1
|
Vera-Montecinos A, Ramos B. Transcriptional Regulators in the Cerebellum in Chronic Schizophrenia: Novel Possible Targets for Pharmacological Interventions. Int J Mol Sci 2025; 26:3653. [PMID: 40332239 PMCID: PMC12026920 DOI: 10.3390/ijms26083653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Despite the emerging evidence of the role of transcriptional regulators in schizophrenia as key molecular effectors responsible for the dysregulation of multiple biological processes, limited information is available for brain areas that control higher cognitive functions, such as the cerebellum. To identify transcription factors that could control a wide panel of altered proteins in the cerebellar cortex in schizophrenia, we analyzed a dataset obtained using one-shot liquid chromatography-tandem mass spectrometry on the postmortem human cerebellar cortex in chronic schizophrenia (PXD024937 identifier in the ProteomeXchange repository). Our analysis revealed a panel of 11 enriched transcription factors (SP1, KLF7, SP4, EGR1, HNF4A, CTCF, GABPA, NRF1, NFYA, YY1, and MEF2A) that could be controlling 250 altered proteins. The top three significantly enriched transcription factors were SP1, YY1, and EGR1, and the transcription factors with the largest number of targets were SP1, KLF7, and SP4 which belong to the Krüppel superfamily. An enrichment in vesicle-mediated transport was found for SP1, KLF7, EGR1, HNF4A, CTCF, and MEF2A targets, while pathways related to signaling, inflammation/immune responses, apoptosis, and energy were found for SP1 and KLF7 targets. EGR1 targets were enriched in RNA processing, and GABPA and YY1 targets were mainly involved in organelle organization and assembly. This study provides a reduced panel of transcriptional regulators that could impact multiple pathways through the control of a number of targets in the cerebellum in chronic schizophrenia. These findings suggest that this panel of transcription factors could represent key targets for pharmacological interventions in schizophrenia.
Collapse
Affiliation(s)
- América Vera-Montecinos
- Psiquiatria Molecular, Parc Sanitari Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Dr. Antoni Pujadas 42, 08830 Sant Boi de Llobregat, Spain;
- Departamento de Ciencias Biológicas y Químicas, Facultad De Ciencias, Universidad San Sebastián, Sede Tres Pascualas Lientur 1457, Concepción 4080871, Chile
| | - Belén Ramos
- Psiquiatria Molecular, Parc Sanitari Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Dr. Antoni Pujadas 42, 08830 Sant Boi de Llobregat, Spain;
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM (Biomedical Network Research Center of Mental Health), Ministry of Economy, Industry and Competitiveness Institute of Health Carlos III, 28029 Madrid, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia, 08500 Vic, Spain
| |
Collapse
|
2
|
Mishra S, Sarkar S, Pandey A, Yadav SK, Negi R, Yadav S, Pant AB. Crosstalk Between miRNA and Protein Expression Profiles in Nitrate-Exposed Brain Cells. Mol Neurobiol 2023; 60:3855-3872. [DOI: 10.1007/s12035-023-03316-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/09/2023] [Indexed: 03/29/2023]
|
3
|
Gárate-Rascón M, Recalde M, Rojo C, Fernández-Barrena MG, Ávila MA, Arechederra M, Berasain C. SLU7: A New Hub of Gene Expression Regulation—From Epigenetics to Protein Stability in Health and Disease. Int J Mol Sci 2022; 23:ijms232113411. [PMID: 36362191 PMCID: PMC9658179 DOI: 10.3390/ijms232113411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
SLU7 (Splicing factor synergistic lethal with U5 snRNA 7) was first identified as a splicing factor necessary for the correct selection of 3′ splice sites, strongly impacting on the diversity of gene transcripts in a cell. More recent studies have uncovered new and non-redundant roles of SLU7 as an integrative hub of different levels of gene expression regulation, including epigenetic DNA remodeling, modulation of transcription and protein stability. Here we review those findings, the multiple factors and mechanisms implicated as well as the cellular functions affected. For instance, SLU7 is essential to secure liver differentiation, genome integrity acting at different levels and a correct cell cycle progression. Accordingly, the aberrant expression of SLU7 could be associated with human diseases including cancer, although strikingly, it is an essential survival factor for cancer cells. Finally, we discuss the implications of SLU7 in pathophysiology, with particular emphasis on the progression of liver disease and its possible role as a therapeutic target in human cancer.
Collapse
Affiliation(s)
- María Gárate-Rascón
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
| | - Miriam Recalde
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
| | - Carla Rojo
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
| | - Maite G. Fernández-Barrena
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| | - Matías A. Ávila
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| | - María Arechederra
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| | - Carmen Berasain
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-948-194700; Fax: +34-948-194717
| |
Collapse
|
4
|
Kwon SM, Min S, Jeoun U, Sim MS, Jung GH, Hong SM, Jee BA, Woo HG, Lee C, Yoon G. Global spliceosome activity regulates entry into cellular senescence. FASEB J 2020; 35:e21204. [DOI: 10.1096/fj.202000395rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/30/2022]
Affiliation(s)
- So Mee Kwon
- Department of Biochemistry Ajou University School of Medicine Suwon Korea
- Department of Physiology Ajou University School of Medicine Suwon Korea
| | - Seongki Min
- Department of Biochemistry Ajou University School of Medicine Suwon Korea
- Department of Biomedical Sciences (BK21 Plus) Ajou University School of Medicine Suwon Korea
| | - Un‐woo Jeoun
- Department of Biochemistry Ajou University School of Medicine Suwon Korea
- Department of Biomedical Sciences (BK21 Plus) Ajou University School of Medicine Suwon Korea
| | - Min Seok Sim
- Department of Biochemistry Ajou University School of Medicine Suwon Korea
- Department of Biomedical Sciences (BK21 Plus) Ajou University School of Medicine Suwon Korea
| | - Gu Hyun Jung
- Department of Biochemistry Ajou University School of Medicine Suwon Korea
- Department of Biomedical Sciences (BK21 Plus) Ajou University School of Medicine Suwon Korea
| | - Sun Mi Hong
- Department of Biochemistry Ajou University School of Medicine Suwon Korea
- Department of Biomedical Sciences (BK21 Plus) Ajou University School of Medicine Suwon Korea
| | - Byul A. Jee
- Department of Physiology Ajou University School of Medicine Suwon Korea
| | - Hyun Goo Woo
- Department of Physiology Ajou University School of Medicine Suwon Korea
| | - Changhan Lee
- USC Leonard Davis School of Gerontology Los Angeles CA USA
| | - Gyesoon Yoon
- Department of Biochemistry Ajou University School of Medicine Suwon Korea
- Department of Biomedical Sciences (BK21 Plus) Ajou University School of Medicine Suwon Korea
| |
Collapse
|
5
|
Shen N, Zhao J, Schipper JL, Zhang Y, Bepler T, Leehr D, Bradley J, Horton J, Lapp H, Gordan R. Divergence in DNA Specificity among Paralogous Transcription Factors Contributes to Their Differential In Vivo Binding. Cell Syst 2018; 6:470-483.e8. [PMID: 29605182 DOI: 10.1016/j.cels.2018.02.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/29/2022]
Abstract
Paralogous transcription factors (TFs) are oftentimes reported to have identical DNA-binding motifs, despite the fact that they perform distinct regulatory functions. Differential genomic targeting by paralogous TFs is generally assumed to be due to interactions with protein co-factors or the chromatin environment. Using a computational-experimental framework called iMADS (integrative modeling and analysis of differential specificity), we show that, contrary to previous assumptions, paralogous TFs bind differently to genomic target sites even in vitro. We used iMADS to quantify, model, and analyze specificity differences between 11 TFs from 4 protein families. We found that paralogous TFs have diverged mainly at medium- and low-affinity sites, which are poorly captured by current motif models. We identify sequence and shape features differentially preferred by paralogous TFs, and we show that the intrinsic differences in specificity among paralogous TFs contribute to their differential in vivo binding. Thus, our study represents a step forward in deciphering the molecular mechanisms of differential specificity in TF families.
Collapse
Affiliation(s)
- Ning Shen
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA; Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710, USA
| | - Jingkang Zhao
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA; Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710, USA; Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Joshua L Schipper
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA; Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710, USA
| | - Yuning Zhang
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA; Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Tristan Bepler
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - Dan Leehr
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - John Bradley
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - John Horton
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA; Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710, USA
| | - Hilmar Lapp
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - Raluca Gordan
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA; Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710, USA; Department of Computer Science, Duke University, Durham, NC 27708, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
6
|
Belanova AA, Smirnov DS, Makarenko MS, Belousova MM, Mashkina EV, Aleksandrova AA, Soldatov AV, Zolotukhin PV. Individual expression features of GPX2, NQO1 and SQSTM1 transcript variants induced by hydrogen peroxide treatment in HeLa cells. Genet Mol Biol 2017; 40:515-524. [PMID: 28558074 PMCID: PMC5488449 DOI: 10.1590/1678-4685-gmb-2016-0005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 11/22/2016] [Indexed: 12/24/2022] Open
Abstract
Pathway activity assessment-based approaches are becoming highly influential in various fields of biology and medicine. However, these approaches mostly rely on analysis of mRNA expression, and total mRNA from a given locus is measured in the majority of cases. Notably, a significant portion of protein-coding genes produces more than one transcript. This biological fact is responsible for significant noise when changes in total mRNA transcription of a single gene are analyzed. The NFE2L2/AP-1 pathway is an attractive target for biomedical applications. To date, there is a lack of data regarding the agreement in expression of even classical target genes of this pathway. In the present paper we analyzed whether transcript variants of GPX2, NQO1 and SQSTM1 were characterized by individual features of expression when HeLa cells were exposed to pro-oxidative stimulation with hydrogen peroxide. We found that all the transcripts (10 in total) appeared to be significantly individually regulated under the conditions tested. We conclude that individual transcripts, rather than total mRNA, are best markers of pathway activation. We also discuss here some biological roles of individual transcript regulation.
Collapse
Affiliation(s)
- Anna A Belanova
- Evolution Corporate Group, Cell Physiology Laboratory, Southern Federal University, Rostov-on-Don, Russia
| | - Dmitry S Smirnov
- Evolution Corporate Group, Cell Physiology Laboratory, Southern Federal University, Rostov-on-Don, Russia
| | - Maxim S Makarenko
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Mariya M Belousova
- Department of English Language for Natural Sciences Faculties, Southern Federal University, Rostov-on-Don, Russia
| | - Elena V Mashkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Anzhela A Aleksandrova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Alexander V Soldatov
- Department of Nanosystems Physics and Spectroscopy, Southern Federal University, Rostov-on-Don, Russia
| | - Peter V Zolotukhin
- Evolution Corporate Group, Cell Physiology Laboratory, Southern Federal University, Rostov-on-Don, Russia
| |
Collapse
|
7
|
Splicing regulator SLU7 preserves survival of hepatocellular carcinoma cells and other solid tumors via oncogenic miR-17-92 cluster expression. Oncogene 2016; 35:4719-29. [DOI: 10.1038/onc.2015.517] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 11/19/2015] [Accepted: 12/04/2015] [Indexed: 01/05/2023]
|
8
|
Berasain C, Avila MA. Regulation of hepatocyte identity and quiescence. Cell Mol Life Sci 2015; 72:3831-51. [PMID: 26089250 PMCID: PMC11114060 DOI: 10.1007/s00018-015-1970-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/23/2015] [Accepted: 06/12/2015] [Indexed: 12/11/2022]
Abstract
The liver is a highly differentiated organ with a central role in metabolism, detoxification and systemic homeostasis. To perform its multiple tasks, liver parenchymal cells, the hepatocytes, express a large complement of enabling genes defining their complex phenotype. This phenotype is progressively acquired during fetal development and needs to be maintained in adulthood to guarantee the individual's survival. Upon injury or loss of functional mass, the liver displays an extraordinary regenerative response, mainly based on the proliferation of hepatocytes which otherwise are long-lived quiescent cells. Increasing observations suggest that loss of hepatocellular differentiation and quiescence underlie liver malfunction in chronic liver disease and pave the way for hepatocellular carcinoma development. Here, we briefly review the essential mechanisms leading to the acquisition of liver maturity. We also identify the key molecular factors involved in the preservation of hepatocellular homeostasis and finally discuss potential strategies to preserve liver identity and function.
Collapse
Affiliation(s)
- Carmen Berasain
- Division of Hepatology, CIMA, University of Navarra, CIBEREHD, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avda. Pio XII, n55, 31008, Pamplona, Spain.
| | - Matías A Avila
- Division of Hepatology, CIMA, University of Navarra, CIBEREHD, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avda. Pio XII, n55, 31008, Pamplona, Spain.
| |
Collapse
|
9
|
Wan J, Oliver VF, Zhu H, Zack DJ, Qian J, Merbs SL. Integrative analysis of tissue-specific methylation and alternative splicing identifies conserved transcription factor binding motifs. Nucleic Acids Res 2013; 41:8503-14. [PMID: 23887936 PMCID: PMC3794605 DOI: 10.1093/nar/gkt652] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The exact role of intragenic DNA methylation in regulating tissue-specific gene regulation is unclear. Recently, the DNA-binding protein CTCF has been shown to participate in the regulation of alternative splicing in a DNA methylation-dependent manner. To globally evaluate the relationship between DNA methylation and tissue-specific alternative splicing, we performed genome-wide DNA methylation profiling of mouse retina and brain. In protein-coding genes, tissue-specific differentially methylated regions (T-DMRs) were preferentially located in exons and introns. Gene ontology and evolutionary conservation analysis suggest that these T-DMRs are likely to be biologically relevant. More than 14% of alternatively spliced genes were associated with a T-DMR. T-DMR-associated genes were enriched for developmental genes, suggesting that a specific set of alternatively spliced genes may be regulated through DNA methylation. Novel DNA sequences motifs overrepresented in T-DMRs were identified as being associated with positive and/or negative regulation of alternative splicing in a position-dependent context. The majority of these evolutionarily conserved motifs contain a CpG dinucleotide. Some transcription factors, which recognize these motifs, are known to be involved in splicing. Our results suggest that DNA methylation-dependent alternative splicing is widespread and lay the foundation for further mechanistic studies of the role of DNA methylation in tissue-specific splicing regulation.
Collapse
Affiliation(s)
- Jun Wan
- Department of Ophthalmology, Wilmer Institute, Johns Hopkins University School of Medicine, 600 North Wolfe Street, 21287 Baltimore, MD, USA, Department of Pharmacology and Molecular Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, 21287 Baltimore, MD, USA, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 600 North Wolfe Street, 21287 Baltimore, MD, USA, Department of Neuroscience, Johns Hopkins University School of Medicine, 600 North Wolfe Street, 21287 Baltimore, MD, USA, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 600 North Wolfe Street, 21287 Baltimore, MD, USA and Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | | | | | | | | | | |
Collapse
|
10
|
Splicing functions and global dependency on fission yeast slu7 reveal diversity in spliceosome assembly. Mol Cell Biol 2013; 33:3125-36. [PMID: 23754748 DOI: 10.1128/mcb.00007-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The multiple short introns in Schizosaccharomyces pombe genes with degenerate cis sequences and atypically positioned polypyrimidine tracts make an interesting model to investigate canonical and alternative roles for conserved splicing factors. Here we report functions and interactions of the S. pombe slu7(+) (spslu7(+)) gene product, known from Saccharomyces cerevisiae and human in vitro reactions to assemble into spliceosomes after the first catalytic reaction and to dictate 3' splice site choice during the second reaction. By using a missense mutant of this essential S. pombe factor, we detected a range of global splicing derangements that were validated in assays for the splicing status of diverse candidate introns. We ascribe widespread, intron-specific SpSlu7 functions and have deduced several features, including the branch nucleotide-to-3' splice site distance, intron length, and the impact of its A/U content at the 5' end on the intron's dependence on SpSlu7. The data imply dynamic substrate-splicing factor relationships in multiintron transcripts. Interestingly, the unexpected early splicing arrest in spslu7-2 revealed a role before catalysis. We detected a salt-stable association with U5 snRNP and observed genetic interactions with spprp1(+), a homolog of human U5-102k factor. These observations together point to an altered recruitment and dependence on SpSlu7, suggesting its role in facilitating transitions that promote catalysis, and highlight the diversity in spliceosome assembly.
Collapse
|
11
|
|
12
|
Berasain C, Goñi S, Castillo J, Latasa MU, Prieto J, Ávila MA. Impairment of pre-mRNA splicing in liver disease: Mechanisms and consequences. World J Gastroenterol 2010; 16:3091-102. [PMID: 20593494 PMCID: PMC2896746 DOI: 10.3748/wjg.v16.i25.3091] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pre-mRNA splicing is an essential step in the process of gene expression in eukaryotes and consists of the removal of introns and the linking of exons to generate mature mRNAs. This is a highly regulated mechanism that allows the alternative usage of exons, the retention of intronic sequences and the generation of exonic sequences of variable length. Most human genes undergo splicing events, and disruptions of this process have been associated with a variety of diseases, including cancer. Hepatocellular carcinoma (HCC) is a molecularly heterogeneous type of tumor that usually develops in a cirrhotic liver. Alterations in pre-mRNA splicing of some genes have been observed in liver cancer, and although still scarce, the available data suggest that splicing defects may have a role in hepatocarcinogenesis. Here we briefly review the general mechanisms that regulate pre-mRNA splicing, and discuss some examples that illustrate how this process is impaired in liver tumorigenesis, and may contribute to HCC development. We believe that a more thorough examination of pre-mRNA splicing is still needed to accurately draw the molecular portrait of liver cancer. This will surely contribute to a better understanding of the disease and to the development of new effective therapies.
Collapse
|
13
|
Castillo J, Goñi S, Latasa MU, Perugorría MJ, Calvo A, Muntané J, Bioulac-Sage P, Balabaud C, Prieto J, Avila MA, Berasain C. Amphiregulin induces the alternative splicing of p73 into its oncogenic isoform DeltaEx2p73 in human hepatocellular tumors. Gastroenterology 2009; 137:1805-15.e1-4. [PMID: 19664633 DOI: 10.1053/j.gastro.2009.07.065] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 06/19/2009] [Accepted: 07/30/2009] [Indexed: 01/17/2023]
Abstract
BACKGROUND & AIMS Inactivation of the product of the tumor suppressor gene TP73 does not usually occur by mutation but rather through expression of truncated isoforms that have dominant-negative effects on p73 and p53. The truncated oncogenic isoform DeltaEx2p73 is expressed in hepatocellular carcinomas (HCC) and is produced through the alternative splicing of p73 pre-messenger RNA (pre-mRNA); however, the underlying mechanisms regulating this process are unknown. METHODS We used human normal and diseased liver tissue samples, as well as human HCC cell lines, to examine the association between activation of epidermal growth factor receptor (EGFR) by its ligand amphiregulin (AR) and the alternative splicing of p73 pre-mRNA into the tumorigenic isoform DeltaEx2p73, via c-Jun N-terminal-kinase-1-mediated signaling. RESULTS DeltaEx2p73 was expressed in a subset of premalignant cirrhotic livers and in otherwise healthy livers that harbored a primary tumor, as well as in HCC tissues. DeltaEx2p73 expression was correlated with that of the EGFR ligand AR, which was previously shown to have a role in hepatocarcinogenesis. Autocrine activation of the EGFR by AR triggered c-Jun N-terminal kinase-1 activity and inhibited the expression of the splicing regulator Slu7, leading to the accumulation of DeltaEx2p73 transcripts in HCC cells. CONCLUSIONS This study provided a mechanism for the generation of protumorigenic DeltaEx2p73 during liver tumorigenesis, via activation of EGFR signaling by AR and c-Jun N-terminal kinase-1 activity, leading to inhibition of the splicing regulator Slu7.
Collapse
Affiliation(s)
- Josefa Castillo
- Division of Hepatology and Gene Therapy, CIMA-University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Goren A, Kim E, Amit M, Bochner R, Lev-Maor G, Ahituv N, Ast G. Alternative approach to a heavy weight problem. Genome Res 2007; 18:214-20. [PMID: 18096750 DOI: 10.1101/gr.6661308] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Obesity is reaching epidemic proportions in developed countries and represents a significant risk factor for hypertension, heart disease, diabetes, and dyslipidemia. Splicing mutations constitute at least 14% of disease-causing mutations, thus implicating polymorphisms that affect splicing as likely candidates for disease susceptibility. A recent study suggested that genes associated with obesity were significantly enriched for rare nucleotide variants. Here, we examined these variants and revealed that they are located near splice junctions and tend to affect exonic splicing regulatory sequences. We also show that the majority of the exons that harbor these SNPs are constitutively spliced, yet they exhibit weak splice sites, typical to alternatively spliced exons, and are hence suboptimal for recognition by the splicing machinery and prone to become alternatively spliced. Using ex vivo assays, we tested a few representative variants and show that they indeed affect splicing by causing a shift from a constitutive to an alternative pattern, suggesting a possible link between extreme body mass index and abnormal splicing patterns.
Collapse
Affiliation(s)
- Amir Goren
- Department of Human Genetics and Molecular Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | | | | | | | | | | | | |
Collapse
|