou China
- State Key Laboratory for Biocontrol; School of Life Sciences; The Sun Yat-Sen University; Guangzhou China
| |
Collapse
|
36
|
TrmL and TusA Are Necessary for rpoS and MiaA Is Required for hfq Expression in Escherichia coli. Biomolecules 2017; 7:biom7020039. [PMID: 28471404 PMCID: PMC5485728 DOI: 10.3390/biom7020039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 03/31/2017] [Accepted: 04/12/2017] [Indexed: 12/18/2022] Open
Abstract
Previous work demonstrated that efficient RNA Polymerase sigma S-subunit (RpoS) translation requires the N6-isopentenyladenosine i6A37 transfer RNA (tRNA) modification for UUX-Leu decoding. Here we investigate the effect of two additional tRNA modification systems on RpoS translation; the analysis was also extended to another High UUX-leucine codon (HULC) protein, Host Factor for phage Qβ (Hfq). One tRNA modification, the addition of the 2’-O-methylcytidine/uridine 34 (C/U34m) tRNA modification by tRNA (cytidine/uridine-2’O)-ribose methyltransferase L (TrmL), requires the presence of the N6-isopentenyladenosine 37 (i6A37) and therefore it seemed possible that the defect in RpoS translation in the absence of i6A37 prenyl transferase (MiaA) was in fact due to the inability to add the C/U34m modification to UUX-Leu tRNAs. The second modification, addition of 2-thiouridine (s2U), part of (mnm5s2U34), is dependent on tRNA 2-thiouridine synthesizing protein A (TusA), previously shown to affect RpoS levels. We compared expression of PBAD-rpoS990-lacZ translational fusions carrying wild-type UUX leucine codons with derivatives in which UUX codons were changed to CUX codons, in the presence and absence of TrmL or TusA. The absence of these proteins, and therefore presumably the modifications they catalyze, both abolished PBAD-rpoS990-lacZ translation activity. UUX-Leu to CUX-Leu codon mutations in rpoS suppressed the trmL requirement for PBAD-rpoS990-lacZ expression. Thus, it is likely that the C/U34m and s2U34 tRNA modifications are necessary for full rpoS translation. We also measured PBAD-hfq306-lacZ translational fusion activity in the absence of C/U34m (trmL) or i6A37 (miaA). The absence of i6A37 resulted in decreased PBAD-hfq306-lacZ expression, consistent with a role for i6A37 tRNA modification for hfq translation.
Collapse
|
37
|
Transfer RNA methyltransferases with a SpoU-TrmD (SPOUT) fold and their modified nucleosides in tRNA. Biomolecules 2017; 7:biom7010023. [PMID: 28264529 PMCID: PMC5372735 DOI: 10.3390/biom7010023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 02/23/2017] [Indexed: 11/22/2022] Open
Abstract
The existence of SpoU-TrmD (SPOUT) RNA methyltransferase superfamily was first predicted by bioinformatics. SpoU is the previous name of TrmH, which catalyzes the 2’-O-methylation of ribose of G18 in tRNA; TrmD catalyzes the formation of N1-methylguanosine at position 37 in tRNA. Although SpoU (TrmH) and TrmD were originally considered to be unrelated, the bioinformatics study suggested that they might share a common evolution origin and form a single superfamily. The common feature of SPOUT RNA methyltransferases is the formation of a deep trefoil knot in the catalytic domain. In the past decade, the SPOUT RNA methyltransferase superfamily has grown; furthermore, knowledge concerning the functions of their modified nucleosides in tRNA has also increased. Some enzymes are potential targets in the design of anti-bacterial drugs. In humans, defects in some genes may be related to carcinogenesis. In this review, recent findings on the tRNA methyltransferases with a SPOUT fold and their methylated nucleosides in tRNA, including classification of tRNA methyltransferases with a SPOUT fold; knot structures, domain arrangements, subunit structures and reaction mechanisms; tRNA recognition mechanisms, and functions of modified nucleosides synthesized by this superfamily, are summarized. Lastly, the future perspective for studies on tRNA modification enzymes are considered.
Collapse
|
38
|
Next-Generation Sequencing-Based RiboMethSeq Protocol for Analysis of tRNA 2'-O-Methylation. Biomolecules 2017; 7:biom7010013. [PMID: 28208788 PMCID: PMC5372725 DOI: 10.3390/biom7010013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/02/2017] [Indexed: 12/16/2022] Open
Abstract
Analysis of RNA modifications by traditional physico-chemical approaches is labor intensive, requires substantial amounts of input material and only allows site-by-site measurements. The recent development of qualitative and quantitative approaches based on next-generation sequencing (NGS) opens new perspectives for the analysis of various cellular RNA species. The Illumina sequencing-based RiboMethSeq protocol was initially developed and successfully applied for mapping of ribosomal RNA (rRNA) 2′-O-methylations. This method also gives excellent results in the quantitative analysis of rRNA modifications in different species and under varying growth conditions. However, until now, RiboMethSeq was only employed for rRNA, and the whole sequencing and analysis pipeline was only adapted to this long and rather conserved RNA species. A deep understanding of RNA modification functions requires large and global analysis datasets for other important RNA species, namely for transfer RNAs (tRNAs), which are well known to contain a great variety of functionally-important modified residues. Here, we evaluated the application of the RiboMethSeq protocol for the analysis of tRNA 2′-O-methylation in Escherichia coli and in Saccharomyces cerevisiae. After a careful optimization of the bioinformatic pipeline, RiboMethSeq proved to be suitable for relative quantification of methylation rates for known modified positions in different tRNA species.
Collapse
|
39
|
Zhou X, Yan Q, Wang N. Deciphering the regulon of a GntR family regulator via transcriptome and ChIP-exo analyses and its contribution to virulence in Xanthomonas citri. MOLECULAR PLANT PATHOLOGY 2017; 18:249-262. [PMID: 26972728 PMCID: PMC6638223 DOI: 10.1111/mpp.12397] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/08/2016] [Accepted: 03/07/2016] [Indexed: 05/14/2023]
Abstract
Xanthomonas contains a large group of plant-associated species, many of which cause severe diseases on important crops worldwide. Six gluconate-operon repressor (GntR) family transcriptional regulators are predicted in Xanthomonas, one of which, belonging to the YtrA subfamily, plays a prominent role in bacterial virulence. However, the direct targets and comprehensive regulatory profile of YtrA remain unknown. Here, we performed microarray and high-resolution chromatin immunoprecipitation-exonuclease (ChIP-exo) experiments to identify YtrA direct targets and its DNA binding motif in X. citri ssp. citri (Xac), the causal agent of citrus canker. Integrative microarray and ChIP-exo data analysis revealed that YtrA directly regulates three operons by binding to a palindromic motif GGTG-N16 -CACC at the promoter region. A similar palindromic motif and YtrA homologues were also identified in many other bacteria, including Stenotrophomonas, Pseudoxanthomonas and Frateuria, indicating a widespread phenomenon. Deletion of ytrA in Xac abolishes bacterial virulence and induction of the hypersensitive response (HR). We found that YtrA regulates the expression of hrp/hrc genes encoding the bacterial type III secretion system (T3SS) and controls multiple biological processes, including motility and adhesion, oxidative stress, extracellular enzyme production and iron uptake. YtrA represses the expression of its direct targets in artificial medium or in planta. Importantly, over-expression of yro3, one of the YtrA directly regulated operons which contains trmL and XAC0231, induced weaker canker symptoms and down-regulation of hrp/hrc gene expression, suggesting a negative regulation in Xac virulence and T3SS. Our study has significantly advanced the mechanistic understanding of YtrA regulation and its contribution to bacterial virulence.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- Citrus Research and Education CenterDepartment of Microbiology and Cell Science, IFAS, University of Florida700 Experiment Station RoadLake AlfredFL33850USA
| | - Qing Yan
- Citrus Research and Education CenterDepartment of Microbiology and Cell Science, IFAS, University of Florida700 Experiment Station RoadLake AlfredFL33850USA
| | - Nian Wang
- Citrus Research and Education CenterDepartment of Microbiology and Cell Science, IFAS, University of Florida700 Experiment Station RoadLake AlfredFL33850USA
| |
Collapse
|
40
|
Fitzsimmons CM, Fujimori DG. Determinants of tRNA Recognition by the Radical SAM Enzyme RlmN. PLoS One 2016; 11:e0167298. [PMID: 27902775 PMCID: PMC5130265 DOI: 10.1371/journal.pone.0167298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/12/2016] [Indexed: 11/19/2022] Open
Abstract
RlmN, a bacterial radical SAM methylating enzyme, has the unusual ability to modify two distinct types of RNA: 23S rRNA and tRNA. In rRNA, RlmN installs a methyl group at the C2 position of A2503 of 23S rRNA, while in tRNA the modification occurs at nucleotide A37, immediately adjacent to the anticodon triplet. Intriguingly, only a subset of tRNAs that contain an adenosine at position 37 are substrates for RlmN, suggesting that the enzyme carefully probes the highly conserved tRNA fold and sequence features to identify its targets. Over the past several years, multiple studies have addressed rRNA modification by RlmN, while relatively few investigations have focused on the ability of this enzyme to modify tRNAs. In this study, we utilized in vitro transcribed tRNAs as model substrates to interrogate RNA recognition by RlmN. Using chimeras and point mutations, we probed how the structure and sequence of RNA influences methylation, identifying position 38 of tRNAs as a critical determinant of substrate recognition. We further demonstrate that, analogous to previous mechanistic studies with fragments of 23S rRNA, tRNA methylation requirements are consistent with radical SAM reactivity. Together, our findings provide detailed insight into tRNA recognition by a radical SAM methylating enzyme.
Collapse
Affiliation(s)
- Christina M. Fitzsimmons
- Chemistry and Chemical Biology Graduate Program, University of California San Francisco, San Francisco, California, United States of America
| | - Danica Galonić Fujimori
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
41
|
Jaroensuk J, Atichartpongkul S, Chionh YH, Wong YH, Liew CW, McBee ME, Thongdee N, Prestwich EG, DeMott MS, Mongkolsuk S, Dedon PC, Lescar J, Fuangthong M. Methylation at position 32 of tRNA catalyzed by TrmJ alters oxidative stress response in Pseudomonas aeruginosa. Nucleic Acids Res 2016; 44:10834-10848. [PMID: 27683218 PMCID: PMC5159551 DOI: 10.1093/nar/gkw870] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/17/2016] [Accepted: 09/20/2016] [Indexed: 02/04/2023] Open
Abstract
Bacteria respond to environmental stresses using a variety of signaling and gene expression pathways, with translational mechanisms being the least well understood. Here, we identified a tRNA methyltransferase in Pseudomonas aeruginosa PA14, trmJ, which confers resistance to oxidative stress. Analysis of tRNA from a trmJ mutant revealed that TrmJ catalyzes formation of Cm, Um, and, unexpectedly, Am. Defined in vitro analyses revealed that tRNAMet(CAU) and tRNATrp(CCA) are substrates for Cm formation, tRNAGln(UUG), tRNAPro(UGG), tRNAPro(CGG) and tRNAHis(GUG) for Um, and tRNAPro(GGG) for Am. tRNASer(UGA), previously observed as a TrmJ substrate in Escherichia coli, was not modified by PA14 TrmJ. Position 32 was confirmed as the TrmJ target for Am in tRNAPro(GGG) and Um in tRNAGln(UUG) by mass spectrometric analysis. Crystal structures of the free catalytic N-terminal domain of TrmJ show a 2-fold symmetrical dimer with an active site located at the interface between the monomers and a flexible basic loop positioned to bind tRNA, with conformational changes upon binding of the SAM-analog sinefungin. The loss of TrmJ rendered PA14 sensitive to H2O2 exposure, with reduced expression of oxyR-recG, katB-ankB, and katE. These results reveal that TrmJ is a tRNA:Cm32/Um32/Am32 methyltransferase involved in translational fidelity and the oxidative stress response.
Collapse
Affiliation(s)
- Juthamas Jaroensuk
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, Thailand.,Singapore-MIT Alliance for Research and Technology, Singapore
| | | | - Yok Hian Chionh
- Singapore-MIT Alliance for Research and Technology, Singapore
| | - Yee Hwa Wong
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Chong Wai Liew
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore
| | - Megan E McBee
- Singapore-MIT Alliance for Research and Technology, Singapore
| | - Narumon Thongdee
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, Thailand
| | - Erin G Prestwich
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael S DeMott
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Skorn Mongkolsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand.,Department of Biotechnology, Faculty of Sciences, Mahidol University, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology (EHT), Bangkok, Thailand
| | - Peter C Dedon
- Singapore-MIT Alliance for Research and Technology, Singapore .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, Singapore .,NTU Institute of Structural Biology, Nanyang Technological University, Singapore.,UPMC UMRS CR7 - CNRS ERL 8255-INSERM U1135 Centre d' Immunologie et des Maladies Infectieuses, Paris, France
| | - Mayuree Fuangthong
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, Thailand .,Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology (EHT), Bangkok, Thailand
| |
Collapse
|
42
|
Zhou M, Long T, Fang ZP, Zhou XL, Liu RJ, Wang ED. Identification of determinants for tRNA substrate recognition by Escherichia coli C/U34 2'-O-methyltransferase. RNA Biol 2016; 12:900-11. [PMID: 26106808 PMCID: PMC4615657 DOI: 10.1080/15476286.2015.1050576] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Post-transcriptional modifications bring chemical diversity to tRNAs, especially at positions 34 and 37 of the anticodon stem-loop (ASL). TrmL is the prokaryotic methyltransferase that catalyzes the transfer of the methyl group from S-adenosyl-L-methionine to the wobble base of tRNALeuCAA and tRNALeuUAA isoacceptors. This Cm34/Um34 modification affects codon-anticodon interactions and is essential for translational fidelity. TrmL-catalyzed 2′-O-methylation requires its homodimerization; however, understanding of the tRNA recognition mechanism by TrmL remains elusive. In the current study, by measuring tRNA methylation by TrmL and performing kinetic analysis of tRNA mutants, we found that TrmL exhibits a fine-tuned tRNA substrate recognition mechanism. Anticodon stem-loop minihelices with an extension of 2 base pairs are the minimal substrate for EcTrmL methylation. A35 is a key residue for TrmL recognition, while A36-A37-A38 are important either via direct interaction with TrmL or due to the necessity for prior isopentenylation (i6) at A37. In addition, TrmL only methylates pyrimidines but not purine residues at the wobble position, and the 2′-O-methylation relies on prior N6-isopentenyladenosine modification at position 37.
Collapse
Affiliation(s)
- Mi Zhou
- a State Key Laboratory of Molecular Biology ; Institute of Biochemistry and Cell Biology; Shanghai Institutes for Biological Sciences ; Chinese Academy of Sciences ; Shanghai , PR China
| | | | | | | | | | | |
Collapse
|
43
|
Sakai Y, Miyauchi K, Kimura S, Suzuki T. Biogenesis and growth phase-dependent alteration of 5-methoxycarbonylmethoxyuridine in tRNA anticodons. Nucleic Acids Res 2015; 44:509-23. [PMID: 26681692 PMCID: PMC4737166 DOI: 10.1093/nar/gkv1470] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/02/2015] [Indexed: 12/22/2022] Open
Abstract
Post-transcriptional modifications at the anticodon first (wobble) position of tRNA play critical roles in precise decoding of genetic codes. 5-carboxymethoxyuridine (cmo5U) and its methyl ester derivative 5-methoxycarbonylmethoxyuridine (mcmo5U) are modified nucleosides found at the anticodon wobble position in several tRNAs from Gram-negative bacteria. cmo5U and mcmo5U facilitate non-Watson–Crick base pairing with guanosine and pyrimidines at the third positions of codons, thereby expanding decoding capabilities. By mass spectrometric analyses of individual tRNAs and a shotgun approach of total RNA from Escherichia coli, we identified mcmo5U as a major modification in tRNAAla1, tRNASer1, tRNAPro3 and tRNAThr4; by contrast, cmo5U was present primarily in tRNALeu3 and tRNAVal1. In addition, we discovered 5-methoxycarbonylmethoxy-2′-O-methyluridine (mcmo5Um) as a novel but minor modification in tRNASer1. Terminal methylation frequency of mcmo5U in tRNAPro3 was low (≈30%) in the early log phase of cell growth, gradually increased as growth proceeded and reached nearly 100% in late log and stationary phases. We identified CmoM (previously known as SmtA), an AdoMet-dependent methyltransferase that methylates cmo5U to form mcmo5U. A luciferase reporter assay based on a +1 frameshift construct revealed that terminal methylation of mcmo5U contributes to the decoding ability of tRNAAla1.
Collapse
Affiliation(s)
- Yusuke Sakai
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kenjyo Miyauchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Satoshi Kimura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
44
|
Armengod ME, Meseguer S, Villarroya M, Prado S, Moukadiri I, Ruiz-Partida R, Garzón MJ, Navarro-González C, Martínez-Zamora A. Modification of the wobble uridine in bacterial and mitochondrial tRNAs reading NNA/NNG triplets of 2-codon boxes. RNA Biol 2015; 11:1495-507. [PMID: 25607529 DOI: 10.4161/15476286.2014.992269] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Posttranscriptional modification of the uridine located at the wobble position (U34) of tRNAs is crucial for optimization of translation. Defects in the U34 modification of mitochondrial-tRNAs are associated with a group of rare diseases collectively characterized by the impairment of the oxidative phosphorylation system. Retrograde signaling pathways from mitochondria to nucleus are involved in the pathophysiology of these diseases. These pathways may be triggered by not only the disturbance of the mitochondrial (mt) translation caused by hypomodification of tRNAs, but also as a result of nonconventional roles of mt-tRNAs and mt-tRNA-modifying enzymes. The evolutionary conservation of these enzymes supports their importance for cell and organismal functions. Interestingly, bacterial and eukaryotic cells respond to stress by altering the expression or activity of these tRNA-modifying enzymes, which leads to changes in the modification status of tRNAs. This review summarizes recent findings about these enzymes and sets them within the previous data context.
Collapse
Affiliation(s)
- M Eugenia Armengod
- a Laboratory of RNA Modification and Mitochondrial Diseases ; Centro de Investigación Príncipe Felipe ; Valencia , Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
tRNA modifications are crucial for efficient and accurate protein translation, with defects often linked to disease. There are 7 cytoplasmic tRNA modifications in the yeast Saccharomyces cerevisiae that are formed by an enzyme consisting of a catalytic subunit and an auxiliary protein, 5 of which require only a single subunit in bacteria, and 2 of which are not found in bacteria. These enzymes include the deaminase Tad2-Tad3, and the methyltransferases Trm6-Trm61, Trm8-Trm82, Trm7-Trm732, and Trm7-Trm734, Trm9-Trm112, and Trm11-Trm112. We describe the occurrence and biological role of each modification, evidence for a required partner protein in S. cerevisiae and other eukaryotes, evidence for a single subunit in bacteria, and evidence for the role of the non-catalytic binding partner. Although it is unclear why these eukaryotic enzymes require partner proteins, studies of some 2-subunit modification enzymes suggest that the partner proteins help expand substrate range or allow integration of cellular activities.
Collapse
Affiliation(s)
- Michael P Guy
- a Department of Biochemistry and Biophysics; Center for RNA Biology ; University of Rochester School of Medicine ; Rochester , NY USA
| | | |
Collapse
|
46
|
Liu RJ, Long T, Zhou M, Zhou XL, Wang ED. tRNA recognition by a bacterial tRNA Xm32 modification enzyme from the SPOUT methyltransferase superfamily. Nucleic Acids Res 2015. [PMID: 26202969 PMCID: PMC4551947 DOI: 10.1093/nar/gkv745] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
TrmJ proteins from the SPOUT methyltransferase superfamily are tRNA Xm32 modification enzymes that occur in bacteria and archaea. Unlike archaeal TrmJ, bacterial TrmJ require full-length tRNA molecules as substrates. It remains unknown how bacterial TrmJs recognize substrate tRNAs and specifically catalyze a 2′-O modification at ribose 32. Herein, we demonstrate that all six Escherichia coli (Ec) tRNAs with 2′-O-methylated nucleosides at position 32 are substrates of EcTrmJ, and we show that the elbow region of tRNA, but not the amino acid acceptor stem, is needed for the methylation reaction. Our crystallographic study reveals that full-length EcTrmJ forms an unusual dimer in the asymmetric unit, with both the catalytic SPOUT domain and C-terminal extension forming separate dimeric associations. Based on these findings, we used electrophoretic mobility shift assay, isothermal titration calorimetry and enzymatic methods to identify amino acids within EcTrmJ that are involved in tRNA binding. We found that tRNA recognition by EcTrmJ involves the cooperative influences of conserved residues from both the SPOUT and extensional domains, and that this process is regulated by the flexible hinge region that connects these two domains.
Collapse
Affiliation(s)
- Ru-Juan Liu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China University of Chinese Academy of Sciences, Beijing 100039, China
| | - Tao Long
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China University of Chinese Academy of Sciences, Beijing 100039, China
| | - Mi Zhou
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China University of Chinese Academy of Sciences, Beijing 100039, China
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China University of Chinese Academy of Sciences, Beijing 100039, China School of Life Science and Technology, ShanghaiTech University, 319 Yue Yang Road, Shanghai 200031, China
| |
Collapse
|
47
|
Abstract
Transfer RNA (tRNA) molecules contain many chemical modifications that are introduced after transcription. A major form of these modifications is methyl transfer to bases and backbone groups, using S-adenosyl methionine (AdoMet) as the methyl donor. Each methylation confers a specific advantage to tRNA in structure or in function. A remarkable methylation is to the G37 base on the 3'-side of the anticodon to generate m(1)G37-tRNA, which suppresses frameshift errors during protein synthesis and is therefore essential for cell growth in all three domains of life. This methylation is catalyzed by TrmD in bacteria and by Trm5 in eukaryotes and archaea. Although TrmD and Trm5 catalyze the same methylation reaction, kinetic analysis reveals that these two enzymes are unrelated to each other and are distinct in their reaction mechanism. This chapter summarizes the kinetic assays that are used to reveal the distinction between TrmD and Trm5. Three types of assays are described, the steady-state, the pre-steady-state, and the single-turnover assays, which collectively provide the basis for mechanistic investigation of AdoMet-dependent methyl transfer reactions.
Collapse
Affiliation(s)
- Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania USA.
| | - Isao Masuda
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania USA
| |
Collapse
|
48
|
Hsieh SJM, Mallam AL, Jackson SE, Hsu STD. Backbone 1H, 13C and 15N assignments of YibK and avariant containing a unique cysteine residue at C-terminus in 8 M urea-denatured states [corrected]. BIOMOLECULAR NMR ASSIGNMENTS 2014; 8:439-442. [PMID: 23853076 DOI: 10.1007/s12104-013-9510-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/29/2013] [Indexed: 06/02/2023]
Abstract
YibK is a tRNA methyltransferase from Haemophilus influenzae, which forms a stable homodimer in solution and contains a deep trefoil 31 knot encompassing the C-terminal helix that threads through a long loop. It has been a model system for investigating knotted protein folding pathways. Recent data have shown that the polypeptide chain of YibK remains loosely knotted under highly denaturing conditions. Here, we report (1)H, (13)C and (15)N chemical shift assignments for YibK and its variant in the presence of 8 M urea. This work forms the basis for further analysis using NMR techniques such as paramagnetic relaxation enhancement, residual dipolar couplings and spin-relaxation dynamics analysis.
Collapse
|
49
|
Somme J, Van Laer B, Roovers M, Steyaert J, Versées W, Droogmans L. Characterization of two homologous 2'-O-methyltransferases showing different specificities for their tRNA substrates. RNA (NEW YORK, N.Y.) 2014; 20:1257-71. [PMID: 24951554 PMCID: PMC4105751 DOI: 10.1261/rna.044503.114] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/08/2014] [Indexed: 05/18/2023]
Abstract
The 2'-O-methylation of the nucleoside at position 32 of tRNA is found in organisms belonging to the three domains of life. Unrelated enzymes catalyzing this modification in Bacteria (TrmJ) and Eukarya (Trm7) have already been identified, but until now, no information is available for the archaeal enzyme. In this work we have identified the methyltransferase of the archaeon Sulfolobus acidocaldarius responsible for the 2'-O-methylation at position 32. This enzyme is a homolog of the bacterial TrmJ. Remarkably, both enzymes have different specificities for the nature of the nucleoside at position 32. While the four canonical nucleosides are substrates of the Escherichia coli enzyme, the archaeal TrmJ can only methylate the ribose of a cytidine. Moreover, the two enzymes recognize their tRNA substrates in a different way. We have solved the crystal structure of the catalytic domain of both enzymes to gain better understanding of these differences at a molecular level.
Collapse
Affiliation(s)
- Jonathan Somme
- Laboratoire de Microbiologie, Université libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Bart Van Laer
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium Structural Biology Research Center, VIB, 1050 Brussels, Belgium
| | - Martine Roovers
- Institut de Recherches Microbiologiques Jean-Marie Wiame, B-1070 Bruxelles, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium Structural Biology Research Center, VIB, 1050 Brussels, Belgium
| | - Wim Versées
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium Structural Biology Research Center, VIB, 1050 Brussels, Belgium
| | - Louis Droogmans
- Laboratoire de Microbiologie, Université libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| |
Collapse
|
50
|
Mosquera-Rendón J, Cárdenas-Brito S, Pineda JD, Corredor M, Benítez-Páez A. Evolutionary and sequence-based relationships in bacterial AdoMet-dependent non-coding RNA methyltransferases. BMC Res Notes 2014; 7:440. [PMID: 25012753 PMCID: PMC4119055 DOI: 10.1186/1756-0500-7-440] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/02/2014] [Indexed: 12/12/2022] Open
Abstract
Background RNA post-transcriptional modification is an exciting field of research that has evidenced this editing process as a sophisticated epigenetic mechanism to fine tune the ribosome function and to control gene expression. Although tRNA modifications seem to be more relevant for the ribosome function and cell physiology as a whole, some rRNA modifications have also been seen to play pivotal roles, essentially those located in central ribosome regions. RNA methylation at nucleobases and ribose moieties of nucleotides appear to frequently modulate its chemistry and structure. RNA methyltransferases comprise a superfamily of highly specialized enzymes that accomplish a wide variety of modifications. These enzymes exhibit a poor degree of sequence similarity in spite of using a common reaction cofactor and modifying the same substrate type. Results Relationships and lineages of RNA methyltransferases have been extensively discussed, but no consensus has been reached. To shed light on this topic, we performed amino acid and codon-based sequence analyses to determine phylogenetic relationships and molecular evolution. We found that most Class I RNA MTases are evolutionarily related to protein and cofactor/vitamin biosynthesis methyltransferases. Additionally, we found that at least nine lineages explain the diversity of RNA MTases. We evidenced that RNA methyltransferases have high content of polar and positively charged amino acid, which coincides with the electrochemistry of their substrates. Conclusions After studying almost 12,000 bacterial genomes and 2,000 patho-pangenomes, we revealed that molecular evolution of Class I methyltransferases matches the different rates of synonymous and non-synonymous substitutions along the coding region. Consequently, evolution on Class I methyltransferases selects against amino acid changes affecting the structure conformation.
Collapse
Affiliation(s)
| | | | | | | | - Alfonso Benítez-Páez
- Bioinformatics Analysis Group - GABi, Centro de Investigación y Desarrollo en Biotecnología - CIDBIO, 111221 Bogotá, D,C, Colombia.
| |
Collapse
|