1
|
Doi A, Delaney C, Tanner D, Burkhart K, Bell RD. RNA exon editing: Splicing the way to treat human diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102311. [PMID: 39281698 PMCID: PMC11401238 DOI: 10.1016/j.omtn.2024.102311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
RNA exon editing is a therapeutic strategy for correcting disease-causing mutations by inducing trans-splicing between a synthetic RNA molecule and an endogenous pre-mRNA target, resulting in functionally restored mRNA and protein. This approach enables the replacement of exons at the kilobase scale, addresses multiple mutations with a single therapy, and maintains native gene expression without changes to DNA. For genes larger than 5 kb, RNA exon editors can be delivered in a single vector despite AAV capacity limitations because only mutated exons need to be replaced. While correcting mutations by trans-splicing has been previously demonstrated, prior attempts were hampered by low efficiency or lack of translation in preclinical models. Advances in synthetic biology, next-generation sequencing, and bioinformatics, with a deeper understanding of mechanisms controlling RNA splicing, have triggered a re-emergence of trans-splicing and the development of new RNA exon editing molecules for treating human disease, including the first application in a clinical trial (this study was registered at ClinicalTrials.gov [NCT06467344]). Here, we provide an overview of RNA splicing, the history of trans-splicing, previously reported therapeutic applications, and how modern advances are enabling the discovery of RNA exon editing molecules for genetic targets unable to be addressed by conventional gene therapy and gene editing approaches.
Collapse
Affiliation(s)
- Akiko Doi
- Ascidian Therapeutics, Boston, MA, USA
| | | | | | | | | |
Collapse
|
2
|
Pitolli C, Marini A, Sette C, Pagliarini V. Non-Canonical Splicing and Its Implications in Brain Physiology and Cancer. Int J Mol Sci 2022; 23:ijms23052811. [PMID: 35269953 PMCID: PMC8911335 DOI: 10.3390/ijms23052811] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
The advance of experimental and computational techniques has allowed us to highlight the existence of numerous different mechanisms of RNA maturation, which have been so far unknown. Besides canonical splicing, consisting of the removal of introns from pre-mRNA molecules, non-canonical splicing events may occur to further increase the regulatory and coding potential of the human genome. Among these, splicing of microexons, recursive splicing and biogenesis of circular and chimeric RNAs through back-splicing and trans-splicing processes, respectively, all contribute to expanding the repertoire of RNA transcripts with newly acquired regulatory functions. Interestingly, these non-canonical splicing events seem to occur more frequently in the central nervous system, affecting neuronal development and differentiation programs with important implications on brain physiology. Coherently, dysregulation of non-canonical RNA processing events is associated with brain disorders, including brain tumours. Herein, we summarize the current knowledge on molecular and regulatory mechanisms underlying canonical and non-canonical splicing events with particular emphasis on cis-acting elements and trans-acting factors that all together orchestrate splicing catalysis reactions and decisions. Lastly, we review the impact of non-canonical splicing on brain physiology and pathology and how unconventional splicing mechanisms may be targeted or exploited for novel therapeutic strategies in cancer.
Collapse
Affiliation(s)
- Consuelo Pitolli
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (C.P.); (C.S.)
- GSTEP-Organoids Research Core Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy;
| | - Alberto Marini
- GSTEP-Organoids Research Core Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy;
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (C.P.); (C.S.)
- GSTEP-Organoids Research Core Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy;
| | - Vittoria Pagliarini
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (C.P.); (C.S.)
- GSTEP-Organoids Research Core Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy;
- Correspondence:
| |
Collapse
|
3
|
Zhao Y, Shu R, Liu J. The development and improvement of ribonucleic acid therapy strategies. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:997-1013. [PMID: 34540356 PMCID: PMC8437697 DOI: 10.1016/j.omtn.2021.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The biological understanding of RNA has evolved since the discovery of catalytic RNAs in the early 1980s and the establishment of RNA interference (RNAi) in the 1990s. RNA is no longer seen as the simple mid-product between transcription and translation but as potential molecules to be developed as RNA therapeutic drugs. RNA-based therapeutic drugs have gained recognition because of their ability to regulate gene expression and perform cellular functions. Various nucleobase, backbone, and sugar-modified oligonucleotides have been synthesized, as natural oligonucleotides have some limitations such as poor low nuclease resistance, binding affinity, poor cellular uptake, and toxicity, which affect their use as RNA therapeutic drugs. In this review, we briefly discuss different RNA therapeutic drugs and their internal connections, including antisense oligonucleotides, small interfering RNAs (siRNAs) and microRNAs (miRNAs), aptamers, small activating RNAs (saRNAs), and RNA vaccines. We also discuss the important roles of RNA vaccines and their use in the fight against COVID-19. In addition, various chemical modifications and delivery systems used to improve the performance of RNA therapeutic drugs and overcome their limitations are discussed.
Collapse
Affiliation(s)
- Yuxi Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Rui Shu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Corresponding author: Rui Shu, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jiang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Corresponding author: Jiang Liu, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Abstract
BACKGROUND RNA trans-splicing joins exons from different pre-mRNA transcripts to generate a chimeric product. Trans-splicing can also occur at the protein level, with split inteins mediating the ligation of separate gene products to generate a mature protein. SOURCES OF DATA Comprehensive literature search of published research papers and reviews using Pubmed. AREAS OF AGREEMENT Trans-splicing techniques have been used to target a wide range of diseases in both in vitro and in vivo models, resulting in RNA, protein and functional correction. AREAS OF CONTROVERSY Off-target effects can lead to therapeutically undesirable consequences. In vivo efficacy is typically low, and delivery issues remain a challenge. GROWING POINTS Trans-splicing provides a promising avenue for developing novel therapeutic approaches. However, much more research needs to be done before developing towards preclinical studies. AREAS TIMELY FOR DEVELOPING RESEARCH Increasing trans-splicing efficacy and specificity by rational design, screening and competitive inhibition of endogenous cis-splicing.
Collapse
Affiliation(s)
- Elizabeth M Hong
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Carin K Ingemarsdotter
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Andrew M L Lever
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QQ, UK
| |
Collapse
|
5
|
Maule G, Arosio D, Cereseto A. Gene Therapy for Cystic Fibrosis: Progress and Challenges of Genome Editing. Int J Mol Sci 2020; 21:E3903. [PMID: 32486152 PMCID: PMC7313467 DOI: 10.3390/ijms21113903] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Since the early days of its conceptualization and application, human gene transfer held the promise of a permanent solution to genetic diseases including cystic fibrosis (CF). This field went through alternated periods of enthusiasm and distrust. The development of refined technologies allowing site specific modification with programmable nucleases highly revived the gene therapy field. CRISPR nucleases and derived technologies tremendously facilitate genome manipulation offering diversified strategies to reverse mutations. Here we discuss the advancement of gene therapy, from therapeutic nucleic acids to genome editing techniques, designed to reverse genetic defects in CF. We provide a roadmap through technologies and strategies tailored to correct different types of mutations in the cystic fibrosis transmembrane regulator (CFTR) gene, and their applications for the development of experimental models valuable for the advancement of CF therapies.
Collapse
Affiliation(s)
- Giulia Maule
- Department of Cellular Computational Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy;
- National Council of Research, CNR, 38123 Trento, Italy;
| | | | - Anna Cereseto
- Department of Cellular Computational Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy;
| |
Collapse
|
6
|
Abstract
Spliceosome-mediated mRNA trans-splicing (SMaRT) is a promising strategy for treatment of genetic diseases which cannot be targeted via classical therapy approaches. SMaRT utilizes an exogenous pre-mRNA trans-splicing molecule (PTM) to correct a diseased target pre-mRNA. This process relies on splicing of two separate pre-mRNA molecules in trans creating a mature chimeric mRNA molecule which consists of the protein coding sequence of the PTM as well as the endogenous mRNA. For therapeutic implications, the most critical step in SMaRT is to develop PTMs resulting in a high ratio of trans-splicing to regular cis-splicing.This protocol provides guidelines on how to design PTMs and describes a fast screening assay to test their efficiencies. To elucidate the therapeutic potential of the best candidates in a more native setting, these PTMs are tested further on mini genes.
Collapse
Affiliation(s)
- Lisa M Riedmayr
- Center for Integrated Protein Science Munich CIPSM, Ludwig-Maximilians-Universität München, Munich, Germany.
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
7
|
Maule G, Casini A, Montagna C, Ramalho AS, De Boeck K, Debyser Z, Carlon MS, Petris G, Cereseto A. Allele specific repair of splicing mutations in cystic fibrosis through AsCas12a genome editing. Nat Commun 2019; 10:3556. [PMID: 31391465 PMCID: PMC6685978 DOI: 10.1038/s41467-019-11454-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 07/05/2019] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the CFTR gene. The 3272-26A>G and 3849+10kbC>T CFTR mutations alter the correct splicing of the CFTR gene, generating new acceptor and donor splice sites respectively. Here we develop a genome editing approach to permanently correct these genetic defects, using a single crRNA and the Acidaminococcus sp. BV3L6, AsCas12a. This genetic repair strategy is highly precise, showing very strong discrimination between the wild-type and mutant sequence and a complete absence of detectable off-targets. The efficacy of this gene correction strategy is verified in intestinal organoids and airway epithelial cells derived from CF patients carrying the 3272-26A>G or 3849+10kbC>T mutations, showing efficient repair and complete functional recovery of the CFTR channel. These results demonstrate that allele-specific genome editing with AsCas12a can correct aberrant CFTR splicing mutations, paving the way for a permanent splicing correction in genetic diseases.
Collapse
Affiliation(s)
- Giulia Maule
- Centre for Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Antonio Casini
- Centre for Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Claudia Montagna
- Centre for Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Anabela S Ramalho
- Department of Development and Regeneration, CF Centre, Woman and Child, KU Leuven, Herestraat 49, Leuven, 3000, Belgium
| | - Kris De Boeck
- Department of Development and Regeneration, CF Centre, Woman and Child, KU Leuven, Herestraat 49, Leuven, 3000, Belgium
- Pediatric Pulmonology, Department of Pediatrics, University Hospital Leuven, Herestraat 49, Leuven, 3000, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Drug Discovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Leuven, 3000, Belgium
| | - Marianne S Carlon
- Laboratory for Molecular Virology and Drug Discovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.
| | - Gianluca Petris
- Centre for Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy.
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Anna Cereseto
- Centre for Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy.
| |
Collapse
|
8
|
Poddar S, Loh PS, Ooi ZH, Osman F, Eul J, Patzel V. RNA Structure Design Improves Activity and Specificity of trans-Splicing-Triggered Cell Death in a Suicide Gene Therapy Approach. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 11:41-56. [PMID: 29858076 PMCID: PMC5849863 DOI: 10.1016/j.omtn.2018.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 01/17/2018] [Accepted: 01/17/2018] [Indexed: 01/20/2023]
Abstract
Spliceosome-mediated RNA trans-splicing enables correction or labeling of pre-mRNA, but therapeutic applications are hampered by issues related to the activity and target specificity of trans-splicing RNA (tsRNA). We employed computational RNA structure design to improve both on-target activity and specificity of tsRNA in a herpes simplex virus thymidine kinase/ganciclovir suicide gene therapy approach targeting alpha fetoprotein (AFP), a marker of hepatocellular carcinoma (HCC) or human papillomavirus type 16 (HPV-16) pre-mRNA. While unstructured, mismatched target binding domains significantly improved 3′ exon replacement (3’ER), 5′ exon replacement (5’ER) correlated with the thermodynamic stability of the tsRNA 3′ end. Alternative on-target trans-splicing was found to be a prevalent event. The specificity of trans-splicing with the intended target splice site was improved 10-fold by designing tsRNA that harbors secondary target binding domains shielding alternative on-target and blinding off-target splicing events. Such rationally designed suicide RNAs efficiently triggered death of HPV-16-transduced or hepatoblastoma-derived human tissue culture cells without evidence for off-target cell killing. Highest cell death activities were observed with novel dual-targeting tsRNAs programmed for trans-splicing toward AFP and a second HCC pre-mRNA biomarker. Our observations suggest trans-splicing represents a promising approach to suicide gene therapy.
Collapse
Affiliation(s)
- Sushmita Poddar
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD4, Level 5, 5 Science Drive 2, Singapore 117597, Singapore
| | - Pei She Loh
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD4, Level 5, 5 Science Drive 2, Singapore 117597, Singapore
| | - Zi Hao Ooi
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD4, Level 5, 5 Science Drive 2, Singapore 117597, Singapore
| | - Farhana Osman
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD4, Level 5, 5 Science Drive 2, Singapore 117597, Singapore
| | - Joachim Eul
- INEIDFO GmbH, Weserstrasse 23, 12045 Berlin, Germany
| | - Volker Patzel
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD4, Level 5, 5 Science Drive 2, Singapore 117597, Singapore; Department of Medicine, Division of Infectious Diseases, University of Cambridge, Addenbrooke's Hospital, Level 5, Hills Road, Cambridge CB2 0QQ, UK.
| |
Collapse
|
9
|
Rindt H, Tom CM, Lorson CL, Mattis VB. Optimization of trans-Splicing for Huntington's Disease RNA Therapy. Front Neurosci 2017; 11:544. [PMID: 29066943 PMCID: PMC5641306 DOI: 10.3389/fnins.2017.00544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/19/2017] [Indexed: 11/16/2022] Open
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disorder caused by a polyglutamine (polyQ) expansion in exon 1 of the Huntingtin (HTT) gene. We have previously demonstrated that spliceosome-mediated trans-splicing is a viable molecular strategy to specifically reduce and repair mutant HTT (mtHTT). Here, the targeted tethering efficacy of the pre-mRNA trans-splicing modules (PTM) in HTT was optimized. Various PTMs that targeted the 3′ end of HTT intron 1 or the intron 1 branch point were shown trans-splice into an HTT mini-gene, as well as the endogenous HTT pre-mRNA. PTMs that specifically target the endogenous intron 1 branch point increased the trans-splicing efficacy from 1–5 to 10–15%. Furthermore, lentiviral expression of PTMs in a human HD patient iPSC-derived neural culture significantly reversed two previously established polyQ-length dependent phenotypes. These results suggest that pre-mRNA repair of mtHTT could hold therapeutic benefit and it demonstrates an alternative platform to correct the mRNA product produced by the mtHTT allele in the context of HD.
Collapse
Affiliation(s)
- Hansjörg Rindt
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Colton M Tom
- Cedars-Sinai Medical Center, Board of Governors Regenerative Medicine Institute, Los Angeles, CA, United States
| | - Christian L Lorson
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Virginia B Mattis
- Cedars-Sinai Medical Center, Board of Governors Regenerative Medicine Institute, Los Angeles, CA, United States
| |
Collapse
|
10
|
Ingemarsdotter CK, Poddar S, Mercier S, Patzel V, Lever AML. Expression of Herpes Simplex Virus Thymidine Kinase/Ganciclovir by RNA Trans-Splicing Induces Selective Killing of HIV-Producing Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 7:140-154. [PMID: 28624190 PMCID: PMC5415956 DOI: 10.1016/j.omtn.2017.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/20/2017] [Accepted: 03/07/2017] [Indexed: 02/07/2023]
Abstract
Antiviral strategies targeting hijacked cellular processes are less easily evaded by the virus than viral targets. If selective for viral functions, they can have a high therapeutic index. We used RNA trans-splicing to deliver the herpes simplex virus thymidine kinase-ganciclovir (HSV-tk/GCV) cell suicide system into HIV-producing cells. Using an extensive in silico bioinformatics and RNA structural analysis approach, ten HIV RNA trans-splicing constructs were designed targeting eight different HIV splice donor or acceptor sites and were tested in cells expressing HIV. Trans-spliced mRNAs were identified in HIV-expressing cells using qRT-PCR with successful detection of fusion RNA transcripts between HIV RNA and the HSV-tk RNA transcripts from six of ten candidate RNA trans-splicing constructs. Conventional PCR and Sanger sequencing confirmed RNA trans-splicing junctions. Measuring cell viability in the presence or absence of GCV expression of HSV-tk by RNA trans-splicing led to selective killing of HIV-producing cells using either 3' exon replacement or 5' exon replacement in the presence of GCV. Five constructs targeting four HIV splice donor and acceptor sites, D4, A5, A7, and A8, involved in regulating the generation of multiple HIV RNA transcripts proved to be effective for trans-splicing mediated selective killing of HIV-infected cells, within which individual constructs targeting D4 and A8 were the most efficient.
Collapse
Affiliation(s)
- Carin K Ingemarsdotter
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Sushmita Poddar
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
| | - Sarah Mercier
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Volker Patzel
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK; Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
| | - Andrew M L Lever
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|
11
|
Suñé-Pou M, Prieto-Sánchez S, Boyero-Corral S, Moreno-Castro C, El Yousfi Y, Suñé-Negre JM, Hernández-Munain C, Suñé C. Targeting Splicing in the Treatment of Human Disease. Genes (Basel) 2017; 8:genes8030087. [PMID: 28245575 PMCID: PMC5368691 DOI: 10.3390/genes8030087] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/14/2017] [Accepted: 02/17/2017] [Indexed: 02/07/2023] Open
Abstract
The tightly regulated process of precursor messenger RNA (pre-mRNA) alternative splicing (AS) is a key mechanism in the regulation of gene expression. Defects in this regulatory process affect cellular functions and are the cause of many human diseases. Recent advances in our understanding of splicing regulation have led to the development of new tools for manipulating splicing for therapeutic purposes. Several tools, including antisense oligonucleotides and trans-splicing, have been developed to target and alter splicing to correct misregulated gene expression or to modulate transcript isoform levels. At present, deregulated AS is recognized as an important area for therapeutic intervention. Here, we summarize the major hallmarks of the splicing process, the clinical implications that arise from alterations in this process, and the current tools that can be used to deliver, target, and correct deficiencies of this key pre-mRNA processing event.
Collapse
Affiliation(s)
- Marc Suñé-Pou
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López Neyra" (IPBLN-CSIC), PTS, Granada 18016, Spain.
- Drug Development Service, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, Avda. Joan XXIII, s/n 08028 Barcelona, Spain.
| | - Silvia Prieto-Sánchez
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López Neyra" (IPBLN-CSIC), PTS, Granada 18016, Spain.
| | - Sofía Boyero-Corral
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López Neyra" (IPBLN-CSIC), PTS, Granada 18016, Spain.
| | - Cristina Moreno-Castro
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López Neyra" (IPBLN-CSIC), PTS, Granada 18016, Spain.
| | - Younes El Yousfi
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López Neyra" (IPBLN-CSIC), PTS, Granada 18016, Spain.
| | - Josep Mª Suñé-Negre
- Drug Development Service, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, Avda. Joan XXIII, s/n 08028 Barcelona, Spain.
| | - Cristina Hernández-Munain
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine "López Neyra" (IPBLN-CSIC), PTS, Granada 18016, Spain.
| | - Carlos Suñé
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López Neyra" (IPBLN-CSIC), PTS, Granada 18016, Spain.
| |
Collapse
|
12
|
Bornert O, Peking P, Bremer J, Koller U, van den Akker PC, Aartsma-Rus A, Pasmooij AMG, Murauer EM, Nyström A. RNA-based therapies for genodermatoses. Exp Dermatol 2017; 26:3-10. [PMID: 27376675 PMCID: PMC5593095 DOI: 10.1111/exd.13141] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2016] [Indexed: 12/14/2022]
Abstract
Genetic disorders affecting the skin, genodermatoses, constitute a large and heterogeneous group of diseases, for which treatment is generally limited to management of symptoms. RNA-based therapies are emerging as a powerful tool to treat genodermatoses. In this review, we discuss in detail RNA splicing modulation by antisense oligonucleotides and RNA trans-splicing, transcript replacement and genome editing by in vitro-transcribed mRNAs, and gene knockdown by small interfering RNA and antisense oligonucleotides. We present the current state of these therapeutic approaches and critically discuss their opportunities, limitations and the challenges that remain to be solved. The aim of this review was to set the stage for the development of new and better therapies to improve the lives of patients and families affected by a genodermatosis.
Collapse
Affiliation(s)
- Olivier Bornert
- Department of Dermatology, Medical Center – University of
Freiburg, Freiburg, Germany
| | - Patricia Peking
- EB House Austria, Research Program for Molecular Therapy of
Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus
Medical University, Salzburg, Austria
| | - Jeroen Bremer
- Department of Dermatology, University Medical Center Groningen,
University of Groningen, Groningen, The Netherlands
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of
Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus
Medical University, Salzburg, Austria
| | - Peter C. van den Akker
- Department of Dermatology, University Medical Center Groningen,
University of Groningen, Groningen, The Netherlands
- Department of Genetics, University Medical Center Groningen,
University of Groningen, Groningen, The Netherlands
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center,
Leiden, The Netherlands
| | - Anna M. G. Pasmooij
- Department of Dermatology, University Medical Center Groningen,
University of Groningen, Groningen, The Netherlands
| | - Eva M. Murauer
- EB House Austria, Research Program for Molecular Therapy of
Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus
Medical University, Salzburg, Austria
| | - Alexander Nyström
- Department of Dermatology, Medical Center – University of
Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Designing Efficient Double RNA trans-Splicing Molecules for Targeted RNA Repair. Int J Mol Sci 2016; 17:ijms17101609. [PMID: 27669223 PMCID: PMC5085642 DOI: 10.3390/ijms17101609] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/24/2016] [Accepted: 09/14/2016] [Indexed: 11/17/2022] Open
Abstract
RNA trans-splicing is a promising tool for mRNA modification in a diversity of genetic disorders. In particular, the substitution of internal exons of a gene by combining 3' and 5' RNA trans-splicing seems to be an elegant way to modify especially large pre-mRNAs. Here we discuss a robust method for designing double RNA trans-splicing molecules (dRTM). We demonstrate how the technique can be implemented in an endogenous setting, using COL7A1, the gene encoding type VII collagen, as a target. An RTM screening system was developed with the aim of testing the replacement of two internal COL7A1 exons, harbouring a homozygous mutation, with the wild-type version. The most efficient RTMs from a pool of randomly generated variants were selected via our fluorescence-based screening system and adapted for use in an in vitro disease model system. Transduction of type VII collagen-deficient keratinocytes with the selected dRTM led to accurate replacement of two internal COL7A1 exons resulting in a restored wild-type RNA sequence. This is the first study demonstrating specific exon replacement by double RNA trans-splicing within an endogenous transcript in cultured cells, corroborating the utility of this technology for mRNA repair in a variety of genetic disorders.
Collapse
|
14
|
Berger A, Maire S, Gaillard MC, Sahel JA, Hantraye P, Bemelmans AP. mRNA trans-splicing in gene therapy for genetic diseases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:487-98. [PMID: 27018401 PMCID: PMC5071737 DOI: 10.1002/wrna.1347] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 01/27/2016] [Accepted: 02/22/2016] [Indexed: 11/12/2022]
Abstract
Spliceosome-mediated RNA trans-splicing, or SMaRT, is a promising strategy to design innovative gene therapy solutions for currently intractable genetic diseases. SMaRT relies on the correction of mutations at the post-transcriptional level by modifying the mRNA sequence. To achieve this, an exogenous RNA is introduced into the target cell, usually by means of gene transfer, to induce a splice event in trans between the exogenous RNA and the target endogenous pre-mRNA. This produces a chimeric mRNA composed partly of exons of the latter, and partly of exons of the former, encoding a sequence free of mutations. The principal challenge of SMaRT technology is to achieve a reaction as complete as possible, i.e., resulting in 100% repairing of the endogenous mRNA target. The proof of concept of SMaRT feasibility has already been established in several models of genetic diseases caused by recessive mutations. In such cases, in fact, the repair of only a portion of the mutant mRNA pool may be sufficient to obtain a significant therapeutic effect. However in the case of dominant mutations, the target cell must be freed from the majority of mutant mRNA copies, requiring a highly efficient trans-splicing reaction. This likely explains why only a few examples of SMaRT approaches targeting dominant mutations are reported in the literature. In this review, we explain in details the mechanism of trans-splicing, review the different strategies that are under evaluation to lead to efficient trans-splicing, and discuss the advantages and limitations of SMaRT. WIREs RNA 2016, 7:487-498. doi: 10.1002/wrna.1347 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Adeline Berger
- Centre de recherche Institut de la Vision, Sorbonne Universités, Université Pierre et Marie Curie UM80, Paris, France
| | - Séverine Maire
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Marie-Claude Gaillard
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - José-Alain Sahel
- Centre de recherche Institut de la Vision, Sorbonne Universités, Université Pierre et Marie Curie UM80, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS, Paris, France.,Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.,Institute of Ophthalmology, University College of London, London, UK
| | - Philippe Hantraye
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Alexis-Pierre Bemelmans
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| |
Collapse
|
15
|
A Gene Gun-mediated Nonviral RNA trans-splicing Strategy for Col7a1 Repair. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e287. [PMID: 26928235 DOI: 10.1038/mtna.2016.3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/07/2016] [Indexed: 01/24/2023]
Abstract
RNA trans-splicing represents an auspicious option for the correction of genetic mutations at RNA level. Mutations within COL7A1 causing strong reduction or absence of type VII collagen are associated with the severe skin blistering disease dystrophic epidermolysis bullosa. The human COL7A1 mRNA constitutes a suitable target for this RNA therapy approach, as only a portion of the almost 9 kb transcript has to be delivered into the target cells. Here, we have proven the feasibility of 5' trans-splicing into the Col7a1 mRNA in vitro and in vivo. We designed a 5' RNA trans-splicing molecule, capable of replacing Col7a1 exons 1-15 and verified it in a fluorescence-based trans-splicing model system. Specific and efficient Col7a1 trans-splicing was confirmed in murine keratinocytes. To analyze trans-splicing in vivo, we used gene gun delivery of a minicircle expressing a FLAG-tagged 5' RNA trans-splicing molecule into the skin of wild-type mice. Histological and immunofluorescence analysis of bombarded skin sections revealed vector delivery and expression within dermis and epidermis. Furthermore, we have detected trans-spliced type VII collagen protein using FLAG-tag antibodies. In conclusion, we describe a novel in vivo nonviral RNA therapy approach to restore type VII collagen expression for causative treatment of dystrophic epidermolysis bullosa.
Collapse
|
16
|
Philippi S, Lorain S, Beley C, Peccate C, Précigout G, Spuler S, Garcia L. Dysferlin rescue by spliceosome-mediated pre-mRNA trans-splicing targeting introns harbouring weakly defined 3' splice sites. Hum Mol Genet 2015; 24:4049-60. [PMID: 25904108 DOI: 10.1093/hmg/ddv141] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/16/2015] [Indexed: 12/12/2022] Open
Abstract
The modification of the pre-mRNA cis-splicing process employing a pre-mRNA trans-splicing molecule (PTM) is an attractive strategy for the in situ correction of genes whose careful transcription regulation and full-length expression is determinative for protein function, as it is the case for the dysferlin (DYSF, Dysf) gene. Loss-of-function mutations of DYSF result in different types of muscular dystrophy mainly manifesting as limb girdle muscular dystrophy 2B (LGMD2B) and Miyoshi muscular dystrophy 1 (MMD1). We established a 3' replacement strategy for mutated DYSF pre-mRNAs induced by spliceosome-mediated pre-mRNA trans-splicing (SmaRT) by the use of a PTM. In contrast to previously established SmaRT strategies, we particularly focused on the identification of a suitable pre-mRNA target intron other than the optimization of the PTM design. By targeting DYSF pre-mRNA introns harbouring differentially defined 3' splice sites (3' SS), we found that target introns encoding weakly defined 3' SSs were trans-spliced successfully in vitro in human LGMD2B myoblasts as well as in vivo in skeletal muscle of wild-type and Dysf(-/-) mice. For the first time, we demonstrate rescue of Dysf protein by SmaRT in vivo. Moreover, we identified concordant qualities among the successfully targeted Dysf introns and targeted endogenous introns in previously reported SmaRT approaches that might facilitate a selective choice of target introns in future SmaRT strategies.
Collapse
Affiliation(s)
- Susanne Philippi
- Université de Versailles St-Quentin, INSERM U1179, LIA BAHN Centre Scientifique de Monaco, 2 Avenue de la Source de la Bievre, Montigny-le-Bretonneux 78180, France, Muscle Research Unit, Experimental and Clinical Research Center, a Joint Cooperation Between Max-Delbrück-Center for Molecular Medicine and Charité Medical Faculty, Berlin, Germany and Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Myology Research Center, Paris, France
| | - Stéphanie Lorain
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Myology Research Center, Paris, France
| | - Cyriaque Beley
- Université de Versailles St-Quentin, INSERM U1179, LIA BAHN Centre Scientifique de Monaco, 2 Avenue de la Source de la Bievre, Montigny-le-Bretonneux 78180, France
| | - Cécile Peccate
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Myology Research Center, Paris, France
| | - Guillaume Précigout
- Université de Versailles St-Quentin, INSERM U1179, LIA BAHN Centre Scientifique de Monaco, 2 Avenue de la Source de la Bievre, Montigny-le-Bretonneux 78180, France
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, a Joint Cooperation Between Max-Delbrück-Center for Molecular Medicine and Charité Medical Faculty, Berlin, Germany and
| | - Luis Garcia
- Université de Versailles St-Quentin, INSERM U1179, LIA BAHN Centre Scientifique de Monaco, 2 Avenue de la Source de la Bievre, Montigny-le-Bretonneux 78180, France,
| |
Collapse
|
17
|
Berger A, Lorain S, Joséphine C, Desrosiers M, Peccate C, Voit T, Garcia L, Sahel JA, Bemelmans AP. Repair of rhodopsin mRNA by spliceosome-mediated RNA trans-splicing: a new approach for autosomal dominant retinitis pigmentosa. Mol Ther 2015; 23:918-930. [PMID: 25619725 PMCID: PMC4427870 DOI: 10.1038/mt.2015.11] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 01/12/2015] [Indexed: 12/26/2022] Open
Abstract
The promising clinical results obtained for ocular gene therapy in recent years have paved the way for gene supplementation to treat recessively inherited forms of retinal degeneration. The situation is more complex for dominant mutations, as the toxic mutant gene product must be removed. We used spliceosome-mediated RNA trans-splicing as a strategy for repairing the transcript of the rhodopsin gene, the gene most frequently mutated in autosomal dominant retinitis pigmentosa. We tested 17 different molecules targeting the pre-mRNA intron 1, by transient transfection of HEK-293T cells, with subsequent trans-splicing quantification at the transcript level. We found that the targeting of some parts of the intron promoted trans-splicing more efficiently than the targeting of other areas, and that trans-splicing rate could be increased by modifying the replacement sequence. We then developed cell lines stably expressing the rhodopsin gene, for the assessment of phenotypic criteria relevant to the pathogenesis of retinitis pigmentosa. Using this model, we showed that trans-splicing restored the correct localization of the protein to the plasma membrane. Finally, we tested our best candidate by AAV gene transfer in a mouse model of retinitis pigmentosa that expresses a mutant allele of the human rhodopsin gene, and demonstrated the feasibility of trans-splicing in vivo. This work paves the way for trans-splicing gene therapy to treat retinitis pigmentosa due to rhodopsin gene mutation and, more generally, for the treatment of genetic diseases with dominant transmission.
Collapse
Affiliation(s)
- Adeline Berger
- Centre de recherche Institut de la Vision, Sorbonne Universités, Université Pierre et Marie Curie UM80, INSERM U968, and CNRS UMR 7210, Paris, France
| | - Stéphanie Lorain
- Centre de recherche en Myologie, Sorbonne Universités, Université Pierre et Marie Curie, UM76, INSERM U974 and CNRS FRE 3617, Paris, France
| | - Charlène Joséphine
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), MIRCen, Fontenay-aux-Roses, France; Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR9199, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Melissa Desrosiers
- Centre de recherche Institut de la Vision, Sorbonne Universités, Université Pierre et Marie Curie UM80, INSERM U968, and CNRS UMR 7210, Paris, France
| | - Cécile Peccate
- Centre de recherche en Myologie, Sorbonne Universités, Université Pierre et Marie Curie, UM76, INSERM U974 and CNRS FRE 3617, Paris, France
| | - Thomas Voit
- Centre de recherche en Myologie, Sorbonne Universités, Université Pierre et Marie Curie, UM76, INSERM U974 and CNRS FRE 3617, Paris, France
| | - Luis Garcia
- UFR des sciences de la santé Simone Veil, Université Versailles Saint-Quentin, Montigny-le-Bretonneux, France
| | - José-Alain Sahel
- Centre de recherche Institut de la Vision, Sorbonne Universités, Université Pierre et Marie Curie UM80, INSERM U968, and CNRS UMR 7210, Paris, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503, Paris, France; Fondation Ophtalmologique Adolphe de Rothschild, Paris, France; Institute of Ophthalmology, University College of London, London, UK
| | - Alexis-Pierre Bemelmans
- Centre de recherche Institut de la Vision, Sorbonne Universités, Université Pierre et Marie Curie UM80, INSERM U968, and CNRS UMR 7210, Paris, France; Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), MIRCen, Fontenay-aux-Roses, France; Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR9199, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France.
| |
Collapse
|
18
|
Koller U, Hainzl S, Kocher T, Hüttner C, Klausegger A, Gruber C, Mayr E, Wally V, Bauer JW, Murauer EM. Trans-splicing improvement by the combined application of antisense strategies. Int J Mol Sci 2015; 16:1179-91. [PMID: 25569093 PMCID: PMC4307297 DOI: 10.3390/ijms16011179] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 12/25/2014] [Indexed: 11/16/2022] Open
Abstract
Spliceosome-mediated RNA trans-splicing has become an emergent tool for the repair of mutated pre-mRNAs in the treatment of genetic diseases. RNA trans-splicing molecules (RTMs) are designed to induce a specific trans-splicing reaction via a binding domain for a respective target pre-mRNA region. A previously established reporter-based screening system allows us to analyze the impact of various factors on the RTM trans-splicing efficiency in vitro. Using this system, we are further able to investigate the potential of antisense RNAs (AS RNAs), presuming to improve the trans-splicing efficiency of a selected RTM, specific for intron 102 of COL7A1. Mutations in the COL7A1 gene underlie the dystrophic subtype of the skin blistering disease epidermolysis bullosa (DEB). We have shown that co-transfections of the RTM and a selected AS RNA, interfering with competitive splicing elements on a COL7A1-minigene (COL7A1-MG), lead to a significant increase of the RNA trans-splicing efficiency. Thereby, accurate trans-splicing between the RTM and the COL7A1-MG is represented by the restoration of full-length green fluorescent protein GFP on mRNA and protein level. This mechanism can be crucial for the improvement of an RTM-mediated correction, especially in cases where a high trans-splicing efficiency is required.
Collapse
Affiliation(s)
- Ulrich Koller
- Department of Dermatology and EB House Austria, Paracelsus Medical University, Salzburg 5020, Austria.
| | - Stefan Hainzl
- Department of Dermatology and EB House Austria, Paracelsus Medical University, Salzburg 5020, Austria.
| | - Thomas Kocher
- Department of Dermatology and EB House Austria, Paracelsus Medical University, Salzburg 5020, Austria.
| | - Clemens Hüttner
- Department of Dermatology and EB House Austria, Paracelsus Medical University, Salzburg 5020, Austria.
| | - Alfred Klausegger
- Department of Dermatology and EB House Austria, Paracelsus Medical University, Salzburg 5020, Austria.
| | - Christina Gruber
- Department of Dermatology and EB House Austria, Paracelsus Medical University, Salzburg 5020, Austria.
| | - Elisabeth Mayr
- Department of Dermatology and EB House Austria, Paracelsus Medical University, Salzburg 5020, Austria.
| | - Verena Wally
- Department of Dermatology and EB House Austria, Paracelsus Medical University, Salzburg 5020, Austria.
| | - Johann W Bauer
- Department of Dermatology and EB House Austria, Paracelsus Medical University, Salzburg 5020, Austria.
| | - Eva M Murauer
- Department of Dermatology and EB House Austria, Paracelsus Medical University, Salzburg 5020, Austria.
| |
Collapse
|
19
|
Poddar S, Eul J, Patzel V. Homologous SV40 RNA trans-splicing: Special case or prime example of viral RNA trans-splicing? Comput Struct Biotechnol J 2014; 10:51-7. [PMID: 25210599 PMCID: PMC4151871 DOI: 10.1016/j.csbj.2014.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
To date the Simian Virus 40 (SV40) is the only proven example of a virus that recruits the mechanism of RNA trans-splicing to diversify its sequences and gene products. Thereby, two identical viral transcripts are efficiently joined by homologous trans-splicing triggering the formation of a highly transforming 100 kDa super T antigen. Sequences of other viruses including HIV-1 and the human adenovirus type 5 were reported to be involved in heterologous trans-splicing towards cellular or viral sequences but the meaning of these events remains unclear. We computationally and experimentally investigated molecular features associated with viral RNA trans-splicing and identified a common pattern: Viral RNA trans-splicing occurs between strong cryptic or regular viral splice sites and strong regular or cryptic splice sites of the trans-splice partner sequences. The majority of these splice sites are supported by exonic splice enhancers. Splice sites that could compete with the trans-splicing sites for cis-splice reactions are weaker or inexistent. Finally, all but one of the trans-splice reactions seem to be facilitated by one or more complementary binding domains of 11 to 16 nucleotides in length which, however occur with a statistical probability close to one for the given length of the involved sequences. The chimeric RNAs generated via heterologous viral RNA trans-splicing either did not lead to fusion proteins or led to proteins of unknown function. Our data suggest that distinct viral RNAs are highly susceptible to trans-splicing and that heterologous viral trans-splicing, unlike homologous SV40 trans-splicing, represents a chance event.
Collapse
Affiliation(s)
- Sushmita Poddar
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD4, Level 5, 5 Science Drive 2, Singapore 117597, Singapore
| | - Joachim Eul
- INEIDFO GmbH, Weserstrasse 23, 12045 Berlin, Germany
| | - Volker Patzel
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD4, Level 5, 5 Science Drive 2, Singapore 117597, Singapore
| |
Collapse
|
20
|
Koller U, Wally V, Bauer JW, Murauer EM. Considerations for a Successful RNA Trans-splicing Repair of Genetic Disorders. MOLECULAR THERAPY-NUCLEIC ACIDS 2014; 3:e157. [PMID: 24714422 PMCID: PMC4012396 DOI: 10.1038/mtna.2014.10] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ulrich Koller
- Division of Experimental Dermatology and EB House Austria, Department of Dermatology, Paracelsus Medical University, Salzburg, Austria
| | - Verena Wally
- Division of Experimental Dermatology and EB House Austria, Department of Dermatology, Paracelsus Medical University, Salzburg, Austria
| | - Johann W Bauer
- Division of Experimental Dermatology and EB House Austria, Department of Dermatology, Paracelsus Medical University, Salzburg, Austria
| | - Eva M Murauer
- Division of Experimental Dermatology and EB House Austria, Department of Dermatology, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
21
|
Ikpa PT, Bijvelds MJC, de Jonge HR. Cystic fibrosis: toward personalized therapies. Int J Biochem Cell Biol 2014; 52:192-200. [PMID: 24561283 DOI: 10.1016/j.biocel.2014.02.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/10/2014] [Accepted: 02/12/2014] [Indexed: 12/16/2022]
Abstract
Cystic fibrosis (CF), the most common, life-threatening monogenetic disease in Caucasians, is caused by mutations in the CFTR gene, encoding a cAMP- and cGMP-regulated epithelial chloride channel. Symptomatic therapies treating end-organ manifestations have increased the life expectancy of CF patients toward a mean of 40 years. The recent development of CFTR-targeted drugs that emerged from high-throughput screening and are capable of correcting the basic defect promises to transform the therapeutic landscape from a trial-and-error prescription to personalized medicine. This stratified approach is tailored to a specific functional class of mutations in CFTR, but can be refined further to an individual level by exploiting recent advances in ex vivo drug testing methods. These tests range from CFTR functional measurements in rectal biopsies donated by a CF patient to the use of patient-derived intestinal or pulmonary organoids. Such organoids may serve as an inexhaustible source of epithelial cells that can be stored in biobanks and allow medium- to high-throughput screening of CFTR activators, correctors and potentiators on the basis of a simple microscopic assay monitoring organoid swelling. Thus the recent breakthrough in stem cell biology allowing the culturing of mini-organs from individual patients is not only relevant for future stem cell therapy, but may also allow the preclinical testing of new drugs or combinations that are optimally suited for an individual patient.
Collapse
Affiliation(s)
- Pauline T Ikpa
- Erasmus MC-University Medical Center Rotterdam, Department of Gastroenterology & Hepatology, Rotterdam, The Netherlands
| | - Marcel J C Bijvelds
- Erasmus MC-University Medical Center Rotterdam, Department of Gastroenterology & Hepatology, Rotterdam, The Netherlands
| | - Hugo R de Jonge
- Erasmus MC-University Medical Center Rotterdam, Department of Gastroenterology & Hepatology, Rotterdam, The Netherlands.
| |
Collapse
|
22
|
Eul J, Patzel V. Homologous SV40 RNA trans-splicing: a new mechanism for diversification of viral sequences and phenotypes. RNA Biol 2013; 10:1689-99. [PMID: 24178438 DOI: 10.4161/rna.26707] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Simian Virus 40 (SV40) is a polyomavirus found in both monkeys and humans, which causes cancer in some animal models. In humans, SV40 has been reported to be associated with cancers but causality has not been proven yet. The transforming activity of SV40 is mainly due to its 94-kD large T antigen, which binds to the retinoblastoma (pRb) and p53 tumor suppressor proteins, and thereby perturbs their functions. Here we describe a 100 kD super T antigen harboring a duplication of the pRB binding domain that was associated with unusual high cell transformation activity and that was generated by a novel mechanism involving homologous RNA trans-splicing of SV40 early transcripts in transformed rodent cells. Enhanced trans-splice activity was observed in clones carrying a single point mutation in the large T antigen 5' donor splice site (ss). This mutation impaired cis-splicing in favor of an alternative trans-splice reaction via a cryptic 5'ss within a second cis-spliced SV40 pre-mRNA molecule and enabled detectable gene expression. Next to the cryptic 5'ss we identified additional trans-splice helper functions, including putative dimerization domains and a splice enhancer sequence. Our findings suggest RNA trans-splicing as a SV40-intrinsic mechanism that supports the diversification of viral RNA and phenotypes.
Collapse
Affiliation(s)
- Joachim Eul
- Institut fuer Molekularbiologie und Biochemie; Freie Universität Berlin; Berlin, German
| | - Volker Patzel
- Department of Microbiology; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
| |
Collapse
|
23
|
Lorain S, Peccate C, Le Hir M, Griffith G, Philippi S, Précigout G, Mamchaoui K, Jollet A, Voit T, Garcia L. Dystrophin rescue by trans-splicing: a strategy for DMD genotypes not eligible for exon skipping approaches. Nucleic Acids Res 2013; 41:8391-402. [PMID: 23861443 PMCID: PMC3783188 DOI: 10.1093/nar/gkt621] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RNA-based therapeutic approaches using splice-switching oligonucleotides have been successfully applied to rescue dystrophin in Duchenne muscular dystrophy (DMD) preclinical models and are currently being evaluated in DMD patients. Although the modular structure of dystrophin protein tolerates internal deletions, many mutations that affect nondispensable domains of the protein require further strategies. Among these, trans-splicing technology is particularly attractive, as it allows the replacement of any mutated exon by its normal version as well as introducing missing exons or correcting duplication mutations. We have applied such a strategy in vitro by using cotransfection of pre–trans-splicing molecule (PTM) constructs along with a reporter minigene containing part of the dystrophin gene harboring the stop-codon mutation found in the mdx mouse model of DMD. Optimization of the different functional domains of the PTMs allowed achieving accurate and efficient trans-splicing of up to 30% of the transcript encoded by the cotransfected minigene. Optimized parameters included mRNA stabilization, choice of splice site sequence, inclusion of exon splice enhancers and artificial intronic sequence. Intramuscular delivery of adeno-associated virus vectors expressing PTMs allowed detectable levels of dystrophin in mdx and mdx4Cv, illustrating that a given PTM can be suitable for a variety of mutations.
Collapse
Affiliation(s)
- Stéphanie Lorain
- Thérapie des maladies du muscle strié, Um76 UPMC - UMR 7215 CNRS - U974 Inserm - Institut de Myologie, 75013 Paris, France and UFR des Sciences de la Santé, Université de Versailles Saint-Quentin-en-Yvelines, 78180 Montigny-le-Bretonneux, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Tsui LC, Dorfman R. The cystic fibrosis gene: a molecular genetic perspective. Cold Spring Harb Perspect Med 2013; 3:a009472. [PMID: 23378595 DOI: 10.1101/cshperspect.a009472] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The positional cloning of the gene responsible for cystic fibrosis (CF) was the important first step in understanding the basic defect and pathophysiology of the disease. This study aims to provide a historical account of key developments as well as factors that contributed to the cystic fibrosis transmembrane conductance regulator (CFTR) gene identification work. A redefined gene structure based on the full sequence of the gene derived from the Human Genome Project is presented, along with brief reviews of the transcription regulatory sequences for the CFTR gene, the role of mRNA splicing in gene regulation and CF disease, and, various related sequences in the human genome and other species. Because CF mutations and genotype-phenotype correlations are covered by our colleagues (Ferec C, Cutting GR. 2012. Assessing the disease-liability of mutations in CFTR. Cold Spring Harb Perspect Med doi: 10.1101/cshperspect.a009480), we only attempt to provide an introduction of the CF mutation database here for reference purposes.
Collapse
Affiliation(s)
- Lap-Chee Tsui
- The University of Hong Kong, Hong Kong, Special Administrative Region, China.
| | | |
Collapse
|
25
|
Abstract
Spliceosome-mediated RNA trans-splicing (SMaRT) is an RNA-based technology to reprogram genes for diagnostic and therapeutic purposes. For the correction of genetic diseases, SMaRT offers several advantages over traditional gene-replacement strategies. SMaRT protocols have recently been used for in vitro phenotypic correction of a variety of genetic disorders, ranging from epidermolysis bullosa to neurodegenerative diseases. In vivo studies are currently bringing trans-splicing RNA therapy toward clinical application. In this review, we summarize the progress made toward the medical use of SMaRT and provide an outlook on its upcoming applications.
Collapse
|
26
|
The falsifiability of the models for the origin of eukaryotes. Curr Genet 2011; 57:367-90. [DOI: 10.1007/s00294-011-0357-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 09/29/2011] [Accepted: 09/30/2011] [Indexed: 01/13/2023]
|
27
|
Koller U, Wally V, Mitchell LG, Klausegger A, Murauer EM, Mayr E, Gruber C, Hainzl S, Hintner H, Bauer JW. A novel screening system improves genetic correction by internal exon replacement. Nucleic Acids Res 2011; 39:e108. [PMID: 21685452 PMCID: PMC3167625 DOI: 10.1093/nar/gkr465] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 04/15/2011] [Accepted: 05/20/2011] [Indexed: 11/25/2022] Open
Abstract
Trans-splicing is a powerful approach to reprogram the genome. It can be used to replace 5', 3' or internal exons. The latter approach has been characterized by low efficiency, as the requirements to promote internal trans-splicing are largely uncharacterized. The trans-splicing process is induced by engineered 'RNA trans-splicing molecules' (RTMs), which target a selected pre-mRNA to be reprogrammed via two complementary binding domains. To facilitate the development of more efficient RTMs for therapeutic applications we constructed a novel fluorescence based screening system. We incorporated exon 52 of the COL17A1 gene into a GFP-based cassette system as the target exon. This exon is mutated in many patients with the devastating skin blistering disease epidermolysis bullosa. In a double transfection assay we were able to rapidly identify optimal binding domains targeted to sequences in the surrounding introns 51 and 52. The ability to replace exon 52 was then evaluated in a more endogenous context using a target containing COL17A1 exon 51-intron 51-exon 52-intron 52-exon 53. Two selected RTMs produced significantly higher levels of GFP expression in up to 61% assayed cells. This novel approach allows for rapid identification of efficient RTMs for internal exon replacement.
Collapse
Affiliation(s)
- Ulrich Koller
- Division of Molecular Dermatology and EB House Austria, Department of Dermatology, Paracelsus Medical University, 5020 Salzburg, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wally V, Brunner M, Lettner T, Wagner M, Koller U, Trost A, Murauer EM, Hainzl S, Hintner H, Bauer JW. K14 mRNA reprogramming for dominant epidermolysis bullosa simplex. Hum Mol Genet 2010; 19:4715-25. [DOI: 10.1093/hmg/ddq405] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
29
|
Lorain S, Peccate C, Le Hir M, Garcia L. Exon exchange approach to repair Duchenne dystrophin transcripts. PLoS One 2010; 5:e10894. [PMID: 20531943 PMCID: PMC2878348 DOI: 10.1371/journal.pone.0010894] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 05/07/2010] [Indexed: 11/19/2022] Open
Abstract
Background Trans-splicing strategies for mRNA repair involve engineered transcripts designed to anneal target mRNAs in order to interfere with their natural splicing, giving rise to mRNA chimeras where endogenous mutated exons have been replaced by exogenous replacement sequences. A number of trans-splicing molecules have already been proposed for replacing either the 5′ or the 3′ part of transcripts to be repaired. Here, we show the feasibility of RNA surgery by using a double trans-splicing approach allowing the specific substitution of a given mutated exon. Methodology/Principal Findings As a target we used a minigene encoding a fragment of the mdx dystrophin gene enclosing the mutated exon (exon 23). This minigene was cotransfected with a variety of exon exchange constructions, differing in their annealing domains. We obtained accurate and efficient replacement of exon 23 in the mRNA target. Adding up a downstream intronic splice enhancer DISE in the exon exchange molecule enhanced drastically its efficiency up to 25–45% of repair depending on the construction in use. Conclusions/Significance These results demonstrate the possibility to fix up mutated exons, refurbish deleted exons and introduce protein motifs, while keeping natural untranslated sequences, which are essential for mRNA stability and translation regulation. Conversely to the well-known exon skipping, exon exchange has the advantage to be compatible with almost any type of mutations and more generally to a wide range of genetic conditions. In particular, it allows addressing disorders caused by dominant mutations.
Collapse
Affiliation(s)
- Stéphanie Lorain
- Université Pierre et Marie Curie (UMR S 974)-Institut National de la Santé et de la Recherche Médicale (U974)-Centre National de la Recherche Scientifique (UMR 7215), Paris, France.
| | | | | | | |
Collapse
|
30
|
Herai RH, Yamagishi MEB. Detection of human interchromosomal trans-splicing in sequence databanks. Brief Bioinform 2009; 11:198-209. [PMID: 19955235 DOI: 10.1093/bib/bbp041] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Trans-splicing is a common phenomenon in nematodes and kinetoplastids, and it has also been reported in other organisms, including humans. Up to now, all in silico strategies to find evidence of trans-splicing in humans have required that the candidate sequences follow the consensus splicing site rules (spliceosome-mediated mechanism). However, this criterion is not supported by the best human experimental evidence, which, except in a single case, do not follow canonical splicing sites. Moreover, recent findings describe a novel alternative tRNA mediated trans-splicing mechanism, which prescinds the spliceosome machinery. In order to answer the question, 'Are there hybrid mRNAs in sequence databanks, whose characteristics resemble those of the best human experimental evidence?', we have developed a methodology that successfully identified 16 hybrid mRNAs which might be instances of interchromosomal trans-splicing. Each hybrid mRNA is formed by a trans-spliced region (TSR), which was successfully mapped either onto known genes or onto a human endogenous retrovirus (HERV-K) transcript which supports their transcription. The existence of these hybrid mRNAs indicates that trans-splicing may be more widespread than believed. Furthermore, non-canonical splice site patterns suggest that infrequent splicing sites may occur under special conditions, or that an alternative trans-splicing mechanism is involved. Finally, our candidates are supposedly from normal tissue, and a recent study has reported that trans-splicing may occur not only in malignant tissues, but in normal tissues as well. Our methodology can be applied to 5'-UTR, coding sequences and 3'-UTR in order to find new candidates for a posteriori experimental confirmation.
Collapse
Affiliation(s)
- Roberto Hirochi Herai
- Genetics and Molecular Biology Department, Biology Institute, State University of Campinas, 13083-862 Campinas, SP, Brazil.
| | | |
Collapse
|
31
|
Rodriguez-Martin T, Anthony K, Garcia-Blanco MA, Mansfield SG, Anderton BH, Gallo JM. Correction of tau mis-splicing caused by FTDP-17 MAPT mutations by spliceosome-mediated RNA trans-splicing. Hum Mol Genet 2009; 18:3266-73. [PMID: 19498037 PMCID: PMC2722988 DOI: 10.1093/hmg/ddp264] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) is caused by mutations in the MAPT gene, encoding the tau protein that accumulates in intraneuronal lesions in a number of neurodegenerative diseases. Several FTDP-17 mutations affect alternative splicing and result in excess exon 10 (E10) inclusion in tau mRNA. RNA reprogramming using spliceosome-mediated RNA trans-splicing (SMaRT) could be a method of choice to correct aberrant E10 splicing resulting from FTDP-17 mutations. SMaRT creates a hybrid mRNA through a trans-splicing reaction between an endogenous target pre-mRNA and a pre-trans-splicing RNA molecule (PTM). However, FTDP-17 mutations affect the strength of cis-splicing elements and could favor cis-splicing over trans-splicing. Excess E10 inclusion in FTDP-17 can be caused by intronic mutations destabilizing a stem-loop protecting the 5′ splice site at the E10/intron 10 junction. COS cells transfected with a minigene containing the intronic +14 mutation produce exclusively E10+ RNA. Generation of E10− RNA was restored after co-transfection with a PTM designed to exclude E10. Similar results were obtained with a target containing the exonic N279K mutation which strengthens a splicing enhancer within E10. Conversely, increase or decrease in E10 content was achieved by trans-splicing from a target carrying the Δ280K mutation, which weakens the same splicing enhancer. Thus E10 inclusion can be modulated by trans-splicing irrespective of the strength of the cis-splicing elements affected by FTDP-17 mutations. In conclusion, RNA trans-splicing could provide the basis of therapeutic strategies for impaired alternative splicing caused by pathogenic mutations in cis-acting splicing elements.
Collapse
Affiliation(s)
- Teresa Rodriguez-Martin
- Department of Clinical Neuroscience, MRC Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry, London SE5 8AF, UK
| | | | | | | | | | | |
Collapse
|
32
|
Hengge UR. SMaRT technology enables gene expression repair in skin gene therapy. J Invest Dermatol 2008; 128:499-500. [PMID: 18268535 DOI: 10.1038/sj.jid.5701241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this issue, Wally et al. (2008) report successful gene expression repair by spliceosome-mediated RNA trans-splicing (SMaRT), a novel achievement in molecular medicine. In their model, SMaRT was able to replace a mutation of the plectin gene in epidermolysis bullosa simplex with muscular dystrophy. This approach is particularly attractive for skin gene therapy of dominant-negative mutations present in a number of blistering genodermatoses.
Collapse
Affiliation(s)
- Ulrich R Hengge
- Department of Dermatology, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
33
|
|
34
|
Kierlin-Duncan MN, Sullenger BA. Using 5'-PTMs to repair mutant beta-globin transcripts. RNA (NEW YORK, N.Y.) 2007; 13:1317-27. [PMID: 17556711 PMCID: PMC1924905 DOI: 10.1261/rna.525607] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 04/27/2007] [Indexed: 05/15/2023]
Abstract
Trans-splicing has been used to repair mutant RNA transcripts via competition for the spliceosome using pre-trans-splicing molecules, or "PTMs." Previous studies have demonstrated that functional PTMs can be designed for either 3'- or 5'-exon replacement, with a vast majority of the work to date focusing on repair of mutations within internal exons and via 3'-exon replacement. Here, we describe the first use of trans-splicing to target the first exon and intron of a therapeutically relevant gene and repair the mutant RNA by 5'-exon replacement. Our results show that 5'-PTMs can be designed to repair mutations in the beta-globin transcript involved in sickle cell anemia and beta-thalassemia while providing insight into considerations for competition between trans- versus cis-splicing in mammalian cells. Target transcripts with impaired cis-splicing capabilities, like those produced in some forms of beta-thalassemia, are more efficiently repaired via trans-splicing than targets in which cis-splicing is unaffected as with sickle beta-globin. This study reveals desirable characteristics in substrate RNAs for trans-splicing therapeutics as well as provides an opportunity for further exploration into general splicing mechanisms via 5'-PTMs.
Collapse
Affiliation(s)
- Monique N Kierlin-Duncan
- University Program in Genetics and Genomics, Duke University Medcial Center, Durham, NC 27708, USA
| | | |
Collapse
|
35
|
Coady TH, Shababi M, Tullis GE, Lorson CL. Restoration of SMN function: delivery of a trans-splicing RNA re-directs SMN2 pre-mRNA splicing. Mol Ther 2007; 15:1471-8. [PMID: 17551501 DOI: 10.1038/sj.mt.6300222] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Spinal muscular atrophy (SMA) is caused by loss of survival motor neuron-1 (SMN1). A nearly identical copy gene called SMN2 is present in all SMA patients; however SMN2 produces low levels of functional protein due to alternative splicing. Recently a therapeutic approach has been developed referred to as trans-splicing. Conceptually, this strategy relies upon pre-messenger RNA (pre-mRNA) splicing occurring between two separate molecules: (i) the endogenous target RNA and (ii) the therapeutic RNA that provides the correct RNA sequence via a trans-splicing event. SMN trans-splicing RNAs were initially examined and expressed from a plasmid-backbone and shown to re-direct splicing from a SMN2 mini-gene as well as from endogenous transcripts. Subsequently, recombinant adeno-associated viral vectors were developed that expressed and delivered trans-splicing RNAs to SMA patient fibroblasts. In the severe SMA patient fibroblasts, SMN2 splicing was redirected via trans-splicing to produce increased levels of full-length SMN mRNA and total SMN protein levels. Finally, small nuclear ribonucleoprotein (snRNP) assembly, a critical function of SMN, was restored to SMN-deficient SMA fibroblasts following treatment with the trans-splicing vector. Together these results demonstrate that the alternatively spliced SMN2 exon 7 is a tractable target for replacement by trans-splicing.
Collapse
Affiliation(s)
- Tristan H Coady
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211-7310, USA
| | | | | | | |
Collapse
|
36
|
Dixon RJ, Eperon IC, Samani NJ. Complementary intron sequence motifs associated with human exon repetition: a role for intragenic, inter-transcript interactions in gene expression. ACTA ACUST UNITED AC 2006; 23:150-5. [PMID: 17105720 DOI: 10.1093/bioinformatics/btl575] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MOTIVATION Exon repetition describes the presence of tandemly repeated exons in mRNA in the absence of duplications in the genome. The regulation of this process is not fully understood. We therefore investigated the entire flanking intronic sequences of exons involved in exon repetition for common sequence elements. RESULTS A computational analysis of 48 human single exon repetition events identified two common sequence motifs. One of these motifs is pyrimidine-rich and is more common in the upstream intron, whilst the other motif is highly enriched in purines and is more common in the downstream intron. As the two motifs are complementary to each other, they support a model by which exon repetition occurs as a result of trans-splicing between separate pre-mRNA transcripts from the same gene that are brought together during transcription by complementary intronic sequences. The majority of the motif instances overlap with the locations of mobile elements such as Alu elements. We explore the potential importance of complementary intron sequences in a rat gene that undertakes natural exon repetition in a strain specific manner. The possibility that distant complementary sequences can stimulate inter-transcript splicing during transcription suggests an unsuspected new role for potential secondary structures in endogenous genes.
Collapse
Affiliation(s)
- Richard J Dixon
- Department of Cardiovascular Sciences Leicester, LE3 9Q, UK.
| | | | | |
Collapse
|
37
|
Fichou Y, Férec C. The potential of oligonucleotides for therapeutic applications. Trends Biotechnol 2006; 24:563-70. [PMID: 17045686 DOI: 10.1016/j.tibtech.2006.10.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 08/21/2006] [Accepted: 10/03/2006] [Indexed: 12/15/2022]
Abstract
Viral-derived particles have been widely used and described in gene therapy clinical trials. Although substantial results have been achieved, major safety issues have also arisen. For more than a decade, oligonucleotides have been seen as an alternative to gene complementation by viral vectors or DNA plasmids, either to correct the genetic defect or to silence gene expression. The development of RNA interference has strengthened the potential of this approach. Recent clinical trials have also tested the ability of aptamer molecules and decoy oligonucleotides to sequestrate pathogenic proteins. Here, we review the potential of oligonucleotides in gene therapy, outline what has already been accomplished, and consider what remains to be done.
Collapse
Affiliation(s)
- Yann Fichou
- Inserm U613, Université de Bretagne Occidentale, 46 rue Félix Le Dantec, 29275 Brest Cedex, France
| | | |
Collapse
|
38
|
Mitchell LG, McGarrity GJ. Gene therapy progress and prospects: reprograming gene expression by trans-splicing. Gene Ther 2006; 12:1477-85. [PMID: 16121205 DOI: 10.1038/sj.gt.3302596] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The term 'trans-splicing' encompasses several platform technologies that combine two RNA or protein molecules to generate a new, chimeric product. RNA trans-splicing reprograms the sequences of endogenous messenger mRNA or pre-mRNA, converting them to a new, desired gene product. Trans-splicing has broad applications, depending on the nature of the sequences that are inserted or trans-spliced to the defined target. Trans-splicing RNA therapy offers significant advantages over conventional gene therapy: expression of the trans-spliced sequence is controlled by the endogenous regulation of the target pre-mRNA; reduction or elimination of undesirable ectopic expression; the ability to use smaller constructs that trans-splice only a portion of the gene to be replaced; and the conversion of dominant-negative mutations to wild-type gene products.
Collapse
|
39
|
Yang Y, Walsh CE. Spliceosome-mediated RNA trans-splicing. Mol Ther 2005; 12:1006-12. [PMID: 16226059 DOI: 10.1016/j.ymthe.2005.09.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 08/30/2005] [Accepted: 09/08/2005] [Indexed: 10/25/2022] Open
Abstract
RNA repair or reprogramming is a new avenue for human gene therapy. Unlike conventional gene therapy, in which exogenous cDNAs are introduced into cells, RNA repair approaches, which are based on spliceosome-mediated pre-mRNA trans-splicing, trans-splicing ribozymes, and tRNA-splicing endonuclease, allow the correction of endogenous RNA species. Recently published accounts that in vivo phenotypic correction of a variety of inherited diseases can be achieved by RNA repair are encouraging. Nevertheless, the science of RNA repair for treatment of human diseases is just beginning and faces several scientific and technical challenges that must be addressed and surmounted. In this review, we summarize recent advances in spliceosome-mediated pre-mRNA trans-splicing. We also provide an update on the progress of this emerging technology toward the development of molecular therapy and diagnosis for human diseases and discuss the outstanding issues and challenges confronting RNA therapeutics.
Collapse
Affiliation(s)
- Yanping Yang
- Department of Medicine, Mt. Sinai School of Medicine, One Gustave Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
40
|
Liu X, Luo M, Zhang LN, Yan Z, Zak R, Ding W, Mansfield SG, Mitchell LG, Engelhardt JF. Spliceosome-Mediated RNATrans-Splicing with Recombinant Adeno-Associated Virus Partially Restores Cystic Fibrosis Transmembrane Conductance Regulator Function to Polarized Human Cystic Fibrosis Airway Epithelial Cells. Hum Gene Ther 2005; 16:1116-23. [PMID: 16149910 DOI: 10.1089/hum.2005.16.1116] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We previously reported that spliceosome-mediated RNA trans-splicing (SMaRT), using recombinant adenoviral vectors expressing pre-trans-splicing molecules (PTMs), could partially restore cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel activity to polarized human DeltaF508 CF airway epithelia. Although these studies proved that SMaRT could correct CFTR mRNA defects, recombinant adenoviral infection from the basolateral surface was required because of inefficient infection from the apical membrane. Hence, applications of SMaRT technology for CF gene therapy require further testing with alternative, more clinically viable, vector systems. Furthermore, because recombinant adeno-associated virus (rAAV) vectors have packing limitations with respect to the size of the CFTR transgene insert, SMaRT correction of CFTR has the added attraction of a smaller transgene cassette. In the present study, we investigated whether rAAV vectors could effectively rescue CFTR chloride conductance in polarized human CF airway epithelial cells, using a SMaRT approach. AAV vectors were generated to carry a PTM engineered to bind intron 9 of CFTR pre-mRNA and then trans-splice the normal sequence for human CFTR exons 10-24 into the endogenous pre-mRNA. Human CF polarized airway epithelia were infected from the apical membrane with rAAV2 or rAAV5 CFTR-PTM vectors in the presence of proteasome-modulating agents (doxorubicin and N-acetyl-L-leucinyl-L-leucinyl-L-norleucinal) to enhance transduction. Epithelia were then evaluated for cAMP-sensitive short-circuit currents 2 weeks postinfection. Levels of CFTR correction seen with rAAV2 (1.07 +/- 0.24 microA) and rAAV5 (0.90 +/- 0.20 microA) CFTR-PTM vectors were similar, representing conductance equivalent to 14.2 and 13.6% of that observed in non-CF human polarized epithelia, respectively. RT-PCR analysis demonstrated the existence of wild-type CFTR transcript in CFTR-PTM-corrected epithelia, whereas only DeltaF508 mRNA was detected in polarized cells infected with control rAAV LacZ-PTM vectors. These results provide evidence that rAAV vectors are capable of using SMaRT to correct CFTR function after apical infection of human CF airway epithelia. The ability of CFTR-PTM-mediated correction to maintain endogenous CFTR regulation of the transgene product may further improve the efficacy of gene therapy for CF.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Anatomy, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Liu X, Luo M, Zhang LN, Yan Z, Zak R, Ding W, Mansfield SG, Mitchell LG, Engelhardt JF. Spliceosome-Mediated RNA Trans-Splicing with Recombinant Adeno-Associated Virus Partially Restores Cystic Fibrosis Transmembrane Conductance Regulator Function to Polarized Human Cystic Fibrosis Airway Epithelial Cells. Hum Gene Ther 2005. [DOI: 10.1089/hum.2005.16.ft-107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
42
|
|
43
|
Pergolizzi RG, Crystal RG. Genetic medicine at the RNA level: modifications of the genetic repertoire for therapeutic purposes by pre-mRNA trans-splicing. C R Biol 2004; 327:695-709. [PMID: 15506518 DOI: 10.1016/j.crvi.2004.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Gene therapy is conventionally carried out by transferring genetic material to the target cell where the exogenous gene is expressed using the endogenous transcription and translation machinery in parallel with the target cell genome. This review focuses on a new paradigm of gene therapy, the use of trans-splicing to modify the genetic repertoire at the pre-mRNA level to treat genetic and acquired disorders. Therapeutic trans-splicing can be used to alter coding domains, to create novel fusion proteins, to direct gene products to various cellular compartments, and to overcome some of the limitations to vector-derived gene transfer technology, including gene therapy with large genes or with genes coding for toxic proteins. To demonstrate the potential of therapeutic trans-splicing, eukaryotic cis-splicing and trans-splicing are reviewed, followed by a discussion of strategies of therapeutic pre-mRNA trans-splicing directed by exogenous gene transfer.
Collapse
Affiliation(s)
- Robert G Pergolizzi
- Department of Genetic Medicine, Weill Medical College of Cornell University, 515 East 71st Street, S-1000 New York, NY 10021, USA
| | | |
Collapse
|
44
|
Walsh CE. New paradigms for gene transfer: RNA trans-splicing and small interfering RNA as therapeutic strategies. Semin Hematol 2004; 41:297-302. [PMID: 15508115 DOI: 10.1053/j.seminhematol.2004.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
If successful, the sustained and regulated expression of therapeutic proteins secreted from a variety of tissues would revolutionize the medical treatment of hematologic diseases. The current paradigm that has dominated the gene therapy field since its inception has been the transfer of complementary DNAs (cDNAs) that encode for therapeutic proteins. The transfer of cDNAs can only correct autosomal recessive and sex-linked disorders. In most cases, cDNAs are constructed that lack their endogenous regulatory elements and therefore lose their intrinsic regulation of gene expression. In this article we will describe the use of RNA species to either suppress unwanted gene activity or to repair defective genes. Examples of RNA inhibition and repair will be discussed.
Collapse
Affiliation(s)
- Christopher E Walsh
- Division of Hematology-Oncology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|