1
|
Mahendran G, Shangaradas AD, Romero-Moreno R, Wickramarachchige Dona N, Sarasija SHGS, Perera S, Silva GN. Unlocking the epigenetic code: new insights into triple-negative breast cancer. Front Oncol 2024; 14:1499950. [PMID: 39744000 PMCID: PMC11688480 DOI: 10.3389/fonc.2024.1499950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/19/2024] [Indexed: 01/04/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and clinically challenging subtype of breast cancer, lacking the expression of estrogen receptor (ER), progesterone receptor (PR), and HER2/neu. The absence of these receptors limits therapeutic options necessitating the exploration of novel treatment strategies. Epigenetic modifications, which include DNA methylation, histone modifications, and microRNA (miRNA) regulation, play a pivotal role in TNBC pathogenesis and represent promising therapeutic targets. This review delves into the therapeutic potential of epigenetic interventions in TNBC, with a focus on DNA methylation, histone modifications, and miRNA therapeutics. We examine the role of DNA methylation in gene silencing within TNBC and the development of DNA methylation inhibitors designed to reactivate silenced tumor suppressor genes. Histone modifications, through histone deacetylation and acetylation in particular, are critical in regulating gene expression. We explore the efficacy of histone deacetylase inhibitors (HDACi), which have shown promise in reversing aberrant histone deacetylation patterns, thereby restoring normal gene function, and suppressing tumor growth. Furthermore, the review highlights the dual role of miRNAs in TNBC as both oncogenes and tumor suppressors and discusses the therapeutic potential of miRNA mimics and inhibitors in modulating these regulatory molecules to inhibit cancer progression. By integrating these epigenetic therapies, we propose a multifaceted approach to target the underlying epigenetic mechanisms that drive TNBC progression. The synergistic use of DNA methylation inhibitors, HDACi, and the miRNA-based therapies offers a promising avenue for personalized treatment strategies, aiming to enhance the clinical outcome for patients with TNBC.
Collapse
Affiliation(s)
- Gowthami Mahendran
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | | | | | | | | | - Sumeth Perera
- Department of Biochemistry, Faculty of Medicine, Sabaragamuwa University of Sri Lanka, Ratnapura, Sri Lanka
| | - Gayathri N. Silva
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
2
|
Shah AN, Leesch F, Lorenzo-Orts L, Grundmann L, Novatchkova M, Haselbach D, Calo E, Pauli A. A dual ribosomal system in the zebrafish soma and germline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610041. [PMID: 39257781 PMCID: PMC11383705 DOI: 10.1101/2024.08.29.610041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Protein synthesis during vertebrate embryogenesis is driven by ribosomes of two distinct origins: maternal ribosomes synthesized during oogenesis and stored in the egg, and somatic ribosomes, produced by the developing embryo after zygotic genome activation (ZGA). In zebrafish, these two ribosome types are expressed from different genomic loci and also differ in their ribosomal RNA (rRNA) sequence. To characterize this dual ribosome system further, we examined the expression patterns of maternal and somatic rRNAs during embryogenesis and in adult tissues. We found that maternal rRNAs are not only expressed during oogenesis but are continuously produced in the zebrafish germline. Proteomic analyses of maternal and somatic ribosomes unveiled differences in core ribosomal protein composition. Most nucleotide differences between maternal and somatic rRNAs are located in the flexible, structurally not resolved expansion segments. Our in vivo data demonstrated that both maternal and somatic ribosomes can be translationally active in the embryo. Using transgenically tagged maternal or somatic ribosome subunits, we experimentally confirm the presence of hybrid 80S ribosomes composed of 40S and 60S subunits from both origins and demonstrate the preferential in vivo association of maternal ribosomes with germline-specific transcripts. Our study identifies a distinct type of ribosomes in the zebrafish germline and thus presents a foundation for future explorations into possible regulatory mechanisms and functional roles of heterogeneous ribosomes.
Collapse
Affiliation(s)
- Arish N. Shah
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Friederike Leesch
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Laura Lorenzo-Orts
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Lorenz Grundmann
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Maria Novatchkova
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - David Haselbach
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Eliezer Calo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Andrea Pauli
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
3
|
Wei J, Zhang J, Wang W, Zhou H, Ma H, Gong Y, Tang Q, Zhang K, Liao X. Precision miRNA profiling: Electrochemiluminescence powered by CRISPR-Cas13a and hybridization chain reaction. Anal Chim Acta 2024; 1307:342641. [PMID: 38719418 DOI: 10.1016/j.aca.2024.342641] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/09/2024] [Accepted: 04/20/2024] [Indexed: 05/18/2024]
Abstract
The article details a groundbreaking platform for detecting microRNAs (miRNAs), crucial biomolecules involved in gene regulation and linked to various diseases. This innovative platform combines the CRISPR-Cas13a system's precise ability to specifically target and cleave RNA molecules with the amplification capabilities of the hybridization chain reaction (HCR). HCR aids in signal enhancement by creating branched DNA structures. Additionally, the platform employs electrochemiluminescence (ECL) for detection, noted for its high sensitivity and low background noise, making it particularly effective. A key application of this technology is in the detection of miR-17, a biomarker associated with multiple cancer types. It exhibits remarkable detection capabilities, characterized by low detection limits (14.38 aM) and high specificity. Furthermore, the platform's ability to distinguish between similar miRNA sequences and accurately quantify miR-17 in cell lysates underscores its significant potential in clinical and biomedical fields. This combination of precise targeting, signal amplification, and sensitive detection positions the platform as a powerful tool for miRNA analysis in medical diagnostics and research.
Collapse
Affiliation(s)
- Jihua Wei
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Jiayi Zhang
- Key Laboratory of Research on Prevention and Control of High Incidence Diseases in Western Guangxi, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Wei Wang
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Haidong Zhou
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Huade Ma
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Yuanxun Gong
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Qianli Tang
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China.
| | - Kai Zhang
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology. Nanjing, 210044, China.
| | - Xianjiu Liao
- Key Laboratory of Research on Prevention and Control of High Incidence Diseases in Western Guangxi, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China.
| |
Collapse
|
4
|
Raveendran S, Al Massih A, Al Hashmi M, Saeed A, Al-Azwani I, Mathew R, Tomei S. Urinary miRNAs: Technical Updates. Microrna 2024; 13:110-123. [PMID: 38778602 DOI: 10.2174/0122115366305985240502094814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 05/25/2024]
Abstract
Due to its non-invasive nature and easy accessibility, urine serves as a convenient biological fluid for research purposes. Furthermore, urine samples are uncomplicated to preserve and relatively inexpensive. MicroRNAs (miRNAs), small molecules that regulate gene expression post-transcriptionally, play vital roles in numerous cellular processes, including apoptosis, cell differentiation, development, and proliferation. Their dysregulated expression in urine has been proposed as a potential biomarker for various human diseases, including bladder cancer. To draw reliable conclusions about the roles of urinary miRNAs in human diseases, it is essential to have dependable and reproducible methods for miRNA extraction and profiling. In this review, we address the technical challenges associated with studying urinary miRNAs and provide an update on the current technologies used for urinary miRNA isolation, quality control assessment, and miRNA profiling, highlighting both their advantages and limitations.
Collapse
Affiliation(s)
- Santhi Raveendran
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Alia Al Massih
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Muna Al Hashmi
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Asma Saeed
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Iman Al-Azwani
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Rebecca Mathew
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Sara Tomei
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| |
Collapse
|
5
|
Wang HN, Vo-Dinh T. Cascade Amplified Plasmonics Molecular Biosensor for Sensitive Detection of Disease Biomarkers. BIOSENSORS 2023; 13:774. [PMID: 37622860 PMCID: PMC10452163 DOI: 10.3390/bios13080774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Recent advances in molecular technologies have provided various assay strategies for monitoring biomarkers, such as miRNAs for early detection of various diseases and cancers. However, there is still an urgent unmet need to develop practical and accurate miRNA analytical tools that could facilitate the incorporation of miRNA biomarkers into clinical practice and management. In this study, we demonstrate the feasibility of using a cascade amplification method, referred to as the "Cascade Amplification by Recycling Trigger Probe" (CARTP) strategy, to improve the detection sensitivity of the inverse Molecular Sentinel (iMS) nanobiosensor. The iMS nanobiosensor developed in our laboratory is a unique homogeneous multiplex bioassay technique based on surface-enhanced Raman scattering (SERS) detection, and was used to successfully detect miRNAs from clinical samples. The CARTP strategy based on the toehold-mediated strand displacement reaction is triggered by a linear DNA strand, called the "Recycling Trigger Probe" (RTP) strand, to amplify the iMS SERS signal. Herein, by using the CARTP strategy, we show a significantly improved detection sensitivity with the limit of detection (LOD) of 45 fM, which is 100-fold more sensitive than the non-amplified iMS assay used in our previous report. We envision that the further development and optimization of this strategy ultimately will allow multiplexed detection of miRNA biomarkers with ultra-high sensitivity for clinical translation and application.
Collapse
Affiliation(s)
- Hsin-Neng Wang
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA;
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Tuan Vo-Dinh
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA;
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| |
Collapse
|
6
|
Lupi L, Bordin A, Sales G, Colaianni D, Vitiello A, Biscontin A, Reale A, Garzino-Demo A, Antonini A, Ottaviano G, Mucignat C, Parolin C, Calistri A, De Pittà C. Persistent and transient olfactory deficits in COVID-19 are associated to inflammation and zinc homeostasis. Front Immunol 2023; 14:1148595. [PMID: 37520523 PMCID: PMC10380959 DOI: 10.3389/fimmu.2023.1148595] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction The Coronavirus Disease 2019 (COVID-19) is mainly a respiratory syndrome that can affect multiple organ systems, causing a variety of symptoms. Among the most common and characteristic symptoms are deficits in smell and taste perception, which may last for weeks/months after COVID-19 diagnosis owing to mechanisms that are not fully elucidated. Methods In order to identify the determinants of olfactory symptom persistence, we obtained olfactory mucosa (OM) from 21 subjects, grouped according to clinical criteria: i) with persistent olfactory symptoms; ii) with transient olfactory symptoms; iii) without olfactory symptoms; and iv) non-COVID-19 controls. Cells from the olfactory mucosa were harvested for transcriptome analyses. Results and discussion RNA-Seq assays showed that gene expression levels are altered for a long time after infection. The expression profile of micro RNAs appeared significantly altered after infection, but no relationship with olfactory symptoms was found. On the other hand, patients with persistent olfactory deficits displayed increased levels of expression of genes involved in the inflammatory response and zinc homeostasis, suggesting an association with persistent or transient olfactory deficits in individuals who experienced SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Lorenzo Lupi
- Department of Biology, University of Padova, Padova, Italy
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Anna Bordin
- Department of Neurosciences, Otolaryngology Section, University of Padova, Padova, Italy
| | - Gabriele Sales
- Department of Biology, University of Padova, Padova, Italy
| | | | - Adriana Vitiello
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Alberto Reale
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Alfredo Garzino-Demo
- Department of Molecular Medicine, University of Padova, Padova, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, United States
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Department of Neurosciences, University of Padova, Padova, Italy
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Giancarlo Ottaviano
- Department of Neurosciences, Otolaryngology Section, University of Padova, Padova, Italy
| | - Carla Mucignat
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | |
Collapse
|
7
|
Brunderová M, Krömer M, Vlková M, Hocek M. Chloroacetamide-Modified Nucleotide and RNA for Bioconjugations and Cross-Linking with RNA-Binding Proteins. Angew Chem Int Ed Engl 2023; 62:e202213764. [PMID: 36533569 PMCID: PMC10107093 DOI: 10.1002/anie.202213764] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 12/23/2022]
Abstract
Reactive RNA probes are useful for studying and identifying RNA-binding proteins. To that end, we designed and synthesized chloroacetamide-linked 7-deaza-ATP which was a good substrate for T7 RNA polymerase in in vitro transcription assay to synthesize reactive RNA probes bearing one or several reactive modifications. Modified RNA probes reacted with thiol-containing molecules as well as with cysteine- or histidine-containing peptides to form stable covalent products. They also reacted selectively with RNA-binding proteins to form cross-linked conjugates in high conversions thanks to proximity effect. Our modified nucleotide and RNA probes are promising tools for applications in RNA (bio)conjugations or RNA proteomics.
Collapse
Affiliation(s)
- Mária Brunderová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 216000Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles UniversityHlavova 812843Prague 2Czech Republic
| | - Matouš Krömer
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 216000Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles UniversityHlavova 812843Prague 2Czech Republic
| | - Marta Vlková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 216000Prague 6Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 216000Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles UniversityHlavova 812843Prague 2Czech Republic
| |
Collapse
|
8
|
Bodulev OL, Sakharov IY. Modern Methods for Assessment of microRNAs. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:425-442. [PMID: 35790375 DOI: 10.1134/s0006297922050042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
The review discusses modern methods for the quantitative and semi-quantitative analysis of miRNAs, which are small non-coding RNAs affecting numerous biological processes such as development, differentiation, metabolism, and immune response. miRNAs are considered as promising biomarkers in the diagnosis of various diseases.
Collapse
Affiliation(s)
- Oleg L Bodulev
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia
| | - Ivan Yu Sakharov
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.
| |
Collapse
|
9
|
Byun YJ, Kang HW, Piao XM, Zheng CM, Moon SK, Choi YH, Kim WT, Lee SC, Yun SJ, Kim WJ. Expression of hsv1-miR-H18 and hsv2-miR-H9 as a field defect marker for detecting prostate cancer. Prostate Int 2022; 10:1-6. [PMID: 35155300 PMCID: PMC8804185 DOI: 10.1016/j.prnil.2021.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022] Open
Abstract
Background Prostate-specific antigen (PSA) is a marker of prostate cancer (PCa), although its efficacy as a diagnostic marker remains controversial. A high false-positive rate leads to repeat biopsy in approximately 70% of patients, which may not be necessary. Epigenetic biomarkers of field cancerization have been investigated widely as promising tools for the diagnosis of patients with suspected tumors. In the current study, we examined the diagnostic value of two microRNA (miRNA) candidates, hsv1-miR-H18 and hsv2-miR-H9, using formalin-fixed paraffin-embedded (FFPE) tissues from patients with PCa or benign prostate hyperplasia (BPH) (as controls) to determine the usefulness of these markers for detecting the presence of cancer. Methods Expression of hsv1-miR-H18 and hsv2-miR-H9 in 201 FFPE tissues, including 52 primary tumors, 73 surrounding noncancerous tissues, and 90 BPH nontumor controls was examined by real-time PCR. Results Expression of hsv1-miR-H18 and hsv2-miR-H9 was significantly higher in primary tumors from PCa patients than in BPH controls (P < 0.0001). In patients within the PSA gray zone, the two viral miRNAs could distinguish PCa from controls with appropriate sensitivity and specificity. Expression of the two miRNAs did not differ between primary tumors and noncancerous surrounding tissues. Conclusions The viral miRNAs hsv1-miR-H18 and hsv2-miR-H9 may be associated with field cancerization of PCa and could be promising supplemental biomarkers to the PSA assay to decrease the rate of unnecessary biopsy, particularly in patients within the PSA gray zone.
Collapse
Affiliation(s)
- Young Joon Byun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Ho Won Kang
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
- Department of Urology, Chungbuk National University Hospital, Cheongju, Korea
| | - Xuan-Mei Piao
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Chuang-Ming Zheng
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Sung-Kwon Moon
- Department of Food Science and Technology, Chung-Ang University, Ansung, 456-756, Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Oriental Medicine, Busan, Korea
| | - Won Tae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
- Department of Urology, Chungbuk National University Hospital, Cheongju, Korea
| | - Sang-Cheol Lee
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
- Department of Urology, Chungbuk National University Hospital, Cheongju, Korea
| | - Seok Joong Yun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
- Department of Urology, Chungbuk National University Hospital, Cheongju, Korea
- Corresponding author. Department of Urology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Korea.
| | - Wun-Jae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
- Institute of Urotech, Cheongju, 28644, Korea
- Corresponding author. Department of Urology, College of Medicine, Chungbuk National University, Institute of Urotech, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Korea.
| |
Collapse
|
10
|
Osei-Bordom DC, Sachdeva G, Christou N. Liquid Biopsy as a Prognostic and Theranostic Tool for the Management of Pancreatic Ductal Adenocarcinoma. Front Med (Lausanne) 2022; 8:788869. [PMID: 35096878 PMCID: PMC8795626 DOI: 10.3389/fmed.2021.788869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinomas (PDAC) represent one of the deadliest cancers worldwide. Survival is still low due to diagnosis at an advanced stage and resistance to treatment. Herein, we review the main types of liquid biopsy able to help in both prognosis and adaptation of treatments.
Collapse
Affiliation(s)
- Daniel C Osei-Bordom
- Department of General Surgery, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, United Kingdom
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Centre for Liver and Gastroenterology Research, University of Birmingham, Birmingham, United Kingdom
| | - Gagandeep Sachdeva
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Niki Christou
- Department of General Surgery, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, United Kingdom
- Department of General Surgery, University Hospital of Limoges, Limoges, France
- EA3842 CAPTuR Laboratory "Cell Activation Control, Tumor Progression and Therapeutic Resistance", Faculty of Medicine, Limoges, France
| |
Collapse
|
11
|
TÜNCEL Ö, KARA M, YAYLAK B, ERDOĞAN İ, AKGÜL B. Noncoding RNAs in apoptosis: identification and function. Turk J Biol 2021; 46:1-40. [PMID: 37533667 PMCID: PMC10393110 DOI: 10.3906/biy-2109-35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/08/2022] [Accepted: 11/14/2021] [Indexed: 08/04/2023] Open
Abstract
Apoptosis is a vital cellular process that is critical for the maintenance of homeostasis in health and disease. The derailment of apoptotic mechanisms has severe consequences such as abnormal development, cancer, and neurodegenerative diseases. Thus, there exist complex regulatory mechanisms in eukaryotes to preserve the balance between cell growth and cell death. Initially, protein-coding genes were prioritized in the search for such regulatory macromolecules involved in the regulation of apoptosis. However, recent genome annotations and transcriptomics studies have uncovered a plethora of regulatory noncoding RNAs that have the ability to modulate not only apoptosis but also many other biochemical processes in eukaryotes. In this review article, we will cover a brief summary of apoptosis and detection methods followed by an extensive discussion on microRNAs, circular RNAs, and long noncoding RNAs in apoptosis.
Collapse
Affiliation(s)
- Özge TÜNCEL
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| | - Merve KARA
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| | - Bilge YAYLAK
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| | - İpek ERDOĞAN
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| | - Bünyamin AKGÜL
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| |
Collapse
|
12
|
Aita A, Millino C, Sperti C, Pacchioni B, Plebani M, De Pittà C, Basso D. Serum miRNA Profiling for Early PDAC Diagnosis and Prognosis: A Retrospective Study. Biomedicines 2021; 9:845. [PMID: 34356909 PMCID: PMC8301411 DOI: 10.3390/biomedicines9070845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/29/2021] [Accepted: 07/15/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Tumor stage predicts pancreatic cancer (PDAC) prognosis, but prolonged and short survivals have been described in patients with early-stage tumors. Circulating microRNA (miRNA) are an emerging class of suitable biomarkers for PDAC prognosis. Our aim was to identify whether serum miRNA signatures predict survival of early-stage PDAC. METHODS Serum RNA from archival 15 stage I-III PDAC patients and 4 controls was used for miRNAs expression profile (Agilent microarrays). PDAC patients with comparable age, gender, diabetes, jaundice and surgery were classified according to survival: less than 14 months (7/15 pts, group A) and more than 22 months (8/15 pts, group B). Bioinformatic data analysis was performed by two-class Significance Analysis of Microarray (SAM) algorithm. Binary logistic regression analyses considering PDAC diagnosis and outcome as dependent variables, and ROC analyses were also performed. RESULTS 2549 human miRNAs were screened out. At SAM, 76 differentially expressed miRNAs were found among controls and PDAC (FDR = 0.4%), the large majority (50/76, 66%) of them being downregulated in PDAC with respect to controls. Six miRNAs were independently correlated with early PDAC, and among these, hsa-miR-6821-5p was associated with the best ROC curve area in distinguishing controls from early PDAC. Among the 71 miRNAs differentially expressed between groups A and B, the most significant were hsa-miR-3135b expressed in group A only, hsa-miR-6126 and hsa-miR-486-5p expressed in group B only. Eight miRNAs were correlated with the presence of lymph-node metastases; among these, hsa-miR-4669 is of potential interest. hsa-miR-4516, increased in PDAC and found as an independent predictor of survival, has among its putative targets a series of gens involved in key pathways of cancer progression and dissemination, such as Wnt and p53 signalling pathways. CONCLUSIONS A series of serum miRNAs was identified as potentially useful for the early diagnosis of PDAC, and for establishing a prognosis.
Collapse
Affiliation(s)
- Ada Aita
- Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy; (A.A.); (M.P.)
| | - Caterina Millino
- Department of Biology, University of Padova, 35131 Padova, Italy; (C.M.); (B.P.)
| | - Cosimo Sperti
- Department of Surgical, Oncological and Gastroenterological Sciences-DiSCOG, University of Padova, 35128 Padova, Italy;
| | - Beniamina Pacchioni
- Department of Biology, University of Padova, 35131 Padova, Italy; (C.M.); (B.P.)
| | - Mario Plebani
- Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy; (A.A.); (M.P.)
| | - Cristiano De Pittà
- Department of Biology, University of Padova, 35131 Padova, Italy; (C.M.); (B.P.)
| | - Daniela Basso
- Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy; (A.A.); (M.P.)
| |
Collapse
|
13
|
Wang F, Wang H, Zhang P, Su F, Wang H, Li Z. Ultrasensitive multiplexed detection of miRNA targets of interest based on encoding probe extension in improved cDNA library. Anal Chim Acta 2021; 1152:338281. [PMID: 33648652 DOI: 10.1016/j.aca.2021.338281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/15/2023]
Abstract
MicroRNAs (miRNAs) are a class of regulatory small RNA molecules that play critical roles in a wide variety of biological processes. Abnormally expressed miRNAs have been increasingly utilized as biomarkers for cancer diagnosis. Generally, a specific cancer is associated with expression alterations of several species of miRNAs and different types of cancers are related to different miRNA species. Therefore, a universal method for multiplexed detection of miRNA targets of interest is now desirable for cancer diagnosis. In this paper, by adding an enzymatic digestion step to reduce the nonspecific adaptor dimers, we firstly improved the method to construct cDNA library of all miRNAs, which greatly increased the cDNA yield. By specifically designing DNA probes to hybridize with the cDNAs at key positions and doubly encoding DNA probes with different lengths and different fluorophores during single-base extension, each miRNA could produce a unique product, which could be separated and detected by capillary electrophoresis. Thus, miRNA targets of interest could be simultaneously detected with great specificity at single-base resolution. By using seventeen randomly selected miRNAs as the model, as low as 1.0 fM of each miRNA target could be simultaneously determined. Furthermore, we had achieved accurate analysis of multiple miRNAs in real biological RNA samples and found that several miRNAs expressed differently between cancer cells and normal cells, indicating that the proposed method had the ability to pick out aberrant expression miRNAs in real biological samples. Compared with high-throughput sequencing methods, the proposed method is simpler and specific, and very suitable for the detection of specific miRNAs associated with a disease, which shows great potential for cancer diagnosis.
Collapse
Affiliation(s)
- Fangfang Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, PR China
| | - Hui Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, PR China
| | - Pengbo Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, PR China
| | - Fengxia Su
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, PR China
| | - Honghong Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, PR China
| | - Zhengping Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, PR China.
| |
Collapse
|
14
|
Byun YJ, Piao XM, Jeong P, Kang HW, Seo SP, Moon SK, Lee JY, Choi YH, Lee HY, Kim WT, Lee SC, Cha EJ, Yun SJ, Kim WJ. Urinary microRNA-1913 to microRNA-3659 expression ratio as a non-invasive diagnostic biomarker for prostate cancer. Investig Clin Urol 2021; 62:340-348. [PMID: 33834642 PMCID: PMC8100013 DOI: 10.4111/icu.20200488] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 11/18/2022] Open
Abstract
PURPOSE MicroRNAs (miRNAs) are small non-coding RNAs and are involved in the development, proliferation, and pathogenesis of prostate cancer (PCa). Urinary miRNAs are promising non-invasive biomarkers for PCa diagnosis because of their stability in urine. Here, we evaluated the diagnostic value of urinary miR-1913 to miR-3659 ratio in PCa patients and benign prostate hyperplasia (BPH) controls. MATERIALS AND METHODS Candidate miRNAs were identified from urinary microarray data and tested by real-time PCR. The urinary miR-1913 to miR-3659 expression ratio was selected and tested in 83 urine samples (44 PCa and 39 BPH) to confirm its validity as a non-invasive diagnostic biomarker for PCa. RESULTS The expression ratio of urinary miR-1913 to miR-3659 was significantly higher in PCa than in BPH (p=0.002) and showed a higher area under the receiver operating characteristic curve than prostate-specific antigen (PSA; 0.821 vs. 0.518) in patients within the PSA gray zone (tPSA: 3-10 ng/mL), with sensitivity of 75.0% and specificity of 78.6% (p=0.003). CONCLUSIONS The urinary miR-1913 to miR-3659 expression ratio was increased in PCa and may serve as a useful supplemental biomarker to PSA for the diagnosis of PCa, particularly in patients within the PSA gray zone.
Collapse
Affiliation(s)
- Young Joon Byun
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Xuan Mei Piao
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Pildu Jeong
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Ho Won Kang
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea.,Department of Urology, Chungbuk National University Hospital, Cheongju, Korea
| | - Sung Phil Seo
- Department of Urology, Chungbuk National University Hospital, Cheongju, Korea
| | - Sung Kwon Moon
- Department of Food Science and Technology, Chung-Ang University, Anseong, Korea
| | | | - Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Oriental Medicine, Busan, Korea
| | - Hee Youn Lee
- Department of Urology, Chungbuk National University Hospital, Cheongju, Korea
| | - Won Tae Kim
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea.,Department of Urology, Chungbuk National University Hospital, Cheongju, Korea
| | - Sang Cheol Lee
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea.,Department of Urology, Chungbuk National University Hospital, Cheongju, Korea
| | - Eun Jong Cha
- Department of Biomedical Engineering, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Seok Joong Yun
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea.,Department of Urology, Chungbuk National University Hospital, Cheongju, Korea
| | - Wun Jae Kim
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea.,Institute of Urotech, Cheongju, Korea.
| |
Collapse
|
15
|
Yang H, Eremeeva E, Abramov M, Herdewijn P. The Network of Replication, Transcription, and Reverse Transcription of a Synthetic Genetic Cassette. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hui Yang
- Medicinal Chemistry Rega Institute for Medical Research KU Leuven Herestraat 49, Box-1041 3000 Leuven Belgium
| | - Elena Eremeeva
- Medicinal Chemistry Rega Institute for Medical Research KU Leuven Herestraat 49, Box-1041 3000 Leuven Belgium
| | - Mikhail Abramov
- Medicinal Chemistry Rega Institute for Medical Research KU Leuven Herestraat 49, Box-1041 3000 Leuven Belgium
| | - Piet Herdewijn
- Medicinal Chemistry Rega Institute for Medical Research KU Leuven Herestraat 49, Box-1041 3000 Leuven Belgium
| |
Collapse
|
16
|
Yang H, Eremeeva E, Abramov M, Herdewijn P. The Network of Replication, Transcription, and Reverse Transcription of a Synthetic Genetic Cassette. Angew Chem Int Ed Engl 2020; 60:4175-4182. [PMID: 33142013 DOI: 10.1002/anie.202011887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/27/2020] [Indexed: 11/07/2022]
Abstract
Synthetic nucleic acids, with four non-canonical nucleobases, can function as genetic materials. A comprehensive analysis of PCR amplification, transcription, reverse transcription, and cloning was done to screen for alternative genetic monomers. A small library of six modified nucleobases was selected: the modified 2'-deoxyribonucleoside (dZTPs) and ribonucleoside (rZTPs) triphosphates of 7-deaza-adenine, 5-chlorouracil, 7-deaza-guanine or inosine together with 5-fluorocytosine or 5-bromocytosine. The fragments composed of one to four modified nucleotides (denoted as DZA) have been successfully recognized and transcribed to natural or modified RNA (denoted as RZA) by T7 RNA polymerase. The fully modified RZA fragment could be reverse transcribed and then amplified in the presence of various dZTPs. Noticeably, modified fragments could function as genetic templates in vivo by encoding the 678 base pair gene of a fluorescent protein in bacteria. These results demonstrate the existence of a fully simulated genetic circuit that uses synthetic materials.
Collapse
Affiliation(s)
- Hui Yang
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, Box-1041, 3000, Leuven, Belgium
| | - Elena Eremeeva
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, Box-1041, 3000, Leuven, Belgium
| | - Mikhail Abramov
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, Box-1041, 3000, Leuven, Belgium
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, Box-1041, 3000, Leuven, Belgium
| |
Collapse
|
17
|
Zhang W, Wu Q. Applications of phage-derived RNA-based technologies in synthetic biology. Synth Syst Biotechnol 2020; 5:343-360. [PMID: 33083579 PMCID: PMC7564126 DOI: 10.1016/j.synbio.2020.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/22/2020] [Accepted: 09/27/2020] [Indexed: 12/20/2022] Open
Abstract
As the most abundant biological entities with incredible diversity, bacteriophages (also known as phages) have been recognized as an important source of molecular machines for the development of genetic-engineering tools. At the same time, phages are crucial for establishing and improving basic theories of molecular biology. Studies on phages provide rich sources of essential elements for synthetic circuit design as well as powerful support for the improvement of directed evolution platforms. Therefore, phages play a vital role in the development of new technologies and central scientific concepts. After the RNA world hypothesis was proposed and developed, novel biological functions of RNA continue to be discovered. RNA and its related elements are widely used in many fields such as metabolic engineering and medical diagnosis, and their versatility led to a major role of RNA in synthetic biology. Further development of RNA-based technologies will advance synthetic biological tools as well as provide verification of the RNA world hypothesis. Most synthetic biology efforts are based on reconstructing existing biological systems, understanding fundamental biological processes, and developing new technologies. RNA-based technologies derived from phages will offer abundant sources for synthetic biological components. Moreover, phages as well as RNA have high impact on biological evolution, which is pivotal for understanding the origin of life, building artificial life-forms, and precisely reprogramming biological systems. This review discusses phage-derived RNA-based technologies terms of phage components, the phage lifecycle, and interactions between phages and bacteria. The significance of RNA-based technology derived from phages for synthetic biology and for understanding the earliest stages of biological evolution will be highlighted.
Collapse
Affiliation(s)
- Wenhui Zhang
- MOE Key Lab. Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiong Wu
- MOE Key Lab. Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
- Corresponding author. MOE Key Lab. Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
18
|
Wang RQ, Long XR, Ge CL, Zhang MY, Huang L, Zhou NN, Hu Y, Li RL, Li Z, Chen DN, Zhang LJ, Wen ZS, Mai SJ, Wang HY. Identification of a 4-lncRNA signature predicting prognosis of patients with non-small cell lung cancer: a multicenter study in China. J Transl Med 2020; 18:320. [PMID: 32819367 PMCID: PMC7441565 DOI: 10.1186/s12967-020-02485-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
Background Previous findings have indicated that the tumor, nodes, and metastases (TNM) staging system is not sufficient to accurately predict survival outcomes in patients with non-small lung carcinoma (NSCLC). Thus, this study aims to identify a long non-coding RNA (lncRNA) signature for predicting survival in patients with NSCLC and to provide additional prognostic information to TNM staging system. Methods Patients with NSCLC were recruited from a hospital and divided into a discovery cohort (n = 194) and validation cohort (n = 172), and detected using a custom lncRNA microarray. Another 73 NSCLC cases obtained from a different hospital (an independent validation cohort) were examined with qRT-PCR. Differentially expressed lncRNAs were determined with the Significance Analysis of Microarrays program, from which lncRNAs associated with survival were identified using Cox regression in the discovery cohort. These prognostic lncRNAs were employed to construct a prognostic signature with a risk-score method. Then, the utility of the prognostic signature was confirmed using the validation cohort and the independent cohort. Results In the discovery cohort, we identified 305 lncRNAs that were differentially expressed between the NSCLC tissues and matched, adjacent normal lung tissues, of which 15 are associated with survival; a 4-lncRNA prognostic signature was identified from the 15 survival lncRNAs, which was significantly correlated with survivals of NSCLC patients. This signature was further validated in the validation cohort and independent validation cohort. Moreover, multivariate Cox analysis demonstrates that the 4-lncRNA signature is an independent survival predictor. Then we established a new risk-score model by combining 4-lncRNA signature and TNM staging stage. The receiver operating characteristics (ROC) curve indicates that the prognostic value of the combined model is significantly higher than that of the TNM stage alone, in all the cohorts. Conclusions In this study, we identified a 4-lncRNA signature that may be a powerful prognosis biomarker and can provide additional survival information to the TNM staging system.
Collapse
Affiliation(s)
- Rui-Qi Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Xiao-Ran Long
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Gynecology and Obstetrics, Renji Hospital, Medical School of Shanghai Jiaotong University, Shanghai, China
| | - Chun-Lei Ge
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Mei-Yin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Long Huang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ning-Ning Zhou
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yi Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Rui-Lei Li
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Zhen Li
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Dong-Ni Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Lan-Jun Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Zhe-Sheng Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Shi-Juan Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China. .,State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Building 2, Rm 704, Guangzhou, 510060, China.
| |
Collapse
|
19
|
Rashid H, Hossain B, Siddiqua T, Kabir M, Noor Z, Ahmed M, Haque R. Fecal MicroRNAs as Potential Biomarkers for Screening and Diagnosis of Intestinal Diseases. Front Mol Biosci 2020; 7:181. [PMID: 32850969 PMCID: PMC7426649 DOI: 10.3389/fmolb.2020.00181] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of conserved endogenous, small non-coding RNA molecules with a length of 18–25 nucleotides that regulate gene expression by RNA interference processes, including mRNA chopping, mRNA deadenylation, and translation inhibition. miRNAs maintain the physiological functions of the intestine and are instrumental in gut pathogenesis. miRNAs play an important role in intercellular communication and are present in all body fluids, including stools with different composition and concentrations. However, under diseased conditions, miRNAs are aberrantly expressed and act as negative regulators of gene expression. The stable and differentially expressed miRNAs in stool enables miRNAs to be used as potential biomarkers for screening of various intestinal diseases. In this review, we summarize the expressed miRNA profile in stool and highlight miRNAs as biomarkers with potential clinical and diagnostic applications, and we aim to address the prospects for recent advanced techniques for screening miRNA in diagnosis and prognosis of intestinal disorders.
Collapse
Affiliation(s)
- Humaira Rashid
- Emerging Infections and Parasitology Laboratory, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Biplob Hossain
- Emerging Infections and Parasitology Laboratory, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Towfida Siddiqua
- Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Mamun Kabir
- Emerging Infections and Parasitology Laboratory, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Zannatun Noor
- Emerging Infections and Parasitology Laboratory, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Mamun Ahmed
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Rashidul Haque
- Emerging Infections and Parasitology Laboratory, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| |
Collapse
|
20
|
Crawford BM, Wang HN, Stolarchuk C, von Furstenberg RJ, Strobbia P, Zhang D, Qin X, Owzar K, Garman KS, Vo-Dinh T. Plasmonic nanobiosensors for detection of microRNA cancer biomarkers in clinical samples. Analyst 2020; 145:4587-4594. [PMID: 32436503 PMCID: PMC9532004 DOI: 10.1039/d0an00193g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
MicroRNAs (miRNAs) play an important role in the regulation of biological processes and have demonstrated great potential as biomarkers for the early detection of various diseases, including esophageal adenocarcinoma (EAC) and Barrett's esophagus (BE), the premalignant metaplasia associated with EAC. Herein, we demonstrate the direct detection of the esophageal cancer biomarker, miR-21, in RNA extracted from 17 endoscopic tissue biopsies using the nanophotonics technology our group has developed, termed the inverse molecular sentinel (iMS) nanobiosensor, with surface-enhanced Raman scattering (SERS) detection. The potential of this label-free, homogeneous biosensor for cancer diagnosis without the need for target amplification was demonstrated by discriminating esophageal cancer and Barrett's esophagus from normal tissue with notable diagnostic accuracy. This work establishes the potential of the iMS nanobiosensor for cancer diagnostics via miRNA detection in clinical samples without the need for target amplification, validating the potential of this assay as part of a new diagnostic strategy. Combining miRNA diagnostics with the nanophotonics technology will result in a paradigm shift in achieving a general molecular analysis tool that has widespread applicability for cancer research as well as detection of cancer. We anticipate further development of this technique for future use in point-of-care testing as an alternative to histopathological diagnosis as our method provides a quick result following RNA isolation, allowing for timely treatment.
Collapse
|
21
|
Khoury S, Tran N. qPCR multiplex detection of microRNA and messenger RNA in a single reaction. PeerJ 2020; 8:e9004. [PMID: 32617186 PMCID: PMC7321665 DOI: 10.7717/peerj.9004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/26/2020] [Indexed: 11/30/2022] Open
Abstract
Reverse Transcription-Quantitative PCR (RT-qPCR) is one of the standards for analytical measurement of different RNA species in biological models. However, current Reverse Transcription (RT) based priming strategies are unable to synthesize differing RNAs and ncRNAs especially miRNAs, within a single tube. We present a new methodology, referred to as RNAmp, that measures in parallel miRNA and mRNA expression. We demonstrate this in various cell lines, then evaluate clinical utility by quantifying several miRNAs and mRNA simultaneously in sera. PCR efficiency in RNAmp was estimated between 1.8 and 1.9 which is comparable to standard miRNA and random primer RT approaches. Furthermore, when using RNAmp to detect selected mRNA and miRNAs, the quantification cycle (Cq) was several cycles lower. This low volume single-tube duplex protocol reduces technical variation and reagent usage and is suitable for uniform analysis of single or multiple miRNAs and/or mRNAs within a single qPCR reaction.
Collapse
Affiliation(s)
- Samantha Khoury
- Office of the Deputy Vice Chancellor Innovation and Enterprise, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Nham Tran
- Centre for Health Technologies and School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia.,The Sydney Head and Neck Cancer Institute, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
22
|
Mak HK, Yung JSY, Weinreb RN, Ng SH, Cao X, Ho TYC, Ng TK, Chu WK, Yung WH, Choy KW, Wang CC, Lee TL, Leung CKS. MicroRNA-19a-PTEN Axis Is Involved in the Developmental Decline of Axon Regenerative Capacity in Retinal Ganglion Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:251-263. [PMID: 32599451 PMCID: PMC7327411 DOI: 10.1016/j.omtn.2020.05.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/15/2020] [Accepted: 05/28/2020] [Indexed: 11/23/2022]
Abstract
Irreversible blindness from glaucoma and optic neuropathies is attributed to retinal ganglion cells (RGCs) losing the ability to regenerate axons. While several transcription factors and proteins have demonstrated enhancement of axon regeneration after optic nerve injury, mechanisms contributing to the age-related decline in axon regenerative capacity remain elusive. In this study, we show that microRNAs are differentially expressed during RGC development and identify microRNA-19a (miR-19a) as a heterochronic marker; developmental decline of miR-19a relieves suppression of phosphatase and tensin homolog (PTEN), a key regulator of axon regeneration, and serves as a temporal indicator of decreasing axon regenerative capacity. Intravitreal injection of miR-19a promotes axon regeneration after optic nerve crush in adult mice, and it increases axon extension in RGCs isolated from aged human donors. This study uncovers a previously unrecognized involvement of the miR-19a-PTEN axis in RGC axon regeneration, and it demonstrates therapeutic potential of microRNA-mediated restoration of axon regenerative capacity in optic neuropathies.
Collapse
Affiliation(s)
- Heather K Mak
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Jasmine S Y Yung
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Robert N Weinreb
- Hamilton Glaucoma Center, Shiley Eye Institute, University of California, San Diego, La Jolla, CA, USA; Department of Ophthalmology, University of California, San Diego, La Jolla, CA, USA
| | - Shuk Han Ng
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Xu Cao
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Tracy Y C Ho
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Tsz Kin Ng
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Wai Kit Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Wing Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PRC; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Kwong Wai Choy
- Department of Obstetrics and Gynecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Chi Chiu Wang
- Department of Obstetrics and Gynecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Tin Lap Lee
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PRC
| | | |
Collapse
|
23
|
Distinct Contributions of Different Domains within the HIV-1 Gag Polyprotein to Specific and Nonspecific Interactions with RNA. Viruses 2020; 12:v12040394. [PMID: 32252233 PMCID: PMC7232488 DOI: 10.3390/v12040394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 11/17/2022] Open
Abstract
Viral genomic RNA is packaged into virions with high specificity and selectivity. However, in vitro the Gag specificity towards viral RNA is obscured when measured in buffers containing physiological salt. Interestingly, when the binding is challenged by increased salt concentration, the addition of competing RNAs, or introducing mutations to Gag protein, the specificity towards viral RNA becomes detectable. The objective of this work was to examine the contributions of the individual HIV-1 Gag polyprotein domains to nonspecific and specific RNA binding and stability of the initial protein-RNA complexes. Using a panel of Gag proteins with mutations disabling different Gag-Gag or Gag-RNA interfaces, we investigated the distinct contributions of individual domains which distinguish the binding to viral and nonviral RNA by measuring the binding of the proteins to RNAs. We measured the binding affinity in near-physiological salt concentration, and then challenged the binding by increasing the ionic strength to suppress the electrostatic interactions and reveal the contribution of specific Gag–RNA and Gag–Gag interactions. Surprisingly, we observed that Gag dimerization and the highly basic region in the matrix domain contribute significantly to the specificity of viral RNA binding.
Collapse
|
24
|
Sun M, Hu L, Wang S, Huang T, Zhang M, Yang M, Zhen W, Yang D, Lu W, Guan M, Peng S. Circulating MicroRNA-19b Identified From Osteoporotic Vertebral Compression Fracture Patients Increases Bone Formation. J Bone Miner Res 2020; 35:306-316. [PMID: 31614022 DOI: 10.1002/jbmr.3892] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 09/21/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022]
Abstract
Circulating microRNAs (miRNAs) play important roles in regulating gene expression and have been reported to be involved in various metabolic diseases, including osteoporosis. Although the transcriptional regulation of osteoblast differentiation has been well characterized, the role of circulating miRNAs in this process is poorly understood. Here we discovered that the level of circulating miR-19b was significantly lower in osteoporotic patients with vertebral compression fractures than that of healthy controls. The expression level of miR-19b was increased during osteoblastic differentiation of human mesenchymal stem cells (hMSCs) and MC3T3-E1 cells, and transfection with synthetic miR-19b could promote osteoblastic differentiation of hMSCs and MC3T3-E1 cells. PTEN (phosphatase and tensin homolog deleted from chromosome 10) was found to be directly repressed by miR-19b, with a concomitant increase in Runx2 expression and increased phosphorylation of AKT (protein kinase B, PKB). The expression level of circulating miR-19b in aged ovariectomized mice was significantly lower than in young mice. Moreover, the osteoporotic bone phenotype in aged ovariectomized mice was alleviated by the injection of chemically modified miR-19b (agomiR-19b). Taken together, our results show that circulating miR-19b plays an important role in enhancing osteoblastogenesis, possibly through regulation of the PTEN/pAKT/Runx2 pathway, and may be a useful therapeutic target in bone loss disorders, such as osteoporosis. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mengge Sun
- Department of Spine Surgery, Shenzhen People's Hospital, The Second College of Medicine, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China.,Centre for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Department of Orthopaedic and Traumatology, The University of Hong Kong, Hong Kong, China
| | - Liqiu Hu
- Department of Spine Surgery, Shenzhen People's Hospital, The Second College of Medicine, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Shang Wang
- Department of Spine Surgery, Shenzhen People's Hospital, The Second College of Medicine, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Tongling Huang
- Centre for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Minyi Zhang
- Centre for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Meng Yang
- Centre for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wanxin Zhen
- Department of Spine Surgery, Shenzhen People's Hospital, The Second College of Medicine, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Dazhi Yang
- Department of Spine Surgery, Shenzhen People's Hospital, The Second College of Medicine, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - William Lu
- Centre for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Department of Orthopaedic and Traumatology, The University of Hong Kong, Hong Kong, China
| | - Min Guan
- Centre for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Songlin Peng
- Department of Spine Surgery, Shenzhen People's Hospital, The Second College of Medicine, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
25
|
Zhao XG, Hu JY, Tang J, Yi W, Zhang MY, Deng R, Mai SJ, Weng NQ, Wang RQ, Liu J, Zhang HZ, He JH, Wang HY. miR-665 expression predicts poor survival and promotes tumor metastasis by targeting NR4A3 in breast cancer. Cell Death Dis 2019; 10:479. [PMID: 31209222 PMCID: PMC6579763 DOI: 10.1038/s41419-019-1705-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022]
Abstract
Cancer metastasis is the main cause of death in breast cancer (BC) patients. Therefore, prediction and treatment of metastasis is critical for enhancing the survival of BC patients. In this study, we aimed to identify biomarkers that can predict metastasis of BC and elucidate the underlying mechanism of the functional involvement of such markers in metastasis. miRNA expression profile was analyzed using a custom microarray system in 422 BC tissues. The relationship between the upregulated miR-665, metastasis and survival of BC was analyzed and verified in another set of 161 BC samples. The biological function of miR-665 in BC carcinogenesis was explored with in vitro and in vivo methods. The target gene of miR-665 and its signaling cascade were also analyzed. There are 399 differentially expressed miRNAs between BC and noncancerous tissues, of which miR-665 is the most upregulated miRNA in the BC tissues compared with non-tumor breast tissues (P < 0.001). The expression of miR-665 predicts metastasis and poor survival in 422 BC patients, which is verified in another 161 BC patients and 2323 BC cases from online databases. Ectopic miR-665 expression promotes epithelial–mesenchymal transition (EMT), proliferation, migration and invasion of BC cells, and increases tumor growth and metastasis of BC in mice. Bioinformatics, luciferase assay and other methods showed that nuclear receptor subfamily 4 group A member 3 (NR4A3) is a target of miR-665 in BC. Mechanistically, we demonstrated that miR-665 promotes EMT, invasion and metastasis of BC via inhibiting NR4A3 to activate MAPK/ERK kinase (MEK) signaling pathway. Our study demonstrates that miR-665 upregulation is associated with metastasis and poor survival in BC patients, and mechanistically, miR-665 enhances progression of BC via NR4A3/MEK signaling pathway. This study provides a new potential prognostic biomarker and therapeutic target for BC patients.
Collapse
Affiliation(s)
- Xin-Ge Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Jing-Ye Hu
- Department of Basic Medicine, Guiyang College of Traditional Chinese Medicine, Guiyang, 550002, China
| | - Jun Tang
- Department of Breast Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Wei Yi
- Department of Radiation Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510060, China
| | - Mei-Yin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Rong Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Shi-Juan Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Nuo-Qing Weng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Rui-Qi Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Ji Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Hui-Zhong Zhang
- Department of Breast Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Jie-Hua He
- Department of Breast Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
26
|
MiR-208a-3p functions as an oncogene in colorectal cancer by targeting PDCD4. Biosci Rep 2019; 39:BSR20181598. [PMID: 30914452 PMCID: PMC6465200 DOI: 10.1042/bsr20181598] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/08/2019] [Accepted: 01/18/2019] [Indexed: 01/08/2023] Open
Abstract
Accumulating evidences have shown microRNAs (miRNAs) play important roles in the progression of human cancers including colorectal cancer (CRC). However, the biological function and molecular mechanism of miRNAs in CRC still remains to be further investigated. Using microarray, we found and confirmed that miR-208a-3p was up-regulated in CRC tissues. Its high expression was statistically associated with distant metastasis and TNM stage. Functional assays revealed inhibition of miR-208a-3p suppressed proliferation, invasion and migration, and induced cell apoptosis of CRC cells. Moreover, we identified programmed cell death protein 4 (PDCD4), a well-known tumor suppressor, is a direct target of miR-208a-3p. We also found that overexpression of PDCD4 suppressed cell proliferation, invasion, and migration. Importantly, silencing of PDCD4 efficiently abrogated the promoting effects on CRC cells proliferation, invasion, and migration caused by inhibition of miR-208a-3p. Our findings confirmed the oncogenic role of miR-208a-3p via targeting PDCD4 in CRC, identifying miR-208a-3p as a potential diagnosis and therapeutic biomarker for CRC.
Collapse
|
27
|
Piao XM, Jeong P, Kim YH, Byun YJ, Xu Y, Kang HW, Ha YS, Kim WT, Lee JY, Woo SH, Kwon TG, Kim IY, Moon SK, Choi YH, Cha EJ, Yun SJ, Kim WJ. Urinary cell-free microRNA biomarker could discriminate bladder cancer from benign hematuria. Int J Cancer 2018; 144:380-388. [PMID: 30183088 DOI: 10.1002/ijc.31849] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/06/2018] [Accepted: 08/27/2018] [Indexed: 12/24/2022]
Abstract
The most common symptom of bladder cancer (BC) is hematuria. However, not all patients with hematuria are diagnosed with BC. Here, we explored a novel method to discriminate BC from hematuria under nonmalignant conditions by measuring differences in urinary cell-free microRNA (miRNA) expression between patients with BC and those with hematuria. A multicenter study was performed using 543 urine samples obtained from the National Biobank of Korea, including 326 BC, 174 hematuria and 43 pyuria without cancer. The urinary miR-6124 to miR-4511 ratio was considerably higher in BC than in hematuria or pyuria, and enabled the discrimination of BC from patients with hematuria at a sensitivity of >90% (p < 0.001). Conclusively, the proposed noninvasive diagnostic tool based on the expression ratio of urinary cell-free miR-6124 to miR-4511 can reduce unnecessary cystoscopies in patients with hematuria undergoing evaluation for BC, with a minimal loss in sensitivity for detecting cancer.
Collapse
Affiliation(s)
- Xuan-Mei Piao
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Pildu Jeong
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Ye-Hwan Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Young Joon Byun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Yanjie Xu
- Department of Surgery, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Ho Won Kang
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Yun-Sok Ha
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, South Korea.,Department of Urology, Kyungpook National University Hospital, Daegu, South Korea
| | - Won Tae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Jong-Young Lee
- Department of Business Data Convergence, Chungbuk National University, Cheongju, South Korea.,Theragen Etex Bio Institute, Suwon, 443-270, South Korea
| | - Seung Hwo Woo
- Department of Urology, Eulji University Hospital, Daejeon, South Korea
| | - Tae Gyun Kwon
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, South Korea.,Department of Urology, Kyungpook National University Hospital, Daegu, South Korea
| | - Isaac Y Kim
- Section of Urologic Oncology and Dean and Betty Gallo Prostate Cancer Center, The Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Sung-Kwon Moon
- Department of Food Science and Technology, Chung-Ang University, Ansung, 456-756, South Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan, South Korea
| | - Eun-Jong Cha
- Department of Biomedical Engineering, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Seok Joong Yun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Wun-Jae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, South Korea
| |
Collapse
|
28
|
Piotto C, Biscontin A, Millino C, Mognato M. Functional validation of miRNAs targeting genes of DNA double-strand break repair to radiosensitize non-small lung cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:1102-1118. [PMID: 30389599 DOI: 10.1016/j.bbagrm.2018.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 10/18/2018] [Accepted: 10/23/2018] [Indexed: 01/10/2023]
Abstract
DNA-Double strand breaks (DSBs) generated by radiation therapy represent the most efficient lesions to kill tumor cells, however, the inherent DSB repair efficiency of tumor cells can cause cellular radioresistance and impact on therapeutic outcome. Genes of DSB repair represent a target for cancer therapy since their down-regulation can impair the repair process making the cells more sensitive to radiation. In this study, we analyzed the combination of ionizing radiation (IR) along with microRNA-mediated targeting of genes involved in DSB repair to sensitize human non-small cell lung cancer (NSCLC) cells. MicroRNAs are natural occurring modulators of gene expression and therefore represent an attractive strategy to affect the expression of DSB repair genes. As possible IR-sensitizing targets genes we selected genes of homologous recombination (HR) and non-homologous end joining (NHEJ) pathway (i.e. RAD51, BRCA2, PRKDC, XRCC5, LIG1). We examined these genes to determine whether they may be real targets of selected miRNAs by functional and biological validation. The in vivo effectiveness of miRNA treatments has been examined in cells over-expressing miRNAs and treated with IR. Taken together, our results show that hsa-miR-96-5p and hsa-miR-874-3p can directly regulate the expression of target genes. When these miRNAs are combined with IR can decrease the survival of NSCLC cells to a higher extent than that exerted by radiation alone, and similarly to radiation combined with specific chemical inhibitors of HR and NHEJ repair pathway.
Collapse
Affiliation(s)
- Celeste Piotto
- Department of Biology, School of Sciences, University of Padova, via U. Bassi 58 B, 35131 Padova, Italy
| | - Alberto Biscontin
- Department of Biology, School of Sciences, University of Padova, via U. Bassi 58 B, 35131 Padova, Italy
| | - Caterina Millino
- CRIBI Biotechnology Centre, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy
| | - Maddalena Mognato
- Department of Biology, School of Sciences, University of Padova, via U. Bassi 58 B, 35131 Padova, Italy.
| |
Collapse
|
29
|
Prespliceosome structure provides insights into spliceosome assembly and regulation. Nature 2018; 559:419-422. [PMID: 29995849 PMCID: PMC6141012 DOI: 10.1038/s41586-018-0323-8] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/16/2018] [Indexed: 11/17/2022]
Abstract
The spliceosome catalyzes the excision of introns from pre-mRNA in two steps, branching
and exon ligation, and is assembled from five small nuclear ribonucleoprotein
particles (snRNPs; U1, U2, U4, U5, U6) and numerous non-snRNP factors1. For branching, the intron
5'-splice site (5'SS) and the branch point (BP) sequence are
selected and brought into the prespliceosome by the U1 and U2 snRNPs1, which is a focal point for the regulation
by alternative splicing factors2. The
U4/U6.U5 tri-snRNP subsequently joins the prespliceosome to form the complete
pre-catalytic spliceosome. Recent studies have revealed the structural basis of
the branching and exon-ligation reactions3. However, the structural basis of early spliceosome assembly events
remains poorly understood4. Here we report
the cryo-electron microscopy structure of the yeast Saccharomyces
cerevisiae prespliceosome at near-atomic resolution. The structure
reveals an induced stabilization of the 5'SS in the U1 snRNP, and
provides structural insights into the functions of the human alternative
splicing factors LUC7-like (yeast Luc7) and TIA-1 (yeast Nam8) that are linked
to human disease5,6. In the prespliceosome, the U1 snRNP associates with the
U2 snRNP through a stable contact with the U2 3' domain and a transient
yeast-specific contact with the U2 SF3b-containing 5' region, leaving its
tri-snRNP-binding interface fully exposed. The results suggest mechanisms for
5'SS transfer to the U6 ACAGAGA region within the assembled spliceosome
and for its subsequent conversion to the activation-competent B complex
spliceosome7,8. Taken together, the data provide a working model to
investigate the early steps of spliceosome assembly.
Collapse
|
30
|
Zhang N, Zhang H, Liu Y, Su P, Zhang J, Wang X, Sun M, Chen B, Zhao W, Wang L, Wang H, Moran MS, Haffty BG, Yang Q. SREBP1, targeted by miR-18a-5p, modulates epithelial-mesenchymal transition in breast cancer via forming a co-repressor complex with Snail and HDAC1/2. Cell Death Differ 2018; 26:843-859. [PMID: 29988076 DOI: 10.1038/s41418-018-0158-8] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/15/2018] [Accepted: 06/18/2018] [Indexed: 12/27/2022] Open
Abstract
The progression of localized breast cancer to distant metastasis results in a poor prognosis and a high mortality rate. In this study, the contributions of miRNAs to tumor progression and the regulatory mechanisms leading to their expression alterations were investigated. Using highly lung-metastatic sub-lines from parental breast cancer cells, miRNA expression profiling revealed that the miR-17-92 cluster is significantly downregulated and the miR-18a-5p is the most evidently decreased. Ectopic expression and inhibition of miR-18a-5p demonstrated its capacity in suppressing migration and invasion of breast cancer cells. Further research identified sterol regulatory element binding transcription protein 1 (SREBP1), the master transcription factor that controls lipid metabolism, as a candidate target of miR-18a-5p. SREBP1 is overexpressed and strongly associated with worse clinical outcomes in breast cancer. Functionally SREBP1 promotes growth and metastasis of breast cancer both in vitro and in vivo. To unravel the underlying mechanism of SREBP1-mediated metastasis, mRNA profiling and subsequent gene set enrichment analyses (GSEA) were performed and SREBP1 was demonstrated to be significantly associated with epithelial-mesenchymal transition (EMT). Furthermore, SREBP1-mediated repression of E-cadherin was found to be deacetylation dependent and was augmented by recruiting Snail/HDAC1/2 repressor complex. In the light of these data, we propose that reduced expression of miR-18a-5p and concomitant overexpression of SREBP1 lead to induction of EMT states that in turn, promote breast cancer progression and metastasis. Taken together, our study reveals the crucial role of miR-18a-5p and SREBP1 in the EMT and metastasis, thus providing promising drug targets for tailored therapy in the advanced breast cancer setting.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| | - Hanwen Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| | - Ying Liu
- Department of Breast Surgery, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| | - Peng Su
- Department of Pathology, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| | - Jiashu Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| | - Xiaolong Wang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| | - Mingjuan Sun
- Shandong Cancer Hospital affiliated to Shandong University, Ji'nan, Shandong, China
| | - Bing Chen
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| | - Wenjing Zhao
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| | - Lijuan Wang
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| | - Huiyun Wang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Meena S Moran
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Bruce G Haffty
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Ji'nan, Shandong, China. .,Pathology Tissue Bank, Qilu Hospital of Shandong University, Ji'nan, Shandong, China.
| |
Collapse
|
31
|
Identification of an 88-microRNA signature in whole blood for diagnosis of hepatocellular carcinoma and other chronic liver diseases. Aging (Albany NY) 2018; 9:1565-1584. [PMID: 28657540 PMCID: PMC5509456 DOI: 10.18632/aging.101253] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/15/2017] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common cancer with very poor survival due to lack of reliable biomarker for early diagnosis. In this study, we investigated microRNA (miRNA) profile of whole blood with a custom microarray containing probes for 1849 miRNA species in a total 213 successive subjects who were divided into a discovery set and a validation set. An 88-miRNA signature was established to diagnose health controls (HC), chronic hepatitis B (CHB), liver cirrhosis (LC) and HCC with 100% accuracy in the discovery set using Fisher discriminant analysis. This diagnostic signature was confirmed in the validation set with accuracy rates of 100%, 95.2%, 93.7% and 98.4% for HC, CHB, LC and HCC patients, respectively. Compared with AFP, the only available non-invasive and routinely used biomarker for diagnosis of HCC, the 88-miRNA signature has much higher accuracy (99.5% vs 76.5%), sensitivity (100% vs 63.8%), and specificity (99.2% vs 84.2%). More importantly, the signature detects small HCCs (<3cm) with 100% (17/17) accuracy while AFP has only 64.7% (11/17). In conclusion, we have identified a powerful and sensitive blood 88-miRNA signature for diagnosing early HCC and other chronic liver diseases (CHB and LC) with a high accuracy.
Collapse
|
32
|
Masaki Y, Cayer D, McBride R, Ghadiri MR. A kinetically controlled, isothermal method for the detection of single nucleotide mismatches. Bioorg Med Chem Lett 2018; 28:2754-2758. [PMID: 29500066 DOI: 10.1016/j.bmcl.2018.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 02/13/2018] [Indexed: 11/28/2022]
Abstract
We describe an isothermal, enzyme-free method to detect single nucleotide differences between oligonucleotides of close homology. The approach exploits kinetic differences in toe-hold-mediated, nucleic acid strand-displacement reactions to detect single nucleotide polymorphisms (SNPs) with essentially "digital" precision. The theoretical underpinning, experimental analyses, predictability, and accuracy of this new method are reported. We demonstrate detection of biologically relevant SNPs and single nucleotide differences in the let-7 family of microRNAs. The method is adaptable to microarray formats, as demonstrated with on-chip detection of SNP variants involved in susceptibility to the therapeutic agents abacavir, Herceptin, and simvastatin.
Collapse
Affiliation(s)
- Yoshiaki Masaki
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Devon Cayer
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Ryan McBride
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - M Reza Ghadiri
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States.
| |
Collapse
|
33
|
Lee JY, Yun SJ, Jeong P, Piao XM, Kim YH, Kim J, Subramaniyam S, Byun YJ, Kang HW, Seo SP, Kim J, Kim JM, Yoo ES, Kim IY, Moon SK, Choi YH, Kim WJ. Identification of differentially expressed miRNAs and miRNA-targeted genes in bladder cancer. Oncotarget 2018; 9:27656-27666. [PMID: 29963227 PMCID: PMC6021253 DOI: 10.18632/oncotarget.24441] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 08/28/2017] [Indexed: 12/18/2022] Open
Abstract
Background Differentially expressed genes and their post-transcriptional regulator-microRNAs (miRNAs), are potential keys to pioneering cancer diagnosis and treatment. The aim of this study was to investigate how the miRNA-mRNA interactions might affect the tumorigenesis of bladder cancer (BC) and to identify specific miRNA and mRNA genetic markers in the two BC types: non-muscle invasive bladder cancer (NMIBC) and muscle invasive bladder cancer (MIBC). Results We identified 227 genes that interacted with 54 miRNAs in NMIBC, and 14 genes that interacted with 10 miRNAs in MIBC. Based on this data, we found extracellular matrix-related genes are highly enriched in NMIBC while genes related to core nuclear division are highly enriched in MIBC. Furthermore, using a transcriptional regulatory element database, we found indirect regulatory transcription factors (TFs) for enriched genes could regulate tumorigenesis with or without miRNAs. Materials and methods Tissue samples from 234 patients histologically diagnosed with BC and 83 individuals without BC were analyzed using microarray and next-generation sequencing technology, and we used different cut-offs to identify differentially expressed mRNAs and miRNAs in NMIBC and MIBC. The selected mRNAs and miRNAs were paired using validated target datasets and according to inverse expression relationships. MiRNA interacted genes were compared with the TF-regulating genes in BC. Meanwhile, pathway enrichment analysis was performed to identify the functions of selected miRNAs and genes. Conclusions Identification of differential gene expression in specific tumor types could facilitate development of cancer diagnosis and aid in the early detection of BC.
Collapse
Affiliation(s)
- Jong-Young Lee
- Department of Business Data Convergence, Chungbuk National University, Cheongju, Republic of Korea.,Microarray Division, Theragen Etex Bio Institute, Suwon, Republic of Korea.,Microarray Division, SNP Medicine Co., Ltd, Suwon, Republic of Korea
| | - Seok Joong Yun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Pildu Jeong
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Xuan-Mei Piao
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Ye-Hwan Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Jihye Kim
- Microarray Division, Theragen Etex Bio Institute, Suwon, Republic of Korea
| | | | - Young Joon Byun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Ho Won Kang
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Sung Phil Seo
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Jayoung Kim
- Department of Surgery, Department of Biomedical Sciences, Cedars-Sinai Medical Center, University of California Los Angeles, Los Angeles, California, USA
| | - Jung Min Kim
- NAR Center, Inc., Daejeon Oriental Hospital of Daejeon University, Daejeon, Republic of Korea
| | - Eun Sang Yoo
- Department of Urology, Kyungpook National University Hospital, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Isaac Y Kim
- Section of Urologic Oncology and Dean and Betty Gallo Prostate Cancer Center, The Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Sung-Kwon Moon
- Department of Food Science and Technology, Chung-Ang University, Ansung, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan, Republic of Korea
| | - Wun-Jae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
34
|
Zhang Y, Guo L, Li Y, Feng GH, Teng F, Li W, Zhou Q. MicroRNA-494 promotes cancer progression and targets adenomatous polyposis coli in colorectal cancer. Mol Cancer 2018; 17:1. [PMID: 29304823 PMCID: PMC5755155 DOI: 10.1186/s12943-017-0753-1] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/26/2017] [Indexed: 12/22/2022] Open
Abstract
Background Aberrant activation of the Wnt/β-catenin signaling pathway is frequently observed in colorectal cancer (CRC). β-catenin is the major Wnt signaling pathway effector and inactivation of adenomatous polyposis coli (APC) results in nuclear accumulation of β-catenin. It has been suggested that inactivation of APC plays an important role in activation of the Wnt/β-catenin pathway and in the progression of colorectal tumorigenesis. However, the mechanism through which APC mediates colorectal tumorigenesis is not understood. Increasing evidence suggests that the dysregulation of microRNAs (miRNAs) is involved in colorectal tumorigenesis. Although miR-494 has been reported as being an upregulated miRNA, the interplay between miR-494 and APC-mediated colorectal tumorigenesis progression remains unclear. Methods The expression of miR-494 in tissues from patients diagnosed with CRC was analyzed using a microarray and real-time PCR. The effects of miR-494 on cell proliferation and tumorigenesis in CRC cells were analyzed by flow cytometry, colony formation assays, BrdU incorporation assays, and CCK8 assays. The correlation between miR-494 expression and APC expression, as well as the mechanisms by which miR-494 regulates APC in CRC were also addressed. Results miR-494 was significantly upregulated in CRC tissues, and this increase was negatively associated with APC expression. APC was confirmed to be a direct target of miR-494 in CRC. Furthermore, overexpression of miR-494 induced Wnt/β-catenin signaling by targeting APC, thus promoting CRC cell growth. Conclusions This study provides novel insights into the role of miR-494 in controlling CRC cell proliferation and tumorigenesis, and identifies miR-494 as a potential prognostic marker and therapeutic target.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lu Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhuan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gui-Hai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fei Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
35
|
Liu S, Fang H, Sun C, Wang N, Li J. Highly sensitive and multiplexed miRNA analysis based on digitally encoded silica microparticles coupled with RCA-based cascade amplification. Analyst 2018; 143:5137-5144. [DOI: 10.1039/c8an01393d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multiple miRNA sensitive analysis by coupling digitally encoded silica microparticles with RCA-based cascade amplification.
Collapse
Affiliation(s)
- Shengquan Liu
- Key Laboratory for Nano-Bio Interface Research
- Nano-Bio-Chem Centre
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
| | - Han Fang
- Key Laboratory for Nano-Bio Interface Research
- Nano-Bio-Chem Centre
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
| | - Chengjiao Sun
- Key Laboratory for Nano-Bio Interface Research
- Nano-Bio-Chem Centre
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
| | - Nana Wang
- Key Laboratory for Nano-Bio Interface Research
- Nano-Bio-Chem Centre
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
| | - Jiong Li
- Key Laboratory for Nano-Bio Interface Research
- Nano-Bio-Chem Centre
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
| |
Collapse
|
36
|
Cui L, Markou A, Stratton CW, Lianidou E. Diagnosis and Assessment of Microbial Infections with Host and Microbial MicroRNA Profiles. ADVANCED TECHNIQUES IN DIAGNOSTIC MICROBIOLOGY 2018. [PMCID: PMC7119978 DOI: 10.1007/978-3-319-95111-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) encoded by viral genome or host have been found participating in host-microbe interactions. Differential expression profiles of miRNAs were shown linking to specific disease pathologies which indicated its potency as diagnostic/prognostic biomarkers of infectious disease. This was emphasized by the discovery of circulating miRNAs which were found to be remarkably stable in mammalian biofluids. Standardized methods of miRNA quantification including RNA isolation should be established before they will be ready for use in clinical practice.
Collapse
|
37
|
Makhotenko AV, Snigir EA, Kalinina NO, Makarov VV, Taliansky ME. Data on a delivery of biomolecules into Nicothiana benthamiana leaves using different nanoparticles. Data Brief 2017; 16:1034-1037. [PMID: 29322084 PMCID: PMC5752087 DOI: 10.1016/j.dib.2017.12.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/03/2017] [Accepted: 12/12/2017] [Indexed: 12/04/2022] Open
Abstract
Nanoparticles (NPs) have a number of unique properties associated with their ultrasmall size and exhibit many advantages compared with existing plant biotechnology platforms for delivery of proteins, RNA and DNA of various sizes into the plant cells (Arruda et al., 2015; Silva et al., 2010; Martin-Ortigosa et al., 2014; Mitter et al., 2017) [1], [2], [3], [4]. The data presented in this article demonstrate a delivery of biomolecules into Nicotiana benthamiana plant leaves using various types of NPs including gold, iron oxide and chitosan NPs and methods of biolistic bombardment and infiltration. The data demonstrate physical characteristics of NPs coated with fluorescently labeled protein and small RNA (size and zeta-potential) and visualization of nanocomplexes delivery into cells of N. benthamiana leaves by fluorescence microscopy.
Collapse
Affiliation(s)
- Antonida V Makhotenko
- DokaGene Ltd., Rogachevo, Moscow Region, Russia.,Lomonosov Moscow State University, Leninsky Gory, Moscow 119992, Russia
| | | | - Natalia O Kalinina
- DokaGene Ltd., Rogachevo, Moscow Region, Russia.,Lomonosov Moscow State University, Leninsky Gory, Moscow 119992, Russia
| | - Valentin V Makarov
- DokaGene Ltd., Rogachevo, Moscow Region, Russia.,Lomonosov Moscow State University, Leninsky Gory, Moscow 119992, Russia
| | - Michael E Taliansky
- DokaGene Ltd., Rogachevo, Moscow Region, Russia.,James Hutton Institute, Invergowrie, DD2 5DA Dundee, UK
| |
Collapse
|
38
|
Smith DA, Newbury LJ, Drago G, Bowen T, Redman JE. Electrochemical detection of urinary microRNAs via sulfonamide-bound antisense hybridisation. SENSORS AND ACTUATORS. B, CHEMICAL 2017; 253:335-341. [PMID: 29200659 PMCID: PMC5614097 DOI: 10.1016/j.snb.2017.06.069] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Altered serum and plasma microRNA (miRNA) expression profiles have been observed in numerous human diseases, with a number of studies describing circulating miRNA biomarkers for cancer diagnosis, prognosis and response to treatment, and recruitment to clinical trials for miRNA-based drug therapy already underway. Electrochemical detection of biomarkers in urine has several significant advantages over circulating biomarker analysis including safety, cost, speed and ease of conversion to the point of care environment. Consequently, much current research is underway to identify urinary miRNA biomarkers for a variety of pathologies including prostate and bladder malignancies, and renal disorders. We describe here a robust method capable of electrochemical detection of human urinary miRNAs at femtomolar concentrations using a complementary DNA-modified glassy carbon electrode. A miR-21-specific DNA hybridisation probe was immobilised onto a glassy carbon electrode modified by sulfonic acid deposition and subsequent chlorination. In our pilot system, the presence of synthetic mature miR-21 oligonucleotides increased resistance at the probe surface to electron transfer from the ferricyanide/ferrocyanide electrolyte. Response was linear for 10 nM-10 fM miR-21, with a limit of detection of 20 fM, and detection discriminated between miR-21, three point-mutated miR-21 sequences, and miR-16. We then demonstrated similar sensitivity and reproducibility of miR-21 detection in urine samples from 5 human control subjects. Our protocol provides a platform for future high-throughput screening of miRNA biomarkers in liquid biopsies.
Collapse
Affiliation(s)
- Daniel A. Smith
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
- Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
- Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Museum Place, Cardiff CF10 3BG, UK
| | - Lucy J. Newbury
- Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
- Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Museum Place, Cardiff CF10 3BG, UK
| | - Guido Drago
- Gwent Electronic Materials Ltd, Monmouth House, Mamhilad Pk Est, Pontypool NP4 0HZ, UK
| | - Timothy Bowen
- Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
- Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Museum Place, Cardiff CF10 3BG, UK
| | - James E. Redman
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
- Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Museum Place, Cardiff CF10 3BG, UK
- Corresponding author at: School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK.
| |
Collapse
|
39
|
Comas-Garcia M, Datta SA, Baker L, Varma R, Gudla PR, Rein A. Dissection of specific binding of HIV-1 Gag to the 'packaging signal' in viral RNA. eLife 2017; 6. [PMID: 28726630 PMCID: PMC5531834 DOI: 10.7554/elife.27055] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/13/2017] [Indexed: 01/26/2023] Open
Abstract
Selective packaging of HIV-1 genomic RNA (gRNA) requires the presence of a cis-acting RNA element called the 'packaging signal' (Ψ). However, the mechanism by which Ψ promotes selective packaging of the gRNA is not well understood. We used fluorescence correlation spectroscopy and quenching data to monitor the binding of recombinant HIV-1 Gag protein to Cy5-tagged 190-base RNAs. At physiological ionic strength, Gag binds with very similar, nanomolar affinities to both Ψ-containing and control RNAs. We challenged these interactions by adding excess competing tRNA; introducing mutations in Gag; or raising the ionic strength. These modifications all revealed high specificity for Ψ. This specificity is evidently obscured in physiological salt by non-specific, predominantly electrostatic interactions. This nonspecific activity was attenuated by mutations in the MA, CA, and NC domains, including CA mutations disrupting Gag-Gag interaction. We propose that gRNA is selectively packaged because binding to Ψ nucleates virion assembly with particular efficiency.
Collapse
Affiliation(s)
- Mauricio Comas-Garcia
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, United States
| | - Siddhartha Ak Datta
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, United States
| | - Laura Baker
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, United States
| | | | - Prabhakar R Gudla
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick, United States
| | - Alan Rein
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, United States
| |
Collapse
|
40
|
Entrainment of Breast Cell Lines Results in Rhythmic Fluctuations of MicroRNAs. Int J Mol Sci 2017; 18:ijms18071499. [PMID: 28704935 PMCID: PMC5535989 DOI: 10.3390/ijms18071499] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/12/2017] [Accepted: 07/05/2017] [Indexed: 12/13/2022] Open
Abstract
Circadian rhythms are essential for temporal (~24 h) regulation of molecular processes in diverse species. Dysregulation of circadian gene expression has been implicated in the pathogenesis of various disorders, including hypertension, diabetes, depression, and cancer. Recently, microRNAs (miRNAs) have been identified as critical modulators of gene expression post-transcriptionally, and perhaps involved in circadian clock architecture or their output functions. The aim of the present study is to explore the temporal expression of miRNAs among entrained breast cell lines. For this purpose, we evaluated the temporal (28 h) expression of 2006 miRNAs in MCF-10A, MCF-7, and MDA-MB-231 cells using microarrays after serum shock entrainment. We noted hundreds of miRNAs that exhibit rhythmic fluctuations in each breast cell line, and some of them across two or three cell lines. Afterwards, we validated the rhythmic profiles exhibited by miR-141-5p, miR-1225-5p, miR-17-5p, miR-222-5p, miR-769-3p, and miR-548ay-3p in the above cell lines, as well as in ZR-7530 and HCC-1954 using RT-qPCR. Our results show that serum shock entrainment in breast cells lines induces rhythmic fluctuations of distinct sets of miRNAs, which have the potential to be related to endogenous circadian clock, but extensive investigation is required to elucidate that connection.
Collapse
|
41
|
Chen D, Liu L, Luo X, Mu A, Yan L, Chen X, Wang L, Wang N, He H, Zhou H, Zhang T. Effect of SMYD3 on the microRNA expression profile of MCF-7 breast cancer cells. Oncol Lett 2017; 14:1831-1840. [PMID: 28789418 DOI: 10.3892/ol.2017.6320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/28/2017] [Indexed: 01/02/2023] Open
Abstract
SET and MYND domain containing 3 (SMYD3) is a histone methyltransferase (HMT) and transcription factor, which serves important roles in carcinogenesis. Numerous downstream target genes of SMYD3 have been identified in previous studies. However, the downstream microRNA (miRNA) s regulated by SMYD3 are yet to be elucidated. In the present study, the results of miRNA microarray demonstrated that 30 miRNA expression profiles were upregulated, whilst 24 miRNAs were downregulated by >2.0-fold in the SMYD3-overexpressed MCF-7 breast cancer cells. The HMT activity was demonstrated to be essential for SMYD3-mediated transactivation of miR-200c-3p and the overexpression of miR-200c-3p inhibited the transactivation effects of SMYD3 on myocardin-related transcription factor-A-dependent migration-associated genes. To our best knowledge, the current study is the first to report on the transcriptional regulation of SMYD3 on miRNAs, and miR-200c may be a downstream negative regulator of the SMYD3-mediated pathway in the migration of breast cancer cells. These results may provide a novel theoretical basis to understand the mechanisms underlying the initiation, progression, diagnosis, prevention and therapy of breast cancer.
Collapse
Affiliation(s)
- Dongju Chen
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, P.R. China.,Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Lei Liu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, P.R. China.,Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Xuegang Luo
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, P.R. China.,Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Ai Mu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, P.R. China.,Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Lihua Yan
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, P.R. China.,Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Xiaoying Chen
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, P.R. China.,Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Lei Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, P.R. China.,Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Nan Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, P.R. China.,Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Hongpeng He
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, P.R. China.,Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Hao Zhou
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, P.R. China.,Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Tongcun Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, P.R. China.,Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| |
Collapse
|
42
|
A novel method for sensitive microRNA detection: Electropolymerization based doping. Biosens Bioelectron 2017; 92:770-778. [DOI: 10.1016/j.bios.2016.09.050] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/08/2016] [Accepted: 09/14/2016] [Indexed: 12/14/2022]
|
43
|
Amplification-free detection of microRNAs via a rapid microarray-based sandwich assay. Anal Bioanal Chem 2017; 409:3497-3505. [DOI: 10.1007/s00216-017-0298-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/27/2017] [Accepted: 03/06/2017] [Indexed: 12/16/2022]
|
44
|
Vejdovszky K, Sack M, Jarolim K, Aichinger G, Somoza MM, Marko D. In vitro combinatory effects of the Alternaria mycotoxins alternariol and altertoxin II and potentially involved miRNAs. Toxicol Lett 2017; 267:45-52. [DOI: 10.1016/j.toxlet.2016.12.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 12/13/2016] [Accepted: 12/16/2016] [Indexed: 12/19/2022]
|
45
|
Sharma S, Mathew AB, Chugh J. miRNAs: Nanomachines That Micromanage the Pathophysiology of Diabetes Mellitus. Adv Clin Chem 2017; 82:199-264. [PMID: 28939211 DOI: 10.1016/bs.acc.2017.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Diabetes mellitus (DM) refers to a combination of heterogeneous complex metabolic disorders that are associated with episodes of hyperglycemia and glucose intolerance occurring as a result of defects in insulin secretion, action, or both. The prevalence of DM is increasing at an alarming rate, and there exists a need to develop better therapeutics and prognostic markers for earlier detection and diagnosis. In this review, after giving a brief introduction of diabetes mellitus and microRNA (miRNA) biogenesis pathway, we first describe various in vitro and animal model systems that have been developed to study diabetes. Further, we elaborate on the significant roles played by miRNAs as regulators of gene expression in the context of development of diabetes and its secondary complications. The different approaches to quantify miRNAs and their potential to be used as therapeutic targets for alleviation of diabetes have also been discussed.
Collapse
|
46
|
Zampetaki A, Mayr M. Circulating microRNAs as Novel Biomarkers in Cardiovascular Disease: Basic and Technical Principles. NON-CODING RNAS IN THE VASCULATURE 2017. [DOI: 10.1007/978-3-319-52945-5_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Sun Y, Tian H, Liu C, Sun Y, Li Z. One-step detection of microRNA with high sensitivity and specificity via target-triggered loop-mediated isothermal amplification (TT-LAMP). Chem Commun (Camb) 2017; 53:11040-11043. [DOI: 10.1039/c7cc06140d] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A target-triggered loop-mediated isothermal amplification (TT-LAMP) mechanism is developed for simple one-step but highly sensitive detection of microRNAs.
Collapse
Affiliation(s)
- Yuanyuan Sun
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710062
| | - Hui Tian
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710062
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710062
| | - Yueying Sun
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710062
| | - Zhengping Li
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710062
| |
Collapse
|
48
|
Tang Y, Wang T, Chen M, He X, Qu X, Feng X. Tension promoted circular probe for highly selective microRNA detection and imaging. Biosens Bioelectron 2016; 85:151-156. [DOI: 10.1016/j.bios.2016.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/01/2016] [Accepted: 05/02/2016] [Indexed: 11/16/2022]
|
49
|
Lu X, Ji C, Tong W, Lian X, Wu Y, Fan X, Gao Y. Integrated analysis of microRNA and mRNA expression profiles highlights the complex and dynamic behavior of toosendanin-induced liver injury in mice. Sci Rep 2016; 6:34225. [PMID: 27703232 PMCID: PMC5050432 DOI: 10.1038/srep34225] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/01/2016] [Indexed: 01/04/2023] Open
Abstract
Triterpenoid Toosendanin (TSN) exhibits a plenty of pharmacological effects in human and great values in agriculture. However, the hepatotoxicity caused by TSN or Melia-family plants containing TSN used in traditional Chinese medicine has been reported, and the mechanisms of TSN-induced liver injury (TILI) still remain largely unknown. In this study, the dose- and time-dependent effects of TSN on mice liver were investigated by an integrated microRNA-mRNA approach as well as the general toxicological assessments. As the results, the dose- and time-dependent liver injury and alterations in global microRNA and mRNA expressions were detected. Particularly, 9-days 80 mg/kg TSN exposure caused most serious liver injury in mice, and the hepatic adaptation to TILI was unexpectedly observed after 21-days 80 mg/kg TSN administration. Based on the pathway analysis of the intersections between predicted targets of differentially expressed microRNAs and differentially expressed mRNAs at three time points, it revealed that TILI may be caused by glutathione depletion, mitochondrial dysfunction and lipid dysmetabolism, ultimately leading to hepatocytes necrosis in liver, while liver regeneration may play an important role in the hepatic adaptation to TILI. Our results demonstrated that the integrated microRNA-mRNA approach could provide new insight into the complex and dynamic behavior of TILI.
Collapse
Affiliation(s)
- Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cai Ji
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Tong
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xueping Lian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Wu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yue Gao
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
50
|
Holik A, Lieder B, Kretschy N, Somoza MM, Held S, Somoza V. N(ϵ) -Carboxymethyllysine Increases the Expression of miR-103/143 and Enhances Lipid Accumulation in 3T3-L1 Cells. J Cell Biochem 2016; 117:2413-22. [PMID: 27137869 PMCID: PMC4982050 DOI: 10.1002/jcb.25576] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/29/2016] [Indexed: 01/08/2023]
Abstract
Advanced glycation endproducts, formed in vivo, but also by the Maillard reaction upon thermal treatment of foods, have been associated with the progression of pathological conditions such as diabetes mellitus. In addition to the accumulation with age, exogenous AGEs are introduced into the circulation from dietary sources. In this study, we investigated the effects of addition of free N(ϵ) -carboxymethyllysine (CML), a well-characterized product of the Maillard reaction, on adipogenesis in 3T3-L1 preadipocytes. Treatment with 5, 50, or 500 μM CML resulted in increased lipid accumulation to similar extents, by 11.5 ± 12.6%, 12.9 ± 8.6%, and 12.8 ± 8.5%, respectively. Long-term treatment with 500 μM CML during adipogenesis resulted in increases in miR-103 and miR-143 levels, two miRNAs described to be involved in impaired glucose homeostasis and increased lipid accumulation. Furthermore, the expression of genes associated with these miRNAs, consisting of Akt1, PI3k, and Cav1 was regulated by CML. Short-term treatment of mature 3T3-L1 adipocytes with CML resulted in decreased basal glucose uptake. These results, indicate that the addition of protein-free CML to 3T3-L1 cells influence parameters associated with adipogenesis and glucose homeostasis at transcriptional, and functional level; this indicates that free CML derived from exogenous sources, in addition to protein-bound CML may be relevant in this context. J. Cell. Biochem. 117: 2413-2422, 2016. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ann‐Katrin Holik
- Faculty of ChemistryDepartment of Nutritional and Physiological ChemistryUniversity of ViennaAlthanstraße 14Vienna 1090Austria
| | - Barbara Lieder
- Faculty of ChemistryChristian Doppler Laboratory for Bioactive Aroma CompoundsUniversity of ViennaAlthanstraße 14Vienna 1090Austria
| | - Nicole Kretschy
- Faculty of ChemistryDepartment of Inorganic ChemistryUniversity of ViennaAlthanstraße 14Vienna 1090Austria
| | - Mark M. Somoza
- Faculty of ChemistryDepartment of Inorganic ChemistryUniversity of ViennaAlthanstraße 14Vienna 1090Austria
| | - Sandra Held
- Department of Food ScienceUniversity of WisconsinMadisonWisconsin
| | - Veronika Somoza
- Faculty of ChemistryDepartment of Nutritional and Physiological ChemistryUniversity of ViennaAlthanstraße 14Vienna 1090Austria
- Faculty of ChemistryChristian Doppler Laboratory for Bioactive Aroma CompoundsUniversity of ViennaAlthanstraße 14Vienna 1090Austria
| |
Collapse
|