1
|
Seixas AF, Silva AFQ, Sousa JP, Arraiano CM, Andrade JM. The RNA chaperone Hfq is a novel regulator of catalase expression and hydrogen peroxide-induced oxidative stress response in Listeria monocytogenes EGD-e. Free Radic Biol Med 2025; 227:103-116. [PMID: 39608557 DOI: 10.1016/j.freeradbiomed.2024.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
The RNA chaperone Hfq plays a pivotal role in many bacteria, acting as a regulator of gene expression and promoting interaction between mRNA-sRNA pairs in Gram-negative bacteria. However, in Gram-positive bacteria this protein is expendable for riboregulation, and the main function of Hfq remains elusive. This work unveils a novel function for Hfq in the oxidative stress response of the human pathogen Listeria monocytogenes, a Gram-positive bacterium responsible for the infectious disease listeriosis. Disruption of hfq gene (Δhfq) results in a hypersensitive phenotype towards hydrogen peroxide (H2O2), in which sub-inhibitory concentrations of this reactive oxygen species (ROS) severely impair growth and viability of L. monocytogenes EGD-e. A Δhfq-complemented strain does not show this phenotype. This Hfq-dependent regulation of oxidative stress seems specific for H2O2, as exposure to superoxides caused no differences. We demonstrate that Hfq has a dual regulatory role in the expression of catalase (kat), the key enzyme involved in H2O2 detoxification. Hfq influences kat transcription under non-stress conditions by modulating the levels of the transcriptional repressor PerR, and also acts post-transcriptionally by stabilizing kat mRNA under H2O2-induced stress. Indeed, enzymatic assays revealed reduced catalase activity in Δhfq cell extracts, a result unrelated to differences in cellular iron content. Bacterial infection triggers immune cells to produce massive amounts of ROS, like H2O2. We show that inactivation of Hfq increases susceptibility to macrophage killing, connecting Hfq with the stress resistance and virulence of L. monocytogenes EGD-e. Overall, these findings advance the understanding of Hfq function within Gram-positive bacteria, revealing for the first time that Hfq is a novel regulator of catalase expression. This paves the way for the study of yet unknown oxidative stress response pathways regulated by Hfq in other pathogens.
Collapse
Affiliation(s)
- André Filipe Seixas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Avenida da República, 2780-901, Oeiras, Portugal
| | - Alda Filipa Queirós Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Avenida da República, 2780-901, Oeiras, Portugal
| | - João Pedro Sousa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Avenida da República, 2780-901, Oeiras, Portugal
| | - Cecília Maria Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Avenida da República, 2780-901, Oeiras, Portugal
| | - José Marques Andrade
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Avenida da República, 2780-901, Oeiras, Portugal.
| |
Collapse
|
2
|
Stamm CE, McFarland AP, Locke MN, Tabakh H, Tang Q, Thomason MK, Woodward JJ. RECON gene disruption enhances host resistance to enable genome-wide evaluation of intracellular pathogen fitness during infection. mBio 2024; 15:e0133224. [PMID: 38940553 PMCID: PMC11323731 DOI: 10.1128/mbio.01332-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024] Open
Abstract
Transposon sequencing (Tn-seq) is a powerful genome-wide technique to assess bacterial fitness under varying growth conditions. However, screening via Tn-seq in vivo is challenging. Dose limitations and host restrictions create bottlenecks that diminish the transposon mutant pool being screened. Here, we have developed a murine model with a disruption in Akr1c13 that renders the resulting RECON-/- mouse resistant to high-dose infection. We leveraged this model to perform a Tn-seq screen of the human pathogen Listeria monocytogenes in vivo. We identified 135 genes which were required for L. monocytogenes growth in mice including novel genes not previously identified for host survival. We identified organ-specific requirements for L. monocytogenes survival and investigated the role of the folate enzyme FolD in L. monocytogenes liver pathogenesis. A mutant lacking folD was impaired for growth in murine livers by 2.5-log10 compared to wild type and failed to spread cell-to-cell in fibroblasts. In contrast, a mutant in alsR, which encodes a transcription factor that represses an operon involved in D-allose catabolism, was attenuated in both livers and spleens of mice by 4-log10 and 3-log10, respectively, but showed modest phenotypes in in vitro models. We confirmed that dysregulation of the D-allose catabolism operon is responsible for the in vivo growth defect, as deletion of the operon in the ∆alsR background rescued virulence. By undertaking an unbiased, genome-wide screen in mice, we have identified novel fitness determinants for L. monocytogenes host infection, which highlights the utility of the RECON-/- mouse model for future screening efforts. IMPORTANCE Listeria monocytogenes is the gram-positive bacterium responsible for the food-borne disease listeriosis. Although infections with L. monocytogenes are limiting in healthy hosts, vulnerable populations, including pregnant and elderly people, can experience high rates of mortality. Thus, understanding the breadth of genetic requirements for L. monocytogenes in vivo survival will present new opportunities for treatment and prevention of listeriosis. We developed a murine model of infection using a RECON-/- mouse that is restrictive to systemic L. monocytogenes infection. We utilized this model to screen for L. monocytogenes genes required in vivo via transposon sequencing. We identified the liver-specific gene folD and a repressor, alsR, that only exhibits an in vivo growth defect. AlsR controls the expression of the D-allose operon which is a marker in diagnostic techniques to identify pathogenic Listeria. A better understanding of the role of the D-allose operon in human disease may further inform diagnostic and prevention measures.
Collapse
Affiliation(s)
- Chelsea E. Stamm
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Adelle P. McFarland
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, USA
| | - Melissa N. Locke
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Hannah Tabakh
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Qing Tang
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Maureen K. Thomason
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Joshua J. Woodward
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Meireles D, Pombinho R, Cabanes D. Signals behind Listeria monocytogenes virulence mechanisms. Gut Microbes 2024; 16:2369564. [PMID: 38979800 PMCID: PMC11236296 DOI: 10.1080/19490976.2024.2369564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024] Open
Abstract
The tight and coordinated regulation of virulence gene expression is crucial to ensure the survival and persistence of bacterial pathogens in different contexts within their hosts. Considering this, bacteria do not express virulence factors homogenously in time and space, either due to their associated fitness cost or to their detrimental effect at specific infection stages. To efficiently infect and persist into their hosts, bacteria have thus to monitor environmental cues or chemical cell-to-cell signaling mechanisms that allow their transition from the external environment to the host, and therefore adjust gene expression levels, intrinsic biological activities, and appropriate behaviors. Listeria monocytogenes (Lm), a major Gram-positive facultative intracellular pathogen, stands out for its adaptability and capacity to thrive in a wide range of environments. Because of that, Lm presents itself as a significant concern in food safety and public health, that can lead to potentially life-threatening infections in humans. A deeper understanding of the intricate bacterial virulence mechanisms and the signals that control them provide valuable insights into the dynamic interplay between Lm and the host. Therefore, this review addresses the role of some crucial signals behind Lm pathogenic virulence mechanisms and explores how the ability to assimilate and interpret these signals is fundamental for pathogenesis, identifying potential targets for innovative antimicrobial strategies.
Collapse
Affiliation(s)
- Diana Meireles
- Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Group of Molecular Microbiology, IBMC, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar – ICBAS, Porto, Portugal
| | - Rita Pombinho
- Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Group of Molecular Microbiology, IBMC, Porto, Portugal
| | - Didier Cabanes
- Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Group of Molecular Microbiology, IBMC, Porto, Portugal
| |
Collapse
|
4
|
Sharma S, Sharma CM. Identification of RNA Binding Partners of CRISPR-Cas Proteins in Prokaryotes Using RIP-Seq. Methods Mol Biol 2022; 2404:111-133. [PMID: 34694606 DOI: 10.1007/978-1-0716-1851-6_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
CRISPR-Cas systems consist of a complex ribonucleoprotein (RNP) machinery encoded in prokaryotic genomes to confer adaptive immunity against foreign mobile genetic elements. Of these, especially the class 2, Type II CRISPR-Cas9 RNA-guided systems with single protein effector modules have recently received much attention for their application as programmable DNA scissors that can be used for genome editing in eukaryotes. While many studies have concentrated their efforts on improving RNA-mediated DNA targeting with these Type II systems, little is known about the factors that modulate processing or binding of the CRISPR RNA (crRNA) guides and the trans-activating tracrRNA to the nuclease protein Cas9, and whether Cas9 can also potentially interact with other endogenous RNAs encoded within the host genome. Here, we describe RIP-seq as a method to globally identify the direct RNA binding partners of CRISPR-Cas RNPs using the Cas9 nuclease as an example. RIP-seq combines co-immunoprecipitation (coIP) of an epitope-tagged Cas9 followed by isolation and deep sequencing analysis of its co-purified bound RNAs. This method can not only be used to study interactions of Cas9 with its known interaction partners, crRNAs and tracrRNA in native systems, but also to reveal potential additional RNA substrates of Cas9. For example, in RIP-seq analysis of Cas9 from the foodborne pathogen Campylobacter jejuni (CjeCas9), we recently identified several endogenous RNAs bound to CjeCas9 RNP in a crRNA-dependent manner, leading to the discovery of PAM-independent RNA cleavage activity of CjeCas9 as well as non-canonical crRNAs. RIP-seq can be easily adapted to any other effector RNP of choice from other CRISPR-Cas systems, allowing for the identification of target RNAs. Deciphering novel RNA-protein interactions for CRISPR-Cas proteins within host bacterial genomes will lead to a better understanding of the molecular mechanisms and functions of these systems and enable us to use the in vivo identified interaction rules as design principles for nucleic acid-targeting applications, fitted to each nuclease of interest.
Collapse
Affiliation(s)
- Sahil Sharma
- Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.
| | - Cynthia M Sharma
- Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.
| |
Collapse
|
5
|
Wiktorczyk-Kapischke N, Skowron K, Grudlewska-Buda K, Wałecka-Zacharska E, Korkus J, Gospodarek-Komkowska E. Adaptive Response of Listeria monocytogenes to the Stress Factors in the Food Processing Environment. Front Microbiol 2021; 12:710085. [PMID: 34489900 PMCID: PMC8417233 DOI: 10.3389/fmicb.2021.710085] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/22/2021] [Indexed: 12/20/2022] Open
Abstract
Listeria monocytogenes are Gram-positive, facultatively anaerobic, non-spore-forming bacteria that easily adapt to changing environmental conditions. The ability to grow at a wide range of temperatures, pH, and salinity determines the presence of the pathogen in water, sewage, soil, decaying vegetation, and animal feed. L. monocytogenes is an etiological factor of listeriosis, especially dangerous for the elderly, pregnant women, and newborns. The major source of L. monocytogenes for humans is food, including fresh and smoked products. Its high prevalence in food is associated with bacterial adaptation to the food processing environment (FPE). Since the number of listeriosis cases has been progressively increasing an efficient eradication of the pathogen from the FPE is crucial. Understanding the mechanisms of bacterial adaptation to environmental stress will significantly contribute to developing novel, effective methods of controlling L. monocytogenes in the food industry.
Collapse
Affiliation(s)
- Natalia Wiktorczyk-Kapischke
- Department of Microbiology, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Krzysztof Skowron
- Department of Microbiology, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Katarzyna Grudlewska-Buda
- Department of Microbiology, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Jakub Korkus
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| |
Collapse
|
6
|
Felden B, Augagneur Y. Diversity and Versatility in Small RNA-Mediated Regulation in Bacterial Pathogens. Front Microbiol 2021; 12:719977. [PMID: 34447363 PMCID: PMC8383071 DOI: 10.3389/fmicb.2021.719977] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial gene expression is under the control of a large set of molecules acting at multiple levels. In addition to the transcription factors (TFs) already known to be involved in global regulation of gene expression, small regulatory RNAs (sRNAs) are emerging as major players in gene regulatory networks, where they allow environmental adaptation and fitness. Developments in high-throughput screening have enabled their detection in the entire bacterial kingdom. These sRNAs influence a plethora of biological processes, including but not limited to outer membrane synthesis, metabolism, TF regulation, transcription termination, virulence, and antibiotic resistance and persistence. Almost always noncoding, they regulate target genes at the post-transcriptional level, usually through base-pair interactions with mRNAs, alone or with the help of dedicated chaperones. There is growing evidence that sRNA-mediated mechanisms of actions are far more diverse than initially thought, and that they go beyond the so-called cis- and trans-encoded classifications. These molecules can be derived and processed from 5' untranslated regions (UTRs), coding or non-coding sequences, and even from 3' UTRs. They usually act within the bacterial cytoplasm, but recent studies showed sRNAs in extracellular vesicles, where they influence host cell interactions. In this review, we highlight the various functions of sRNAs in bacterial pathogens, and focus on the increasing examples of widely diverse regulatory mechanisms that might compel us to reconsider what constitute the sRNA.
Collapse
Affiliation(s)
- Brice Felden
- Inserm, Bacterial Regulatory RNAs and Medicine (BRM) - UMR_S 1230, Rennes, France
| | - Yoann Augagneur
- Inserm, Bacterial Regulatory RNAs and Medicine (BRM) - UMR_S 1230, Rennes, France
| |
Collapse
|
7
|
Burning the Candle at Both Ends: Have Exoribonucleases Driven Divergence of Regulatory RNA Mechanisms in Bacteria? mBio 2021; 12:e0104121. [PMID: 34372700 PMCID: PMC8406224 DOI: 10.1128/mbio.01041-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Regulatory RNAs have emerged as ubiquitous gene regulators in all bacterial species studied to date. The combination of sequence-specific RNA interactions and malleable RNA structure has allowed regulatory RNA to adopt different mechanisms of gene regulation in a diversity of genetic backgrounds. In the model GammaproteobacteriaEscherichia coli and Salmonella, the regulatory RNA chaperone Hfq appears to play a global role in gene regulation, directly controlling ∼20 to 25% of the entire transcriptome. While the model FirmicutesBacillus subtilis and Staphylococcus aureus encode a Hfq homologue, its role has been significantly depreciated. These bacteria also have marked differences in RNA turnover. E. coli and Salmonella degrade RNA through internal endonucleolytic and 3′→5′ exonucleolytic cleavage that appears to allow transient accumulation of mRNA 3′ UTR cleavage fragments that contain stabilizing 3′ structures. In contrast, B. subtilis and S. aureus are able to exonucleolytically attack internally cleaved RNA from both the 5′ and 3′ ends, efficiently degrading mRNA 3′ UTR fragments. Here, we propose that the lack of 5′→3′ exoribonuclease activity in Gammaproteobacteria has allowed the accumulation of mRNA 3′ UTR ends as the “default” setting. This in turn may have provided a larger pool of unconstrained RNA sequences that has fueled the expansion of Hfq function and small RNA (sRNA) regulation in E. coli and Salmonella. Conversely, the exoribonuclease RNase J may be a significant barrier to the evolution of 3′ UTR sRNAs in B. subtilis and S. aureus that has limited the pool of RNA ligands available to Hfq and other sRNA chaperones, depreciating their function in these model Firmicutes.
Collapse
|
8
|
An RNA-centric global view of Clostridioides difficile reveals broad activity of Hfq in a clinically important gram-positive bacterium. Proc Natl Acad Sci U S A 2021; 118:2103579118. [PMID: 34131082 PMCID: PMC8237595 DOI: 10.1073/pnas.2103579118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The gram-positive human pathogen Clostridioides difficile has emerged as the leading cause of antibiotic-associated diarrhea. However, little is known about the bacterium's transcriptome architecture and mechanisms of posttranscriptional control. Here, we have applied transcription start site and termination mapping to generate a single-nucleotide-resolution RNA map of C. difficile 5' and 3' untranslated regions, operon structures, and noncoding regulators, including 42 sRNAs. Our results indicate functionality of many conserved riboswitches and predict cis-regulatory RNA elements upstream of multidrug resistance (MDR)-type ATP-binding cassette (ABC) transporters and transcriptional regulators. Despite growing evidence for a role of Hfq in RNA-based gene regulation in C. difficile, the functions of Hfq-based posttranscriptional regulatory networks in gram-positive pathogens remain controversial. Using Hfq immunoprecipitation followed by sequencing of bound RNA species (RIP-seq), we identify a large cohort of transcripts bound by Hfq and show that absence of Hfq affects transcript stabilities and steady-state levels. We demonstrate sRNA expression during intestinal colonization by C. difficile and identify infection-related signals impacting its expression. As a proof of concept, we show that the utilization of the abundant intestinal metabolite ethanolamine is regulated by the Hfq-dependent sRNA CDIF630nc_085. Overall, our study lays the foundation for understanding clostridial riboregulation with implications for the infection process and provides evidence for a global role of Hfq in posttranscriptional regulation in a gram-positive bacterium.
Collapse
|
9
|
Krawczyk-Balska A, Ładziak M, Burmistrz M, Ścibek K, Kallipolitis BH. RNA-Mediated Control in Listeria monocytogenes: Insights Into Regulatory Mechanisms and Roles in Metabolism and Virulence. Front Microbiol 2021; 12:622829. [PMID: 33935989 PMCID: PMC8079631 DOI: 10.3389/fmicb.2021.622829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/16/2021] [Indexed: 02/01/2023] Open
Abstract
Listeria monocytogenes is an intracellular pathogen that is well known for its adaptability to life in a broad spectrum of different niches. RNA-mediated regulatory mechanisms in L. monocytogenes play important roles in successful adaptation providing fast and versatile responses to a changing environment. Recent findings indicate that non-coding RNAs (ncRNAs) regulate a variety of processes in this bacterium, such as environmental sensing, metabolism and virulence, as well as immune responses in eukaryotic cells. In this review, the current knowledge on RNA-mediated regulation in L. monocytogenes is presented, with special focus on the roles and mechanisms underlying modulation of metabolism and virulence. Collectively, these findings point to ncRNAs as important gene regulatory elements in L. monocytogenes, both outside and inside an infected host. However, the involvement of regulatory ncRNAs in bacterial physiology and virulence is still underestimated and probably will be better assessed in the coming years, especially in relation to discovering the regulatory functions of 5′ and 3′ untranslated regions and excludons, and by exploring the role of ncRNAs in interaction with both bacterial and host proteins.
Collapse
Affiliation(s)
- Agata Krawczyk-Balska
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Ładziak
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Michał Burmistrz
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Katarzyna Ścibek
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Birgitte H Kallipolitis
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
10
|
Christopoulou N, Granneman S. The role of RNA-binding proteins in mediating adaptive responses in Gram-positive bacteria. FEBS J 2021; 289:1746-1764. [PMID: 33690958 DOI: 10.1111/febs.15810] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
Bacteria are constantly subjected to stressful conditions, such as antibiotic exposure, nutrient limitation and oxidative stress. For pathogenic bacteria, adapting to the host environment, escaping defence mechanisms and coping with antibiotic stress are crucial for their survival and the establishment of a successful infection. Stress adaptation relies heavily on the rate at which the organism can remodel its gene expression programme to counteract the stress. RNA-binding proteins mediating co- and post-transcriptional regulation have recently emerged as important players in regulating gene expression during adaptive responses. Most of the research on these layers of gene expression regulation has been done in Gram-negative model organisms where, thanks to a wide variety of global studies, large post-transcriptional regulatory networks have been uncovered. Unfortunately, our understanding of post-transcriptional regulation in Gram-positive bacteria is lagging behind. One possible explanation for this is that many proteins employed by Gram-negative bacteria are not well conserved in Gram-positives. And even if they are conserved, they do not always play similar roles as in Gram-negative bacteria. This raises the important question whether Gram-positive bacteria regulate gene expression in a significantly different way. The goal of this review was to discuss this in more detail by reviewing the role of well-known RNA-binding proteins in Gram-positive bacteria and by highlighting their different behaviours with respect to some of their Gram-negative counterparts. Finally, the second part of this review introduces several unusual RNA-binding proteins of Gram-positive species that we believe could also play an important role in adaptive responses.
Collapse
Affiliation(s)
- Niki Christopoulou
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, UK
| | - Sander Granneman
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, UK
| |
Collapse
|
11
|
Henderson LO, Gaballa A, Orsi RH, Boor KJ, Wiedmann M, Guariglia-Oropeza V. Transcriptional profiling of the L. monocytogenes PrfA regulon identifies six novel putative PrfA-regulated genes. FEMS Microbiol Lett 2020; 367:5998225. [PMID: 33220686 DOI: 10.1093/femsle/fnaa193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/19/2020] [Indexed: 12/28/2022] Open
Abstract
The transcriptional activator Positive Regulatory Factor A (PrfA) regulates expression of genes essential for virulence in Listeria monocytogenes. To define the PrfA regulon, the 10403S wildtype (WT) strain, a constitutively active prfA* mutant, and an isogenic ∆prfA mutant were grown under PrfA-inducing conditions in a medium containing glucose-1-phosphate and pre-treated with 0.2% activated charcoal. RNA-seq-generated transcript levels were compared as follows: (i) prfA* and WT; (ii) WT and ∆prfA and (iii) prfA* and ∆prfA. Significantly higher transcript levels in the induced WT or constitutively active PrfA* were identified for 18 genes and 2 ncRNAs in at least one of the three comparisons. These genes included: (i) 10/12 of the genes previously identified as directly PrfA-regulated; (ii) 2 genes previously identified as PrfA-regulated, albeit likely indirectly; and (iii) 6 genes newly identified as PrfA-regulated, including one (LMRG_0 2046) with a σA-dependent promoter and PrfA box located within an upstream open reading frame. LMRG_0 2046, which encodes a putative cyanate permease, is reported to be downregulated by a σB-dependent anti-sense RNA. This newly identified overlap between the σB and PrfA regulons highlights the complexity of regulatory networks important for fine-tuning bacterial gene expression in response to the rapidly changing environmental conditions associated with infection.
Collapse
Affiliation(s)
- L O Henderson
- Department of Food Science, Cornell University, 352 Stocking Hall Ithaca, NY 14853, USA
| | - A Gaballa
- Department of Food Science, Cornell University, 352 Stocking Hall Ithaca, NY 14853, USA
| | - R H Orsi
- Department of Food Science, Cornell University, 352 Stocking Hall Ithaca, NY 14853, USA
| | - K J Boor
- Department of Food Science, Cornell University, 352 Stocking Hall Ithaca, NY 14853, USA
| | - M Wiedmann
- Department of Food Science, Cornell University, 352 Stocking Hall Ithaca, NY 14853, USA
| | - V Guariglia-Oropeza
- Department of Food Science, Cornell University, 352 Stocking Hall Ithaca, NY 14853, USA
| |
Collapse
|
12
|
Vargas-Blanco DA, Shell SS. Regulation of mRNA Stability During Bacterial Stress Responses. Front Microbiol 2020; 11:2111. [PMID: 33013770 PMCID: PMC7509114 DOI: 10.3389/fmicb.2020.02111] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Bacteria have a remarkable ability to sense environmental changes, swiftly regulating their transcriptional and posttranscriptional machinery as a response. Under conditions that cause growth to slow or stop, bacteria typically stabilize their transcriptomes in what has been shown to be a conserved stress response. In recent years, diverse studies have elucidated many of the mechanisms underlying mRNA degradation, yet an understanding of the regulation of mRNA degradation under stress conditions remains elusive. In this review we discuss the diverse mechanisms that have been shown to affect mRNA stability in bacteria. While many of these mechanisms are transcript-specific, they provide insight into possible mechanisms of global mRNA stabilization. To that end, we have compiled information on how mRNA fate is affected by RNA secondary structures; interaction with ribosomes, RNA binding proteins, and small RNAs; RNA base modifications; the chemical nature of 5' ends; activity and concentration of RNases and other degradation proteins; mRNA and RNase localization; and the stringent response. We also provide an analysis of reported relationships between mRNA abundance and mRNA stability, and discuss the importance of stress-associated mRNA stabilization as a potential target for therapeutic development.
Collapse
Affiliation(s)
- Diego A Vargas-Blanco
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Scarlet S Shell
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States.,Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
13
|
Jørgensen MG, Pettersen JS, Kallipolitis BH. sRNA-mediated control in bacteria: An increasing diversity of regulatory mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194504. [PMID: 32061884 DOI: 10.1016/j.bbagrm.2020.194504] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 12/26/2022]
Abstract
Small regulatory RNAs (sRNAs) act as post-transcriptional regulators controlling bacterial adaptation to environmental changes. Our current understanding of the mechanisms underlying sRNA-mediated control is mainly based on studies in Escherichia coli and Salmonella. Ever since the discovery of sRNAs decades ago, these Gram-negative species have served as excellent model organisms in the field of sRNA biology. More recently, the role of sRNAs in gene regulation has become the center of attention in a broader range of species, including Gram-positive model organisms. Here, we highlight some of the most apparent similarities and differences between Gram-negative and Gram-positive bacteria with respect to the mechanisms underlying sRNA-mediated control. Although key aspects of sRNA regulation appear to be highly conserved, novel themes are arising from studies in Gram-positive species, such as a clear abundance of sRNAs acting through multiple C-rich motifs, and an apparent lack of RNA-binding proteins with chaperone activity.
Collapse
Affiliation(s)
- Mikkel Girke Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Jens Sivkær Pettersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Birgitte H Kallipolitis
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| |
Collapse
|
14
|
Pagliuso A, Tham TN, Allemand E, Robertin S, Dupuy B, Bertrand Q, Bécavin C, Koutero M, Najburg V, Nahori MA, Tangy F, Stavru F, Bessonov S, Dessen A, Muchardt C, Lebreton A, Komarova AV, Cossart P. An RNA-Binding Protein Secreted by a Bacterial Pathogen Modulates RIG-I Signaling. Cell Host Microbe 2019; 26:823-835.e11. [PMID: 31761719 PMCID: PMC6907008 DOI: 10.1016/j.chom.2019.10.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/21/2019] [Accepted: 10/07/2019] [Indexed: 01/20/2023]
Abstract
RNA-binding proteins (RBPs) perform key cellular activities by controlling the function of bound RNAs. The widely held assumption that RBPs are strictly intracellular has been challenged by the discovery of secreted RBPs. However, extracellular RBPs have been described in eukaryotes, while secreted bacterial RBPs have not been reported. Here, we show that the bacterial pathogen Listeria monocytogenes secretes a small RBP that we named Zea. We show that Zea binds a subset of L. monocytogenes RNAs, causing their accumulation in the extracellular medium. Furthermore, during L. monocytogenes infection, Zea binds RIG-I, the non-self-RNA innate immunity sensor, potentiating interferon-β production. Mouse infection studies reveal that Zea affects L. monocytogenes virulence. Together, our results unveil that bacterial RNAs can be present extracellularly in association with RBPs, acting as “social RNAs” to trigger a host response during infection. L. monocytogenes secretes an RNA-binding protein, Zea Zea binds and protects L. monocytogenes RNA, resulting in extracellular RNA accumulation During infection, Zea binds RIG-I and modulates RIG-I-dependent IFN response Zea plays a role in L. monocytogenes virulence in mice
Collapse
Affiliation(s)
- Alessandro Pagliuso
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France; U604 Inserm, Paris, France; USC2020 INRA, Paris, France.
| | - To Nam Tham
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France; U604 Inserm, Paris, France; USC2020 INRA, Paris, France
| | - Eric Allemand
- Unité de régulation épigénétique, Institut Pasteur, UMR3738 CNRS, Paris, France
| | - Stevens Robertin
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France; U604 Inserm, Paris, France; USC2020 INRA, Paris, France
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, Université de Paris, Paris, France
| | - Quentin Bertrand
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, Grenoble, France
| | - Christophe Bécavin
- Hub de bioinformatique et biostatistique - Centre de Bioinformatique, Biostatistique et Biologie Intégrative, Unité mixte de Service et Recherche 3756 Institut Pasteur - Centre National de la Recherche Scientifique, Paris 75015, France
| | - Mikael Koutero
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France; U604 Inserm, Paris, France; USC2020 INRA, Paris, France
| | - Valérie Najburg
- Unité de Génomique Virale et Vaccination, Institut Pasteur, Paris 75015, France; CNRS UMR-3569, Paris, France
| | - Marie-Anne Nahori
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France; U604 Inserm, Paris, France; USC2020 INRA, Paris, France
| | - Frédéric Tangy
- Unité de Génomique Virale et Vaccination, Institut Pasteur, Paris 75015, France; CNRS UMR-3569, Paris, France
| | - Fabrizia Stavru
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France; U604 Inserm, Paris, France; USC2020 INRA, Paris, France
| | - Sergey Bessonov
- Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Department of Translational Epigenetics and Tumor Genetics, University Hospital Cologne, Cologne, Germany
| | - Andréa Dessen
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, Grenoble, France; Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas, SP, Brazil
| | - Christian Muchardt
- Unité de régulation épigénétique, Institut Pasteur, UMR3738 CNRS, Paris, France
| | - Alice Lebreton
- Équipe Infection et Devenir de l'ARN, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, Inserm, PSL Université Paris, Paris 75005, France; INRA, IBENS, 75005 Paris, France
| | - Anastassia V Komarova
- Unité de Génomique Virale et Vaccination, Institut Pasteur, Paris 75015, France; CNRS UMR-3569, Paris, France
| | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France; U604 Inserm, Paris, France; USC2020 INRA, Paris, France.
| |
Collapse
|
15
|
Chakravarty S, Massé E. RNA-Dependent Regulation of Virulence in Pathogenic Bacteria. Front Cell Infect Microbiol 2019; 9:337. [PMID: 31649894 PMCID: PMC6794450 DOI: 10.3389/fcimb.2019.00337] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022] Open
Abstract
During infection, bacterial pathogens successfully sense, respond and adapt to a myriad of harsh environments presented by the mammalian host. This exquisite level of adaptation requires a robust modulation of their physiological and metabolic features. Additionally, virulence determinants, which include host invasion, colonization and survival despite the host's immune responses and antimicrobial therapy, must be optimally orchestrated by the pathogen at all times during infection. This can only be achieved by tight coordination of gene expression. A large body of evidence implicate the prolific roles played by bacterial regulatory RNAs in mediating gene expression both at the transcriptional and post-transcriptional levels. This review describes mechanistic and regulatory aspects of bacterial regulatory RNAs and highlights how these molecules increase virulence efficiency in human pathogens. As illustrative examples, Staphylococcus aureus, Listeria monocytogenes, the uropathogenic strain of Escherichia coli, Helicobacter pylori, and Pseudomonas aeruginosa have been selected.
Collapse
Affiliation(s)
- Shubham Chakravarty
- RNA Group, Department of Biochemistry, Faculty of Medicine and Health Sciences, CRCHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Eric Massé
- RNA Group, Department of Biochemistry, Faculty of Medicine and Health Sciences, CRCHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
16
|
Johansson J, Freitag NE. Regulation of Listeria monocytogenes Virulence. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0064-2019. [PMID: 31441398 PMCID: PMC10957223 DOI: 10.1128/microbiolspec.gpp3-0064-2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Indexed: 02/07/2023] Open
Abstract
Whereas obligate human and animal bacterial pathogens may be able to depend upon the warmth and relative stability of their chosen replication niche, environmental bacteria such as Listeria monocytogenes that harbor the ability to replicate both within animal cells and in the outside environment must maintain the capability to manage life under a variety of disparate conditions. Bacterial life in the outside environment requires adaptation to wide ranges of temperature, available nutrients, and physical stresses such as changes in pH and osmolarity as well as desiccation. Following ingestion by a susceptible animal host, the bacterium must adapt to similar changes during transit through the gastrointestinal tract and overcome a variety of barriers associated with host innate immune responses. Rapid alteration of patterns of gene expression and protein synthesis represent one strategy for quickly adapting to a dynamic host landscape. Here, we provide an overview of the impressive variety of strategies employed by the soil-dwelling, foodborne, mammalian pathogen L. monocytogenes to straddle diverse environments and optimize bacterial fitness both inside and outside host cells.
Collapse
Affiliation(s)
- Jörgen Johansson
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS) and Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
| | - Nancy E Freitag
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago IL
| |
Collapse
|
17
|
Liu Y, Orsi RH, Gaballa A, Wiedmann M, Boor KJ, Guariglia-Oropeza V. Systematic review of the Listeria monocytogenes σB regulon supports a role in stress response, virulence and metabolism. Future Microbiol 2019; 14:801-828. [DOI: 10.2217/fmb-2019-0072] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: Among the alternative sigma factors of Listeria monocytogenes, σB controls the largest regulon. The aim of this study was to perform a comprehensive review of σB-regulated genes, and the functions they confer. Materials & methods: A systematic search of PubMed and Web of Knowledge was carried out to identify members of the σB regulon based on experimental evidence of σB-dependent transcription and presence of a consensus σB-dependent promoter. Results: The literature review identified σB-dependent transcription units encompassing 304 genes encoding different functions including stress response and virulence. Conclusion: Our review supports the well-known roles of σB in virulence and stress response and provides new insight into novel roles for σB in metabolism and overall resilience of L. monocytogenes.
Collapse
Affiliation(s)
- Yichang Liu
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Renato H Orsi
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Ahmed Gaballa
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Kathryn J Boor
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | | |
Collapse
|
18
|
Dos Santos RF, Arraiano CM, Andrade JM. New molecular interactions broaden the functions of the RNA chaperone Hfq. Curr Genet 2019; 65:1313-1319. [PMID: 31104083 DOI: 10.1007/s00294-019-00990-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 01/09/2023]
Abstract
The RNA chaperone Hfq is an important bacterial post-transcriptional regulator. Most studies on Hfq are focused on the role of this protein on small non-coding RNAs (sRNAs) and messenger RNAs (mRNAs). The most well-characterized function of Hfq is its role as RNA matchmaker, promoting the base-pairing between sRNAs and their mRNA targets. However, novel substrates and previous unrecognized functions of Hfq have now been identified, which expanded the regulatory spectrum of this protein. Hfq was recently found to bind rRNA and act as a new ribosome biogenesis factor, affecting rRNA processing, ribosome assembly, translational efficiency and translational fidelity. Hfq was also found to bind tRNAs, which could provide an additional mechanism for its role on the accuracy of protein synthesis. The list of substrates does not include RNA exclusively since Hfq was shown to bind DNA, playing an important role in DNA compaction. Additionally, Hfq is also capable to establish many protein-protein interactions. Overall, the functions of the RNA-binding protein Hfq have been expanded beyond its function in small RNA-mediated regulation. The identification of additional substrates and new functions provides alternative explanations for the importance of the chaperone Hfq as a global regulator.
Collapse
Affiliation(s)
- Ricardo F Dos Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - José M Andrade
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
19
|
Ross JA, Thorsing M, Lillebæk EMS, Teixeira Dos Santos P, Kallipolitis BH. The LhrC sRNAs control expression of T cell-stimulating antigen TcsA in Listeria monocytogenes by decreasing tcsA mRNA stability. RNA Biol 2019; 16:270-281. [PMID: 30706751 DOI: 10.1080/15476286.2019.1572423] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The bacterial pathogen Listeria monocytogenes encodes seven homologous small regulatory RNAs, named the LhrC family of sRNAs. The LhrCs are highly induced under infection-relevant conditions and are known to inhibit the expression of multiple target mRNAs encoding virulence-associated surface proteins. In all cases studied so far, the LhrCs use their CU-rich regions for base pairing to complementary AG-rich sequences of the ribosomal binding site (RBS) of specific target mRNAs. Consequently, LhrC-mRNA interaction results in inhibition of translation followed by mRNA degradation, corresponding to the canonical model for sRNA-mediated gene regulation in bacteria. Here, we demonstrate that the LhrC sRNAs employ a different regulatory mechanism when acting to down-regulate the expression of tcsA, encoding a T cell-stimulating antigen. In this case, LhrC base pairs to an AG-rich site located well upstream of the RBS in tcsA mRNA. Using an in vitro translation assay, we found that LhrC could not prevent the ribosome from translating the tcsA messenger. Rather, the LhrC sRNAs act to decrease the half-life of tcsA mRNA in vivo. Importantly, LhrC-mediated destabilization of tcsA mRNA relies on an intact LhrC binding site near the 5´-end of the tcsA mRNA and occurs independently of translation. Based on these findings, we propose an alternative mechanism for LhrC-mediated control in L. monocytogenes that relies solely on sRNA-induced degradation of a target mRNA.
Collapse
Affiliation(s)
- Joseph A Ross
- a Department of Biochemistry and Molecular Biology , University of Southern Denmark , Odense , Denmark
| | - Mette Thorsing
- a Department of Biochemistry and Molecular Biology , University of Southern Denmark , Odense , Denmark
| | | | | | - Birgitte H Kallipolitis
- a Department of Biochemistry and Molecular Biology , University of Southern Denmark , Odense , Denmark
| |
Collapse
|
20
|
Role and regulation of the stress activated sigma factor sigma B (σ B) in the saprophytic and host-associated life stages of Listeria monocytogenes. ADVANCES IN APPLIED MICROBIOLOGY 2019; 106:1-48. [PMID: 30798801 DOI: 10.1016/bs.aambs.2018.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The stress activated sigma factor sigma B (σB) plays a pivotal role in allowing the food-borne bacterial pathogen Listeria monocytogenes to modulate its transcriptional landscape in order to survive in a variety of harsh environments both outside and within the host. While we have a comparatively good understanding of the systems under the control of this sigma factor much less is known about how the activity of σB is controlled. In this review, we present a current model describing how this sigma factor is thought to be controlled including an overview of what is known about stress sensing and the early signal transduction events that trigger its activation. We discuss the known regulatory overlaps between σB and other protein and RNA regulators in the cell. Finally, we describe the role of σB in surviving both saprophytic and host-associated stresses. The complexity of the regulation of this sigma factor reflects the significant role that it plays in the persistence of this important pathogen in the natural environment, the food chain as well as within the host during the early stages of an infection. Understanding its regulation will be a critical step in helping to develop rational strategies to prevent its growth and survival in the food destined for human consumption and in the prevention of listeriosis.
Collapse
|
21
|
Hu Y, Zhang L, Wang X, Sun F, Kong X, Dong H, Xu H. Two virulent sRNAs identified by genomic sequencing target the type III secretion system in rice bacterial blight pathogen. BMC PLANT BIOLOGY 2018; 18:237. [PMID: 30326834 PMCID: PMC6192180 DOI: 10.1186/s12870-018-1470-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 10/05/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Small non-coding RNA (sRNA) short sequences regulate various biological processes in all organisms, including bacteria that are animal or plant pathogens. Virulent or pathogenicity-associated sRNAs have been increasingly elucidated in animal pathogens but little is known about similar category of sRNAs in plant-pathogenic bacteria. This is particularly true regarding rice bacterial blight pathogen Xanthomonas oryzae pathovar oryzae (Xoo) as studies on the virulent role of Xoo sRNAs is very limited at present. RESULTS The number and genomic distribution of sRNAs in Xoo were determined by bioinformatics analysis based on high throughput sequencing (sRNA-Seq) of the bacterial cultures from virulence-inducing and standard growth media, respectively. A total of 601 sRNAs were identified in the Xoo genome and ten virulent sRNA candidates were screened out based on significant differences of their expression levels between the culture conditions. In addition, trans3287 and trans3288 were also selected as candidates due to high expression levels in both media. The differential expression of 12 sRNAs evidenced by the sRNA-Seq data was confirmed by a convincing quantitative method. Based on genetic analysis of Xoo ΔsRNA mutants generated by deletion of the 12 single sRNAs, trans217 and trans3287 were characterized as virulent sRNAs. They are essential not only for the formation of bacterial blight in a susceptible rice variety Nipponbare but also for the induction of hypersensitive response (HR) in nonhost plant tobacco. Xoo Δtrans217 and Δtrans3287 mutants fail to induce bacterial blight in Nipponbare and also fail to induce the HR in tobacco, whereas, genetic complementation restores both mutants to the wild type in the virulent performance and HR induction. Similar effects of gene knockout and complementation were found in the expression of hrpG and hrpX genes, which encode regulatory proteins of the type III secretion system. Consistently, secretion of a type III effector, PthXo1, is blocked in Δtrans217 or Δtrans3287 bacterial cultures but retrieved by genetic complementation to both mutants. CONCLUSIONS The genetic analysis characterizes trans217 and trans3287 as pathogenicity-associated sRNAs essential for the bacterial virulence on the susceptible rice variety and for the HR elicitation in the nonhost plant. The molecular evidence suggests that both virulent sRNAs regulate the bacterial virulence by targeting the type III secretion system.
Collapse
Affiliation(s)
- Yiqun Hu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province China
| | - Liyuan Zhang
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 Jiangsu Province China
| | - Xuan Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province China
| | - Fengli Sun
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 Jiangsu Province China
- Current Address: Rural Work Bureau of Zhangpu Town, Suzhou, 215300 Jiangsu Province China
| | - Xiangxin Kong
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 Jiangsu Province China
| | - Hansong Dong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province China
| | - Heng Xu
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 Jiangsu Province China
| |
Collapse
|
22
|
Yao H, Kang M, Wang Y, Feng Y, Kong S, Cai X, Ling Z, Chen S, Jiao X, Yin Y. An essential role for hfq involved in biofilm formation and virulence in serotype 4b Listeria monocytogenes. Microbiol Res 2018; 215:148-154. [DOI: 10.1016/j.micres.2018.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/22/2018] [Accepted: 07/07/2018] [Indexed: 11/28/2022]
|
23
|
Kim J, Mannaa M, Kim N, Lee C, Kim J, Park J, Lee HH, Seo YS. The Roles of Two hfq Genes in the Virulence and Stress Resistance of Burkholderia glumae. THE PLANT PATHOLOGY JOURNAL 2018; 34:412-425. [PMID: 30369851 PMCID: PMC6200039 DOI: 10.5423/ppj.oa.06.2018.0097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/09/2018] [Accepted: 07/22/2018] [Indexed: 05/08/2023]
Abstract
The Hfq protein is a global small RNA chaperone that interacts with regulatory bacterial small RNAs (sRNA) and plays a role in the post-transcriptional regulation of gene expression. The roles of Hfq in the virulence and pathogenicity of several infectious bacteria have been reported. This study was conducted to elucidate the functions of two hfq genes in Burkholderia glumae, a causal agent of rice grain rot. Therefore, mutant strains of the rice-pathogenic B. glumae BGR1, targeting each of the two hfq genes, as well as the double defective mutant were constructed and tested for several phenotypic characteristics. Bacterial swarming motility, toxoflavin production, virulence in rice, siderophore production, sensitivity to H2O2, and lipase production assays were conducted to compare the mutant strains with the wild-type B. glumae BGR1 and complementation strains. The hfq1 gene showed more influence on bacterial motility and toxoflavin production than the hfq2 gene. Both genes were involved in the full virulence of B. glumae in rice plants. Other biochemical characteristics such as siderophore production and sensitivity to H2O2 induced oxidative stress were also found to be regulated by the hfq1 gene. However, lipase activity was shown to be unassociated with both tested genes. To the best of our knowledge, this is the first study to elucidate the functions of two hfq genes in B. glumae. Identification of virulence-related factors in B. glumae will facilitate the development of efficient control measures.
Collapse
Affiliation(s)
| | | | - Namgyu Kim
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
| | - Chaeyeong Lee
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
| | - Juyun Kim
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
| | - Jungwook Park
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
| | - Hyun-Hee Lee
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
| |
Collapse
|
24
|
Westermann AJ. Regulatory RNAs in Virulence and Host-Microbe Interactions. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0002-2017. [PMID: 30003867 PMCID: PMC11633609 DOI: 10.1128/microbiolspec.rwr-0002-2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Indexed: 02/06/2023] Open
Abstract
Bacterial regulatory RNAs are key players in adaptation to changing environmental conditions and response to diverse cellular stresses. However, while regulatory RNAs of bacterial pathogens have been intensely studied under defined conditions in vitro, characterization of their role during the infection of eukaryotic host organisms is lagging behind. This review summarizes our current understanding of the contribution of the different classes of regulatory RNAs and RNA-binding proteins to bacterial virulence and illustrates their role in infection by reviewing the mechanisms of some prominent representatives of each class. Emerging technologies are described that bear great potential for global, unbiased studies of virulence-related RNAs in bacterial model and nonmodel pathogens in the future. The review concludes by deducing common principles of RNA-mediated gene expression control of virulence programs in different pathogens, and by defining important open questions for upcoming research in the field.
Collapse
Affiliation(s)
- Alexander J Westermann
- Institute of Molecular Infection Biology, University of Würzburg
- Helmholtz Institute for RNA-Based Infection Research, D-97080 Würzburg, Germany
| |
Collapse
|
25
|
Andrade JM, Dos Santos RF, Chelysheva I, Ignatova Z, Arraiano CM. The RNA-binding protein Hfq is important for ribosome biogenesis and affects translation fidelity. EMBO J 2018; 37:embj.201797631. [PMID: 29669858 DOI: 10.15252/embj.201797631] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 02/28/2018] [Accepted: 03/13/2018] [Indexed: 11/09/2022] Open
Abstract
Ribosome biogenesis is a complex process involving multiple factors. Here, we show that the widely conserved RNA chaperone Hfq, which can regulate sRNA-mRNA basepairing, plays a critical role in rRNA processing and ribosome assembly in Escherichia coli Hfq binds the 17S rRNA precursor and facilitates its correct processing and folding to mature 16S rRNA Hfq assists ribosome assembly and associates with pre-30S particles but not with mature 30S subunits. Inactivation of Hfq strikingly decreases the pool of mature 70S ribosomes. The reduction in ribosome levels depends on residues located in the distal face of Hfq but not on residues found in the proximal and rim surfaces which govern interactions with the sRNAs. Our results indicate that Hfq-mediated regulation of ribosomes is independent of its function as sRNA-regulator. Furthermore, we observed that inactivation of Hfq compromises translation efficiency and fidelity, both features of aberrantly assembled ribosomes. Our work expands the functions of the Sm-like protein Hfq beyond its function in small RNA-mediated regulation and unveils a novel role of Hfq as crucial in ribosome biogenesis and translation.
Collapse
Affiliation(s)
- José M Andrade
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo F Dos Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Irina Chelysheva
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
26
|
Identification and functional characterization of bacterial small non-coding RNAs and their target: A review. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Thorsing M, dos Santos PT, Kallipolitis BH. Small RNAs in major foodborne pathogens: from novel regulatory activities to future applications. Curr Opin Biotechnol 2018; 49:120-128. [DOI: 10.1016/j.copbio.2017.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/31/2017] [Accepted: 08/14/2017] [Indexed: 12/13/2022]
|
28
|
Cerutti F, Mallet L, Painset A, Hoede C, Moisan A, Bécavin C, Duval M, Dussurget O, Cossart P, Gaspin C, Chiapello H. Unraveling the evolution and coevolution of small regulatory RNAs and coding genes in Listeria. BMC Genomics 2017; 18:882. [PMID: 29145803 PMCID: PMC5689173 DOI: 10.1186/s12864-017-4242-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/29/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Small regulatory RNAs (sRNAs) are widely found in bacteria and play key roles in many important physiological and adaptation processes. Studying their evolution and screening for events of coevolution with other genomic features is a powerful way to better understand their origin and assess a common functional or adaptive relationship between them. However, evolution and coevolution of sRNAs with coding genes have been sparsely investigated in bacterial pathogens. RESULTS We designed a robust and generic phylogenomics approach that detects correlated evolution between sRNAs and protein-coding genes using their observed and inferred patterns of presence-absence in a set of annotated genomes. We applied this approach on 79 complete genomes of the Listeria genus and identified fifty-two accessory sRNAs, of which most were present in the Listeria common ancestor and lost during Listeria evolution. We detected significant coevolution between 23 sRNA and 52 coding genes and inferred the Listeria sRNA-coding genes coevolution network. We characterized a main hub of 12 sRNAs that coevolved with genes encoding cell wall proteins and virulence factors. Among them, an sRNA specific to L. monocytogenes species, rli133, coevolved with genes involved either in pathogenicity or in interaction with host cells, possibly acting as a direct negative post-transcriptional regulation. CONCLUSIONS Our approach allowed the identification of candidate sRNAs potentially involved in pathogenicity and host interaction, consistent with recent findings on known pathogenicity actors. We highlight four sRNAs coevolving with seven internalin genes, some of which being important virulence factors in Listeria.
Collapse
Affiliation(s)
- Franck Cerutti
- Université de Toulouse, INRA, UR 875 Unité Mathématiques et Informatique Appliquées de Toulouse, Auzeville, 31326, Castanet-Tolosan, France
| | - Ludovic Mallet
- Université de Toulouse, INRA, UR 875 Unité Mathématiques et Informatique Appliquées de Toulouse, Auzeville, 31326, Castanet-Tolosan, France
| | - Anaïs Painset
- Université de Toulouse, INRA, UR 875 Unité Mathématiques et Informatique Appliquées de Toulouse, Auzeville, 31326, Castanet-Tolosan, France.,Present address: Public Health England, 61 Colindale Avenue, London, NW9 5EQ, England
| | - Claire Hoede
- Université de Toulouse, INRA, UR 875 Unité Mathématiques et Informatique Appliquées de Toulouse, Auzeville, 31326, Castanet-Tolosan, France
| | - Annick Moisan
- Université de Toulouse, INRA, UR 875 Unité Mathématiques et Informatique Appliquées de Toulouse, Auzeville, 31326, Castanet-Tolosan, France
| | - Christophe Bécavin
- Département de Biologie Cellulaire et Infection, Institut Pasteur, Unité des Interactions Bactéries-Cellules, F-75015, Paris, France.,INSERM, U604,F-75015, Paris, France.,INRA, USC2020, F-75015, Paris, France.,Institut Pasteur - Bioinformatics and Biostatistics Hub - C3BI, USR 3756 IP CNRS, Paris, France
| | - Mélodie Duval
- Département de Biologie Cellulaire et Infection, Institut Pasteur, Unité des Interactions Bactéries-Cellules, F-75015, Paris, France.,INSERM, U604,F-75015, Paris, France.,INRA, USC2020, F-75015, Paris, France
| | - Olivier Dussurget
- Département de Biologie Cellulaire et Infection, Institut Pasteur, Unité des Interactions Bactéries-Cellules, F-75015, Paris, France.,INSERM, U604,F-75015, Paris, France.,INRA, USC2020, F-75015, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, F-75013, Paris, France
| | - Pascale Cossart
- Département de Biologie Cellulaire et Infection, Institut Pasteur, Unité des Interactions Bactéries-Cellules, F-75015, Paris, France.,INSERM, U604,F-75015, Paris, France.,INRA, USC2020, F-75015, Paris, France
| | - Christine Gaspin
- Université de Toulouse, INRA, UR 875 Unité Mathématiques et Informatique Appliquées de Toulouse, Auzeville, 31326, Castanet-Tolosan, France
| | - Hélène Chiapello
- Université de Toulouse, INRA, UR 875 Unité Mathématiques et Informatique Appliquées de Toulouse, Auzeville, 31326, Castanet-Tolosan, France.
| |
Collapse
|
29
|
Vivant AL, Desneux J, Pourcher AM, Piveteau P. Transcriptomic Analysis of the Adaptation of Listeria monocytogenes to Lagoon and Soil Matrices Associated with a Piggery Environment: Comparison of Expression Profiles. Front Microbiol 2017; 8:1811. [PMID: 29018416 PMCID: PMC5623016 DOI: 10.3389/fmicb.2017.01811] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/05/2017] [Indexed: 12/20/2022] Open
Abstract
Understanding how Listeria monocytogenes, the causative agent of listeriosis, adapts to the environment is crucial. Adaptation to new matrices requires regulation of gene expression. To determine how the pathogen adapts to lagoon effluent and soil, two matrices where L. monocytogenes has been isolated, we compared the transcriptomes of L. monocytogenes CIP 110868 20 min and 24 h after its transfer to effluent and soil extract. Results showed major variations in the transcriptome of L. monocytogenes in the lagoon effluent but only minor modifications in the soil. In both the lagoon effluent and in the soil, genes involved in mobility and chemotaxis and in the transport of carbohydrates were the most frequently represented in the set of genes with higher transcript levels, and genes with phage-related functions were the most represented in the set of genes with lower transcript levels. A modification of the cell envelop was only found in the lagoon environment. Finally, the differential analysis included a large proportion of regulators, regulons, and ncRNAs.
Collapse
Affiliation(s)
- Anne-Laure Vivant
- UR OPAALE, IRSTEA, Rennes, France
- Université Bretagne Loire, Rennes, France
| | - Jeremy Desneux
- UR OPAALE, IRSTEA, Rennes, France
- Université Bretagne Loire, Rennes, France
| | | | - Pascal Piveteau
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
30
|
Abstract
Bacterial pathogens must endure or adapt to different environments and stresses during transmission and infection. Posttranscriptional gene expression control by regulatory RNAs, such as small RNAs and riboswitches, is now considered central to adaptation in many bacteria, including pathogens. The study of RNA-based regulation (riboregulation) in pathogenic species has provided novel insight into how these bacteria regulate virulence gene expression. It has also uncovered diverse mechanisms by which bacterial small RNAs, in general, globally control gene expression. Riboregulators as well as their targets may also prove to be alternative targets or provide new strategies for antimicrobials. In this article, we present an overview of the general mechanisms that bacteria use to regulate with RNA, focusing on examples from pathogens. In addition, we also briefly review how deep sequencing approaches have aided in opening new perspectives in small RNA identification and the study of their functions. Finally, we discuss examples of riboregulators in two model pathogens that control virulence factor expression or survival-associated phenotypes, such as stress tolerance, biofilm formation, or cell-cell communication, to illustrate how riboregulation factors into regulatory networks in bacterial pathogens.
Collapse
|
31
|
Rolhion N, Cossart P. How the study of Listeria monocytogenes has led to new concepts in biology. Future Microbiol 2017; 12:621-638. [PMID: 28604108 DOI: 10.2217/fmb-2016-0221] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The opportunistic intracellular bacterial pathogen Listeria monocytogenes has in 30 years emerged as an exceptional bacterial model system in infection biology. Research on this bacterium has provided considerable insight into how pathogenic bacteria adapt to mammalian hosts, invade eukaryotic cells, move intracellularly, interfere with host cell functions and disseminate within tissues. It also contributed to unveil features of normal host cell pathways and unsuspected functions of previously known cellular proteins. This review provides an updated overview of our knowledge on this pathogen. In many examples, findings on L. monocytogenes provided the basis for new concepts in bacterial regulation, cell biology and infection processes.
Collapse
Affiliation(s)
- Nathalie Rolhion
- Département de Biologie Cellulaire et Infection, Unité des Interactions Bactéries-Cellules, Institut Pasteur, F-75015 Paris, France.,INSERM, U604, F-75015 Paris, France.,INRA, Unité sous-contrat 2020, F-75015 Paris, France
| | - Pascale Cossart
- Département de Biologie Cellulaire et Infection, Unité des Interactions Bactéries-Cellules, Institut Pasteur, F-75015 Paris, France.,INSERM, U604, F-75015 Paris, France.,INRA, Unité sous-contrat 2020, F-75015 Paris, France
| |
Collapse
|
32
|
In vivo characterization of an Hfq protein encoded by the Bacillus anthracis virulence plasmid pXO1. BMC Microbiol 2017; 17:63. [PMID: 28288571 PMCID: PMC5348863 DOI: 10.1186/s12866-017-0973-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/07/2017] [Indexed: 12/15/2022] Open
Abstract
Background Bacterial Hfq proteins post-transcriptionally regulate gene expression, primarily by mediating the interaction between sRNAs (small RNAs) and their target mRNAs. The role of Hfq-based regulation has been well defined in Gram-negative bacteria, but comparatively less is known about the impact of Hfq proteins in Gram-positive species. The Gram-positive pathogen Bacillus anthracis (causative agent of anthrax) is distinct in that it expresses three homologs of Hfq: Hfq1 and Hfq2 from the chromosome, and Hfq3 from the pXO1 virulence plasmid. Results In this study, we utilized overexpression as a strategy to examine the impact of Hfq3 on B. anthracis physiology. The increase in Hfq3 protein levels led to anomalous cell shape and chain formation, which manifested as a severe growth defect. This phenotype was specific to B. anthracis, as Hfq3 expression in B. subtilis at similar levels was not toxic. Toxicity was dependent on residues on the distal face of Hfq3 that are involved in mRNA binding in other bacterial species. Conclusions Thus, we hypothesize that Hfq3 interacts with RNA(s) involved in essential functions in the B. anthracis cell, leading to increased binding upon overexpression that either sequesters or accelerates degradation of RNAs important for growth. These results not only aid in elucidating the role of Hfq proteins in B. anthracis, but also contribute to our current understanding of Hfq in Gram-positive bacteria. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-0973-y) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Han R, Xu L, Wang T, Liu B, Wang L. A Small Regulatory RNA Contributes to the Preferential Colonization of Escherichia coli O157:H7 in the Large Intestine in Response to a Low DNA Concentration. Front Microbiol 2017; 8:274. [PMID: 28289405 PMCID: PMC5326754 DOI: 10.3389/fmicb.2017.00274] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/09/2017] [Indexed: 11/13/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 (O157) is one of the most notorious human pathogens, causing severe disease in humans worldwide. O157 specifically colonizes the large intestine of mammals after passing through the small intestine, and this process is influenced by differential signals between the two regions. Small regulatory RNAs (sRNAs) are able to sense and respond to environmental changes and regulate diverse physiological processes in pathogenic bacteria. Although some sRNAs of O157 have been extensively investigated, whether these molecules can sense differences between the small and large intestine and influence the preferential colonization in the large intestine by O157 remains unknown. In this study, we identified a new sRNA, Esr055, in O157 which senses the low DNA concentration in the large intestine and contributes to the preferential colonization of the bacteria in this region. The number of O157 wild-type that adhered to the colon is 30.18 times higher than the number that adhered to the ileum of mice, while the number of the ΔEsr055 mutant that adhered to the colon decreased to 13.27 times higher than the number adhered to the ileum. Furthermore, we found that the expression of Esr055 is directly activated by the regulator, DeoR, and its expression is positively affected by DNA, which is significantly more abundant in the ileum than in the colon of mice. Additionally, combining the results of informatics predictions and transcriptomic analysis, we found that several virulence genes are up-regulated in the ΔEsr055 mutant and five candidate genes (z0568, z0974, z1356, z1926, and z5187) may be its direct targets.
Collapse
Affiliation(s)
- Runhua Han
- TEDA Institute of Biological Sciences and Biotechnology, Nankai UniversityTianjin, China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of EducationTianjin, China
| | - Letian Xu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai UniversityTianjin, China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of EducationTianjin, China; Tianjin Key Laboratory of Microbial Functional GenomicsTianjin, China
| | - Ting Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai UniversityTianjin, China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of EducationTianjin, China
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai UniversityTianjin, China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of EducationTianjin, China; Tianjin Key Laboratory of Microbial Functional GenomicsTianjin, China
| | - Lei Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai UniversityTianjin, China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of EducationTianjin, China; Tianjin Key Laboratory of Microbial Functional GenomicsTianjin, China; State Key Laboratory of Medicinal Chemical Biology, Nankai UniversityTianjin, China
| |
Collapse
|
34
|
Soutourina O. RNA-based control mechanisms of Clostridium difficile. Curr Opin Microbiol 2017; 36:62-68. [PMID: 28214735 DOI: 10.1016/j.mib.2017.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/28/2016] [Accepted: 01/08/2017] [Indexed: 01/05/2023]
Abstract
Clostridium difficile (CD)-associated diarrhoea is currently the most prevalent nosocomial diarrhoea worldwide. Many characteristics of CD pathogenicity remain poorly understood. Recent data strongly indicate the importance of an RNA network for the control of gene expression in CD. More than 200 regulatory RNAs have been identified by deep sequencing and targeted approaches, including Hfq-dependent trans riboregulators, cis-antisense RNAs, CRISPR RNAs, and c-di-GMP-responsive riboswitches. These regulatory RNAs are involved in the control of major processes in the CD infection cycle, for example motility, biofilm formation, adhesion, sporulation, stress response, and defence against bacteriophages. We will discuss recent advances in elucidation of the original features of RNA-based mechanisms in this important enteropathogen. This knowledge may pave the way for further discoveries in this emergent field.
Collapse
Affiliation(s)
- Olga Soutourina
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France; Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.
| |
Collapse
|
35
|
A Unique cis-Encoded Small Noncoding RNA Is Regulating Legionella pneumophila Hfq Expression in a Life Cycle-Dependent Manner. mBio 2017; 8:mBio.02182-16. [PMID: 28074027 PMCID: PMC5225317 DOI: 10.1128/mbio.02182-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Legionella pneumophila is an environmental bacterium that parasitizes protozoa, but it may also infect humans, thereby causing a severe pneumonia called Legionnaires’ disease. To cycle between the environment and a eukaryotic host, L. pneumophila is regulating the expression of virulence factors in a life cycle-dependent manner: replicating bacteria do not express virulence factors, whereas transmissive bacteria are highly motile and infective. Here we show that Hfq is an important regulator in this network. Hfq is highly expressed in transmissive bacteria but is expressed at very low levels in replicating bacteria. A L. pneumophila hfq deletion mutant exhibits reduced abilities to infect and multiply in Acanthamoeba castellanii at environmental temperatures. The life cycle-dependent regulation of Hfq expression depends on a unique cis-encoded small RNA named Anti-hfq that is transcribed antisense of the hfq transcript and overlaps its 5′ untranslated region. The Anti-hfq sRNA is highly expressed only in replicating L. pneumophila where it regulates hfq expression through binding to the complementary regions of the hfq transcripts. This results in reduced Hfq protein levels in exponentially growing cells. Both the small noncoding RNA (sRNA) and hfq mRNA are bound and stabilized by the Hfq protein, likely leading to the cleavage of the RNA duplex by the endoribonuclease RNase III. In contrast, after the switch to transmissive bacteria, the sRNA is not expressed, allowing now an efficient expression of the hfq gene and consequently Hfq. Our results place Hfq and its newly identified sRNA anti-hfq in the center of the regulatory network governing L. pneumophila differentiation from nonvirulent to virulent bacteria. The abilities of L. pneumophila to replicate intracellularly and to cause disease depend on its capacity to adapt to different extra- and intracellular environmental conditions. Therefore, a timely and fine-tuned expression of virulence factors and adaptation traits is crucial. Yet, the regulatory circuits governing the life cycle of L. pneumophila from replicating to virulent bacteria are only partly uncovered. Here we show that the life cycle-dependent regulation of the RNA chaperone Hfq relies on a small regulatory RNA encoded antisense to the hfq-encoding gene through a base pairing mechanism. Furthermore, Hfq regulates its own expression in an autoregulatory loop. The discovery of this RNA regulatory mechanism in L. pneumophila is an important step forward in the understanding of how the switch from inoffensive, replicating to highly virulent, transmissive L. pneumophila is regulated.
Collapse
|
36
|
Lebreton A, Stavru F, Brisse S, Cossart P. 1926-2016: 90 Years of listeriology. Microbes Infect 2016; 18:711-723. [PMID: 27876526 DOI: 10.1016/j.micinf.2016.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 10/26/2016] [Indexed: 01/28/2023]
Abstract
ISOPOL - for "International Symposium on Problems of Listeria and Listeriosis" - meetings gather every three years since 1957 participants from all over the world and allow exchange and update on a wide array of topics concerning Listeria and listeriosis, ranging from epidemiology, diagnostic and typing methods, to genomics, post-genomics, fundamental microbiology, cell biology and pathogenesis. The XIXth ISOPOL meeting took place in Paris from June 14th to 17th, 2016 at Institut Pasteur. We provide here a report of the talks that were given during the meeting, which represents an up-to-date overview of ongoing research on this important pathogen and biological model.
Collapse
Affiliation(s)
- Alice Lebreton
- École normale supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'École Normale Supérieure (IBENS), Équipe Infection et Devenir de l'ARN, 75005 Paris, France; INRA, IBENS, 75005 Paris, France
| | - Fabrizia Stavru
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, 75015 Paris, France; Inserm, U604, 75015 Paris, France; INRA, USC2020, 75015 Paris, France; CNRS, SNC5101, Paris, France
| | - Sylvain Brisse
- Institut Pasteur, Molecular Prevention and Therapy of Human Diseases, 75724 Paris, France; Institut Pasteur, Microbial Evolutionary Genomics, 75724 Paris, France; CNRS, UMR 3525, Paris, France
| | - Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, 75015 Paris, France; Inserm, U604, 75015 Paris, France; INRA, USC2020, 75015 Paris, France.
| |
Collapse
|
37
|
Siqueira FM, de Morais GL, Higashi S, Beier LS, Breyer GM, de Sá Godinho CP, Sagot MF, Schrank IS, Zaha A, de Vasconcelos ATR. Mycoplasma non-coding RNA: identification of small RNAs and targets. BMC Genomics 2016; 17:743. [PMID: 27801290 PMCID: PMC5088518 DOI: 10.1186/s12864-016-3061-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Bacterial non-coding RNAs act by base-pairing as regulatory elements in crucial biological processes. We performed the identification of trans-encoded small RNAs (sRNA) from the genomes of Mycoplama hyopneumoniae, Mycoplasma flocculare and Mycoplasma hyorhinis, which are Mycoplasma species that have been identified in the porcine respiratory system. Results A total of 47, 15 and 11 putative sRNAs were predicted in M. hyopneumoniae, M. flocculare and M. hyorhinis, respectively. A comparative genomic analysis revealed the presence of species or lineage specific sRNA candidates. Furthermore, the expression profile of some M. hyopneumoniae sRNAs was determined by a reverse transcription amplification approach, in three different culture conditions. All tested sRNAs were transcribed in at least one condition. A detailed investigation revealed a differential expression profile for two M. hyopneumoniae sRNAs in response to oxidative and heat shock stress conditions, suggesting that their expression is influenced by environmental signals. Moreover, we analyzed sRNA-mRNA hybrids and accessed putative target genes for the novel sRNA candidates. The majority of the sRNAs showed interaction with multiple target genes, some of which could be linked to pathogenesis and cell homeostasis activity. Conclusion This study contributes to our knowledge of Mycoplasma sRNAs and their response to environmental changes. Furthermore, the mRNA target prediction provides a perspective for the characterization and comprehension of the function of the sRNA regulatory mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3061-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Franciele Maboni Siqueira
- Centro de Biotecnologia (CBiot), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Guilherme Loss de Morais
- Laboratório Nacional de Computação Científica (LNCC), Laboratório de Bioinformática (LABINFO), Petrópolis, Rio de Janeiro, Brazil
| | - Susan Higashi
- Inria Grenoble Rhône-Alpes, 38330, Montbonnot Saint-Martin, France.,Université Lyon 1, Villeurbanne, France.,CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, F-69622, Villeurbanne, France
| | - Laura Scherer Beier
- Centro de Biotecnologia (CBiot), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriela Merker Breyer
- Centro de Biotecnologia (CBiot), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Caio Padoan de Sá Godinho
- Laboratório Nacional de Computação Científica (LNCC), Laboratório de Bioinformática (LABINFO), Petrópolis, Rio de Janeiro, Brazil
| | - Marie-France Sagot
- Inria Grenoble Rhône-Alpes, 38330, Montbonnot Saint-Martin, France.,Université Lyon 1, Villeurbanne, France.,CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, F-69622, Villeurbanne, France
| | - Irene Silveira Schrank
- Centro de Biotecnologia (CBiot), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Arnaldo Zaha
- Centro de Biotecnologia (CBiot), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | | |
Collapse
|
38
|
Sievers S, Lund A, Menendez-Gil P, Nielsen A, Storm Mollerup M, Lambert Nielsen S, Buch Larsson P, Borch-Jensen J, Johansson J, Kallipolitis BH. The multicopy sRNA LhrC controls expression of the oligopeptide-binding protein OppA in Listeria monocytogenes. RNA Biol 2016; 12:985-97. [PMID: 26176322 DOI: 10.1080/15476286.2015.1071011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Listeria monocytogenes is the causative agent of the foodborne disease listeriosis. During infection, L. monocytogenes produces an array of non-coding RNAs, including the multicopy sRNA LhrC. These five, nearly identical sRNAs are highly induced in response to cell envelope stress and target the virulence adhesin lapB at the post-transcriptional level. Here, we demonstrate that LhrC controls expression of additional genes encoding cell envelope-associated proteins with virulence function. Using transcriptomics and proteomics, we identified a set of genes affected by LhrC in response to cell envelope stress. Three targets were significantly down-regulated by LhrC at both the RNA and protein level: lmo2349, tcsA and oppA. All three genes encode membrane-associated proteins: A putative substrate binding protein of an amino acid ABC transporter (Lmo2349); the CD4+ T cell-stimulating antigen TcsA, and the oligopeptide binding protein OppA, of which the latter 2 are required for full virulence of L. monocytogenes. For OppA, we show that LhrC acts by direct base paring to the ribosome binding site of the oppA mRNA, leading to an impediment of its translation and a decreased mRNA level. The sRNA-mRNA interaction depends on 2 of 3 CU-rich regions in LhrC allowing binding of 2 oppA mRNAs to a single LhrC molecule. Finally, we found that LhrC contributes to infection in macrophage-like cells. These findings demonstrate a central role for LhrC in controlling the level of OppA and other virulence-associated cell envelope proteins in response to cell envelope stress.
Collapse
Affiliation(s)
- Susanne Sievers
- a Department of Biochemistry and Molecular Biology ; University of Southern Denmark ; Odense , Denmark.,b Institute for Microbiology; Ernst-Moritz-Arndt-University Greifswald ; Greifswald , Germany.,d These authors equally contributed to this work
| | - Anja Lund
- a Department of Biochemistry and Molecular Biology ; University of Southern Denmark ; Odense , Denmark.,d These authors equally contributed to this work
| | - Pilar Menendez-Gil
- a Department of Biochemistry and Molecular Biology ; University of Southern Denmark ; Odense , Denmark
| | - Aaraby Nielsen
- a Department of Biochemistry and Molecular Biology ; University of Southern Denmark ; Odense , Denmark
| | - Maria Storm Mollerup
- a Department of Biochemistry and Molecular Biology ; University of Southern Denmark ; Odense , Denmark
| | - Stine Lambert Nielsen
- a Department of Biochemistry and Molecular Biology ; University of Southern Denmark ; Odense , Denmark
| | - Pernille Buch Larsson
- a Department of Biochemistry and Molecular Biology ; University of Southern Denmark ; Odense , Denmark
| | - Jonas Borch-Jensen
- a Department of Biochemistry and Molecular Biology ; University of Southern Denmark ; Odense , Denmark
| | - Jörgen Johansson
- c Department of Molecular Biology ; Umeå University ; Umeå , Sweden
| | | |
Collapse
|
39
|
Mollerup MS, Ross JA, Helfer AC, Meistrup K, Romby P, Kallipolitis BH. Two novel members of the LhrC family of small RNAs in Listeria monocytogenes with overlapping regulatory functions but distinctive expression profiles. RNA Biol 2016; 13:895-915. [PMID: 27400116 DOI: 10.1080/15476286.2016.1208332] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Multicopy small RNAs (sRNAs) have gained recognition as an important feature of bacterial gene regulation. In the human pathogen Listeria monocytogenes, 5 homologous sRNAs, called LhrC1-5, control gene expression by base pairing to target mRNAs though 3 conserved UCCC motifs common to all 5 LhrCs. We show here that the sRNAs Rli22 and Rli33-1 are structurally and functionally related to LhrC1-5, expanding the LhrC family to 7 members, which makes it the largest multicopy sRNA family reported so far. Rli22 and Rli33-1 both contain 2 UCCC motifs important for post-transcriptional repression of 3 LhrC target genes. One such target, oppA, encodes a virulence-associated oligo-peptide binding protein. Like LhrC1-5, Rli22 and Rli33-1 employ their UCCC motifs to recognize the Shine-Dalgarno region of oppA mRNA and prevent formation of the ribosomal complex, demonstrating that the 7 sRNAs act in a functionally redundant manner. However, differential expression profiles of the sRNAs under infection-relevant conditions suggest that they might also possess non-overlapping functions. Collectively, this makes the LhrC family a unique case for studying the purpose of sRNA multiplicity in the context of bacterial virulence.
Collapse
Affiliation(s)
- Maria Storm Mollerup
- a Department of Biochemistry and Molecular Biology , University of Southern Denmark , Odense , Denmark
| | - Joseph Andrew Ross
- a Department of Biochemistry and Molecular Biology , University of Southern Denmark , Odense , Denmark
| | - Anne-Catherine Helfer
- b Architecture et Réactivité de l´ARN, Université de Strasbourg, CNRS, IBMC , Strasbourg , France
| | - Kristine Meistrup
- a Department of Biochemistry and Molecular Biology , University of Southern Denmark , Odense , Denmark
| | - Pascale Romby
- b Architecture et Réactivité de l´ARN, Université de Strasbourg, CNRS, IBMC , Strasbourg , France
| | | |
Collapse
|
40
|
Shiratsuchi A, Nitta M, Kuroda A, Komiyama C, Gawasawa M, Shimamoto N, Tuan TQ, Morita T, Aiba H, Nakanishi Y. Inhibition of Phagocytic Killing of Escherichia coli in Drosophila Hemocytes by RNA Chaperone Hfq. THE JOURNAL OF IMMUNOLOGY 2016; 197:1298-307. [PMID: 27357148 DOI: 10.4049/jimmunol.1501953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 06/01/2016] [Indexed: 12/20/2022]
Abstract
An RNA chaperone of Escherichia coli, called host factor required for phage Qβ RNA replication (Hfq), forms a complex with small noncoding RNAs to facilitate their binding to target mRNA for the alteration of translation efficiency and stability. Although the role of Hfq in the virulence and drug resistance of bacteria has been suggested, how this RNA chaperone controls the infectious state remains unknown. In the present study, we addressed this issue using Drosophila melanogaster as a host for bacterial infection. In an assay for abdominal infection using adult flies, an E. coli strain with mutation in hfq was eliminated earlier, whereas flies survived longer compared with infection with a parental strain. The same was true with flies deficient in humoral responses, but the mutant phenotypes were not observed when a fly line with impaired hemocyte phagocytosis was infected. The results from an assay for phagocytosis in vitro revealed that Hfq inhibits the killing of E. coli by Drosophila phagocytes after engulfment. Furthermore, Hfq seemed to exert this action partly through enhancing the expression of σ(38), a stress-responsive σ factor that was previously shown to be involved in the inhibition of phagocytic killing of E. coli, by a posttranscriptional mechanism. Our study indicates that the RNA chaperone Hfq contributes to the persistent infection of E. coli by maintaining the expression of bacterial genes, including one coding for σ(38), that help bacteria evade host immunity.
Collapse
Affiliation(s)
- Akiko Shiratsuchi
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan; School of Pharmacy, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan; and
| | - Mao Nitta
- School of Pharmacy, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan; and
| | - Ayumi Kuroda
- School of Pharmacy, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan; and
| | - Chiharu Komiyama
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Mitsuko Gawasawa
- School of Pharmacy, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan; and
| | - Naoto Shimamoto
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Tran Quoc Tuan
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Teppei Morita
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Sciences, Suzuka, Mie 513-0816, Japan
| | - Hiroji Aiba
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Sciences, Suzuka, Mie 513-0816, Japan
| | - Yoshinobu Nakanishi
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan; School of Pharmacy, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan; and
| |
Collapse
|
41
|
Abstract
The model opportunistic pathogen Listeria monocytogenes has been the object of extensive research, aiming at understanding its ability to colonize diverse environmental niches and animal hosts. Bacterial transcriptomes in various conditions reflect this efficient adaptability. We review here our current knowledge of the mechanisms allowing L. monocytogenes to respond to environmental changes and trigger pathogenicity, with a special focus on RNA-mediated control of gene expression. We highlight how these studies have brought novel concepts in prokaryotic gene regulation, such as the ‘excludon’ where the 5′-UTR of a messenger also acts as an antisense regulator of an operon transcribed in opposite orientation, or the notion that riboswitches can regulate non-coding RNAs to integrate complex metabolic stimuli into regulatory networks. Overall, the Listeria model exemplifies that fine RNA tuners act together with master regulatory proteins to orchestrate appropriate transcriptional programmes.
Collapse
Affiliation(s)
- Alice Lebreton
- a École Normale Supérieure , PSL Research University, CNRS, Inserm, Institut de Biologie de l'École Normale Supérieure (IBENS), Équipe Infection et Devenir de l'ARN , Paris , France.,b INRA, IBENS , Paris , France
| | - Pascale Cossart
- c Institut Pasteur, Unité des Interactions Bactéries-Cellules , Paris , France.,d Inserm , Paris , France.,e INRA, USC2020 , Paris , France
| |
Collapse
|
42
|
Bouloc P, Repoila F. Fresh layers of RNA-mediated regulation in Gram-positive bacteria. Curr Opin Microbiol 2016; 30:30-35. [DOI: 10.1016/j.mib.2015.12.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 01/25/2023]
|
43
|
The Regulatory Roles of ncRNA Rli60 in Adaptability of Listeria monocytogenes to Environmental Stress and Biofilm Formation. Curr Microbiol 2016; 73:77-83. [PMID: 27032404 DOI: 10.1007/s00284-016-1028-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/12/2016] [Indexed: 01/08/2023]
Abstract
Listeria monocytogenes is a facultative anaerobic Gram-positive bacterium. It is well adapted to external environments and able to infect both humans and animals. To understand the impacts of ncRNA Rli60 on the adaptability of L. monocytogenes to environmental stresses and biofilm formation, a rli60 deletion strain of L. monocytogenes (LM-Δrli60) was constructed using splicing by overlap extension PCR (SOE-PCR) and homologous recombination and then compared it with wild-type strain L. monocytogenes EGD-e in the aspects of adaptability to environmental stresses by measuring their growth under stresses of different temperatures, and acidic, alkaline, hypertonic and alcoholic conditions, and capability of biofilm formation by using crystal violet staining, as well as the transcriptional levels of genes (gltB and gltC) related to the biofilm formation by real-time quantitative PCR (qRT-PCR). The results showed that (1) the growth of LM-Δrli60 strain was significantly slower under environmental stresses of low temperature (30 °C), high temperature (42 °C), as well as alkaline and alcoholic conditions, (2) the amount of biofilm formed by LM-Δrli60 was attenuated, and (3) the transcriptional levels of gltB and gltC genes at 24 h and 48 h in LM-Δrli60 revealed a significant reduction. Overall, the results confirmed that ncRNA Rli60 plays important roles in regulating the adaptability of L. monocytogenes to environmental stresses and biofilm formation possibly through impacting the expression of gltB and gltC genes.
Collapse
|
44
|
The Mechanisms of Virulence Regulation by Small Noncoding RNAs in Low GC Gram-Positive Pathogens. Int J Mol Sci 2015; 16:29797-814. [PMID: 26694351 PMCID: PMC4691137 DOI: 10.3390/ijms161226194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/01/2015] [Accepted: 12/04/2015] [Indexed: 11/30/2022] Open
Abstract
The discovery of small noncoding regulatory RNAs (sRNAs) in bacteria has grown tremendously recently, giving new insights into gene regulation. The implementation of computational analysis and RNA sequencing has provided new tools to discover and analyze potential sRNAs. Small regulatory RNAs that act by base-pairing to target mRNAs have been found to be ubiquitous and are the most abundant class of post-transcriptional regulators in bacteria. The majority of sRNA studies has been limited to E. coli and other gram-negative bacteria. However, examples of sRNAs in gram-positive bacteria are still plentiful although the detailed gene regulation mechanisms behind them are not as well understood. Strict virulence control is critical for a pathogen’s survival and many sRNAs have been found to be involved in that process. This review outlines the targets and currently known mechanisms of trans-acting sRNAs involved in virulence regulation in various gram-positive pathogens. In addition, their shared characteristics such as CU interaction motifs, the role of Hfq, and involvement in two-component regulators, riboswitches, quorum sensing, or toxin/antitoxin systems are described.
Collapse
|
45
|
Schultze T, Hilker R, Mannala GK, Gentil K, Weigel M, Farmani N, Windhorst AC, Goesmann A, Chakraborty T, Hain T. A detailed view of the intracellular transcriptome of Listeria monocytogenes in murine macrophages using RNA-seq. Front Microbiol 2015; 6:1199. [PMID: 26579105 PMCID: PMC4627465 DOI: 10.3389/fmicb.2015.01199] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/15/2015] [Indexed: 01/21/2023] Open
Abstract
Listeria monocytogenes is a bacterial pathogen and causative agent for the foodborne infection listeriosis, which is mainly a threat for pregnant, elderly, or immunocompromised individuals. Due to its ability to invade and colonize diverse eukaryotic cell types including cells from invertebrates, L. monocytogenes has become a well-established model organism for intracellular growth. Almost 10 years ago, we and others presented the first whole-genome microarray-based intracellular transcriptome of L. monocytogenes. With the advent of newer technologies addressing transcriptomes in greater detail, we revisit this work, and analyze the intracellular transcriptome of L. monocytogenes during growth in murine macrophages using a deep sequencing based approach. We detected 656 differentially expressed genes of which 367 were upregulated during intracellular growth in macrophages compared to extracellular growth in Brain Heart Infusion broth. This study confirmed ∼64% of all regulated genes previously identified by microarray analysis. Many of the regulated genes that were detected in the current study involve transporters for various metals, ions as well as complex sugars such as mannose. We also report changes in antisense transcription, especially upregulations during intracellular bacterial survival. A notable finding was the detection of regulatory changes for a subset of temperate A118-like prophage genes, thereby shedding light on the transcriptional profile of this bacteriophage during intracellular growth. In total, our study provides an updated genome-wide view of the transcriptional landscape of L. monocytogenes during intracellular growth and represents a rich resource for future detailed analysis.
Collapse
Affiliation(s)
- Tilman Schultze
- Institute of Medical Microbiology, Justus Liebig University Giessen, Germany
| | - Rolf Hilker
- Institute of Medical Microbiology, Justus Liebig University Giessen, Germany ; Bioinformatics and Systems Biology, Justus Liebig University Giessen, Germany
| | - Gopala K Mannala
- Institute of Medical Microbiology, Justus Liebig University Giessen, Germany
| | - Katrin Gentil
- Institute of Medical Microbiology, Justus Liebig University Giessen, Germany
| | - Markus Weigel
- Institute of Medical Microbiology, Justus Liebig University Giessen, Germany
| | - Neda Farmani
- Institute of Medical Microbiology, Justus Liebig University Giessen, Germany
| | - Anita C Windhorst
- Institute of Medical Informatics, Justus Liebig University Giessen, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus Liebig University Giessen, Germany
| | - Torsten Hain
- Institute of Medical Microbiology, Justus Liebig University Giessen, Germany
| |
Collapse
|
46
|
Panda G, Tanwer P, Ansari S, Khare D, Bhatnagar R. Regulation and RNA-binding properties of Hfq-like RNA chaperones in Bacillus anthracis. Biochim Biophys Acta Gen Subj 2015; 1850:1661-8. [DOI: 10.1016/j.bbagen.2015.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/05/2015] [Accepted: 03/31/2015] [Indexed: 10/23/2022]
|
47
|
Vivant AL, Garmyn D, Gal L, Hartmann A, Piveteau P. Survival of Listeria monocytogenes in Soil Requires AgrA-Mediated Regulation. Appl Environ Microbiol 2015; 81:5073-84. [PMID: 26002901 PMCID: PMC4495223 DOI: 10.1128/aem.04134-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/12/2015] [Indexed: 11/20/2022] Open
Abstract
In a recent paper, we demonstrated that inactivation of the Agr system affects the patterns of survival of Listeria monocytogenes (A.-L. Vivant, D. Garmyn, L. Gal, and P. Piveteau, Front Cell Infect Microbiol 4:160, http://dx.doi.org/10.3389/fcimb.2014.00160). In this study, we investigated whether the Agr-mediated response is triggered during adaptation in soil, and we compared survival patterns in a set of 10 soils. The fate of the parental strain L. monocytogenes L9 (a rifampin-resistant mutant of L. monocytogenes EGD-e) and that of a ΔagrA deletion mutant were compared in a collection of 10 soil microcosms. The ΔagrA mutant displayed significantly reduced survival in these biotic soil microcosms, and differential transcriptome analyses showed large alterations of the transcriptome when AgrA was not functional, while the variations in the transcriptomes between the wild type and the ΔagrA deletion mutant were modest under abiotic conditions. Indeed, in biotic soil environments, 578 protein-coding genes and an extensive repertoire of noncoding RNAs (ncRNAs) were differentially transcribed. The transcription of genes coding for proteins involved in cell envelope and cellular processes, including the phosphotransferase system and ABC transporters, and proteins involved in resistance to antimicrobial peptides was affected. Under sterilized soil conditions, the differences were limited to 86 genes and 29 ncRNAs. These results suggest that the response regulator AgrA of the Agr communication system plays important roles during the saprophytic life of L. monocytogenes in soil.
Collapse
Affiliation(s)
- Anne-Laure Vivant
- Université de Bourgogne, UMR1347 Agroécologie, Dijon, France INRA, UMR1347 Agroécologie, Dijon, France
| | - Dominique Garmyn
- Université de Bourgogne, UMR1347 Agroécologie, Dijon, France INRA, UMR1347 Agroécologie, Dijon, France
| | - Laurent Gal
- INRA, UMR1347 Agroécologie, Dijon, France AgroSup Dijon, UMR1347 Agroécologie, Dijon, France
| | - Alain Hartmann
- Université de Bourgogne, UMR1347 Agroécologie, Dijon, France INRA, UMR1347 Agroécologie, Dijon, France
| | - Pascal Piveteau
- Université de Bourgogne, UMR1347 Agroécologie, Dijon, France INRA, UMR1347 Agroécologie, Dijon, France
| |
Collapse
|
48
|
Ellis MJ, Trussler RS, Haniford DB. A cis-encoded sRNA, Hfq and mRNA secondary structure act independently to suppress IS200 transposition. Nucleic Acids Res 2015; 43:6511-27. [PMID: 26044710 PMCID: PMC4513863 DOI: 10.1093/nar/gkv584] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/22/2015] [Indexed: 12/13/2022] Open
Abstract
IS200 is found throughout Enterobacteriaceae and transposes at a notoriously low frequency. In addition to the transposase protein (TnpA), IS200 encodes an uncharacterized Hfq-binding sRNA that is encoded opposite to the tnpA 5'UTR. In the current work we asked if this sRNA represses tnpA expression. We show here that the IS200 sRNA (named art200 for antisense regulator of transposase IS200) basepairs with tnpA to inhibit translation initiation. Unexpectedly, art200-tnpA pairing is limited to 40 bp, despite 90 nt of perfect complementarity. Additionally, we show that Hfq and RNA secondary structure in the tnpA 5'UTR each repress tnpA expression in an art200-independent manner. Finally, we show that disrupting translational control of tnpA expression leads to increased IS200 transposition in E. coli. The current work provides new mechanistic insight into why IS200 transposition is so strongly suppressed. The possibility of art200 acting in trans to regulate a yet-unidentified target is discussed as well as potential applications of the IS200 system for designing novel riboregulators.
Collapse
Affiliation(s)
- Michael J Ellis
- Department of Biochemistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Ryan S Trussler
- Department of Biochemistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - David B Haniford
- Department of Biochemistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| |
Collapse
|
49
|
Chaudhary AK, Na D, Lee EY. Rapid and high-throughput construction of microbial cell-factories with regulatory noncoding RNAs. Biotechnol Adv 2015; 33:914-30. [PMID: 26027891 DOI: 10.1016/j.biotechadv.2015.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/27/2015] [Accepted: 05/27/2015] [Indexed: 12/11/2022]
Abstract
Due to global crises such as pollution and depletion of fossil fuels, sustainable technologies based on microbial cell-factories have been garnering great interest as an alternative to chemical factories. The development of microbial cell-factories is imperative in cutting down the overall manufacturing cost. Thus, diverse metabolic engineering strategies and engineering tools have been established to obtain a preferred genotype and phenotype displaying superior productivity. However, these tools are limited to only a handful of genes with permanent modification of a genome and significant labor costs, and this is one of the bottlenecks associated with biofactory construction. Therefore, a groundbreaking rapid and high-throughput engineering tool is needed for efficient construction of microbial cell-factories. During the last decade, copious small noncoding RNAs (ncRNAs) have been discovered in bacteria. These are involved in substantial regulatory roles like transcriptional and post-transcriptional gene regulation by modulating mRNA elongation, stability, or translational efficiency. Because of their vulnerability, ncRNAs can be used as another layer of conditional control over gene expression without modifying chromosomal sequences, and hence would be a promising high-throughput tool for metabolic engineering. Here, we review successful design principles and applications of ncRNAs for high-throughput metabolic engineering or physiological studies of diverse industrially important microorganisms.
Collapse
Affiliation(s)
- Amit Kumar Chaudhary
- Department of Chemical Engineering, Kyung Hee University, Gyeonggi-do 446-701, Republic of Korea
| | - Dokyun Na
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756, Republic of Korea.
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Gyeonggi-do 446-701, Republic of Korea.
| |
Collapse
|
50
|
Oliva G, Sahr T, Buchrieser C. Small RNAs, 5′ UTR elements and RNA-binding proteins in intracellular bacteria: impact on metabolism and virulence. FEMS Microbiol Rev 2015; 39:331-349. [DOI: 10.1093/femsre/fuv022] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|