1
|
Müller MD, Becker T, Denk T, Hashimoto S, Inada T, Beckmann R. The ribosome as a platform to coordinate mRNA decay. Nucleic Acids Res 2025; 53:gkaf049. [PMID: 39921564 PMCID: PMC11806357 DOI: 10.1093/nar/gkaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 02/10/2025] Open
Abstract
Messenger RNA (mRNA) homeostasis is a critical aspect of cellular function, involving the dynamic interplay between transcription and decay processes. Recent advances have revealed that the ribosome plays a central role in coordinating mRNA decay, challenging the traditional view that free mRNA is the primary substrate for degradation. This review examines the mechanisms whereby ribosomes facilitate both the licensing and execution of mRNA decay. This involves factors such as the Ccr4-Not complex, small MutS-related domain endonucleases, and various quality control pathways. We discuss how translational fidelity, as well as the presence of nonoptimal codons and ribosome collisions, can trigger decay pathways such as nonstop decay and no-go decay. Furthermore, we highlight the direct association of canonical exonucleases, such as Xrn1 and the Ski-exosome system, with the ribosome, underscoring the ribosome's multifaceted role as a platform for regulatory processes governing mRNA stability. By integrating recent findings, this review offers a comprehensive overview of the structural basis of how ribosomes not only facilitate translation but also serve as critical hubs for mRNA decay coordination.
Collapse
Affiliation(s)
- Martin B D Müller
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Thomas Becker
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Timo Denk
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Satoshi Hashimoto
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo 108-8639, Japan
| | - Toshifumi Inada
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo 108-8639, Japan
| | - Roland Beckmann
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| |
Collapse
|
2
|
Hulscher N, McCullough PA, Marotta DE. Strategic deactivation of mRNA COVID-19 vaccines: New applications for siRNA therapy and RIBOTACs. J Gene Med 2024; 26:e3733. [PMID: 39183706 DOI: 10.1002/jgm.3733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
The rapid development and authorization of messenger ribonucleic acid (mRNA) vaccines by Pfizer-BioNTech (BNT162b2) and Moderna (mRNA-1273) in 2020 marked a significant milestone in human mRNA product application, overcoming previous obstacles such as mRNA instability and immunogenicity. This paper reviews the strategic modifications incorporated into these vaccines to enhance mRNA stability and translation efficiency, such as the inclusion of nucleoside modifications and optimized mRNA design elements including the 5' cap and poly(A) tail. We highlight emerging concerns regarding the wide systemic biodistribution of these mRNA vaccines leading to prolonged inflammatory responses and other safety concerns. The regulatory framework guiding the biodistribution studies is pivotal in assessing the safety profiles of new mRNA formulations in use today. The stability of mRNA vaccines, their pervasive distribution, and the longevity of the encapsulated mRNA along with unlimited production of the damaging and potentially lethal spike (S) protein call for strategies to mitigate potential adverse effects. Here, we explore the potential of small interfering RNA (siRNA) and ribonuclease targeting chimeras (RIBOTACs) as promising solutions to target, inactivate, and degrade residual and persistent vaccine mRNA, thereby potentially preventing uncontrolled S protein production and reducing toxicity. The targeted nature of siRNA and RIBOTACs allows for precise intervention, offering a path to prevent and mitigate adverse events of mRNA-based therapies. This review calls for further research into siRNA and RIBOTAC applications as antidotes and detoxication products for mRNA vaccine technology.
Collapse
|
3
|
Firdous Z, Kalra S, Chattopadhyay R, Bari VK. Current insight into the role of mRNA decay pathways in fungal pathogenesis. Microbiol Res 2024; 283:127671. [PMID: 38479232 DOI: 10.1016/j.micres.2024.127671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 04/17/2024]
Abstract
Pathogenic fungal species can cause superficial and mucosal infections, to potentially fatal systemic or invasive infections in humans. These infections are more common in immunocompromised or critically ill patients and have a significant morbidity and fatality rate. Fungal pathogens utilize several strategies to adapt the host environment resulting in efficient and comprehensive alterations in their cellular metabolism. Fungal virulence is regulated by several factors and post-transcriptional regulation mechanisms involving mRNA molecules are one of them. Post-transcriptional controls have emerged as critical regulatory mechanisms involved in the pathogenesis of fungal species. The untranslated upstream and downstream regions of the mRNA, as well as RNA-binding proteins, regulate morphogenesis and virulence by controlling mRNA degradation and stability. The limited number of available therapeutic drugs, the emergence of multidrug resistance, and high death rates associated with systemic fungal illnesses pose a serious risk to human health. Therefore, new antifungal treatments that specifically target mRNA pathway components can decrease fungal pathogenicity and when combined increase the effectiveness of currently available antifungal drugs. This review summarizes the mRNA degradation pathways and their role in fungal pathogenesis.
Collapse
Affiliation(s)
- Zulikha Firdous
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India
| | - Sapna Kalra
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India
| | - Rituja Chattopadhyay
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India
| | - Vinay Kumar Bari
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India.
| |
Collapse
|
4
|
Mofayezi A, Jadaliha M, Zangeneh FZ, Khoddami V. Poly(A) tale: From A to A; RNA polyadenylation in prokaryotes and eukaryotes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1837. [PMID: 38485452 DOI: 10.1002/wrna.1837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Most eukaryotic mRNAs and different non-coding RNAs undergo a form of 3' end processing known as polyadenylation. Polyadenylation machinery is present in almost all organisms except few species. In bacteria, the machinery has evolved from PNPase, which adds heteropolymeric tails, to a poly(A)-specific polymerase. Differently, a complex machinery for accurate polyadenylation and several non-canonical poly(A) polymerases are developed in eukaryotes. The role of poly(A) tail has also evolved from serving as a degradative signal to a stabilizing modification that also regulates translation. In this review, we discuss poly(A) tail emergence in prokaryotes and its development into a stable, yet dynamic feature at the 3' end of mRNAs in eukaryotes. We also describe how appearance of novel poly(A) polymerases gives cells flexibility to shape poly(A) tail. We explain how poly(A) tail dynamics help regulate cognate RNA metabolism in a context-dependent manner, such as during oocyte maturation. Finally, we describe specific mRNAs in metazoans that bear stem-loops instead of poly(A) tails. We conclude with how recent discoveries about poly(A) tail can be applied to mRNA technology. This article is categorized under: RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Processing > 3' End Processing RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Ahmadreza Mofayezi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
- ReNAP Therapeutics, Tehran, Iran
| | - Mahdieh Jadaliha
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | | | - Vahid Khoddami
- ReNAP Therapeutics, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
O'Brien MJ, Ansari A. Protein interaction network revealed by quantitative proteomic analysis links TFIIB to multiple aspects of the transcription cycle. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140968. [PMID: 37863410 PMCID: PMC10872477 DOI: 10.1016/j.bbapap.2023.140968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
Although TFIIB is widely regarded as an initiation factor, recent reports have implicated it in multiple aspects of eukaryotic transcription. To investigate the broader role of TFIIB in transcription, we performed quantitative proteomic analysis of yeast TFIIB. We purified two different populations of TFIIB; one from soluble cell lysate, which is not engaged in transcription, and the other from the chromatin fraction which yields the transcriptionally active form of the protein. TFIIB purified from the chromatin exhibits several interactions that explain its non-canonical roles in transcription. RNAPII, TFIIF and TFIIH were the only components of the preinitiation complex with a significant presence in chromatin TFIIB. A notable feature was enrichment of all subunits of CF1 and Rat1 3' end processing-termination complexes in chromatin-TFIIB preparation. Subunits of the CPF termination complex were also detected in both chromatin and soluble derived TFIIB preparations. These results may explain the presence of TFIIB at the 3' end of genes during transcription as well as its role in promoter-termination interaction.
Collapse
Affiliation(s)
- Michael J O'Brien
- Department of Biological Science, 5047 Gullen Mall, Wayne State University, Detroit, MI 48202, United States of America
| | - Athar Ansari
- Department of Biological Science, 5047 Gullen Mall, Wayne State University, Detroit, MI 48202, United States of America.
| |
Collapse
|
6
|
He F, Jacobson A. Eukaryotic mRNA decapping factors: molecular mechanisms and activity. FEBS J 2023; 290:5057-5085. [PMID: 36098474 PMCID: PMC10008757 DOI: 10.1111/febs.16626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
Abstract
Decapping is the enzymatic removal of 5' cap structures from mRNAs in eukaryotic cells. Cap structures normally enhance mRNA translation and stability, and their excision commits an mRNA to complete 5'-3' exoribonucleolytic digestion and generally ends the physical and functional cellular presence of the mRNA. Decapping plays a pivotal role in eukaryotic cytoplasmic mRNA turnover and is a critical and highly regulated event in multiple 5'-3' mRNA decay pathways, including general 5'-3' decay, nonsense-mediated mRNA decay (NMD), AU-rich element-mediated mRNA decay, microRNA-mediated gene silencing, and targeted transcript-specific mRNA decay. In the yeast Saccharomyces cerevisiae, mRNA decapping is carried out by a single Dcp1-Dcp2 decapping enzyme in concert with the accessory activities of specific regulators commonly known as decapping activators or enhancers. These regulatory proteins include the general decapping activators Edc1, 2, and 3, Dhh1, Scd6, Pat1, and the Lsm1-7 complex, as well as the NMD-specific factors, Upf1, 2, and 3. Here, we focus on in vivo mRNA decapping regulation in yeast. We summarize recently uncovered molecular mechanisms that control selective targeting of the yeast decapping enzyme and discuss new roles for specific decapping activators in controlling decapping enzyme targeting, assembly of target-specific decapping complexes, and the monitoring of mRNA translation. Further, we discuss the kinetic contribution of mRNA decapping for overall decay of different substrate mRNAs and highlight experimental evidence pointing to the functional coordination and physical coupling between events in mRNA deadenylation, decapping, and 5'-3' exoribonucleolytic decay.
Collapse
Affiliation(s)
- Feng He
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01655
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01655
| |
Collapse
|
7
|
Kozlov D, Rodimova S, Kuznetsova D. The Role of MicroRNAs in Liver Functioning: from Biogenesis to Therapeutic Approaches (Review). Sovrem Tekhnologii Med 2023; 15:54-79. [PMID: 39967915 PMCID: PMC11832066 DOI: 10.17691/stm2023.15.5.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Indexed: 01/03/2025] Open
Abstract
Molecular diagnostics based on small non-coding RNA molecules (in particular microRNA) is a new direction in modern biomedicine and is considered a promising method for identification of a wide range of pathologies at an early stage, clinical phenotype assessment, as well as monitoring the course of the disease, evaluation of therapy efficacy and the risk of the disease recurrence. Currently, the role of microRNAs as the most important epigenetic regulator in cancer development has been proven within the studies of normal and pathogenic processes. However, currently, there are insignificant studies devoted to studying the role of microRNAs in functioning of other organs and tissues, as well as to development of possible therapeutic approaches based on microRNAs. A huge number of metabolic processes in the liver are controlled by microRNAs, which creates enormous potential for the use of microRNAs as a diagnostic marker and makes it a target for therapeutic intervention in metabolic, oncological, and even viral diseases of this organ. This review examines various aspects of biological functions of microRNAs in different types of liver cells. Both canonical and non-canonical pathways of biogenesis, epigenetic regulation mediated by microRNAs, as well as the microRNAs role in intercellular communication and the course of viral diseases are shown. The potential of microRNAs as a diagnostic marker for various liver pathologies is described, as well as therapeutic approaches and medicines based on microRNAs, which are approved for clinical use and currently being developed.
Collapse
Affiliation(s)
- D.S. Kozlov
- Laboratory Assistant, Scientific Laboratory of Molecular Biotechnologies, I Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Student, Institute of Biology and Biomedicine; National Research Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603022, Russia
| | - S.A. Rodimova
- Junior Researcher, Laboratory of Regenerative Medicine; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Junior Researcher, Scientific Laboratory of Molecular Biotechnologies, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - D.S. Kuznetsova
- PhD, Head of the Scientific Laboratory of Molecular Biotechnologies, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Head of the Research Laboratory for Molecular Genetic Researches, Institute of Clinical Medicine; National Research Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603022, Russia
| |
Collapse
|
8
|
Krempl C, Lazzaretti D, Sprangers R. A structural biology view on the enzymes involved in eukaryotic mRNA turnover. Biol Chem 2023; 404:1101-1121. [PMID: 37709756 DOI: 10.1515/hsz-2023-0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023]
Abstract
The cellular environment contains numerous ribonucleases that are dedicated to process mRNA transcripts that have been targeted for degradation. Here, we review the three dimensional structures of the ribonuclease complexes (Pan2-Pan3, Ccr4-Not, Xrn1, exosome) and the mRNA decapping enzymes (Dcp2, DcpS) that are involved in mRNA turnover. Structures of major parts of these proteins have been experimentally determined. These enzymes and factors do not act in isolation, but are embedded in interaction networks which regulate enzyme activity and ensure that the appropriate substrates are recruited. The structural details of the higher order complexes that form can, in part, be accurately deduced from known structural data of sub-complexes. Interestingly, many of the ribonuclease and decapping enzymes have been observed in structurally different conformations. Together with experimental data, this highlights that structural changes are often important for enzyme function. We conclude that the known structural data of mRNA decay factors provide important functional insights, but that static structural data needs to be complemented with information regarding protein motions to complete the picture of how transcripts are turned over. In addition, we highlight multiple aspects that influence mRNA turnover rates, but that have not been structurally characterized so far.
Collapse
Affiliation(s)
- Christina Krempl
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Daniela Lazzaretti
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Remco Sprangers
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
9
|
Zhao Q, Pavanello L, Bartlam M, Winkler GS. Structure and function of molecular machines involved in deadenylation-dependent 5'-3' mRNA degradation. Front Genet 2023; 14:1233842. [PMID: 37876592 PMCID: PMC10590902 DOI: 10.3389/fgene.2023.1233842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
In eukaryotic cells, the synthesis, processing, and degradation of mRNA are important processes required for the accurate execution of gene expression programmes. Fully processed cytoplasmic mRNA is characterised by the presence of a 5'cap structure and 3'poly(A) tail. These elements promote translation and prevent non-specific degradation. Degradation via the deadenylation-dependent 5'-3' degradation pathway can be induced by trans-acting factors binding the mRNA, such as RNA-binding proteins recognising sequence elements and the miRNA-induced repression complex. These factors recruit the core mRNA degradation machinery that carries out the following steps: i) shortening of the poly(A) tail by the Ccr4-Not and Pan2-Pan3 poly (A)-specific nucleases (deadenylases); ii) removal of the 5'cap structure by the Dcp1-Dcp2 decapping complex that is recruited by the Lsm1-7-Pat1 complex; and iii) degradation of the mRNA body by the 5'-3' exoribonuclease Xrn1. In this review, the biochemical function of the nucleases and accessory proteins involved in deadenylation-dependent mRNA degradation will be reviewed with a particular focus on structural aspects of the proteins and enzymes involved.
Collapse
Affiliation(s)
- Qi Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Lorenzo Pavanello
- School of Pharmacy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | | |
Collapse
|
10
|
Caraba B, Stirpe M, Palermo V, Vaccher U, Bianchi MM, Falcone C, Mazzoni C. Yeast Lsm Pro-Apoptotic Mutants Show Defects in Autophagy. Int J Mol Sci 2023; 24:13708. [PMID: 37762007 PMCID: PMC10530990 DOI: 10.3390/ijms241813708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
LSM4 is an essential yeast gene encoding a component of different LSM complexes involved in the regulation of mRNA splicing, stability, and translation. In previous papers, we reported that the expression in S. cerevisiae of the K. lactis LSM4 gene lacking the C-terminal Q/N-rich domain in an Lsm4 null strain S. cerevisiae (Sclsm4Δ1) restored cell viability. Nevertheless, in this transformed strain, we observed some phenotypes that are typical markers of regulated cell death, reactive oxygen species (ROS), and oxidated RNA accumulation. In this paper, we report that a similar truncation operated in the S. cerevisiae LSM4 gene confers on cells the same phenotypes observed with the K. lactis lsm4Δ1 gene. Up until now, there was no evidence of the direct involvement of LSM4 in autophagy. Here we found that the Sclsm4Δ1 mutant showed a block in the autophagic process and was very sensitive to nitrogen starvation or treatment with low doses of rapamycin, an inducer of autophagy. Moreover, both during nitrogen starvation and aging, the Sclsm4Δ1 mutant accumulated cytoplasmic autophagy-related structures, suggesting a role of Lsm4 in a later step of the autophagy process.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cristina Mazzoni
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy; (B.C.); (M.S.); (V.P.); (U.V.); (M.M.B.); (C.F.)
| |
Collapse
|
11
|
Kaur P, Nagar S, Mehta R, Sahadeo K, Vancura A. Hydroxyurea and inactivation of checkpoint kinase MEC1 inhibit transcription termination and pre-mRNA cleavage at polyadenylation sites in budding yeast. Sci Rep 2023; 13:13106. [PMID: 37567961 PMCID: PMC10421882 DOI: 10.1038/s41598-023-40294-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023] Open
Abstract
The DNA damage response (DDR) is an evolutionarily conserved process essential for cell survival. The transcription changes triggered by DDR depend on the nature of DNA damage, activation of checkpoint kinases, and the stage of cell cycle. The transcription changes can be localized and affect only damaged DNA, but they can be also global and affect genes that are not damaged. While the purpose of localized transcription inhibition is to avoid transcription of damaged genes and make DNA accessible for repair, the purpose and mechanisms of global transcription inhibition of undamaged genes are less well understood. We show here that a brief cell treatment with hydroxyurea (HU) globally inhibits RNA synthesis and transcription by RNA polymerase I, II, and III (RNAPI, RNAPII, and RNAPIII). HU reduces efficiency of transcription termination and inhibits pre-mRNA cleavage at the polyadenylation (pA) sites, destabilizes mRNAs, and shortens poly(A) tails of mRNAs, indicating defects in pre-mRNA 3' end processing. Inactivation of the checkpoint kinase Mec1p downregulates the efficiency of transcription termination and reduces the efficiency of pre-mRNAs clevage at the pA sites, suggesting the involvement of DNA damage checkpoint in transcription termination and pre-mRNA 3' end processing.
Collapse
Affiliation(s)
- Pritpal Kaur
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Shreya Nagar
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Riddhi Mehta
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Kyle Sahadeo
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Ales Vancura
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA.
| |
Collapse
|
12
|
Pavanello L, Hall M, Winkler GS. Regulation of eukaryotic mRNA deadenylation and degradation by the Ccr4-Not complex. Front Cell Dev Biol 2023; 11:1153624. [PMID: 37152278 PMCID: PMC10157403 DOI: 10.3389/fcell.2023.1153624] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/20/2023] [Indexed: 05/09/2023] Open
Abstract
Accurate and precise regulation of gene expression programmes in eukaryotes involves the coordinated control of transcription, mRNA stability and translation. In recent years, significant progress has been made about the role of sequence elements in the 3' untranslated region for the regulation of mRNA degradation, and a model has emerged in which recruitment of the Ccr4-Not complex is the critical step in the regulation of mRNA decay. Recruitment of the Ccr4-Not complex to a target mRNA results in deadenylation mediated by the Caf1 and Ccr4 catalytic subunits of the complex. Following deadenylation, the 5' cap structure is removed, and the mRNA subjected to 5'-3' degradation. Here, the role of the human Ccr4-Not complex in cytoplasmic deadenylation of mRNA is reviewed, with a particular focus on mechanisms of its recruitment to mRNA by sequence motifs in the 3' untranslated region, codon usage, as well as general mechanisms involving the poly(A) tail.
Collapse
Affiliation(s)
- Lorenzo Pavanello
- School of Pharmacy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Michael Hall
- School of Pharmacy, University of Nottingham, University Park, Nottingham, United Kingdom
| | | |
Collapse
|
13
|
Deng M, Wang X, Xiong Z, Tang P. Control of RNA degradation in cell fate decision. Front Cell Dev Biol 2023; 11:1164546. [PMID: 37025171 PMCID: PMC10070868 DOI: 10.3389/fcell.2023.1164546] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/03/2023] [Indexed: 04/08/2023] Open
Abstract
Cell fate is shaped by a unique gene expression program, which reflects the concerted action of multilayered precise regulation. Substantial research attention has been paid to the contribution of RNA biogenesis to cell fate decisions. However, increasing evidence shows that RNA degradation, well known for its function in RNA processing and the surveillance of aberrant transcripts, is broadly engaged in cell fate decisions, such as maternal-to-zygotic transition (MZT), stem cell differentiation, or somatic cell reprogramming. In this review, we first look at the diverse RNA degradation pathways in the cytoplasm and nucleus. Then, we summarize how selective transcript clearance is regulated and integrated into the gene expression regulation network for the establishment, maintenance, and exit from a special cellular state.
Collapse
Affiliation(s)
- Mingqiang Deng
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiwei Wang
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Zhi Xiong
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou, China
| | - Peng Tang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- *Correspondence: Peng Tang,
| |
Collapse
|
14
|
Forster DT, Li SC, Yashiroda Y, Yoshimura M, Li Z, Isuhuaylas LAV, Itto-Nakama K, Yamanaka D, Ohya Y, Osada H, Wang B, Bader GD, Boone C. BIONIC: biological network integration using convolutions. Nat Methods 2022; 19:1250-1261. [PMID: 36192463 PMCID: PMC11236286 DOI: 10.1038/s41592-022-01616-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 08/16/2022] [Indexed: 01/21/2023]
Abstract
Biological networks constructed from varied data can be used to map cellular function, but each data type has limitations. Network integration promises to address these limitations by combining and automatically weighting input information to obtain a more accurate and comprehensive representation of the underlying biology. We developed a deep learning-based network integration algorithm that incorporates a graph convolutional network framework. Our method, BIONIC (Biological Network Integration using Convolutions), learns features that contain substantially more functional information compared to existing approaches. BIONIC has unsupervised and semisupervised learning modes, making use of available gene function annotations. BIONIC is scalable in both size and quantity of the input networks, making it feasible to integrate numerous networks on the scale of the human genome. To demonstrate the use of BIONIC in identifying new biology, we predicted and experimentally validated essential gene chemical-genetic interactions from nonessential gene profiles in yeast.
Collapse
Affiliation(s)
- Duncan T Forster
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada
| | - Sheena C Li
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Yoko Yashiroda
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Mami Yoshimura
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Zhijian Li
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | | | - Kaori Itto-Nakama
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Daisuke Yamanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Osada
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Bo Wang
- Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada.
- Peter Munk Cardiac Center, University Health Network, Toronto, Ontario, Canada.
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| | - Gary D Bader
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.
- The Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
| | - Charles Boone
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.
| |
Collapse
|
15
|
Abstract
The 5'-terminal cap is a fundamental determinant of eukaryotic gene expression which facilitates cap-dependent translation and protects mRNAs from exonucleolytic degradation. Enzyme-directed hydrolysis of the cap (decapping) decisively affects mRNA expression and turnover, and is a heavily regulated event. Following the identification of the decapping holoenzyme (Dcp1/2) over two decades ago, numerous studies revealed the complexity of decapping regulation across species and cell types. A conserved set of Dcp1/2-associated proteins, implicated in decapping activation and molecular scaffolding, were identified through genetic and molecular interaction studies, and yet their exact mechanisms of action are only emerging. In this review, we discuss the prevailing models on the roles and assembly of decapping co-factors, with considerations of conservation across species and comparison across physiological contexts. We next discuss the functional convergences of decapping machineries with other RNA-protein complexes in cytoplasmic P bodies and compare current views on their impact on mRNA stability and translation. Lastly, we review the current models of decapping activation and highlight important gaps in our current understanding.
Collapse
Affiliation(s)
- Elva Vidya
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Thomas F. Duchaine
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| |
Collapse
|
16
|
Naeli P, Winter T, Hackett AP, Alboushi L, Jafarnejad SM. The intricate balance between microRNA-induced mRNA decay and translational repression. FEBS J 2022; 290:2508-2524. [PMID: 35247033 DOI: 10.1111/febs.16422] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/08/2022] [Accepted: 03/03/2022] [Indexed: 12/23/2022]
Abstract
Post-transcriptional regulation of messenger RNAs (mRNAs) (i.e., mechanisms that control translation, stability and localization) is a critical focal point in spatiotemporal regulation of gene expression in response to changes in environmental conditions. The human genome encodes ~ 2000 microRNAs (miRNAs), each of which could control the expression of hundreds of protein-coding mRNAs by inducing translational repression and/or promoting mRNA decay. While mRNA degradation is a terminal event, translational repression is reversible and can be employed for rapid response to internal or external cues. Recent years have seen significant progress in our understanding of how miRNAs induce degradation or translational repression of the target mRNAs. Here, we review the recent findings that illustrate the cellular machinery that contributes to miRNA-induced silencing, with a focus on the factors that could influence translational repression vs. decay.
Collapse
Affiliation(s)
- Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Timothy Winter
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Angela P Hackett
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Lilas Alboushi
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | | |
Collapse
|
17
|
Jiang ZY, Fan HY. Five questions toward mRNA degradation in oocytes and preimplantation embryos: When, who, to whom, how, and why? Biol Reprod 2022; 107:62-75. [DOI: 10.1093/biolre/ioac014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
RNA, the primary product of the genome, is subject to various biological events during its lifetime. During mammalian gametogenesis and early embryogenesis, germ cells and preimplantation embryos undergo marked changes in the transcriptome, including mRNA turnover. Various factors, including specialized proteins, RNAs, and organelles, function in an intricate degradation system, and the degradation selectivity is determined by effectors and their target mRNAs. RNA homeostasis regulators and surveillance factors function in the global transcriptome of oocytes and somatic cells. Other factors, including BTG4, PABPN1L, the CCR4-NOT subunits, CNOT6L and CNOT7, and TUTs, are responsible for two maternal mRNA avalanches: M- and Z-decay. In this review, we discuss recent advances in mRNA degradation mechanisms in mammalian oocytes and preimplantation embryos. We focused on the studies in mice, as a model mammalian species, and on RNA turnover effectors and the cis-elements in targeting RNAs.
Collapse
Affiliation(s)
- Zhi-Yan Jiang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
18
|
English AM, Green KM, Moon SL. A (dis)integrated stress response: Genetic diseases of eIF2α regulators. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1689. [PMID: 34463036 DOI: 10.1002/wrna.1689] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 01/28/2023]
Abstract
The integrated stress response (ISR) is a conserved mechanism by which eukaryotic cells remodel gene expression to adapt to intrinsic and extrinsic stressors rapidly and reversibly. The ISR is initiated when stress-activated protein kinases phosphorylate the major translation initiation factor eukaryotic translation initiation factor 2ɑ (eIF2ɑ), which globally suppresses translation initiation activity and permits the selective translation of stress-induced genes including important transcription factors such as activating transcription factor 4 (ATF4). Translationally repressed messenger RNAs (mRNAs) and noncoding RNAs assemble into cytoplasmic RNA-protein granules and polyadenylated RNAs are concomitantly stabilized. Thus, regulated changes in mRNA translation, stability, and localization to RNA-protein granules contribute to the reprogramming of gene expression that defines the ISR. We discuss fundamental mechanisms of RNA regulation during the ISR and provide an overview of a growing class of genetic disorders associated with mutant alleles of key translation factors in the ISR pathway. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease Translation > Translation Regulation RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Alyssa M English
- Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Katelyn M Green
- Department of Chemistry, Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephanie L Moon
- Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
19
|
Derksen A, Shih HY, Forget D, Darbelli L, Tran LT, Poitras C, Guerrero K, Tharun S, Alkuraya FS, Kurdi WI, Nguyen CTE, Laberge AM, Si Y, Gauthier MS, Bonkowsky JL, Coulombe B, Bernard G. Variants in LSM7 impair LSM complexes assembly, neurodevelopment in zebrafish and may be associated with an ultra-rare neurological disease. HGG ADVANCES 2021; 2:100034. [PMID: 35047835 PMCID: PMC8756503 DOI: 10.1016/j.xhgg.2021.100034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/28/2021] [Indexed: 11/15/2022] Open
Abstract
Leukodystrophies, genetic neurodevelopmental and/or neurodegenerative disorders of cerebral white matter, result from impaired myelin homeostasis and metabolism. Numerous genes have been implicated in these heterogeneous disorders; however, many individuals remain without a molecular diagnosis. Using whole-exome sequencing, biallelic variants in LSM7 were uncovered in two unrelated individuals, one with a leukodystrophy and the other who died in utero. LSM7 is part of the two principle LSM protein complexes in eukaryotes, namely LSM1-7 and LSM2-8. Here, we investigate the molecular and functional outcomes of these LSM7 biallelic variants in vitro and in vivo. Affinity purification-mass spectrometry of the LSM7 variants showed defects in the assembly of both LSM complexes. Lsm7 knockdown in zebrafish led to central nervous system defects, including impaired oligodendrocyte development and motor behavior. Our findings demonstrate that variants in LSM7 cause misassembly of the LSM complexes, impair neurodevelopment of the zebrafish, and may be implicated in human disease. The identification of more affected individuals is needed before the molecular mechanisms of mRNA decay and splicing regulation are added to the categories of biological dysfunctions implicated in leukodystrophies, neurodevelopmental and/or neurodegenerative diseases.
Collapse
|
20
|
Lekontseva NV, Stolboushkina EA, Nikulin AD. Diversity of LSM Family Proteins: Similarities and Differences. BIOCHEMISTRY (MOSCOW) 2021; 86:S38-S49. [PMID: 33827399 DOI: 10.1134/s0006297921140042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Members of the Lsm protein family are found in all three domains of life: bacteria, archaea, and eukarya. They are involved in numerous processes associated with RNA processing and gene expression regulation. A common structural feature of all Lsm family proteins is the presence of the Sm fold consisting of a five-stranded β-sheet and an α-helix at the N-terminus. Heteroheptameric eukaryotic Sm and Lsm proteins participate in the formation of spliceosomes and mRNA decapping. Homohexameric bacterial Lsm protein, Hfq, is involved in the regulation of transcription of different mRNAs by facilitating their interactions with small regulatory RNAs. Furthermore, recently obtained data indicate a new role of Hfq as a ribosome biogenesis factor, as it mediates formation of the productive structure of the 17S rRNA 3'- and 5'-sequences, facilitating their further processing by RNases. Lsm archaeal proteins (SmAPs) form homoheptamers and likely interact with single-stranded uridine-rich RNA elements, although the role of these proteins in archaea is still poorly understood. In this review, we discuss the structural features of the Lsm family proteins from different life domains and their structure-function relationships.
Collapse
Affiliation(s)
- Natalia V Lekontseva
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Elena A Stolboushkina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Alexey D Nikulin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
21
|
Scheer H, de Almeida C, Ferrier E, Simonnot Q, Poirier L, Pflieger D, Sement FM, Koechler S, Piermaria C, Krawczyk P, Mroczek S, Chicher J, Kuhn L, Dziembowski A, Hammann P, Zuber H, Gagliardi D. The TUTase URT1 connects decapping activators and prevents the accumulation of excessively deadenylated mRNAs to avoid siRNA biogenesis. Nat Commun 2021; 12:1298. [PMID: 33637717 PMCID: PMC7910438 DOI: 10.1038/s41467-021-21382-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Uridylation is a widespread modification destabilizing eukaryotic mRNAs. Yet, molecular mechanisms underlying TUTase-mediated mRNA degradation remain mostly unresolved. Here, we report that the Arabidopsis TUTase URT1 participates in a molecular network connecting several translational repressors/decapping activators. URT1 directly interacts with DECAPPING 5 (DCP5), the Arabidopsis ortholog of human LSM14 and yeast Scd6, and this interaction connects URT1 to additional decay factors like DDX6/Dhh1-like RNA helicases. Nanopore direct RNA sequencing reveals a global role of URT1 in shaping poly(A) tail length, notably by preventing the accumulation of excessively deadenylated mRNAs. Based on in vitro and in planta data, we propose a model that explains how URT1 could reduce the accumulation of oligo(A)-tailed mRNAs both by favoring their degradation and because 3' terminal uridines intrinsically hinder deadenylation. Importantly, preventing the accumulation of excessively deadenylated mRNAs avoids the biogenesis of illegitimate siRNAs that silence endogenous mRNAs and perturb Arabidopsis growth and development.
Collapse
Affiliation(s)
- Hélène Scheer
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Caroline de Almeida
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Emilie Ferrier
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Quentin Simonnot
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Laure Poirier
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - David Pflieger
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - François M Sement
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Sandrine Koechler
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Christina Piermaria
- Plateforme Protéomique Strasbourg Esplanade du CNRS, Université de Strasbourg, Strasbourg, France
| | - Paweł Krawczyk
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Seweryn Mroczek
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Johana Chicher
- Plateforme Protéomique Strasbourg Esplanade du CNRS, Université de Strasbourg, Strasbourg, France
| | - Lauriane Kuhn
- Plateforme Protéomique Strasbourg Esplanade du CNRS, Université de Strasbourg, Strasbourg, France
| | - Andrzej Dziembowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Philippe Hammann
- Plateforme Protéomique Strasbourg Esplanade du CNRS, Université de Strasbourg, Strasbourg, France
| | - Hélène Zuber
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France.
| | - Dominique Gagliardi
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
22
|
Gilet J, Conte R, Torchet C, Benard L, Lafontaine I. Additional Layer of Regulation via Convergent Gene Orientation in Yeasts. Mol Biol Evol 2020; 37:365-378. [PMID: 31580446 PMCID: PMC6993858 DOI: 10.1093/molbev/msz221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Convergent gene pairs can produce transcripts with complementary sequences. We had shown that mRNA duplexes form in vivo in Saccharomyces cerevisiae via interactions of mRNA overlapping 3′-ends and can lead to posttranscriptional regulatory events. Here we show that mRNA duplex formation is restricted to convergent genes separated by short intergenic distance, independently of their 3′-untranslated region (UTR) length. We disclose an enrichment in genes involved in biological processes related to stress among these convergent genes. They are markedly conserved in convergent orientation in budding yeasts, meaning that this mode of posttranscriptional regulation could be shared in these organisms, conferring an additional level for modulating stress response. We thus investigated the mechanistic advantages potentially conferred by 3′-UTR mRNA interactions. Analysis of genome-wide transcriptome data revealed that Pat1 and Lsm1 factors, having 3′-UTR binding preference and participating to the remodeling of messenger ribonucleoprotein particles, bind differently these messenger-interacting mRNAs forming duplexes in comparison to mRNAs that do not interact (solo mRNAs). Functionally, messenger-interacting mRNAs show limited translational repression upon stress. We thus propose that mRNA duplex formation modulates the regulation of mRNA expression by limiting their access to translational repressors. Our results thus show that posttranscriptional regulation is an additional factor that determines the order of coding genes.
Collapse
Affiliation(s)
- Jules Gilet
- Institut de Biologie Physico-Chimique, UMR7141 Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, CNRS, Sorbonne Université, Paris, France.,Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Romain Conte
- Institut de Biologie Physico-Chimique, UMR7141 Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, CNRS, Sorbonne Université, Paris, France.,Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Claire Torchet
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Lionel Benard
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Ingrid Lafontaine
- Institut de Biologie Physico-Chimique, UMR7141 Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, CNRS, Sorbonne Université, Paris, France.,Institut de Biologie Physico-Chimique, FRC 550, CNRS, Paris, France
| |
Collapse
|
23
|
Lobel JH, Gross JD. Pdc2/Pat1 increases the range of decay factors and RNA bound by the Lsm1-7 complex. RNA (NEW YORK, N.Y.) 2020; 26:1380-1388. [PMID: 32513655 PMCID: PMC7491320 DOI: 10.1261/rna.075812.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/29/2020] [Indexed: 05/31/2023]
Abstract
Pat1, known as Pdc2 in fission yeast, promotes the activation and assembly of multiple proteins during mRNA decay. After deadenylation, the Pat1/Lsm1-7 complex binds to transcripts containing oligo(A) tails, which can be modified by the addition of several terminal uridine residues. Pat1 enhances Lsm1-7 binding to the 3' end, but it is unknown how this interaction is influenced by nucleotide composition. Here we examine Pat1/Lsm1-7 binding to a series of oligoribonucleotides containing different A/U contents using recombinant purified proteins from fission yeast. We observe a positive correlation between fractional uridine content and Lsm1-7 binding affinity. Addition of Pat1 broadens RNA specificity of Lsm1-7 by enhancing binding to A-rich RNAs and increases cooperativity on all oligonucleotides tested. Consistent with increased cooperativity, Pat1 promotes multimerization of the Lsm1-7 complex, which is potentiated by RNA binding. Furthermore, the inherent ability of Pat1 to multimerize drives liquid-liquid phase separation with multivalent decapping enzyme complexes of Dcp1/Dcp2. Our results uncover how Pat1 regulates RNA binding and higher order assembly by mRNA decay factors.
Collapse
Affiliation(s)
- Joseph H Lobel
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, California 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, USA
| | - John D Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
24
|
Montemayor EJ, Virta JM, Hayes SM, Nomura Y, Brow DA, Butcher SE. Molecular basis for the distinct cellular functions of the Lsm1-7 and Lsm2-8 complexes. RNA (NEW YORK, N.Y.) 2020; 26:1400-1413. [PMID: 32518066 PMCID: PMC7491322 DOI: 10.1261/rna.075879.120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/03/2020] [Indexed: 05/04/2023]
Abstract
Eukaryotes possess eight highly conserved Lsm (like Sm) proteins that assemble into circular, heteroheptameric complexes, bind RNA, and direct a diverse range of biological processes. Among the many essential functions of Lsm proteins, the cytoplasmic Lsm1-7 complex initiates mRNA decay, while the nuclear Lsm2-8 complex acts as a chaperone for U6 spliceosomal RNA. It has been unclear how these complexes perform their distinct functions while differing by only one out of seven subunits. Here, we elucidate the molecular basis for Lsm-RNA recognition and present four high-resolution structures of Lsm complexes bound to RNAs. The structures of Lsm2-8 bound to RNA identify the unique 2',3' cyclic phosphate end of U6 as a prime determinant of specificity. In contrast, the Lsm1-7 complex strongly discriminates against cyclic phosphates and tightly binds to oligouridylate tracts with terminal purines. Lsm5 uniquely recognizes purine bases, explaining its divergent sequence relative to other Lsm subunits. Lsm1-7 loads onto RNA from the 3' end and removal of the Lsm1 carboxy-terminal region allows Lsm1-7 to scan along RNA, suggesting a gated mechanism for accessing internal binding sites. These data reveal the molecular basis for RNA binding by Lsm proteins, a fundamental step in the formation of molecular assemblies that are central to eukaryotic mRNA metabolism.
Collapse
Affiliation(s)
- Eric J Montemayor
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | - Johanna M Virta
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Samuel M Hayes
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Yuichiro Nomura
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - David A Brow
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
25
|
Charenton C, Gaudon-Plesse C, Back R, Ulryck N, Cosson L, Séraphin B, Graille M. Pby1 is a direct partner of the Dcp2 decapping enzyme. Nucleic Acids Res 2020; 48:6353-6366. [PMID: 32396195 PMCID: PMC7293026 DOI: 10.1093/nar/gkaa337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/17/2020] [Accepted: 04/23/2020] [Indexed: 12/27/2022] Open
Abstract
Most eukaryotic mRNAs harbor a characteristic 5′ m7GpppN cap that promotes pre-mRNA splicing, mRNA nucleocytoplasmic transport and translation while also protecting mRNAs from exonucleolytic attacks. mRNA caps are eliminated by Dcp2 during mRNA decay, allowing 5′-3′ exonucleases to degrade mRNA bodies. However, the Dcp2 decapping enzyme is poorly active on its own and requires binding to stable or transient protein partners to sever the cap of target mRNAs. Here, we analyse the role of one of these partners, the yeast Pby1 factor, which is known to co-localize into P-bodies together with decapping factors. We report that Pby1 uses its C-terminal domain to directly bind to the decapping enzyme. We solved the structure of this Pby1 domain alone and bound to the Dcp1–Dcp2–Edc3 decapping complex. Structure-based mutant analyses reveal that Pby1 binding to the decapping enzyme is required for its recruitment into P-bodies. Moreover, Pby1 binding to the decapping enzyme stimulates growth in conditions in which decapping activation is compromised. Our results point towards a direct connection of Pby1 with decapping and P-body formation, both stemming from its interaction with the Dcp1–Dcp2 holoenzyme.
Collapse
Affiliation(s)
- Clément Charenton
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, IP Paris, 91128 Palaiseau, France
| | - Claudine Gaudon-Plesse
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de Santé et de Recherche Médicale (INSERM) U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Régis Back
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, IP Paris, 91128 Palaiseau, France
| | - Nathalie Ulryck
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, IP Paris, 91128 Palaiseau, France
| | - Loreline Cosson
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, IP Paris, 91128 Palaiseau, France
| | - Bertrand Séraphin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de Santé et de Recherche Médicale (INSERM) U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, IP Paris, 91128 Palaiseau, France
| |
Collapse
|
26
|
Roithová A, Feketová Z, Vaňáčová Š, Staněk D. DIS3L2 and LSm proteins are involved in the surveillance of Sm ring-deficient snRNAs. Nucleic Acids Res 2020; 48:6184-6197. [PMID: 32374871 PMCID: PMC7293007 DOI: 10.1093/nar/gkaa301] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/06/2020] [Accepted: 04/23/2020] [Indexed: 01/31/2023] Open
Abstract
Spliceosomal small nuclear ribonucleoprotein particles (snRNPs) undergo a complex maturation pathway containing multiple steps in the nucleus and in the cytoplasm. snRNP biogenesis is strictly proofread and several quality control checkpoints are placed along the pathway. Here, we analyzed the fate of small nuclear RNAs (snRNAs) that are unable to acquire a ring of Sm proteins. We showed that snRNAs lacking the Sm ring are unstable and accumulate in P-bodies in an LSm1-dependent manner. We further provide evidence that defective snRNAs without the Sm binding site are uridylated at the 3′ end and associate with DIS3L2 3′→5′ exoribonuclease and LSm proteins. Finally, inhibition of 5′→3′ exoribonuclease XRN1 increases association of ΔSm snRNAs with DIS3L2, which indicates competition and compensation between these two degradation enzymes. Together, we provide evidence that defective snRNAs without the Sm ring are uridylated and degraded by alternative pathways involving either DIS3L2 or LSm proteins and XRN1.
Collapse
Affiliation(s)
- Adriana Roithová
- Laboratory of RNA Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic.,Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Zuzana Feketová
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5/A35, 625 00 Brno, Czech Republic
| | - Štěpánka Vaňáčová
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5/A35, 625 00 Brno, Czech Republic
| | - David Staněk
- Laboratory of RNA Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| |
Collapse
|
27
|
|
28
|
Lobel JH, Tibble RW, Gross JD. Pat1 activates late steps in mRNA decay by multiple mechanisms. Proc Natl Acad Sci U S A 2019; 116:23512-23517. [PMID: 31690658 PMCID: PMC6876151 DOI: 10.1073/pnas.1905455116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Pat1 is a hub for mRNA metabolism, acting in pre-mRNA splicing, translation repression, and mRNA decay. A critical step in all 5'-3' mRNA decay pathways is removal of the 5' cap structure, which precedes and permits digestion of the RNA body by conserved exonucleases. During bulk 5'-3' decay, the Pat1/Lsm1-7 complex engages mRNA at the 3' end and promotes hydrolysis of the cap structure by Dcp1/Dcp2 at the 5' end through an unknown mechanism. We reconstitute Pat1 with 5' and 3' decay factors and show how it activates multiple steps in late mRNA decay. First, we find that Pat1 stabilizes binding of the Lsm1-7 complex to RNA using two conserved short-linear interaction motifs. Second, Pat1 directly activates decapping by binding elements in the disordered C-terminal extension of Dcp2, alleviating autoinhibition and promoting substrate binding. Our results uncover the molecular mechanism of how separate domains of Pat1 coordinate the assembly and activation of a decapping messenger ribonucleoprotein (mRNP) that promotes 5'-3' mRNA degradation.
Collapse
Affiliation(s)
- Joseph H Lobel
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, CA 94158
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Ryan W Tibble
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, CA 94158
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - John D Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| |
Collapse
|
29
|
Gatica D, Klionsky DJ. Towards understanding mRNA-binding protein specificity: lessons from post-transcriptional regulation of ATG mRNA during nitrogen starvation-induced autophagy. Curr Genet 2019; 65:847-849. [PMID: 30783742 PMCID: PMC6625835 DOI: 10.1007/s00294-019-00943-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 01/02/2023]
Abstract
In this report, we discuss recent discoveries concerning the effects and specificity of different RNA-binding proteins (RBPs) as they pertain to macroautophagy/autophagy. Autophagy is a fundamental cellular degradation and recycling pathway, which has attracted substantial attention because defects in this process are associated with a wide range of human disorders including cancer, neurodegeneration, and metabolic diseases. Autophagy must be tightly controlled-either too much or too little can be deleterious. Therefore, understanding the complex regulation of autophagy is critical to achieve the goal of modulating the process for therapeutic purposes. Autophagy occurs constitutively, but is upregulated in response to stress. Here, we highlight a role for various RBPs in regulating particular autophagy-related (ATG) mRNAs. We briefly summarize recent publications, which focus on the RBPs Dhh1, Pat1, Lsm1-Lsm7 and Dcp2 in the post-transcriptional regulation of certain mRNAs that encode key components of the autophagy machinery. Finally, we consider how the established role of these and other RBPs in enhancing decapping and downregulating mRNAs is not their only function when it comes to regulating stress-related transcripts. Most ATG genes are downregulated during growth, in contrast to the vast majority of the genome; we discuss how certain regulatory factors play a key role in maintaining autophagy at a basal level during growth, while allowing for a rapid increase when cells encounter various stress conditions.
Collapse
Affiliation(s)
- Damián Gatica
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Daniel J Klionsky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
30
|
Vindry C, Weil D, Standart N. Pat1 RNA-binding proteins: Multitasking shuttling proteins. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1557. [PMID: 31231973 DOI: 10.1002/wrna.1557] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
Abstract
Post-transcriptional regulation of gene expression is largely achieved at the level of splicing in the nucleus, and translation and mRNA decay in the cytosol. While the regulation may be global, through the direct inhibition of central factors, such as the spliceosome, translation initiation factors and mRNA decay enzymes, in many instances transcripts bearing specific sequences or particular features are regulated by RNA-binding factors which mobilize or impede recruitment of these machineries. This review focuses on the Pat1 family of RNA-binding proteins, conserved from yeast to man, that enhance the removal of the 5' cap by the decapping enzyme Dcp1/2, leading to mRNA decay and also have roles in translational repression. Like Dcp1/2, other decapping coactivators, including DDX6 and Edc3, and translational repressor proteins, Pat1 proteins are enriched in cytoplasmic P-bodies, which have a principal role in mRNA storage. They also concentrate in nuclear Cajal-bodies and splicing speckles and in man, impact splice site choice in some pre-mRNAs. Pivotal to these functions is the association of Pat1 proteins with distinct heptameric Lsm complexes: the cytosolic Pat1/Lsm1-7 complex mediates mRNA decay and the nuclear Pat1/Lsm2-8 complex alternative splicing. This dual role of human Pat1b illustrates the power of paralogous complexes to impact distinct processes in separate compartments. The review highlights our recent findings that Pat1b mediates the decay of AU-rich mRNAs, which are particularly enriched in P-bodies, unlike the decapping activator DDX6, which acts on GC-rich mRNAs, that tend to be excluded from P-bodies, and discuss the implications for mRNA decay pathways. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability RNRNA Processing > Splicing Regulation/Alternative Splicing Translation > Translation Regulation.
Collapse
Affiliation(s)
- Caroline Vindry
- Centre International de Recherche en Infectiologie, CIRI, Lyon, France
| | - Dominique Weil
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire de Biologie du Développement, Paris, France
| | - Nancy Standart
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
31
|
Sohrabi-Jahromi S, Hofmann KB, Boltendahl A, Roth C, Gressel S, Baejen C, Soeding J, Cramer P. Transcriptome maps of general eukaryotic RNA degradation factors. eLife 2019; 8:47040. [PMID: 31135339 PMCID: PMC6570525 DOI: 10.7554/elife.47040] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/27/2019] [Indexed: 12/27/2022] Open
Abstract
RNA degradation pathways enable RNA processing, the regulation of RNA levels, and the surveillance of aberrant or poorly functional RNAs in cells. Here we provide transcriptome-wide RNA-binding profiles of 30 general RNA degradation factors in the yeast Saccharomyces cerevisiae. The profiles reveal the distribution of degradation factors between different RNA classes. They are consistent with the canonical degradation pathway for closed-loop forming mRNAs after deadenylation. Modeling based on mRNA half-lives suggests that most degradation factors bind intact mRNAs, whereas decapping factors are recruited only for mRNA degradation, consistent with decapping being a rate-limiting step. Decapping factors preferentially bind mRNAs with non-optimal codons, consistent with rapid degradation of inefficiently translated mRNAs. Global analysis suggests that the nuclear surveillance machinery, including the complexes Nrd1/Nab3 and TRAMP4, targets aberrant nuclear RNAs and processes snoRNAs. Cells contain a large group of DNA-like molecules called RNAs. While DNA stores and preserves information, RNA influences how cells use and regulate that information. As such, regulating the quantities of different RNAs is a key part of how cells survive, grow, adapt and respond to changes. For example, messenger RNAs (or mRNAs for short) carry genetic information from DNA which the cell reads to produce proteins. RNAs that are not needed can be degraded and removed from the cell by RNA degradation proteins. Most RNA degradation proteins need to be able to bind to RNA in order to work. A technique called “photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation”, often shortened to PAR-CLIP, can detect these proteins on their targets. The PAR-CLIP technique irreversibly links RNA-binding proteins to RNA and then collects those proteins and their bound RNAs for analysis. As with DNA, the RNAs can be identified using genetic sequencing. Degradation often starts at RNA ends, where specialized structures protect the RNA from accidental damage. Using PAR-CLIP, Sohrabi-Jahromi, Hofmann et al performed a detailed study of 30 RNA degradation proteins in the yeast Saccharomyces cerevisiae. The results highlight the specialization of different proteins to different groups of RNAs. One group of proteins, for example, remove the protective ‘cap’ structure at the start of RNAs. Those mRNAs that are not efficiently producing proteins attracted a lot of these cap-removing proteins. The findings also identify proteins involved in RNA degradation in the cell nucleus – the compartment that houses most of the cell’s DNA. Together these findings provide an extensive data resource for cell biologists. It offers many links between different RNAs and their degradation proteins. Understanding these key cellular processes helps to reveal more about the mechanisms underlying all of biology. It can also shed light on what happens when these processes fail and the diseases that may result.
Collapse
Affiliation(s)
- Salma Sohrabi-Jahromi
- Quantitative and Computational Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Katharina B Hofmann
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Andrea Boltendahl
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Christian Roth
- Quantitative and Computational Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Saskia Gressel
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Carlo Baejen
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Johannes Soeding
- Quantitative and Computational Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
32
|
Morgan M, Kabayama Y, Much C, Ivanova I, Di Giacomo M, Auchynnikava T, Monahan JM, Vitsios DM, Vasiliauskaitė L, Comazzetto S, Rappsilber J, Allshire RC, Porse BT, Enright AJ, O’Carroll D. A programmed wave of uridylation-primed mRNA degradation is essential for meiotic progression and mammalian spermatogenesis. Cell Res 2019; 29:221-232. [PMID: 30617251 PMCID: PMC6420129 DOI: 10.1038/s41422-018-0128-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/20/2018] [Indexed: 02/08/2023] Open
Abstract
Several developmental stages of spermatogenesis are transcriptionally quiescent which presents major challenges associated with the regulation of gene expression. Here we identify that the zygotene to pachytene transition is not only associated with the resumption of transcription but also a wave of programmed mRNA degradation that is essential for meiotic progression. We explored whether terminal uridydyl transferase 4- (TUT4-) or TUT7-mediated 3' mRNA uridylation contributes to this wave of mRNA degradation during pachynema. Indeed, both TUT4 and TUT7 are expressed throughout most of spermatogenesis, however, loss of either TUT4 or TUT7 does not have any major impact upon spermatogenesis. Combined TUT4 and TUT7 (TUT4/7) deficiency results in embryonic growth defects, while conditional gene targeting revealed an essential role for TUT4/7 in pachytene progression. Loss of TUT4/7 results in the reduction of miRNA, piRNA and mRNA 3' uridylation. Although this reduction does not greatly alter miRNA or piRNA expression, TUT4/7-mediated uridylation is required for the clearance of many zygotene-expressed transcripts in pachytene cells. We find that TUT4/7-regulated transcripts in pachytene spermatocytes are characterized by having long 3' UTRs with length-adjusted enrichment for AU-rich elements. We also observed these features in TUT4/7-regulated maternal transcripts whose dosage was recently shown to be essential for sculpting a functional maternal transcriptome and meiosis. Therefore, mRNA 3' uridylation is a critical determinant of both male and female germline transcriptomes. In conclusion, we have identified a novel requirement for 3' uridylation-programmed zygotene mRNA clearance in pachytene spermatocytes that is essential for male meiotic progression.
Collapse
Affiliation(s)
- Marcos Morgan
- 0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK ,0000 0004 0627 3632grid.418924.2European Molecular Biology Laboratory (EMBL), Via Ramarini 32, 00015 Monterotondo, Italy ,0000 0004 1936 7988grid.4305.2Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF UK
| | - Yuka Kabayama
- 0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK ,0000 0004 1936 7988grid.4305.2Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF UK
| | - Christian Much
- 0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK ,0000 0004 0627 3632grid.418924.2European Molecular Biology Laboratory (EMBL), Via Ramarini 32, 00015 Monterotondo, Italy
| | - Ivayla Ivanova
- 0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK
| | - Monica Di Giacomo
- 0000 0004 0627 3632grid.418924.2European Molecular Biology Laboratory (EMBL), Via Ramarini 32, 00015 Monterotondo, Italy
| | - Tatsiana Auchynnikava
- 0000 0004 1936 7988grid.4305.2Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF UK
| | - Jack Michael Monahan
- 0000 0000 9709 7726grid.225360.0European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD UK
| | | | - Lina Vasiliauskaitė
- 0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK ,0000 0004 0627 3632grid.418924.2European Molecular Biology Laboratory (EMBL), Via Ramarini 32, 00015 Monterotondo, Italy
| | - Stefano Comazzetto
- 0000 0004 0627 3632grid.418924.2European Molecular Biology Laboratory (EMBL), Via Ramarini 32, 00015 Monterotondo, Italy
| | - Juri Rappsilber
- 0000 0004 1936 7988grid.4305.2Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF UK ,0000 0001 2292 8254grid.6734.6Institute of Biotechnology, Technische Universität Berlin, Berlin, 13355 Germany
| | - Robin Campbell Allshire
- 0000 0004 1936 7988grid.4305.2Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF UK
| | - Bo Torben Porse
- 0000 0001 0674 042Xgrid.5254.6Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, 2200 Denmark ,0000 0001 0674 042Xgrid.5254.6The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, 2200 Denmark ,0000 0001 0674 042Xgrid.5254.6Danish Stem Cell Centre (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, 2200 Denmark
| | - Anton James Enright
- 0000 0000 9709 7726grid.225360.0European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD UK
| | - Dónal O’Carroll
- 0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK ,0000 0004 1936 7988grid.4305.2Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF UK
| |
Collapse
|
33
|
Catalá R, Carrasco-López C, Perea-Resa C, Hernández-Verdeja T, Salinas J. Emerging Roles of LSM Complexes in Posttranscriptional Regulation of Plant Response to Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:167. [PMID: 30873189 PMCID: PMC6401655 DOI: 10.3389/fpls.2019.00167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/31/2019] [Indexed: 05/04/2023]
Abstract
It has long been assumed that the wide reprogramming of gene expression that modulates plant response to unfavorable environmental conditions is mainly controlled at the transcriptional level. A growing body of evidence, however, indicates that posttranscriptional regulatory mechanisms also play a relevant role in this control. Thus, the LSMs, a family of proteins involved in mRNA metabolism highly conserved in eukaryotes, have emerged as prominent regulators of plant tolerance to abiotic stress. Arabidopsis contains two main LSM ring-shaped heteroheptameric complexes, LSM1-7 and LSM2-8, with different subcellular localization and function. The LSM1-7 ring is part of the cytoplasmic decapping complex that regulates mRNA stability. On the other hand, the LSM2-8 complex accumulates in the nucleus to ensure appropriate levels of U6 snRNA and, therefore, correct pre-mRNA splicing. Recent studies reported unexpected results that led to a fundamental change in the assumed consideration that LSM complexes are mere components of the mRNA decapping and splicing cellular machineries. Indeed, these data have demonstrated that LSM1-7 and LSM2-8 rings operate in Arabidopsis by selecting specific RNA targets, depending on the environmental conditions. This specificity allows them to actively imposing particular gene expression patterns that fine-tune plant responses to abiotic stresses. In this review, we will summarize current and past knowledge on the role of LSM rings in modulating plant physiology, with special focus on their function in abiotic stress responses.
Collapse
|
34
|
Sieburth LE, Vincent JN. Beyond transcription factors: roles of mRNA decay in regulating gene expression in plants. F1000Res 2018; 7. [PMID: 30613385 PMCID: PMC6305221 DOI: 10.12688/f1000research.16203.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2018] [Indexed: 12/16/2022] Open
Abstract
Gene expression is typically quantified as RNA abundance, which is influenced by both synthesis (transcription) and decay. Cytoplasmic decay typically initiates by deadenylation, after which decay can occur through any of three cytoplasmic decay pathways. Recent advances reveal several mechanisms by which RNA decay is regulated to control RNA abundance. mRNA can be post-transcriptionally modified, either indirectly through secondary structure or through direct modifications to the transcript itself, sometimes resulting in subsequent changes in mRNA decay rates. mRNA abundances can also be modified by tapping into pathways normally used for RNA quality control. Regulated mRNA decay can also come about through post-translational modification of decapping complex subunits. Likewise, mRNAs can undergo changes in subcellular localization (for example, the deposition of specific mRNAs into processing bodies, or P-bodies, where stabilization and destabilization occur in a transcript- and context-dependent manner). Additionally, specialized functions of mRNA decay pathways were implicated in a genome-wide mRNA decay analysis in Arabidopsis. Advances made using plants are emphasized in this review, but relevant studies from other model systems that highlight RNA decay mechanisms that may also be conserved in plants are discussed.
Collapse
Affiliation(s)
- Leslie E Sieburth
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Jessica N Vincent
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
35
|
Gatica D, Hu G, Liu X, Zhang N, Williamson PR, Klionsky DJ. The Pat1-Lsm Complex Stabilizes ATG mRNA during Nitrogen Starvation-Induced Autophagy. Mol Cell 2018; 73:314-324.e4. [PMID: 30527663 DOI: 10.1016/j.molcel.2018.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 09/27/2018] [Accepted: 11/01/2018] [Indexed: 12/18/2022]
Abstract
Macroautophagy/autophagy is a key catabolic recycling pathway that requires fine-tuned regulation to prevent pathologies and preserve homeostasis. Here, we report a new post-transcriptional pathway regulating autophagy involving the Pat1-Lsm (Lsm1 to Lsm7) mRNA-binding complex. Under nitrogen-starvation conditions, Pat1-Lsm binds a specific subset of autophagy-related (ATG) transcripts and prevents their 3' to 5' degradation by the exosome complex, leading to ATG mRNA stabilization and accumulation. This process is regulated through Pat1 dephosphorylation, is necessary for the efficient expression of specific Atg proteins, and is required for robust autophagy induction during nitrogen starvation. To the best of our knowledge, this work presents the first example of ATG transcript regulation via 3' binding factors and exosomal degradation.
Collapse
Affiliation(s)
- Damián Gatica
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Guowu Hu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xu Liu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nannan Zhang
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter R Williamson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel J Klionsky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
36
|
He F, Celik A, Wu C, Jacobson A. General decapping activators target different subsets of inefficiently translated mRNAs. eLife 2018; 7:34409. [PMID: 30520724 PMCID: PMC6300357 DOI: 10.7554/elife.34409] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/04/2018] [Indexed: 12/18/2022] Open
Abstract
The Dcp1-Dcp2 decapping enzyme and the decapping activators Pat1, Dhh1, and Lsm1 regulate mRNA decapping, but their mechanistic integration is unknown. We analyzed the gene expression consequences of deleting PAT1, LSM1, or DHH1, or the DCP2 C-terminal domain, and found that: i) the Dcp2 C-terminal domain is an effector of both negative and positive regulation; ii) rather than being global activators of decapping, Pat1, Lsm1, and Dhh1 directly target specific subsets of yeast mRNAs and loss of the functions of each of these factors has substantial indirect consequences for genome-wide mRNA expression; and iii) transcripts targeted by Pat1, Lsm1, and Dhh1 exhibit only partial overlap, are generally translated inefficiently, and, as expected, are targeted to decapping-dependent decay. Our results define the roles of Pat1, Lsm1, and Dhh1 in decapping of general mRNAs and suggest that these factors may monitor mRNA translation and target unique features of individual mRNAs.
Collapse
Affiliation(s)
- Feng He
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Massachusetts, United States
| | - Alper Celik
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Massachusetts, United States
| | - Chan Wu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Massachusetts, United States
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Massachusetts, United States
| |
Collapse
|
37
|
Mugridge JS, Coller J, Gross JD. Structural and molecular mechanisms for the control of eukaryotic 5'-3' mRNA decay. Nat Struct Mol Biol 2018; 25:1077-1085. [PMID: 30518847 DOI: 10.1038/s41594-018-0164-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/31/2018] [Indexed: 12/15/2022]
Abstract
5'-3' RNA decay pathways are critical for quality control and regulation of gene expression. Structural and biochemical studies have provided insights into the key nucleases that carry out deadenylation, decapping, and exonucleolysis during 5'-3' decay, but detailed understanding of how these activities are coordinated is only beginning to emerge. Here we review recent mechanistic insights into the control of 5'-3' RNA decay, including coupling between translation and decay, coordination between the complexes and activities that process 5' and 3' RNA termini, conformational control of enzymatic activity, liquid phase separation, and RNA modifications.
Collapse
Affiliation(s)
- Jeffrey S Mugridge
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Jeff Coller
- The Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH, USA
| | - John D Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
38
|
Zigáčková D, Vaňáčová Š. The role of 3' end uridylation in RNA metabolism and cellular physiology. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0171. [PMID: 30397107 DOI: 10.1098/rstb.2018.0171] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2018] [Indexed: 12/14/2022] Open
Abstract
Most eukaryotic RNAs are posttranscriptionally modified. The majority of modifications promote RNA maturation, others may regulate function and stability. The 3' terminal non-templated oligouridylation is a widespread modification affecting many cellular RNAs at some stage of their life cycle. It has diverse roles in RNA metabolism. The most prevalent is the regulation of stability and quality control. On the cellular and organismal level, it plays a critical role in a number of pathways, such as cell cycle regulation, cell death, development or viral infection. Defects in uridylation have been linked to several diseases. This review summarizes the current knowledge about the role of the 3' terminal oligo(U)-tailing in biology of various RNAs in eukaryotes and describes key factors involved in these pathways.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.
Collapse
Affiliation(s)
- Dagmar Zigáčková
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5/A35, Brno 625 00, Czech Republic
| | - Štěpánka Vaňáčová
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5/A35, Brno 625 00, Czech Republic
| |
Collapse
|
39
|
Charenton C, Graille M. mRNA decapping: finding the right structures. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0164. [PMID: 30397101 DOI: 10.1098/rstb.2018.0164] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2018] [Indexed: 12/14/2022] Open
Abstract
In eukaryotes, the elimination of the m7GpppN mRNA cap, a process known as decapping, is a critical, largely irreversible and highly regulated step of mRNA decay that withdraws the targeted mRNAs from the pool of translatable templates. The decapping reaction is catalysed by a multi-protein complex formed by the Dcp2 catalytic subunit and its Dcp1 cofactor, a holoenzyme that is poorly active on its own and needs several accessory proteins (Lsm1-7 complex, Pat1, Edc1-2, Edc3 and/or EDC4) to be fully efficient. Here, we discuss the several crystal structures of Dcp2 domains bound to various partners (proteins or small molecules) determined in the last couple of years that have considerably improved our current understanding of how Dcp2, assisted by its various activators, is recruited to its mRNA targets and adopts its active conformation upon substrate recognition. We also describe how, over the years, elegant integrative structural biology approaches combined to biochemistry and genetics led to the identification of the correct structure of the active Dcp1-Dcp2 holoenzyme among the many available conformations trapped by X-ray crystallography.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.
Collapse
Affiliation(s)
- Clément Charenton
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, F-91128 Palaiseau cedex, France
| | - Marc Graille
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, F-91128 Palaiseau cedex, France
| |
Collapse
|
40
|
de Almeida C, Scheer H, Gobert A, Fileccia V, Martinelli F, Zuber H, Gagliardi D. RNA uridylation and decay in plants. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0163. [PMID: 30397100 DOI: 10.1098/rstb.2018.0163] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2018] [Indexed: 12/13/2022] Open
Abstract
RNA uridylation consists of the untemplated addition of uridines at the 3' extremity of an RNA molecule. RNA uridylation is catalysed by terminal uridylyltransferases (TUTases), which form a subgroup of the terminal nucleotidyltransferase family, to which poly(A) polymerases also belong. The key role of RNA uridylation is to regulate RNA degradation in a variety of eukaryotes, including fission yeast, plants and animals. In plants, RNA uridylation has been mostly studied in two model species, the green algae Chlamydomonas reinhardtii and the flowering plant Arabidopsis thaliana Plant TUTases target a variety of RNA substrates, differing in size and function. These RNA substrates include microRNAs (miRNAs), small interfering silencing RNAs (siRNAs), ribosomal RNAs (rRNAs), messenger RNAs (mRNAs) and mRNA fragments generated during post-transcriptional gene silencing. Viral RNAs can also get uridylated during plant infection. We describe here the evolutionary history of plant TUTases and we summarize the diverse molecular functions of uridylation during RNA degradation processes in plants. We also outline key points of future research.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.
Collapse
Affiliation(s)
- Caroline de Almeida
- Institut de biologie moléculaire des plantes (IBMP), Centre national de la recherche scientifique (CNRS), Université de Strasbourg, 12 rue Zimmer, 67000 Strasbourg, France
| | - Hélène Scheer
- Institut de biologie moléculaire des plantes (IBMP), Centre national de la recherche scientifique (CNRS), Université de Strasbourg, 12 rue Zimmer, 67000 Strasbourg, France
| | - Anthony Gobert
- Institut de biologie moléculaire des plantes (IBMP), Centre national de la recherche scientifique (CNRS), Université de Strasbourg, 12 rue Zimmer, 67000 Strasbourg, France
| | - Veronica Fileccia
- Dipartimento di Scienze Agrarie Alimentari Forestali, Università degli Studi di Palermo, viale delle scienze ed. 4, Palermo 90128, Italy
| | - Federico Martinelli
- Dipartimento di Scienze Agrarie Alimentari Forestali, Università degli Studi di Palermo, viale delle scienze ed. 4, Palermo 90128, Italy
| | - Hélène Zuber
- Institut de biologie moléculaire des plantes (IBMP), Centre national de la recherche scientifique (CNRS), Université de Strasbourg, 12 rue Zimmer, 67000 Strasbourg, France
| | - Dominique Gagliardi
- Institut de biologie moléculaire des plantes (IBMP), Centre national de la recherche scientifique (CNRS), Université de Strasbourg, 12 rue Zimmer, 67000 Strasbourg, France
| |
Collapse
|
41
|
The Lsm1-7/Pat1 complex binds to stress-activated mRNAs and modulates the response to hyperosmotic shock. PLoS Genet 2018; 14:e1007563. [PMID: 30059503 PMCID: PMC6085073 DOI: 10.1371/journal.pgen.1007563] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 08/09/2018] [Accepted: 07/15/2018] [Indexed: 12/11/2022] Open
Abstract
RNA-binding proteins (RBPs) establish the cellular fate of a transcript, but an understanding of these processes has been limited by a lack of identified specific interactions between RNA and protein molecules. Using MS2 RNA tagging, we have purified proteins associated with individual mRNA species induced by osmotic stress, STL1 and GPD1. We found members of the Lsm1-7/Pat1 RBP complex to preferentially bind these mRNAs, relative to the non-stress induced mRNAs, HYP2 and ASH1. To assess the functional importance, we mutated components of the Lsm1-7/Pat1 RBP complex and analyzed the impact on expression of osmostress gene products. We observed a defect in global translation inhibition under osmotic stress in pat1 and lsm1 mutants, which correlated with an abnormally high association of both non-stress and stress-induced mRNAs to translationally active polysomes. Additionally, for stress-induced proteins normally triggered only by moderate or high osmostress, in the mutants the protein levels rose high already at weak hyperosmosis. Analysis of ribosome passage on mRNAs through co-translational decay from the 5’ end (5P-Seq) showed increased ribosome accumulation in lsm1 and pat1 mutants upstream of the start codon. This effect was particularly strong for mRNAs induced under osmostress. Thus, our results indicate that, in addition to its role in degradation, the Lsm1-7/Pat1 complex acts as a selective translational repressor, having stronger effect over the translation initiation of heavily expressed mRNAs. Binding of the Lsm1-7/Pat1p complex to osmostress-induced mRNAs mitigates their translation, suppressing it in conditions of weak or no stress, and avoiding a hyperresponse when triggered. When confronted with external physical or chemical stress, cells respond by increasing the mRNA output of a small number of genes required for stress survival, while shutting down the majority of other genes. Moreover, each mRNA is regulated under stress to either enhance or diminish its translation into proteins. The overall purpose is for the cell to optimize gene expression for survival and recovery during rapidly changing conditions. Much of this regulation is mediated by RNA-binding proteins. We have isolated proteins binding to specific mRNAs induced by stress, to investigate how they affect the stress response. We found members of one protein complex to be bound to stress-induced mRNAs. When mutants lacking these proteins were exposed to stress, ribosomes were more engaged with translating mRNAs than in the wild-type. In the mutants, it was also possible to trigger expression of stress proteins with only minimal stress levels. Tracing the passage of ribosomes over mRNAs, we saw that ribosomes accumulated around the start codon in the mutants. These findings indicate that the protein complex is required to moderate the stress response and prevent it from overreacting, which would be harmful for the cell.
Collapse
|
42
|
Architecture of the U6 snRNP reveals specific recognition of 3'-end processed U6 snRNA. Nat Commun 2018; 9:1749. [PMID: 29717126 PMCID: PMC5931518 DOI: 10.1038/s41467-018-04145-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/06/2018] [Indexed: 01/09/2023] Open
Abstract
The spliceosome removes introns from precursor messenger RNA (pre-mRNA) to produce mature mRNA. Prior to catalysis, spliceosomes are assembled de novo onto pre-mRNA substrates. During this assembly process, U6 small nuclear RNA (snRNA) undergoes extensive structural remodeling. The early stages of this remodeling process are chaperoned by U6 snRNP proteins Prp24 and the Lsm2-8 heteroheptameric ring. We now report a structure of the U6 snRNP from Saccharomyces cerevisiae. The structure reveals protein-protein contacts that position Lsm2-8 in close proximity to the chaperone "active site" of Prp24. The structure also shows how the Lsm2-8 ring specifically recognizes U6 snRNA that has been post-transcriptionally modified at its 3' end, thereby elucidating the mechanism by which U6 snRNPs selectively recruit 3' end-processed U6 snRNA into spliceosomes. Additionally, the structure reveals unanticipated homology between the C-terminal regions of Lsm8 and the cytoplasmic Lsm1 protein involved in mRNA decay.
Collapse
|
43
|
Vindry C, Marnef A, Broomhead H, Twyffels L, Ozgur S, Stoecklin G, Llorian M, Smith CW, Mata J, Weil D, Standart N. Dual RNA Processing Roles of Pat1b via Cytoplasmic Lsm1-7 and Nuclear Lsm2-8 Complexes. Cell Rep 2018; 20:1187-1200. [PMID: 28768202 PMCID: PMC5554784 DOI: 10.1016/j.celrep.2017.06.091] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/12/2017] [Accepted: 06/28/2017] [Indexed: 12/16/2022] Open
Abstract
Pat1 RNA-binding proteins, enriched in processing bodies (P bodies), are key players in cytoplasmic 5' to 3' mRNA decay, activating decapping of mRNA in complex with the Lsm1-7 heptamer. Using co-immunoprecipitation and immunofluorescence approaches coupled with RNAi, we provide evidence for a nuclear complex of Pat1b with the Lsm2-8 heptamer, which binds to the spliceosomal U6 small nuclear RNA (snRNA). Furthermore, we establish the set of interactions connecting Pat1b/Lsm2-8/U6 snRNA/SART3 and additional U4/U6.U5 tri-small nuclear ribonucleoprotein particle (tri-snRNP) components in Cajal bodies, the site of snRNP biogenesis. RNA sequencing following Pat1b depletion revealed the preferential upregulation of mRNAs normally found in P bodies and enriched in 3' UTR AU-rich elements. Changes in >180 alternative splicing events were also observed, characterized by skipping of regulated exons with weak donor sites. Our data demonstrate the dual role of a decapping enhancer in pre-mRNA processing as well as in mRNA decay via distinct nuclear and cytoplasmic Lsm complexes.
Collapse
Affiliation(s)
- Caroline Vindry
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Aline Marnef
- LBCMCP, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse UT3, 31062 Toulouse, France
| | - Helen Broomhead
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Laure Twyffels
- Center for Microscopy and Molecular Imaging (CMMI), Université libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Sevim Ozgur
- Max Planck Institute of Biochemistry, Am Klopferspitz, 82152 Martinsried, Germany
| | - Georg Stoecklin
- Division of Biochemistry, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, 69047 Heidelberg, Germany; Center for Molecular Biology of Heidelberg University (ZMBH), 69047 Heidelberg, Germany; German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 68167 Mannheim, Germany
| | - Miriam Llorian
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Christopher W Smith
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Juan Mata
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Dominique Weil
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie du développement Paris Seine - Institut de Biologie Paris Seine (LBD - IBPS), 75005 Paris, France
| | - Nancy Standart
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK.
| |
Collapse
|
44
|
Kobyłecki K, Kuchta K, Dziembowski A, Ginalski K, Tomecki R. Biochemical and structural bioinformatics studies of fungal CutA nucleotidyltransferases explain their unusual specificity toward CTP and increased tendency for cytidine incorporation at the 3'-terminal positions of synthesized tails. RNA (NEW YORK, N.Y.) 2017; 23:1902-1926. [PMID: 28947555 PMCID: PMC5689010 DOI: 10.1261/rna.061010.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 09/12/2017] [Indexed: 05/25/2023]
Abstract
Noncanonical RNA nucleotidyltransferases (NTases), including poly(A), poly(U) polymerases (PAPs/PUPs), and C/U-adding enzymes, modify 3'-ends of different transcripts affecting their functionality and stability. They contain PAP/OAS1 substrate-binding domain (SBD) with inserted NTase domain. Aspergillus nidulans CutA (AnCutA), synthesizes C/U-rich 3'-terminal extensions in vivo. Here, using high-throughput sequencing of the 3'-RACE products for tails generated by CutA proteins in vitro in the presence of all four NTPs, we show that even upon physiological ATP excess synthesized tails indeed contain an unprecedented number of cytidines interrupted by uridines and stretches of adenosines, and that the majority end with two cytidines. Strikingly, processivity assays documented that in the presence of CTP as a sole nucleotide, the enzyme terminates after adding two cytidines only. Comparison of our CutA 3D model to selected noncanonical NTases of known structures revealed substantial differences in the nucleotide recognition motif (NRM) within PAP/OAS1 SBD. We demonstrate that CutA specificity toward CTP can be partially changed to PAP or PUP by rational mutagenesis within NRM and, analogously, Cid1 PUP can be converted into a C/U-adding enzyme. Collectively, we suggest that a short cluster of amino acids within NRM is a determinant of NTases' substrate preference, which may allow us to predict their specificity.
Collapse
Affiliation(s)
- Kamil Kobyłecki
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Department of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Krzysztof Kuchta
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-089 Warsaw, Poland
| | - Andrzej Dziembowski
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Department of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-089 Warsaw, Poland
| | - Rafał Tomecki
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Department of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| |
Collapse
|
45
|
A unique surface on Pat1 C-terminal domain directly interacts with Dcp2 decapping enzyme and Xrn1 5'-3' mRNA exonuclease in yeast. Proc Natl Acad Sci U S A 2017; 114:E9493-E9501. [PMID: 29078363 DOI: 10.1073/pnas.1711680114] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Pat1 protein is a central player of eukaryotic mRNA decay that has also been implicated in translational control. It is commonly considered a central platform responsible for the recruitment of several RNA decay factors. We demonstrate here that a yeast-specific C-terminal region from Pat1 interacts with several short motifs, named helical leucine-rich motifs (HLMs), spread in the long C-terminal region of yeast Dcp2 decapping enzyme. Structures of Pat1-HLM complexes reveal the basis for HLM recognition by Pat1. We also identify a HLM present in yeast Xrn1, the main 5'-3' exonuclease involved in mRNA decay. We show further that the ability of yeast Pat1 to bind HLMs is required for efficient growth and normal mRNA decay. Overall, our analyses indicate that yeast Pat1 uses a single binding surface to successively recruit several mRNA decay factors and show that interaction between those factors is highly polymorphic between species.
Collapse
|
46
|
De Almeida C, Scheer H, Zuber H, Gagliardi D. RNA uridylation: a key posttranscriptional modification shaping the coding and noncoding transcriptome. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [PMID: 28984054 DOI: 10.1002/wrna.1440] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 12/27/2022]
Abstract
RNA uridylation is a potent and widespread posttranscriptional regulator of gene expression. RNA uridylation has been detected in a range of eukaryotes including trypanosomes, animals, plants, and fungi, but with the noticeable exception of budding yeast. Virtually all classes of eukaryotic RNAs can be uridylated and uridylation can also tag viral RNAs. The untemplated addition of a few uridines at the 3' end of a transcript can have a decisive impact on RNA's fate. In rare instances, uridylation is an intrinsic step in the maturation of noncoding RNAs like for the U6 spliceosomal RNA or mitochondrial guide RNAs in trypanosomes. Uridylation can also switch specific miRNA precursors from a degradative to a processing mode. This switch depends on the number of uridines added which is regulated by the cellular context. Yet, the typical consequence of uridylation on mature noncoding RNAs or their precursors is to accelerate decay. Importantly, mRNAs are also tagged by uridylation. In fact, the advent of novel high throughput sequencing protocols has recently revealed the pervasiveness of mRNA uridylation, from plants to humans. As for noncoding RNAs, the main function to date for mRNA uridylation is to promote degradation. Yet, additional roles begin to be ascribed to U-tailing such as the control of mRNA deadenylation, translation control and possibly storage. All these new findings illustrate that we are just beginning to appreciate the diversity of roles played by RNA uridylation and its full temporal and spatial implication in regulating gene expression. WIREs RNA 2018, 9:e1440. doi: 10.1002/wrna.1440 This article is categorized under: RNA Processing > 3' End Processing RNA Processing > RNA Editing and Modification RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms.
Collapse
Affiliation(s)
- Caroline De Almeida
- Institut de Biologie Moleculaire des Plantes (IBMP), CNRS, University of Strasbourg, Strasbourg, France
| | - Hélène Scheer
- Institut de Biologie Moleculaire des Plantes (IBMP), CNRS, University of Strasbourg, Strasbourg, France
| | - Hélène Zuber
- Institut de Biologie Moleculaire des Plantes (IBMP), CNRS, University of Strasbourg, Strasbourg, France
| | - Dominique Gagliardi
- Institut de Biologie Moleculaire des Plantes (IBMP), CNRS, University of Strasbourg, Strasbourg, France
| |
Collapse
|
47
|
mRNA 3' uridylation and poly(A) tail length sculpt the mammalian maternal transcriptome. Nature 2017; 548:347-351. [PMID: 28792939 PMCID: PMC5768236 DOI: 10.1038/nature23318] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 06/20/2017] [Indexed: 12/26/2022]
Abstract
A fundamental principle in biology is that the program for early development is established during oogenesis in the form of the maternal transcriptome. How the maternal transcriptome acquires the appropriate content and dosage of transcripts is not fully understood. Here we show that 3' terminal uridylation of mRNA mediated by TUT4 and TUT7 sculpts the mouse maternal transcriptome by eliminating transcripts during oocyte growth. Uridylation mediated by TUT4 and TUT7 is essential for both oocyte maturation and fertility. In comparison to somatic cells, the oocyte transcriptome has a shorter poly(A) tail and a higher relative proportion of terminal oligo-uridylation. Deletion of TUT4 and TUT7 leads to the accumulation of a cohort of transcripts with a high frequency of very short poly(A) tails, and a loss of 3' oligo-uridylation. By contrast, deficiency of TUT4 and TUT7 does not alter gene expression in a variety of somatic cells. In summary, we show that poly(A) tail length and 3' terminal uridylation have essential and specific functions in shaping a functional maternal transcriptome.
Collapse
|
48
|
Abstract
5’-3’ decay is the major mRNA decay pathway in many eukaryotes, including trypanosomes. After deadenylation, mRNAs are decapped by the nudix hydrolase DCP2 of the decapping complex and finally degraded by the 5’-3’ exoribonuclease. Uniquely, trypanosomes lack homologues to all subunits of the decapping complex, while deadenylation and 5’-3’ degradation are conserved. Here, I show that the parasites use an ApaH-like phosphatase (ALPH1) as their major mRNA decapping enzyme. The protein was recently identified as a novel trypanosome stress granule protein and as involved in mRNA binding. A fraction of ALPH1 co-localises exclusively with the trypanosome 5’-3’ exoribonuclease XRNA to a special granule at the posterior pole of the cell, indicating a connection between the two enzymes. RNAi depletion of ALPH1 is lethal and causes a massive increase in total mRNAs that are deadenylated, but have not yet started 5’-3’ decay. These data suggest that ALPH1 acts downstream of deadenylation and upstream of mRNA degradation, consistent with a function in mRNA decapping. In vitro experiments show that recombinant, N-terminally truncated ALHP1 protein, but not a catalytically inactive mutant, sensitises the capped trypanosome spliced leader RNA to yeast Xrn1, but only if an RNA 5’ polyphosphatase is included. This indicates that the decapping mechanism of ALPH1 differs from the decapping mechanism of Dcp2 by leaving more than one phosphate group at the mRNA’s 5’ end. This is the first reported function of a eukaryotic ApaH-like phosphatase, a bacterial-derived class of enzymes present in all phylogenetic super-groups of the eukaryotic kingdom. The substrates of eukaryotic ApaH-like phosphatases are unknown. However, the substrate of the related bacterial enzyme ApaH, diadenosine tetraphosphate, is highly reminiscent of a eukaryotic mRNA cap. Eukaryotic mRNAs are stabilised by a 5’ cap and one important step in mRNA decay is the removal of this cap by the nudix domain protein Dcp2 of the decapping complex. The decapping complex is highly conserved throughout eukaryotes, with the exception of trypanosomes that lack the entire complex. Here, I show that trypanosomes have evolved to use an ApaH-like phosphatase instead of a nudix domain protein as their major decapping enzyme. This work closes an important gap in the knowledge of trypanosome mRNA metabolism. Moreover, this is the first reported function of an ApaH-like phosphatase, a bacterial derived class of enzymes that are widespread throughout eukaryotes.
Collapse
Affiliation(s)
- Susanne Kramer
- Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
- * E-mail:
| |
Collapse
|
49
|
Valkov E, Jonas S, Weichenrieder O. Mille viae in eukaryotic mRNA decapping. Curr Opin Struct Biol 2017; 47:40-51. [PMID: 28591671 DOI: 10.1016/j.sbi.2017.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 05/22/2017] [Indexed: 12/20/2022]
Abstract
Cellular mRNA levels are regulated via rates of transcription and decay. Since the removal of the mRNA 5'-cap by the decapping enzyme DCP2 is generally an irreversible step towards decay, it requires regulation. Control of DCP2 activity is likely effected by two interdependent means: by conformational control of the DCP2-DCP1 complex, and by assembly control of the decapping network, an array of mutually interacting effector proteins. Here, we compare three recent and conformationally distinct crystal structures of the DCP2-DCP1 decapping complex in the presence of substrate analogs and decapping enhancers and we discuss alternative substrate recognition modes for the catalytic domain of DCP2. Together with structure-based insight into decapping network assembly, we propose that DCP2-mediated decapping follows more than one path.
Collapse
Affiliation(s)
- Eugene Valkov
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Stefanie Jonas
- Institute of Biochemistry, ETH Zürich, Otto-Stern Weg 3, 8093 Zürich, Switzerland.
| | - Oliver Weichenrieder
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany.
| |
Collapse
|
50
|
Chung CZ, Seidl LE, Mann MR, Heinemann IU. Tipping the balance of RNA stability by 3' editing of the transcriptome. Biochim Biophys Acta Gen Subj 2017; 1861:2971-2979. [PMID: 28483641 DOI: 10.1016/j.bbagen.2017.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/02/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND The regulation of active microRNAs (miRNAs) and maturation of messenger RNAs (mRNAs) that are competent for translation is a crucial point in the control of all cellular processes, with established roles in development and differentiation. Terminal nucleotidyltransferases (TNTases) are potent regulators of RNA metabolism. TNTases promote the addition of single or multiple nucleotides to an RNA transcript that can rapidly alter transcript stability. The well-known polyadenylation promotes transcript stability while the newly discovered but ubiquitious 3'-end polyuridylation marks RNA for degradation. Monoadenylation and uridylation are essential control mechanisms balancing mRNA and miRNA homeostasis. SCOPE OF REVIEW This review discusses the multiple functions of non-canonical TNTases, focusing on their substrate range, biological functions, and evolution. TNTases directly control mRNA and miRNA levels, with diverse roles in transcriptome stabilization, maturation, silencing, or degradation. We will summarize the current state of knowledge on non-canonical nucleotidyltransferases and their function in regulating miRNA and mRNA metabolism. We will review the discovery of uridylation as an RNA degradation pathway and discuss the evolution of nucleotidyltransferases along with their use in RNA labeling and future applications as therapeutic targets. MAJOR CONCLUSIONS The biochemically and evolutionarily highly related adenylyl- and uridylyltransferases play antagonizing roles in the cell. In general, RNA adenylation promotes stability, while uridylation marks RNA for degradation. Uridylyltransferases evolved from adenylyltransferases in multiple independent evolutionary events by the insertion of a histidine residue into the active site, altering nucleotide, but not RNA specificity. GENERAL SIGNIFICANCE Understanding the mechanisms regulating RNA stability in the cell and controlling the transcriptome is essential for efforts aiming to influence cellular fate. Selectively enhancing or reducing RNA stability allows for alterations in the transcriptome, proteome, and downstream cellular processes. Genetic, biochemical, and clinical data suggest TNTases are potent targets for chemotherapeutics and have been exploited for RNA labeling applications. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
Affiliation(s)
- Christina Z Chung
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Lauren E Seidl
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Mitchell R Mann
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Ilka U Heinemann
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|