1
|
Fujimoto A, Kinjo M, Kitamura A. Short Repeat Ribonucleic Acid Reduces Cytotoxicity by Preventing the Aggregation of TDP-43 and Its 25 KDa Carboxy-Terminal Fragment. JACS AU 2024; 4:3896-3909. [PMID: 39483234 PMCID: PMC11522920 DOI: 10.1021/jacsau.4c00566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 11/03/2024]
Abstract
TAR DNA/RNA-binding protein 43 kDa (TDP-43) proteinopathy is a hallmark of neurodegenerative disorders, such as amyotrophic lateral sclerosis, in which cytoplasmic aggregates containing TDP-43 and its C-terminal fragments, such as TDP-25, are observed in degenerative neuronal cells. However, few reports have focused on small molecules that can reduce their aggregation and cytotoxicity. Here, we show that short RNA repeats of GGGGCC and AAAAUU are aggregation suppressors of TDP-43 and TDP-25. TDP-25 interacts with these RNAs, as well as TDP-43, despite the lack of major RNA-recognition motifs using fluorescence cross-correlation spectroscopy. Expression of these RNAs significantly decreases the number of cells harboring cytoplasmic aggregates of TDP-43 and TDP-25 and ameliorates cell death by TDP-25 and mislocalized TDP-43 without altering the cellular transcriptome of molecular chaperones. Consequently, short RNA repeats of GGGGCC and AAAAUU can maintain proteostasis by preventing the aggregation of TDP-43 and TDP-25.
Collapse
Affiliation(s)
- Ai Fujimoto
- Laboratory
of Cellular and Molecular Sciences, Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
- Graduate
School of Life Science, Hokkaido University, N10W8, Kita-ku, Sapporo 060-0810, Japan
| | - Masataka Kinjo
- Laboratory
of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
| | - Akira Kitamura
- Laboratory
of Cellular and Molecular Sciences, Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
- PRIME,
Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
2
|
Ahmed N, Ahmed N, Bilodeau DA, Pezacki JP. An unnatural enzyme with endonuclease activity towards small non-coding RNAs. Nat Commun 2023; 14:3777. [PMID: 37355703 PMCID: PMC10290691 DOI: 10.1038/s41467-023-39105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/25/2023] [Indexed: 06/26/2023] Open
Abstract
Endonucleases are enzymes that cleave internal phosphodiester bonds within double-stranded DNA or RNA and are essential for biological functions. Herein, we use genetic code expansion to create an unnatural endonuclease that cleaves non-coding RNAs including short interfering RNA (siRNA) and microRNAs (miRNAs), a function that does not exist in nature. We introduce a metal-chelating unnatural amino acid, (2,2'-bipyridin-5-yl)alanine (BpyAla) to impart endonuclease activity to the viral suppressor of RNA silencing protein p19. Upon binding of copper, the mutant p19-T111BpyAla displays catalytic site-specific cleavage of siRNA and human miRNAs. Catalysis is confirmed using fluorescence polarization and fluorescence turn-on. Global miRNA profiling reveals that the engineered enzyme cleaves miRNAs in a human cell line. The therapeutic potential is demonstrated by targeting miR-122, a critical host factor for the hepatitis C virus (HCV). Unnatural endonuclease function is shown to deplete miR-122 levels with similar effects to an antagomir that reduces HCV levels therapeutically.
Collapse
Affiliation(s)
- Noreen Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Nadine Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Didier A Bilodeau
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.
| |
Collapse
|
3
|
Guan L, Grigoriev A. Computational meta-analysis of ribosomal RNA fragments: potential targets and interaction mechanisms. Nucleic Acids Res 2021; 49:4085-4103. [PMID: 33772581 PMCID: PMC8053083 DOI: 10.1093/nar/gkab190] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
The most abundant cellular RNA species, ribosomal RNA (rRNA), appears to be a source of massive amounts of non-randomly generated fragments. We found rRNA fragments (rRFs) in immunoprecipitated Argonaute (Ago-IP) complexes in human and mouse cells and in small RNA sequencing datasets. In human Ago1-IP, guanine-rich rRFs were preferentially cut in single-stranded regions of mature rRNAs between pyrimidines and adenosine, and non-randomly paired with cellular transcripts in crosslinked chimeras. Numerous identical rRFs were found in the cytoplasm and nucleus in mouse Ago2-IP. We report specific interaction motifs enriched in rRF-target pairs. Locations of such motifs on rRFs were compatible with the Ago structural features and patterns of the Ago-RNA crosslinking in both species. Strikingly, many of these motifs may bind to double-stranded regions on target RNAs, suggesting a potential pathway for regulating translation by unwinding mRNAs. Occurring on either end of rRFs and matching intronic, untranslated or coding regions in targets, such interaction sites extend the concept of microRNA seed regions. Targeting both borders of certain short introns, rRFs may be involved in their biogenesis or function, facilitated by Ago. Frequently dismissed as noise, rRFs are poised to greatly enrich the known functional spectrum of small RNA regulation.
Collapse
Affiliation(s)
- Lingyu Guan
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA
| | - Andrey Grigoriev
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA
| |
Collapse
|
4
|
Ahmed N, Foss DV, Powdrill MH, Pezacki JP. Site-Specific Cross-Linking of a p19 Viral Suppressor of RNA Silencing Protein and Its RNA Targets Using an Expanded Genetic Code. Biochemistry 2019; 58:3520-3526. [PMID: 31329415 DOI: 10.1021/acs.biochem.9b00428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The p19 viral suppressor of RNA silencing protein has useful applications in biotechnology due to its high affinity for binding to small RNAs such as small interfering RNAs (siRNAs). Also, its applications for the study and modulation of microRNAs are actively expanding. Here we demonstrate the successful site-specific incorporation of a photoactivatable unnatural amino acid, p-azido-l-phenylalanine (AzF), for cross-linking to RNA substrates into the p19 sequence. Incorporation of AzF was performed at three positions in the protein near the RNA binding site: K67, R115, and T111. Incorporation of AzF at position T111 of p19 did not affect the binding affinity of p19 for siRNAs and also showed nanomolar affinity for human microRNA miR-122. The affinity was less favorable with AzF incorporation at two other positions, suggesting the sensitivity of placement of the unnatural amino acid. Exposure of the T111AzF in complex with either siRNA or miRNA to ultraviolet light resulted in cross-linking of the protein with the RNA, but no cross-linking could be detected with the wild-type protein. Our results demonstrate that p19-T111AzF can be used for detection of small RNAs, including human miR-122, with high sensitivity and to irreversibly sequester these RNAs through covalent photo-cross-linking.
Collapse
Affiliation(s)
- Noreen Ahmed
- Department of Biochemistry, Microbiology and Immunology , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| | - Dana V Foss
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| | - Megan H Powdrill
- Department of Biochemistry, Microbiology and Immunology , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| | - John Paul Pezacki
- Department of Biochemistry, Microbiology and Immunology , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada.,Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| |
Collapse
|
5
|
Yang NJ, Kauke MJ, Sun F, Yang LF, Maass KF, Traxlmayr MW, Yu Y, Xu Y, Langer RS, Anderson DG, Wittrup KD. Cytosolic delivery of siRNA by ultra-high affinity dsRNA binding proteins. Nucleic Acids Res 2017. [PMID: 28641400 PMCID: PMC5570165 DOI: 10.1093/nar/gkx546] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Protein-based methods of siRNA delivery are capable of uniquely specific targeting, but are limited by technical challenges such as low potency or poor biophysical properties. Here, we engineered a series of ultra-high affinity siRNA binders based on the viral protein p19 and developed them into siRNA carriers targeted to the epidermal growth factor receptor (EGFR). Combined in trans with a previously described endosome-disrupting agent composed of the pore-forming protein Perfringolysin O (PFO), potent silencing was achieved in vitro with no detectable cytotoxicity. Despite concerns that excessively strong siRNA binding could prevent the discharge of siRNA from its carrier, higher affinity continually led to stronger silencing. We found that this improvement was due to both increased uptake of siRNA into the cell and improved pharmacodynamics inside the cell. Mathematical modeling predicted the existence of an affinity optimum that maximizes silencing, after which siRNA sequestration decreases potency. Our study characterizing the affinity dependence of silencing suggests that siRNA-carrier affinity can significantly affect the intracellular fate of siRNA and may serve as a handle for improving the efficiency of delivery. The two-agent delivery system presented here possesses notable biophysical properties and potency, and provide a platform for the cytosolic delivery of nucleic acids.
Collapse
Affiliation(s)
- Nicole J Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Monique J Kauke
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fangdi Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lucy F Yang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Katie F Maass
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael W Traxlmayr
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yao Yu
- Protein Analytics, Adimab LLC, Lebanon, NH 03766, USA
| | - Yingda Xu
- Protein Analytics, Adimab LLC, Lebanon, NH 03766, USA
| | - Robert S Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel G Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - K Dane Wittrup
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
6
|
A Novel p19 Fusion Protein as a Delivery Agent for Short-interfering RNAs. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e303. [PMID: 27045207 PMCID: PMC5014518 DOI: 10.1038/mtna.2016.14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/06/2016] [Indexed: 11/09/2022]
Abstract
RNA interference (RNAi) is the biological mechanism that allows targeted gene knockdown through the addition of exogenous short-interfering RNAs (siRNAs) to cells and organisms. RNAi has revolutionized cell biology and holds enormous potential for human therapy. One of the major challenges facing RNAi as a therapy is achieving efficient and nontoxic delivery of siRNAs into the cell cytoplasm, since their highly anionic character precludes their passage across the cell membrane unaided. Herein, we report a novel fusion protein between the tombusviral p19 protein, which binds siRNAs with picomolar affinity, and the “TAT” peptide (RKKRRQRRRR), which is derived from the transactivator of transcription (TAT) protein of the human immunodeficiency virus and acts as a cell-penetrating peptide. We demonstrate that this fusion protein, 2x-p19-TAT, delivers siRNAs into the cytoplasm of human hepatoma cells where they elicit potent and sustained gene knockdown activity without toxic effects.
Collapse
|
7
|
Abstract
p19 is an RNA binding protein originally isolated from the Carnation Italian ring-spot virus (CIRV). It has been shown that p19 is a plant RNA-silencing suppressor that binds small interfering RNA (siRNA) with high affinity. A bifunctional p19 fusion protein, with an N-terminal maltose binding protein (MBP) and a C-terminal chitin binding domain (CBD) allows protein purification and binding of p19 to chitin magnetic beads via the chitin binding domain. The fusion p19 protein recognizes and binds double-stranded RNAs (dsRNA) in the size range of 20-23 nucleotides, but does not bind single strand RNA (ssRNA) or dsDNA. Furthermore, p19 can also bind mRNA, if there is a 19 bp blunt RNA duplex at the exact end of the RNA. Binding specificity of the p19 fusion protein for small dsRNA allows for detection of siRNAs derived either from exogenous or endogenous long dsRNA or microRNAs when hybridized to a complementary RNA. Here we describe a robust method using p19 and radioactive RNA probes to detect siRNAs in the sub-femtomole range and in the presence of a million-fold excess of total RNA. Unlike most nucleic acid detection methods, p19 selects for RNA hybrids of correct length and structure. This chapter describes the potential of p19 fusion protein to detect miRNAs, isolate exogenous or endogenous siRNAs, and purify longer RNAs that contain a 19-bp terminal RNA duplex.
Collapse
Affiliation(s)
- Jingmin Jin
- Division of RNA Biology, New England Biolabs, Ipswich, MA, USA
| | | | | |
Collapse
|
8
|
Vargason JM, Burch CJ, Wilson JW. Identification and RNA binding characterization of plant virus RNA silencing suppressor proteins. Methods 2013; 64:88-93. [PMID: 23981361 DOI: 10.1016/j.ymeth.2013.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/06/2013] [Accepted: 08/13/2013] [Indexed: 10/26/2022] Open
Abstract
Suppression is a common mechanism employed by viruses to evade the antiviral effects of the host's RNA silencing pathway. The activity of suppression has commonly been localized to gene products in the virus, but the variety of mechanisms used in suppression by these viral proteins spans nearly the complete biochemical pathway of RNA silencing in the host. This review describes the agrofiltration assay and a slightly modified version of the agro-infiltration assay called co-infiltration, which are common methods used to observe RNA silencing and identify viral silencing suppressor proteins in plants, respectively. In addition, this review will provide an overview of two methods, electrophoretic mobility shift assay and fluorescence polarization, used to assess the binding of a suppressor protein to siRNA which has been shown to be a general mechanism to suppress RNA silencing by plant viruses.
Collapse
Affiliation(s)
- Jeffrey M Vargason
- Department of Biology and Chemistry, George Fox University, 414 North Meridian Street, Newberg, OR 97132, USA.
| | | | | |
Collapse
|
9
|
A new insight into electrochemical microRNA detection: a molecular caliper, p19 protein. Biosens Bioelectron 2013; 48:165-71. [PMID: 23680935 DOI: 10.1016/j.bios.2013.04.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/28/2013] [Accepted: 04/08/2013] [Indexed: 11/21/2022]
Abstract
microRNA (miRNA) has drawn a great attention in biomedical research due to its functions on biological processes. Detection of miRNAs is a big challenge since the amount present in real samples is very low and the length of them is short. In this study, for the first time an electrochemical biosensor for detection of mir21 using the oxidation signal of protein 19 (p19) as a molecular caliper was designed. The proposed method enables detection of mir21 in direct, rapid, sensitive, inexpensive and label-free way. Binding specificity of the p19 to 20-23 base pair length double stranded RNA (dsRNA) and direct/water-mediated intermolecular contacts between the fusion protein and miRNA allows detection of miRNA-antimiRNA hybrid structure. The detection of mir21 was achieved in picomole sensitivity through the changes of intrinsic p19 oxidation signals observed at +0.80 V with Differential Pulse Voltammetry (DPV) and the specifity of the designed sensor was proved by control studies.
Collapse
|
10
|
Law SM, Zhang BW, Brooks CL. pH-sensitive residues in the p19 RNA silencing suppressor protein from carnation Italian ringspot virus affect siRNA binding stability. Protein Sci 2013; 22:595-604. [PMID: 23450521 DOI: 10.1002/pro.2243] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/06/2013] [Accepted: 02/10/2013] [Indexed: 01/08/2023]
Abstract
Tombusviruses, such as Carnation Italian ringspot virus (CIRV), encode a protein homodimer called p19 that is capable of suppressing RNA silencing in their infected hosts by binding to and sequestering short-interfering RNA (siRNA) away from the RNA silencing pathway. P19 binding stability has been shown to be sensitive to changes in pH but the specific amino acid residues involved have remained unclear. Using constant pH molecular dynamics simulations, we have identified key pH-dependent residues that affect CIRV p19-siRNA binding stability at various pH ranges based on calculated changes in the free energy contribution from each titratable residue. At high pH, the deprotonation of Lys60, Lys67, Lys71, and Cys134 has the largest effect on the binding stability. Similarly, deprotonation of several acidic residues (Asp9, Glu12, Asp20, Glu35, and/or Glu41) at low pH results in a decrease in binding stability. At neutral pH, residues Glu17 and His132 provide a small increase in the binding stability and we find that the optimal pH range for siRNA binding is between 7.0 and 10.0. Overall, our findings further inform recent experiments and are in excellent agreement with data on the pH-dependent binding profile.
Collapse
Affiliation(s)
- Sean M Law
- Department of Chemistry and Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
11
|
Danielson DC, Pezacki JP. Studying the RNA silencing pathway with the p19 protein. FEBS Lett 2013; 587:1198-205. [PMID: 23376479 DOI: 10.1016/j.febslet.2013.01.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 01/05/2023]
Abstract
The origins of the RNA silencing pathway are in defense against invading viruses and in response, viruses have evolved counter-measures to interfere with the host pathway. The p19 protein is expressed by tombusviruses as a suppressor of RNA silencing and functions to sequester small RNA duplexes, thereby preventing induction of the pathway. p19 exhibits size-specific and sequence-independent binding of its small RNA ligands, binding with high affinity to duplexes 20-22 nucleotides long. p19's binding specificity and its ability to sequester small RNAs has made it a unique protein-based tool for probing the molecular mechanisms of the highly complex RNA silencing pathway in a variety of systems. Furthermore, protein engineering of this 'molecular caliper' promises novel applications in biotechnology and medicine where small RNA molecules are of remarkable interest given their potent gene regulatory abilities.
Collapse
Affiliation(s)
- Dana C Danielson
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Canada K1H 8M5
| | | |
Collapse
|
12
|
Liu X, Houzet L, Jeang KT. Tombusvirus P19 RNA silencing suppressor (RSS) activity in mammalian cells correlates with charged amino acids that contribute to direct RNA-binding. Cell Biosci 2012; 2:41. [PMID: 23216864 PMCID: PMC3533911 DOI: 10.1186/2045-3701-2-41] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 11/21/2012] [Indexed: 12/31/2022] Open
Abstract
Background Tombusvirus P19 is a protein encoded by tomato bushy stunt virus and related tombusviruses. Earlier studies have demonstrated that P19 is an RNA silencing suppressor (RSS) in plant cells. However, it has not been systematically investigated how P19 suppresses RNA interference in various mammalian cell settings. Results We have studied the RSS effect of P19 in mammalian cells, HEK293T, HeLa, and mouse embryonic fibroblasts. We have individually mutated 18 positively charged residues in P19 and found that 6 of these charged residues in P19 reduce its ability to suppress RNA interference. In each case, the reduction of silencing of RNA interference correlated with the reduced ability by these P19 mutants to bind siRNAs (small interfering RNAs). Conclusions Our findings characterize a class of RNA-binding proteins that function as RSS moieties. We find a tight correlation between positively charged residues in P19 accounting for siRNA-binding and their RSS activity. Because P19’s activity is conserved in plant and animal cells, we conclude that its RSS function unlikely requires cell type-specific co-factors and likely arises from direct RNA-binding.
Collapse
Affiliation(s)
- Xiang Liu
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
13
|
Hamera S, Song X, Su L, Chen X, Fang R. Cucumber mosaic virus suppressor 2b binds to AGO4-related small RNAs and impairs AGO4 activities. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:104-15. [PMID: 21880078 DOI: 10.1111/j.1365-313x.2011.04774.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cucumber mosaic virus suppressor 2b (CMV2b) is a nuclear viral suppressor that interferes with local and systemic silencing and inhibits AGO1 slicer activity. CMV2b-mediated transgene hypomethylation and its localization in Cajal bodies suggests a role of CMV2b in RNA-directed DNA methylation (RdDM). However, its direct involvement in RdDM, or its binding with small RNAs (sRNAs) in vivo is not yet established. Here, we show that CMV2b binds both microRNAs (miRNAs) and small interfering RNAs (siRNAs) in vivo. sRNA sequencing data from the CMV2b immunocomplex revealed its preferential binding with 24-nt repeat-associated siRNAs. We provide evidence that CMV2b also has direct interaction with the AGO4 protein by recognizing its PAZ and PIWI domains. Subsequent analysis of AGO4 functions revealed that CMV2b reduced AGO4 slicer activity and the methylation of several loci, accompanied by the augmented accumulation of 24-nt siRNAs in Arabidopsis inflorescences. Intriguingly, CMV2b also regulated an AGO4-related epiallele independently of its catalytic potential, which further reinforces the repressive effects of CMV2b on AGO4 activity. Collectively, our results demonstrate that CMV2b can counteract AGO4-related functions. We propose that by adopting novel counter-host defense strategies against AGO1 and AGO4 proteins, CMV creates a favorable cellular niche for its proliferation.
Collapse
Affiliation(s)
- Sadia Hamera
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | |
Collapse
|
14
|
Marshall B, Zhang M, Atherton SS. The effect of murine cytomegalovirus IE-3 specific shRNA is dependent on intragenic target site due to multiple transcription initiation sites. HERPESVIRIDAE 2011; 2:9. [PMID: 21923934 PMCID: PMC3192721 DOI: 10.1186/2042-4280-2-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 09/18/2011] [Indexed: 12/31/2022]
Abstract
BACKGROUND Murine cytomegalovirus (MCMV) is closely related to human cytomegalovirus (HCMV) which is responsible for a variety of diseases, including retinitis, in immunocompromised individuals. Small inhibitory RNA molecules directed against essential viral regulatory genes may prove clinically useful. METHODS Small hairpin RNAs (shRNAs) directed against the essential MCMV immediate early-3 gene (IE-3) were designed and tested in vitro at m.o.i.'s of 2 and 0.2 to determine if virus replication could be inhibited. RESULTS At m.o.i. = 2, a MCMV IE-3 specific shRNA specific for sequences at the beginning of exon 5 inhibited virus replication with a maximum decrease in virus titer of approximately two logs at day 5 p.i. Surprisingly, however, at m.o.i. = 0.2, the same shRNA enhanced virus replication. In the latter case, the main IE-3 product observed in infected cells was not the expected 88 kd full length IE-3 protein observed at high m.o.i. but rather a truncated 45 kd form of this protein. Rapid analysis of 5' cDNA ends (5' RACE) indicated that substantial differences exist in the transcript profile produced by the IE-3 gene at low and high m.o.i. early after infection and that multiple transcripts are produced under both conditions. One such transcript, which originated in exon 5 of the IE-3 gene, was located outside the region targeted by our shRNA and was the major transcript produced at low m.o.i. Targeting of this exon 5 transcript with a second shRNA resulted in inhibition of virus replication at both low and high m.o.i. CONCLUSIONS These studies indicate that IE-3 has a complex transcriptional profile and that shRNA targeting of this and other viral regulatory genes which produce multiple transcripts may have unexpected effects on virus replication.
Collapse
Affiliation(s)
- Brendan Marshall
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912, USA.
| | | | | |
Collapse
|
15
|
Cheng J, Danielson DC, Nasheri N, Singaravelu R, Pezacki JP. Enhanced specificity of the viral suppressor of RNA silencing protein p19 toward sequestering of human microRNA-122. Biochemistry 2011; 50:7745-55. [PMID: 21819044 DOI: 10.1021/bi2008273] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tombusviruses express a 19 kDa protein (p19) that, as a dimeric protein, suppresses the RNAs silencing pathway during infection by binding short-interfering RNA (siRNA) and preventing their association with the RNA-induced silencing complex (RISC). The p19 protein can bind to both endogenous and synthetic siRNAs with a high degree of size selectivity but with little sequence dependence. It also binds to other endogenous small RNAs such as microRNAs (miRNAs) but with lower affinity than to canonical siRNAs. It has become apparent, however, that miRNAs play a large role in gene regulation; their influence extends to expression and processing that affects virtually all eukaryotic processes. In order to develop new tools to study endogenous small RNAs, proteins that suppress specific miRNAs are required. Herein we describe mutational analysis of the p19 binding surface with the aim of creating p19 mutants with increased affinity for miR-122. By site-directed mutagenesis of a single residue, we describe p19 mutants with a nearly 50-fold increased affinity for miR-122 without altering the affinity for siRNA. Upon further mutational analysis of this site, we postulate that the higher affinity relies on hydrogen-bonding interactions but can be sterically hindered by residues with bulky side chains. Finally, we demonstrate the effectiveness of a mutant p19, p19-T111S, at sequestering miR-122 in human hepatoma cell lines, as compared to wild-type p19. Overall, our results suggest that p19 can be engineered to enhance its affinity toward specific small RNA molecules, particularly noncanonical miRNAs that are distinguishable based on locations of base-pair mismatches. The p19-T111S mutant also represents a new tool for the study of the function of miR-122 in post-transcriptional silencing in the human liver.
Collapse
Affiliation(s)
- Jenny Cheng
- Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, Canada K1A 0R6
| | | | | | | | | |
Collapse
|
16
|
Sun G, Rossi JJ. MicroRNAs and their potential involvement in HIV infection. Trends Pharmacol Sci 2011; 32:675-81. [PMID: 21862142 DOI: 10.1016/j.tips.2011.07.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 07/15/2011] [Accepted: 07/21/2011] [Indexed: 12/12/2022]
Abstract
Treatment and cure of HIV-1 infection remain one of the greatest therapeutic challenges owing to its persistent infection, which often leads to AIDS. Although it has been 28 years since the discovery of the virus, the development of an effective vaccine is still years away. Relatively newly discovered miRNAs are a family of small noncoding RNAs that can regulate gene expression primarily by binding to the 3' untranslated region of targeted transcripts. An understanding of how HIV-1 infection affects the host miRNA pathway could generate new insights into the basic mechanisms underlying HIV-1-mediated pathologies and T-lymphocyte depletion. Here, we review literature on the biogenesis of HIV-1-encoded miRNAs, cellular miRNAs that can directly target HIV-1 or essential cellular factors required for HIV-1 replication. We also discuss the feasibility of using miRNAs for HIV-1 therapy.
Collapse
Affiliation(s)
- Guihua Sun
- Irell & Manella Graduate School of Biological Science, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010-3000, USA
| | | |
Collapse
|
17
|
Zheng GXY, Ravi A, Calabrese JM, Medeiros LA, Kirak O, Dennis LM, Jaenisch R, Burge CB, Sharp PA. A latent pro-survival function for the mir-290-295 cluster in mouse embryonic stem cells. PLoS Genet 2011; 7:e1002054. [PMID: 21573140 PMCID: PMC3088722 DOI: 10.1371/journal.pgen.1002054] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 03/06/2011] [Indexed: 02/02/2023] Open
Abstract
MicroRNAs (miRNAs) post-transcriptionally regulate the expression of thousands of distinct mRNAs. While some regulatory interactions help to maintain basal cellular functions, others are likely relevant in more specific settings, such as response to stress. Here we describe such a role for the mir-290-295 cluster, the dominant miRNA cluster in mouse embryonic stem cells (mESCs). Examination of a target list generated from bioinformatic prediction, as well as expression data following miRNA loss, revealed strong enrichment for apoptotic regulators, two of which we validated directly: Caspase 2, the most highly conserved mammalian caspase, and Ei24, a p53 transcriptional target. Consistent with these predictions, mESCs lacking miRNAs were more likely to initiate apoptosis following genotoxic exposure to gamma irradiation or doxorubicin. Knockdown of either candidate partially rescued this pro-apoptotic phenotype, as did transfection of members of the mir-290-295 cluster. These findings were recapitulated in a specific mir-290-295 deletion line, confirming that they reflect miRNA functions at physiological levels. In contrast to the basal regulatory roles previously identified, the pro-survival phenotype shown here may be most relevant to stressful gestations, where pro-oxidant metabolic states induce DNA damage. Similarly, this cluster may mediate chemotherapeutic resistance in a neoplastic context, making it a useful clinical target.
Collapse
Affiliation(s)
- Grace X. Y. Zheng
- MIT Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts, United States of America
- Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Arvind Ravi
- MIT Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Harvard-MIT Health Sciences and Technology Program, Cambridge, Massachusetts, United States of America
| | - J. Mauro Calabrese
- MIT Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Lea A. Medeiros
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Oktay Kirak
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Lucas M. Dennis
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Rudolf Jaenisch
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Christopher B. Burge
- Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Phillip A. Sharp
- MIT Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
18
|
Nasheri N, Cheng J, Singaravelu R, Wu P, McDermott MT, Pezacki JP. An enzyme-linked assay for the rapid quantification of microRNAs based on the viral suppressor of RNA silencing protein p19. Anal Biochem 2011; 412:165-72. [DOI: 10.1016/j.ab.2011.01.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 01/24/2011] [Accepted: 01/25/2011] [Indexed: 12/21/2022]
|
19
|
Genome-wide identification of Ago2 binding sites from mouse embryonic stem cells with and without mature microRNAs. Nat Struct Mol Biol 2011; 18:237-44. [PMID: 21258322 PMCID: PMC3078052 DOI: 10.1038/nsmb.1991] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 11/29/2010] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) are 19-22-nucleotide noncoding RNAs that post-transcriptionally regulate mRNA targets. We have identified endogenous miRNA binding sites in mouse embryonic stem cells (mESCs), by performing photo-cross-linking immunoprecipitation using antibodies to Argonaute (Ago2) followed by deep sequencing of RNAs (CLIP-seq). We also performed CLIP-seq in Dicer⁻/⁻ mESCs that lack mature miRNAs, allowing us to define whether the association of Ago2 with the identified sites was miRNA dependent. A significantly enriched motif, GCACUU, was identified only in wild-type mESCs in 3' untranslated and coding regions. This motif matches the seed of a miRNA family that constitutes ~68% of the mESC miRNA population. Unexpectedly, a G-rich motif was enriched in sequences cross-linked to Ago2 in both the presence and absence of miRNAs. Expression analysis and reporter assays confirmed that the seed-related motif confers miRNA-directed regulation on host mRNAs and that the G-rich motif can modulate this regulation.
Collapse
|
20
|
Jin J, Cid M, Poole CB, McReynolds LA. Protein mediated miRNA detection and siRNA enrichment using p19. Biotechniques 2010; 48:xvii-xxiii. [PMID: 20569217 DOI: 10.2144/000113364] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
p19 RNA binding protein from the Carnation Italian ringspot virus (CIRV) is an RNA-silencing suppressor that binds small interfering RNA (siRNA) with high affinity. We created a bifunctional p19 fusion protein with an N-terminal maltose binding protein (MBP), for protein purification, and a C-terminal chitin binding domain (CBD) to bind p19 to chitin magnetic beads. The fusion protein binds dsRNAs in the size range of 20-23 nucleotides, but does not bind ssRNA or dsDNA. Relative affinities of the p19 fusion protein for different-length RNA and DNA substrates were determined. Binding specificity of the p19 fusion protein for small dsRNA allows detection of miRNA:RNA probe duplexes. Using radioactive RNA probes, we were able to detect low levels of miRNAs in the sub-femtomole range and in the presence of a million-fold excess of total RNA. Detection is linear over three logs. Unlike most nucleic acid detection methods, p19 selects for RNA hybrids of correct length and structure. Rules for designing optimal RNA probes for p19 detection of miRNAs were determined by in vitro binding of 18 different dsRNA oligos to p19. These studies demonstrate the potential of p19 fusion protein to detect miRNAs and isolate endogenous siRNAs.
Collapse
|
21
|
Dicer is associated with ribosomal DNA chromatin in mammalian cells. PLoS One 2010; 5:e12175. [PMID: 20730047 PMCID: PMC2921364 DOI: 10.1371/journal.pone.0012175] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 07/10/2010] [Indexed: 01/18/2023] Open
Abstract
Background RNA silencing is a common term for pathways utilizing small RNAs as sequence-specific guides to repress gene expression. Components of the RNA silencing machinery are involved in different aspects of chromatin function in numerous organisms. However, association of RNA silencing with chromatin in mammalian cells remains unclear. Methodology/Principal Findings Immunostaining of mitotic chromosomes with antibodies visualizing either endogenous or ectopically expressed Dicer in mammalian cells revealed association of the protein with ribosomal DNA (rDNA) repeats. Chromatin immunoprecipitations and bisulfite sequencing experiments indicated that Dicer is associated with transcribed regions of both active and silenced genes in rDNA arrays of interphase chromosomes. Metabolic labeling of the mouse embryonic stem (ES) cells lacking Dicer did not reveal apparent defect in rRNA biogenesis though pre-rRNA synthesis in these cells was decreased, likely as a consequence of their slower growth caused by the loss of miRNAs. We analyzed in detail chromatin structure of rDNA but did not find any epigenetic changes at rDNA loci in Dicer−/− ES cells. Instead, we found that rDNA methylation is rather low in primary tissues, contrasting with rDNA methylation patterns in transformed cell lines. Conclusion/Significance We found that Dicer, a key component of RNA silencing pathways, can be detected in association with rDNA chromatin in mammalian cells. The role of this particular localization of Dicer is not readily apparent since the enzyme is associated with rDNA genes regardless of their transcriptional activity. However, localization of Dicer to the transcribed region suggests that transcription may contribute to the Dicer deposition at rDNA chromatin. We hypothesize that Dicer functions in maintaining integrity of rDNA arrays.
Collapse
|
22
|
Gene silencing in human embryonic stem cells by RNA interference. Biochem Biophys Res Commun 2009; 390:1106-10. [DOI: 10.1016/j.bbrc.2009.10.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Accepted: 10/08/2009] [Indexed: 12/27/2022]
|
23
|
Cheng J, Koukiekolo R, Kieliszkiewicz K, Sagan SM, Pezacki JP. Cysteine residues of Carnation Italian Ringspot virus p19 suppressor of RNA silencing maintain global structural integrity and stability for siRNA binding. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1197-203. [DOI: 10.1016/j.bbapap.2009.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 03/06/2009] [Accepted: 03/17/2009] [Indexed: 01/05/2023]
|
24
|
Koukiekolo R, Jakubek ZJ, Cheng J, Sagan SM, Pezacki JP. Studies of a viral suppressor of RNA silencing p19-CFP fusion protein: A FRET-based probe for sensing double-stranded fluorophore tagged small RNAs. Biophys Chem 2009; 143:166-9. [DOI: 10.1016/j.bpc.2009.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 05/06/2009] [Accepted: 05/06/2009] [Indexed: 01/14/2023]
|
25
|
Lee HC, Chang SS, Choudhary S, Aalto AP, Maiti M, Bamford DH, Liu Y. qiRNA is a new type of small interfering RNA induced by DNA damage. Nature 2009; 459:274-7. [PMID: 19444217 DOI: 10.1038/nature08041] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 04/08/2009] [Indexed: 01/18/2023]
Abstract
RNA interference pathways use small RNAs to mediate gene silencing in eukaryotes. In addition to small interfering RNAs (siRNAs) and microRNAs, several types of endogenously produced small RNAs have important roles in gene regulation, germ cell maintenance and transposon silencing. The production of some of these RNAs requires the synthesis of aberrant RNAs (aRNAs) or pre-siRNAs, which are specifically recognized by RNA-dependent RNA polymerases to make double-stranded RNA. The mechanism for aRNA synthesis and recognition is largely unknown. Here we show that DNA damage induces the expression of the Argonaute protein QDE-2 and a new class of small RNAs in the filamentous fungus Neurospora crassa. This class of small RNAs, known as qiRNAs because of their interaction with QDE-2, are about 20-21 nucleotides long (several nucleotides shorter than Neurospora siRNAs), with a strong preference for uridine at the 5' end, and originate mostly from the ribosomal DNA locus. The production of qiRNAs requires the RNA-dependent RNA polymerase QDE-1, the Werner and Bloom RecQ DNA helicase homologue QDE-3 and dicers. qiRNA biogenesis also requires DNA-damage-induced aRNAs as precursors, a process that is dependent on both QDE-1 and QDE-3. Notably, our results suggest that QDE-1 is the DNA-dependent RNA polymerase that produces aRNAs. Furthermore, the Neurospora RNA interference mutants show increased sensitivity to DNA damage, suggesting a role for qiRNAs in the DNA-damage response by inhibiting protein translation.
Collapse
Affiliation(s)
- Heng-Chi Lee
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Xia Z, Zhu Z, Zhu J, Zhou R. Recognition mechanism of siRNA by viral p19 suppressor of RNA silencing: a molecular dynamics study. Biophys J 2009; 96:1761-9. [PMID: 19254536 DOI: 10.1016/j.bpj.2008.11.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 11/20/2008] [Indexed: 01/30/2023] Open
Abstract
The p19 protein (p19) encoded from Tombusvirus is involved in various activities such as pathogenicity and virus transport. Recent studies have found that p19 is a plant suppressor of RNA silencing, which binds to short interfering RNAs (siRNAs) with high affinity. We use molecular dynamics (MD) simulations of the wild-type and mutant p19 protein (W39 and W42G) binding with a 21-nt siRNA duplex to study the p19-siRNA recognition mechanism and mutation effects. Our simulations with standard MD and steered molecular dynamics have shown that the double mutant structure is indeed much less stable than the wild-type, consistent with the recent experimental findings. Comprehensive structural analysis also shows that the W39/42G mutations first induce the loss of stacking interactions between p19 and siRNA, Trp(42)-Cyt1 (Cyt1 from the 5' to 3' strand) and Trp(39)-Gua'19 (Gua19 from the 3' to 5' strand), and then breaks the hydrophobic core formed by W39-W42 with nucleotide basepairs in the wild-type. The steered molecular dynamics simulations also show that the mutant p19 complex is "decompounded" very fast under a constant separation force, whereas the wild-type remains largely intact under the same steering force. Moreover, we have used the free energy perturbation to predict a binding affinity loss of 6.98 +/- 0.95 kcal/mol for the single mutation W39G, and 12.8 +/- 1.0 kcal/mol loss for the double mutation W39/42G, with the van der Waals interactions dominating the contribution ( approximately 90%). These results indicate that the W39/42G mutations essentially destroy the important p19-siRNA recognition by breaking the strong stacking interaction between Cyt1 and Gua'19 with end-capping tryptophans. These large scale simulations might provide new insights to the interactions and co-evolution relationship between RNA virus proteins and their hosts.
Collapse
Affiliation(s)
- Zhen Xia
- Institute of Bioinformatics, Zhejang University, Hangzhou 310027, People's Republic of China
| | | | | | | |
Collapse
|
27
|
Abstract
Among the three main categories of small silencing RNAs in insects and mammals-siRNAs, miRNAs, and piRNAs-siRNAs were thought to arise primarily from exogenous sources, whereas miRNAs and piRNAs arise from endogenous loci. Recent work in flies and mice reveals several classes of endogenous siRNAs (endo-siRNAs) that contribute to functions previously reserved for miRNAs and piRNAs, including gene regulation and transposon suppression.
Collapse
Affiliation(s)
- Daniel E. Golden
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Vincent R. Gerbasi
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Erik J. Sontheimer
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| |
Collapse
|
28
|
Studies of the interaction of the viral suppressor of RNA silencing protein p19 with small RNAs using fluorescence polarization. Biochemistry 2008; 47:8130-8. [PMID: 18597480 DOI: 10.1021/bi800401y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tombusviruses use a 19 kDa protein (p19) as a suppressor of the RNA silencing pathway during infection. The p19 protein binds to short-interfering RNA (siRNA) as a dimer and shows a high selectivity for short duplex RNAs over other RNA species. Since p19 can bind to synthetic and RNA silencing generated small RNAs with little sequence dependence and with size selectivity, this protein has utility as a tool for studying RNA silencing pathways in eukaryotes. However, the ability of p19 to serve as a tool for studying RNA silencing pathways may be complicated by the presence of other endogenous small RNAs such as micro-RNAs (miRNAs). To understand the importance of endogenous small RNA components with respect to p19's ability to bind to siRNAs, we examined the interactions of p19 with human miR-122, a 23-nucleotide duplex miRNA containing several mismatched base pairs that is highly abundant in the liver. The binding characteristics were compared with those of an siRNA optimized against the human kinase CSK. The binding studies were performed using fluorescence polarization experiments on duplex oligonucleotides containing Cy3 dye labels at the 5'-end of one of the strands of RNA as well as electrophoretic gel mobility shift assays. Both methods indicate that the synthetic siRNA with no mismatches in base pairing bound with >3-fold selectivity over that of miR-122. Our results suggest that p19 can distinguish between siRNAs and miRNA species, although the difference in binding constants is not so large that interactions with endogenous miRNAs can be totally ignored.
Collapse
|
29
|
Cheng J, Sagan SM, Assem N, Koukiekolo R, Goto NK, Pezacki JP. Stabilized recombinant suppressors of RNA silencing: Functional effects of linking monomers of Carnation Italian Ringspot virus p19. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1528-35. [DOI: 10.1016/j.bbapap.2007.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 09/24/2007] [Accepted: 09/25/2007] [Indexed: 12/24/2022]
|
30
|
RNA sequence analysis defines Dicer's role in mouse embryonic stem cells. Proc Natl Acad Sci U S A 2007; 104:18097-102. [PMID: 17989215 DOI: 10.1073/pnas.0709193104] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Short RNA expression was analyzed from Dicer-positive and Dicer-knockout mouse embryonic [corrected] stem (ES) cells, using high-throughput pyrosequencing. A correlation of miRNA quantification with sequencing frequency estimates that there are 110,000 miRNAs per ES cell, the majority of which can be accounted for by six distinct miRNA loci. Four of these miRNA loci or their human homologues have demonstrated roles in cell cycle regulation or oncogenesis, suggesting that a major function of the miRNA pathway in ES cells may be to shape their distinct cell cycle. Forty-six previously uncharacterized miRNAs were identified, most of which are expressed at low levels and are less conserved than the set of known miRNAs. Low-abundance short RNAs matching all classes of repetitive elements were present in cells lacking Dicer, although the production of some SINE- and simple repeat-associated short RNAs appeared to be Dicer-dependent. These and other Dicer-dependent sequences resembled miRNAs. At a depth of sequencing that approaches the total number of 5' phosphorylated short RNAs per cell, miRNAs appeared to be Dicer's only substrate. The results presented suggest a model in which repeat-associated miRNAs serve as host defenses against repetitive elements, a function canonically ascribed to other classes of short RNA.
Collapse
|
31
|
Abstract
RNA silencing functions as an adaptive antiviral defense in both plants and animals. In turn, viruses commonly encode suppressors of RNA silencing, which enable them to mount productive infection. These inhibitor proteins may be exploited as reagents with which to probe mechanisms and functions of RNA silencing pathways. In this report, we describe transgenic Drosophila strains that allow inducible expression of the viral RNA silencing inhibitors Flock House virus-B2, Nodamura virus-B2, vaccinia virus-E3L, influenza A virus-NS1 and tombusvirus P19. Some of these, especially the B2 proteins, are effective transgenic inhibitors of double strand RNA-induced gene silencing in flies. On the other hand, none of them is effective against the Drosophila microRNA pathway. Their functional selectivity makes these viral silencing proteins useful reagents with which to study biological functions of the Drosophila RNA interference pathway.
Collapse
Affiliation(s)
- Yu-ting Chou
- Sloan-Kettering Institute; New York, New York USA
| | - Bergin Tam
- University of California at Davis; Davis, California USA
| | | | - Eric C. Lai
- Sloan-Kettering Institute; New York, New York USA
| |
Collapse
|
32
|
Koukiekolo R, Sagan SM, Pezacki JP. Effects of pH and salt concentration on the siRNA binding activity of the RNA silencing suppressor protein p19. FEBS Lett 2007; 581:3051-6. [PMID: 17559839 DOI: 10.1016/j.febslet.2007.05.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 05/17/2007] [Accepted: 05/18/2007] [Indexed: 01/03/2023]
Abstract
The RNA silencing pathway is an important component of the anti-viral immune response in eukaryotes, particularly in plants. In turn, many viruses have evolved mechanisms to evade or suppress this pathway. Tombusviruses such as the Carnation Italian ringspot virus (CIRV) express a 19kDa protein (p19) that is a suppressor of RNA silencing in infected plants. This protein acts as a dimer and binds specifically to short-interfering RNA (siRNA) through electrostatic interactions between charged residues in the binding cleft. Since pH and salt concentrations can vary widely from host to host, we have investigated the influence of these parameters on the siRNA binding activity of CIRV p19. Previously, we established a convenient fluorescence-based method for assaying CIRV p19:siRNA binding using Ni(2+)-NTA coated 96-well plates. Using this method, we observe that the CIRV p19 protein binds to siRNA with nanomolar affinity and that this binding is sensitive to pH and salt concentration. The pH-dissociation constant profile shows that CIRV p19:siRNA binding is dependent on three different apparent pK(a) values. The values extrapolated from the curve are 7.1, 8.0 and 10.6 that we interpret as the ionization of one or more histidine, cysteine and lysine residues, respectively. We find that the optimal suppression of RNA silencing by CIRV p19 occurs in the pH range from 6.2 to 7.6.
Collapse
Affiliation(s)
- Roger Koukiekolo
- The Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, Canada
| | | | | |
Collapse
|
33
|
Huettel B, Kanno T, Daxinger L, Bucher E, van der Winden J, Matzke AJM, Matzke M. RNA-directed DNA methylation mediated by DRD1 and Pol IVb: A versatile pathway for transcriptional gene silencing in plants. ACTA ACUST UNITED AC 2007; 1769:358-74. [PMID: 17449119 DOI: 10.1016/j.bbaexp.2007.03.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 02/28/2007] [Accepted: 03/01/2007] [Indexed: 12/22/2022]
Abstract
RNA-directed DNA methylation, which is one of several RNAi-mediated pathways in the nucleus, has been highly elaborated in the plant kingdom. RNA-directed DNA methylation requires for the most part conventional DNA methyltransferases, histone modifying enzymes and RNAi proteins; however, several novel, plant-specific proteins that are essential for this process have been identified recently. DRD1 (defective in RNA-directed DNA methylation) is a putative SWI2/SNF2-like chromatin remodelling protein; DRD2 and DRD3 (renamed NRPD2a and NRPD1b, respectively) are subunits of Pol IVb, a putative RNA polymerase found only in plants. Interestingly, DRD1 and Pol IVb appear to be required not only for RNA-directed de novo methylation, but also for full erasure of methylation when the RNA trigger is withdrawn. These proteins thus have the potential to facilitate dynamic regulation of DNA methylation. Prominent targets of RNA-directed DNA methylation in the Arabidopsis thaliana genome include retrotransposon long terminal repeats (LTRs), which have bidirectional promoter/enhancer activities, and other types of intergenic transposons and repeats. Intergenic solitary LTRs that are targeted for reversible methylation by the DRD1/Pol IVb pathway can potentially act as switches or rheostats for neighboring plant genes. The resulting alterations in gene expression patterns may promote physiological flexibility and adaptation to the environment.
Collapse
Affiliation(s)
- Bruno Huettel
- Gregor Mendel Institute for Molecular Plant Biology, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, A-1030 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|