1
|
Zhang X, Feng Y, Gao F, Li T, Guo Y, Ge S, Wang N. Expression and clinical significance of U2AF homology motif kinase 1 in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 138:626-634. [PMID: 39129074 DOI: 10.1016/j.oooo.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/03/2024] [Accepted: 07/14/2024] [Indexed: 08/13/2024]
Abstract
OBJECTIVE U2AF homology motif kinase 1 (UHMK1) is a newly discovered molecule that may have multiple functions. Recent studies have revealed that UHMK1 had aberrant expression in many tumors and was associated with tumor progression. However, UHMK1 was rarely reported in oral squamous cell carcinoma (OSCC). STUDY DESIGN In this study, Western blot, quantitative real-time polymerase chain reaction (PCR), and immunohistochemistry were used to detect the expression of UHMK1 in OSCC and peritumoral non-neoplastic tissues. Then, its relationship with clinicopathologic parameters was analyzed. The Kaplan-Meier method and Cox regression model were used to analyze the effects of UHMK1 expression on the prognosis and survival of OSCC patients. RESULTS Our results showed that UHMK1 had higher expression in OSCC tissues compared with in peritumoral non-neoplastic tissues, and its high expression was associated with high TNM stage and lymph node metastasis. High UHMK1 expression was related to short overall and disease-free survival times. Moreover, UHMK1 expression was identified as an independent prognostic factor that influences overall and disease-free survival of OSCC patients. CONCLUSIONS High expression of UHMK1 is associated with the poor prognosis of patients, and it can be used as a potential prognostic molecule for OSCC.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Yuanyong Feng
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Fei Gao
- Deparment of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tongtong Li
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Yan Guo
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Shengyou Ge
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Ning Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
2
|
UHMK1 aids colorectal cancer cell proliferation and chemoresistance through augmenting IL-6/STAT3 signaling. Cell Death Dis 2022; 13:424. [PMID: 35501324 PMCID: PMC9061793 DOI: 10.1038/s41419-022-04877-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 12/14/2022]
Abstract
UHMK1, a serine/threonine kinase with a U2AF homology motif, is implicated in RNA processing and protein phosphorylation. Increasing evidence has indicated its involvement in tumorigenesis. However, it remains to be elucidated whether UHMK1 plays a role in the development of colorectal cancer (CRC). Here, we demonstrated that UHMK1 was frequently upregulated in CRC samples compared with adjacent normal tissue and high expression of UHMK1 predicted poor outcomes. Knockdown of UHMK1 by siRNAs restrained CRC cell proliferation and increased oxaliplatin sensitivity, whereas overexpression of UHMK1 promoted CRC cell growth and oxaliplatin resistance, suggesting that UHMK1 plays important oncogenic roles in CRC. Mechanistically, we showed that UHMK1 had a significant effect on IL6/STAT3 signaling by interacting with STAT3. The interaction of UHMK1 with STAT3 enhanced STAT3 activity in regulating gene transcription. Furthermore, we found that STAT3 could in turn transcriptionally activate UHMK1 expression in CRC cells. The complementary experiments for cell growth and oxaliplatin resistance indicated the interdependent relationship between UHMK1 and STAT3. Thus, these collective findings uncovered a new UHMK1/STAT3 positive feedback regulatory loop contributing to CRC development and chemoresistance.
Collapse
|
3
|
Borao S, Ayté J, Hümmer S. Evolution of the Early Spliceosomal Complex-From Constitutive to Regulated Splicing. Int J Mol Sci 2021; 22:ijms222212444. [PMID: 34830325 PMCID: PMC8624252 DOI: 10.3390/ijms222212444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Pre-mRNA splicing is a major process in the regulated expression of genes in eukaryotes, and alternative splicing is used to generate different proteins from the same coding gene. Splicing is a catalytic process that removes introns and ligates exons to create the RNA sequence that codifies the final protein. While this is achieved in an autocatalytic process in ancestral group II introns in prokaryotes, the spliceosome has evolved during eukaryogenesis to assist in this process and to finally provide the opportunity for intron-specific splicing. In the early stage of splicing, the RNA 5' and 3' splice sites must be brought within proximity to correctly assemble the active spliceosome and perform the excision and ligation reactions. The assembly of this first complex, termed E-complex, is currently the least understood process. We focused in this review on the formation of the E-complex and compared its composition and function in three different organisms. We highlight the common ancestral mechanisms in S. cerevisiae, S. pombe, and mammals and conclude with a unifying model for intron definition in constitutive and regulated co-transcriptional splicing.
Collapse
Affiliation(s)
- Sonia Borao
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain;
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain;
- Correspondence: (J.A.); (S.H.)
| | - Stefan Hümmer
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain;
- Translational Molecular Pathology, Vall d’Hebron Research Institute (VHIR), CIBERONC, 08035 Barcelona, Spain
- Correspondence: (J.A.); (S.H.)
| |
Collapse
|
4
|
Kobayashi A, Clément MJ, Craveur P, El Hage K, Salone JDM, Bollot G, Pastré D, Maucuer A. Identification of a small molecule splicing inhibitor targeting UHM domains. FEBS J 2021; 289:682-698. [PMID: 34520118 DOI: 10.1111/febs.16199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/10/2021] [Accepted: 09/13/2021] [Indexed: 01/07/2023]
Abstract
Splicing factor mutations are frequent in myeloid neoplasms, blood cancers, and solid tumors. Cancer cells harboring these mutations present a particular vulnerability to drugs that target splicing factors such as SF3b155 or CAPERα. Still, the arsenal of chemical probes that target the spliceosome is very limited. U2AF homology motifs (UHMs) are common protein interaction domains among splicing factors. They present a hydrophobic pocket ideally suited to anchor small molecules with the aim to inhibit protein-protein interaction. Here, we combined a virtual screening of a small molecules database and an in vitro competition assay and identified a small molecule, we named UHMCP1 that prevents the SF3b155/U2AF65 interaction. NMR analyses and molecular dynamics simulations confirmed the binding of this molecule in the hydrophobic pocket of the U2AF65 UHM domain. We further provide evidence that UHMCP1 impacts RNA splicing and cell viability and is therefore an interesting novel compound targeting an UHM domain with potential anticancer properties.
Collapse
Affiliation(s)
- Asaki Kobayashi
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, Evry, France.,SYNSIGHT, Genopole Entreprises, Evry, France
| | | | | | - Krystel El Hage
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, Evry, France
| | | | | | - David Pastré
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, Evry, France
| | - Alexandre Maucuer
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, Evry, France
| |
Collapse
|
5
|
Genomic and cDNA selection-amplification identifies transcriptome-wide binding sites for the Drosophila protein sex-lethal. PLoS One 2021; 16:e0250592. [PMID: 34029324 PMCID: PMC8143406 DOI: 10.1371/journal.pone.0250592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/11/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Downstream targets for a large number of RNA-binding proteins remain to be identified. The Drosophila master sex-switch protein Sex-lethal (SXL) is an RNA-binding protein that controls splicing, polyadenylation, or translation of certain mRNAs to mediate female-specific sexual differentiation. Whereas some targets of SXL are known, previous studies indicate that additional targets of SXL have escaped genetic screens. METHODOLOGY/PRINCIPAL FINDINGS Here, we have used an alternative molecular approach of GEnomic Selective Enrichment of Ligands by Exponential enrichment (GESELEX) using both the genomic DNA and cDNA pools from several Drosophila developmental stages to identify new potential targets of SXL. Our systematic analysis provides a comprehensive view of the Drosophila transcriptome for potential SXL-binding sites. CONCLUSION/SIGNIFICANCE We have successfully identified new SXL-binding sites in the Drosophila transcriptome. We discuss the significance of our analysis and that the newly identified binding sites and sequences could serve as a useful resource for the research community. This approach should also be applicable to other RNA-binding proteins for which downstream targets are unknown.
Collapse
|
6
|
Architecture and Distribution of Introns in Core Genes of Four Fusarium Species. G3-GENES GENOMES GENETICS 2017; 7:3809-3820. [PMID: 28993438 PMCID: PMC5677156 DOI: 10.1534/g3.117.300344] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Removal of introns from transcribed RNA represents a crucial step during the production of mRNA in eukaryotes. Available whole-genome sequences and expressed sequence tags (ESTs) have increased our knowledge of this process and revealed various commonalities among eukaryotes. However, certain aspects of intron structure and diversity are taxon-specific, which can complicate the accuracy of in silico gene prediction methods. Using core genes, we evaluated the distribution and architecture of Fusarium circinatum spliceosomal introns, and linked these characteristics to the accuracy of the predicted gene models of the genome of this fungus. We also evaluated intron distribution and architecture in F. verticillioides, F. oxysporum, and F. graminearum, and made comparisons with F. circinatum. Results indicated that F. circinatum and the three other Fusarium species have canonical 5′ and 3′ splice sites, but with subtle differences that are apparently not shared with those of other fungal genera. The polypyrimidine tract of Fusarium introns was also found to be highly divergent among species and genes. Furthermore, the conserved adenosine nucleoside required during the first step of splicing is contained within unique branch site motifs in certain Fusarium introns. Data generated here show that introns of F. circinatum, as well as F. verticillioides, F. oxysporum, and F. graminearum, are characterized by a number of unique features such as the CTHAH and ACCAT motifs of the branch site. Incorporation of such information into genome annotation software will undoubtedly improve the accuracy of gene prediction methods used for Fusarium species and related fungi.
Collapse
|
7
|
Jagtap PKA, Garg D, Kapp TG, Will CL, Demmer O, Lührmann R, Kessler H, Sattler M. Rational Design of Cyclic Peptide Inhibitors of U2AF Homology Motif (UHM) Domains To Modulate Pre-mRNA Splicing. J Med Chem 2016; 59:10190-10197. [PMID: 27753493 DOI: 10.1021/acs.jmedchem.6b01118] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
U2AF homology motifs (UHMs) are atypical RNA recognition motif domains that mediate critical protein-protein interactions during the regulation of alternative pre-mRNA splicing and other processes. The recognition of UHM domains by UHM ligand motif (ULM) peptide sequences plays important roles during early steps of spliceosome assembly. Splicing factor 45 kDa (SPF45) is an alternative splicing factor implicated in breast and lung cancers, and splicing regulation of apoptosis-linked pre-mRNAs by SPF45 was shown to depend on interactions between its UHM domain and ULM motifs in constitutive splicing factors. We have developed cyclic peptide inhibitors that target UHM domains. By screening a focused library of linear and cyclic peptides and performing structure-activity relationship analysis, we designed cyclic peptides with 4-fold improved binding affinity for the SPF45 UHM domain compared to native ULM ligands and 270-fold selectivity to discriminate UHM domains from alternative and constitutive splicing factors. These inhibitors are useful tools to modulate and dissect mechanisms of alternative splicing regulation.
Collapse
Affiliation(s)
- Pravin Kumar Ankush Jagtap
- Institute of Structural Biology, Helmholtz Zentrum München , Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany.,Center for Integrated Protein Science Munich (CIPSM), Department Chemie, Technische Universität München , Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Divita Garg
- Institute of Structural Biology, Helmholtz Zentrum München , Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany.,Center for Integrated Protein Science Munich (CIPSM), Department Chemie, Technische Universität München , Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Tobias G Kapp
- Center for Integrated Protein Science Munich (CIPSM), Department Chemie, Technische Universität München , Lichtenbergstrasse 4, 85747 Garching, Germany.,Institute for Advanced Study (IAS), Technische Universität München , Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Cindy L Will
- Max Planck Institute for Biophysical Chemistry , Department of Cellular Biochemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Oliver Demmer
- Center for Integrated Protein Science Munich (CIPSM), Department Chemie, Technische Universität München , Lichtenbergstrasse 4, 85747 Garching, Germany.,Institute for Advanced Study (IAS), Technische Universität München , Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Reinhard Lührmann
- Max Planck Institute for Biophysical Chemistry , Department of Cellular Biochemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Horst Kessler
- Center for Integrated Protein Science Munich (CIPSM), Department Chemie, Technische Universität München , Lichtenbergstrasse 4, 85747 Garching, Germany.,Institute for Advanced Study (IAS), Technische Universität München , Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München , Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany.,Center for Integrated Protein Science Munich (CIPSM), Department Chemie, Technische Universität München , Lichtenbergstrasse 4, 85747 Garching, Germany
| |
Collapse
|
8
|
Recognition of the 3' splice site RNA by the U2AF heterodimer involves a dynamic population shift. Proc Natl Acad Sci U S A 2016; 113:E7169-E7175. [PMID: 27799531 DOI: 10.1073/pnas.1605873113] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An essential early step in the assembly of human spliceosomes onto pre-mRNA involves the recognition of regulatory RNA cis elements in the 3' splice site by the U2 auxiliary factor (U2AF). The large (U2AF65) and small (U2AF35) subunits of the U2AF heterodimer contact the polypyrimidine tract (Py-tract) and the AG-dinucleotide, respectively. The tandem RNA recognition motif domains (RRM1,2) of U2AF65 adopt closed/inactive and open/active conformations in the free form and when bound to bona fide Py-tract RNA ligands. To investigate the molecular mechanism and dynamics of 3' splice site recognition by U2AF65 and the role of U2AF35 in the U2AF heterodimer, we have combined single-pair FRET and NMR experiments. In the absence of RNA, the RRM1,2 domain arrangement is highly dynamic on a submillisecond time scale, switching between closed and open conformations. The addition of Py-tract RNA ligands with increasing binding affinity (strength) gradually shifts the equilibrium toward an open conformation. Notably, the protein-RNA complex is rigid in the presence of a strong Py-tract but exhibits internal motion with weak Py-tracts. Surprisingly, the presence of U2AF35, whose UHM domain interacts with U2AF65 RRM1, increases the population of the open arrangement of U2AF65 RRM1,2 in the absence and presence of a weak Py-tract. These data indicate that the U2AF heterodimer promotes spliceosome assembly by a dynamic population shift toward the open conformation of U2AF65 to facilitate the recognition of weak Py-tracts at the 3' splice site. The structure and RNA binding of the heterodimer was unaffected by cancer-linked myelodysplastic syndrome mutants.
Collapse
|
9
|
Jenkins JL, Agrawal AA, Gupta A, Green MR, Kielkopf CL. U2AF65 adapts to diverse pre-mRNA splice sites through conformational selection of specific and promiscuous RNA recognition motifs. Nucleic Acids Res 2013; 41:3859-73. [PMID: 23376934 PMCID: PMC3616741 DOI: 10.1093/nar/gkt046] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Degenerate splice site sequences mark the intron boundaries of pre-mRNA transcripts in multicellular eukaryotes. The essential pre-mRNA splicing factor U2AF65 is faced with the paradoxical tasks of accurately targeting polypyrimidine (Py) tracts preceding 3′ splice sites while adapting to both cytidine and uridine nucleotides with nearly equivalent frequencies. To understand how U2AF65 recognizes degenerate Py tracts, we determined six crystal structures of human U2AF65 bound to cytidine-containing Py tracts. As deoxy-ribose backbones were required for co-crystallization with these Py tracts, we also determined two baseline structures of U2AF65 bound to the deoxy-uridine counterparts and compared the original, RNA-bound structure. Local structural changes suggest that the N-terminal RNA recognition motif 1 (RRM1) is more promiscuous for cytosine-containing Py tracts than the C-terminal RRM2. These structural differences between the RRMs were reinforced by the specificities of wild-type and site-directed mutant U2AF65 for region-dependent cytosine- and uracil-containing RNA sites. Small-angle X-ray scattering analyses further demonstrated that Py tract variations select distinct inter-RRM spacings from a pre-existing ensemble of U2AF65 conformations. Our results highlight both local and global conformational selection as a means for universal 3′ splice site recognition by U2AF65.
Collapse
Affiliation(s)
- Jermaine L Jenkins
- Center for RNA Biology and Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
10
|
Tavanez JP, Madl T, Kooshapur H, Sattler M, Valcárcel J. hnRNP A1 proofreads 3' splice site recognition by U2AF. Mol Cell 2012; 45:314-29. [PMID: 22325350 DOI: 10.1016/j.molcel.2011.11.033] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 08/01/2011] [Accepted: 11/23/2011] [Indexed: 01/03/2023]
Abstract
One of the earliest steps in metazoan pre-mRNA splicing involves binding of U2 snRNP auxiliary factor (U2AF) 65 KDa subunit to the polypyrimidine (Py) tract and of the 35 KDa subunit to the invariant AG dinucleotide at the intron 3' end. Here we use in vitro and in vivo depletion, as well as reconstitution assays using purified components, to identify hnRNP A1 as an RNA binding protein that allows U2AF to discriminate between pyrimidine-rich RNA sequences followed or not by a 3' splice site AG. Biochemical and NMR data indicate that hnRNP A1 forms a ternary complex with the U2AF heterodimer on AG-containing/uridine-rich RNAs, while it displaces U2AF from non-AG-containing/uridine-rich RNAs, an activity that requires the glycine-rich domain of hnRNP A1. Consistent with the functional relevance of this activity for splicing, proofreading assays reveal a role for hnRNP A1 in U2AF-mediated recruitment of U2 snRNP to the pre-mRNA.
Collapse
Affiliation(s)
- Joao Paulo Tavanez
- Centre de Regulació Genòmica, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | | | | | | |
Collapse
|
11
|
Multi-domain conformational selection underlies pre-mRNA splicing regulation by U2AF. Nature 2011; 475:408-11. [PMID: 21753750 DOI: 10.1038/nature10171] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 05/05/2011] [Indexed: 11/08/2022]
Abstract
Many cellular functions involve multi-domain proteins, which are composed of structurally independent modules connected by flexible linkers. Although it is often well understood how a given domain recognizes a cognate oligonucleotide or peptide motif, the dynamic interaction of multiple domains in the recognition of these ligands remains to be characterized. Here we have studied the molecular mechanisms of the recognition of the 3'-splice-site-associated polypyrimidine tract RNA by the large subunit of the human U2 snRNP auxiliary factor (U2AF65) as a key early step in pre-mRNA splicing. We show that the tandem RNA recognition motif domains of U2AF65 adopt two remarkably distinct domain arrangements in the absence or presence of a strong (that is, high affinity) polypyrimidine tract. Recognition of sequence variations in the polypyrimidine tract RNA involves a population shift between these closed and open conformations. The equilibrium between the two conformations functions as a molecular rheostat that quantitatively correlates the natural variations in polypyrimidine tract nucleotide composition, length and functional strength to the efficiency to recruit U2 snRNP to the intron during spliceosome assembly. Mutations that shift the conformational equilibrium without directly affecting RNA binding modulate splicing activity accordingly. Similar mechanisms of cooperative multi-domain conformational selection may operate more generally in the recognition of degenerate nucleotide or amino acid motifs by multi-domain proteins.
Collapse
|
12
|
Iwata H, Gotoh O. Comparative analysis of information contents relevant to recognition of introns in many species. BMC Genomics 2011; 12:45. [PMID: 21247441 PMCID: PMC3033335 DOI: 10.1186/1471-2164-12-45] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 01/19/2011] [Indexed: 01/24/2023] Open
Abstract
Background The basic process of RNA splicing is conserved among eukaryotic species. Three signals (5' and 3' splice sites and branch site) are commonly used to directly conduct splicing, while other features are also related to the recognition of an intron. Although there is experimental evidence pointing to the significant species specificities in the features of intron recognition, a quantitative evaluation of the divergence of these features among a wide variety of eukaryotes has yet to be conducted. Results To better understand the splicing process from the viewpoints of evolution and information theory, we collected introns from 61 diverse species of eukaryotes and analyzed the properties of the nucleotide sequences relevant to splicing. We found that trees individually constructed from the five features (the three signals, intron length, and nucleotide composition within an intron) roughly reflect the phylogenetic relationships among the species but sometimes extensively deviate from the species classification. The degree of topological deviation of each feature tree from the reference trees indicates the lowest discordance for the 5' splicing signal, followed by that for the 3' splicing signal, and a considerably greater discordance for the other three features. We also estimated the relative contributions of the five features to short intron recognition in each species. Again, moderate correlation was observed between the similarities in pattern of short intron recognition and the genealogical relationships among the species. When mammalian introns were categorized into three subtypes according to their terminal dinucleotide sequences, each subtype segregated into a nearly monophyletic group, regardless of the host species, with respect to the 5' and 3' splicing signals. It was also found that GC-AG introns are extraordinarily abundant in some species with high genomic G + C contents, and that the U12-type spliceosome might make a greater contribution than currently estimated in most species. Conclusions Overall, the present study indicates that both splicing signals themselves and their relative contributions to short intron recognition are rather susceptible to evolutionary changes, while some poorly characterized properties seem to be preserved within the mammalian intron subtypes. Our findings may afford additional clues to understanding of evolution of splicing mechanisms.
Collapse
Affiliation(s)
- Hiroaki Iwata
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | | |
Collapse
|
13
|
Genomic mRNA profiling reveals compensatory mechanisms for the requirement of the essential splicing factor U2AF. Mol Cell Biol 2010; 31:652-61. [PMID: 21149581 DOI: 10.1128/mcb.01000-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The large subunit of the U2 auxiliary factor (U2AF) recognizes the polypyrimidine tract (Py-tract) located adjacent to the 3' splice site to facilitate U2 snRNP recruitment. While U2AF is considered essential for pre-mRNA splicing, its requirement for splicing on a genome-wide level has not been analyzed. Using Solexa sequencing, we performed mRNA profiling for splicing in the Schizosaccharomyces pombe U2AF(59) (prp2.1) temperature-sensitive mutant. Surprisingly, our analysis revealed that introns show a range of splicing defects in the mutant strain. While U2AF(59) inactivation (nonpermissive) conditions inhibit splicing of some introns, others are spliced apparently normally. Bioinformatics analysis indicated that U2AF(59)-insensitive introns have stronger 5' splice sites and higher A/U content. Most importantly, features that contribute to U2AF(59) insensitivity of an intron unexpectedly reside in its 5'-most 30 nucleotides. These include the 5' splice site, a guanosine at position 7, and the 5' splice site-to-branch point sequence context. A differential requirement (similar to U2AF(59)) for introns may also apply to other general splicing factors (e.g., prp10). Our combined results indicate that U2AF insensitivity is a common phenomenon and that varied intron features support the existence of unrecognized aspects of spliceosome assembly.
Collapse
|
14
|
Tanuma N, Kim SE, Beullens M, Tsubaki Y, Mitsuhashi S, Nomura M, Kawamura T, Isono K, Koseki H, Sato M, Bollen M, Kikuchi K, Shima H. Nuclear inhibitor of protein phosphatase-1 (NIPP1) directs protein phosphatase-1 (PP1) to dephosphorylate the U2 small nuclear ribonucleoprotein particle (snRNP) component, spliceosome-associated protein 155 (Sap155). J Biol Chem 2008; 283:35805-14. [PMID: 18842582 DOI: 10.1074/jbc.m805468200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pre-mRNA splicing entails reversible phosphorylation of spliceosomal proteins. Recent work has revealed essential roles for Ser/Thr phosphatases, such as protein phosphatase-1 (PP1), in splicing, but how these phosphatases are regulated is largely unknown. We show that nuclear inhibitor of PP1 (NIPP1), a major PP1 interactor in the vertebrate nucleus, recruits PP1 to Sap155 (spliceosome-associated protein 155), an essential component of U2 small nuclear ribonucleoprotein particles, and promotes Sap155 dephosphorylation. C-terminally truncated NIPP1 (NIPP1-DeltaC) formed a hyper-active holoenzyme with PP1, rendering PP1 minimally phosphorylated on an inhibitory site. Forced expression of NIPP1-WT and -DeltaC resulted in slight and severe decreases in Sap155 hyperphosphorylation, respectively, and the latter was accompanied with inhibition of splicing. PP1 overexpression produced similar effects, whereas small interfering RNA-mediated NIPP1 knockdown enhanced Sap155 hyperphosphorylation upon okadaic acid treatment. NIPP1 did not inhibit but rather stimulated Sap155 dephosphorylation by PP1 in vitro through facilitating Sap155/PP1 interaction. Further analysis revealed that NIPP1 specifically recognizes hyperphosphorylated Sap155 thorough its Forkhead-associated domain and dissociates from Sap155 after dephosphorylation by associated PP1. Thus NIPP1 works as a molecular sensor for PP1 to recognize phosphorylated Sap155.
Collapse
Affiliation(s)
- Nobuhiro Tanuma
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori 981-1293, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Jenkins JL, Shen H, Green MR, Kielkopf CL. Solution conformation and thermodynamic characteristics of RNA binding by the splicing factor U2AF65. J Biol Chem 2008; 283:33641-9. [PMID: 18842594 DOI: 10.1074/jbc.m806297200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The U2 auxiliary factor large subunit (U2AF65) is an essential pre-mRNA splicing factor for the initial stages of spliceosome assembly. Tandem RNA recognition motifs (RRM)s of U2AF65 recognize polypyrimidine tract signals adjacent to 3' splice sites. Despite the central importance of U2AF65 for splice site recognition, the relative arrangement of the U2AF65 RRMs and the energetic forces driving polypyrimidine tract recognition remain unknown. Here, the solution conformation of the U2AF65 RNA binding domain determined using small angle x-ray scattering reveals a bilobal shape without apparent interdomain contacts. The proximity of the N and C termini within the inter-RRM configuration is sufficient to explain the action of U2AF65 on spliceosome components located both 5' and 3' to its binding site. Isothermal titration calorimetry further demonstrates that an unusually large enthalpy-entropy compensation underlies U2AF65 recognition of an optimal polyuridine tract. Qualitative similarities were observed between the pairwise distance distribution functions of the U2AF65 RNA binding domain and those either previously observed for N-terminal RRMs of Py tract-binding protein that lack interdomain contacts or calculated from the high resolution coordinates of a U2AF65 deletion variant bound to RNA. To further test this model, the shapes and RNA interactions of the wild-type U2AF65 RNA binding domain were compared with those of U2AF65 variants containing either Py tract-binding protein linker sequences or a deletion within the inter-RRM linker. Results of these studies suggest inter-RRM conformational plasticity as a possible means for U2AF65 to universally identify diverse pre-mRNA splice sites.
Collapse
Affiliation(s)
- Jermaine L Jenkins
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
16
|
Murray JI, Voelker RB, Henscheid KL, Warf MB, Berglund JA. Identification of motifs that function in the splicing of non-canonical introns. Genome Biol 2008; 9:R97. [PMID: 18549497 PMCID: PMC2481429 DOI: 10.1186/gb-2008-9-6-r97] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 12/27/2007] [Accepted: 06/12/2008] [Indexed: 01/22/2023] Open
Abstract
The enrichment of specific intronic splicing enhancers upstream of weak PY tracts suggests a novel mechanism for intron recognition that compensates for a weakened canonical pre-mRNA splicing motif. Background While the current model of pre-mRNA splicing is based on the recognition of four canonical intronic motifs (5' splice site, branchpoint sequence, polypyrimidine (PY) tract and 3' splice site), it is becoming increasingly clear that splicing is regulated by both canonical and non-canonical splicing signals located in the RNA sequence of introns and exons that act to recruit the spliceosome and associated splicing factors. The diversity of human intronic sequences suggests the existence of novel recognition pathways for non-canonical introns. This study addresses the recognition and splicing of human introns that lack a canonical PY tract. The PY tract is a uridine-rich region at the 3' end of introns that acts as a binding site for U2AF65, a key factor in splicing machinery recruitment. Results Human introns were classified computationally into low- and high-scoring PY tracts by scoring the likely U2AF65 binding site strength. Biochemical studies confirmed that low-scoring PY tracts are weak U2AF65 binding sites while high-scoring PY tracts are strong U2AF65 binding sites. A large population of human introns contains weak PY tracts. Computational analysis revealed many families of motifs, including C-rich and G-rich motifs, that are enriched upstream of weak PY tracts. In vivo splicing studies show that C-rich and G-rich motifs function as intronic splicing enhancers in a combinatorial manner to compensate for weak PY tracts. Conclusion The enrichment of specific intronic splicing enhancers upstream of weak PY tracts suggests that a novel mechanism for intron recognition exists, which compensates for a weakened canonical pre-mRNA splicing motif.
Collapse
Affiliation(s)
- Jill I Murray
- Department of Chemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | | | | | | | | |
Collapse
|
17
|
Schwartz SH, Silva J, Burstein D, Pupko T, Eyras E, Ast G. Large-scale comparative analysis of splicing signals and their corresponding splicing factors in eukaryotes. Genome Res 2007; 18:88-103. [PMID: 18032728 DOI: 10.1101/gr.6818908] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Introns are among the hallmarks of eukaryotic genes. Splicing of introns is directed by three main splicing signals: the 5' splice site (5'ss), the branch site (BS), and the polypyrimdine tract/3'splice site (PPT-3'ss). To study the evolution of these splicing signals, we have conducted a systematic comparative analysis of these signals in over 1.2 million introns from 22 eukaryotes. Our analyses suggest that all these signals have dramatically evolved: The PPT is weak among most fungi, intermediate in plants and protozoans, and strongest in metazoans. Within metazoans it shows a gradual strengthening from Caenorhabditis elegans to human. The 5'ss and the BS were found to be degenerate among most organisms, but highly conserved among some fungi. A maximum parsimony-based algorithm for reconstructing ancestral position-specific scoring matrices suggested that the ancestral 5'ss and BS were degenerate, as in metazoans. To shed light on the evolutionary variation in splicing signals, we have analyzed the evolutionary changes in the factors that bind these signals. Our analysis reveals coevolution of splicing signals and their corresponding splicing factors: The strength of the PPT is correlated to changes in key residues in its corresponding splicing factor U2AF2; limited correlation was found between changes in the 5'ss and U1 snRNA that binds it; but not between the BS and U2 snRNA. Thus, although the basic ability of eukaryotes to splice introns has remained conserved throughout evolution, the splicing signals and their corresponding splicing factors have considerably evolved, uniquely shaping the splicing mechanisms of different organisms.
Collapse
Affiliation(s)
- Schraga H Schwartz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
18
|
Sridharan V, Singh R. A conditional role of U2AF in splicing of introns with unconventional polypyrimidine tracts. Mol Cell Biol 2007; 27:7334-44. [PMID: 17709389 PMCID: PMC2168890 DOI: 10.1128/mcb.00627-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recognition of polypyrimidine (Py) tracts typically present between the branch point and the 3' splice site by the large subunit of the essential splicing factor U2AF is a key early step in pre-mRNA splicing. Diverse intronic sequence arrangements exist, however, including 3' splice sites lacking recognizable Py tracts, which raises the question of how general the requirement for U2AF is for various intron architectures. Our analysis of fission yeast introns in vivo has unexpectedly revealed that whereas introns lacking Py tracts altogether remain dependent on both subunits of U2AF, introns with long Py tracts, unconventionally positioned upstream of branch points, are unaffected by U2AF inactivation. Nevertheless, mutation of these Py tracts causes strong dependence on the large subunit U2AF59. We also find that Py tract diversity influences the requirement for the conserved C-terminal domain of U2AF59 (RNA recognition motif 3), which has been implicated in protein-protein interactions with other splicing factors. Together, these results suggest that in addition to Py tract binding by U2AF, supplementary mechanisms of U2AF recruitment and 3' splice site identification exist to accommodate diverse intron architectures, which have gone unappreciated in biochemical studies of model pre-mRNAs.
Collapse
Affiliation(s)
- Vinod Sridharan
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | | |
Collapse
|
19
|
Thickman KR, Sickmier EA, Kielkopf. CL. Alternative conformations at the RNA-binding surface of the N-terminal U2AF(65) RNA recognition motif. J Mol Biol 2006; 366:703-10. [PMID: 17188295 PMCID: PMC1828206 DOI: 10.1016/j.jmb.2006.11.077] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 10/31/2006] [Accepted: 11/26/2006] [Indexed: 11/16/2022]
Abstract
The essential pre-mRNA splicing factor, U2 auxiliary factor 65KD (U2AF(65)) recognizes the polypyrimidine tract (Py-tract) consensus sequence of the pre-mRNA using two RNA recognition motifs (RRMs), the most prevalent class of eukaryotic RNA-binding domain. The Py-tracts of higher eukaryotic pre-mRNAs are often interrupted with purines, yet U2AF(65) must identify these degenerate Py-tracts for accurate pre-mRNA splicing. Previously, the structure of a U2AF(65) variant in complex with poly(U) RNA suggested that rearrangement of flexible side-chains or bound water molecules may contribute to degenerate Py-tract recognition by U2AF(65). Here, the X-ray structure of the N-terminal RRM domain of U2AF(65) (RRM1) is described at 1.47 A resolution in the absence of RNA. Notably, RNA-binding by U2AF(65) selectively stabilizes pre-existing alternative conformations of three side-chains located at the RNA interface (Arg150, Lys225, and Arg227). Additionally, a flexible loop connecting the beta2/beta3 strands undergoes a conformational change to interact with the RNA. These pre-existing alternative conformations may contribute to the ability of U2AF(65) to recognize a variety of Py-tract sequences. This rare, high-resolution view of an important member of the RRM class of RNA-binding domains highlights the role of alternative side-chain conformations in RNA recognition.
Collapse
Affiliation(s)
- Karen R. Thickman
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | - E. Allen Sickmier
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | - Clara L. Kielkopf.
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
- *Correspondence e-mail:
| |
Collapse
|
20
|
Becht P, König J, Feldbrügge M. The RNA-binding protein Rrm4 is essential for polarity in Ustilago maydis and shuttles along microtubules. J Cell Sci 2006; 119:4964-73. [PMID: 17105762 DOI: 10.1242/jcs.03287] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Formation of polar-growing hyphae is essential for infection by the plant pathogen Ustilago maydis. Here we observe that loss of RNA-recognition motif protein Rrm4 caused formation of abnormal hyphae. The insertion of septa at the distal pole was abolished and a significantly increased number of hyphae grew bipolarly. UV-crosslinking experiments revealed that Rrm4 bound RNA via its N-terminal RRMs and that its RNA-binding activity was substantially increased during filamentation. Rrm4 assembled into particles that shuttled bidirectionally along microtubules to both poles. Recruitment of Rrm4 into particles increased during filamentation, and mutations in the peptide-binding pocket of its PABC domain caused abnormal particle formation as well as polarity defects. Shuttling was mediated by active transport because loss of conventional kinesin, which interferes with the balance of microtubule-dependent motors, caused accumulation of particles at the poles resulting in disturbed polarity. Thus, constant transport of the RNA-binding protein towards the poles is needed to orchestrate hyphal growth. Since a mutation of the N-terminal RRM that leads to reduced RNA binding in vivo also affected polarity, Rrm4 might regulate polarity of the infectious hyphae by transporting RNA from the nucleus to cell poles.
Collapse
Affiliation(s)
- Philip Becht
- Max Planck Institute for Terrestrial Microbiology, Department for Organismic Interactions, Karl-von-Frisch-Str., 35043 Marburg, Germany
| | | | | |
Collapse
|
21
|
Abstract
U2 snRNP auxiliary factor (U2AF) is an essential heterodimeric splicing factor composed of two subunits, U2AF(65) and U2AF(35). During the past few years, a number of proteins related to both U2AF(65) and U2AF(35) have been discovered. Here, we review the conserved structural features that characterize the U2AF protein families and their evolutionary emergence. We perform a comprehensive database search designed to identify U2AF protein isoforms produced by alternative splicing, and we discuss the potential implications of U2AF protein diversity for splicing regulation.
Collapse
Affiliation(s)
- Inês Mollet
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenue Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | | | | | | |
Collapse
|
22
|
Sickmier EA, Frato KE, Shen H, Paranawithana SR, Green MR, Kielkopf CL. Structural basis for polypyrimidine tract recognition by the essential pre-mRNA splicing factor U2AF65. Mol Cell 2006; 23:49-59. [PMID: 16818232 PMCID: PMC2043114 DOI: 10.1016/j.molcel.2006.05.025] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2006] [Revised: 04/13/2006] [Accepted: 05/08/2006] [Indexed: 11/18/2022]
Abstract
The essential pre-mRNA splicing factor, U2AF(65), guides the early stages of splice site choice by recognizing a polypyrimidine (Py) tract consensus sequence near the 3' splice site. Since Py tracts are relatively poorly conserved in higher eukaryotes, U2AF(65) is faced with the problem of specifying uridine-rich sequences, yet tolerating a variety of nucleotide substitutions found in natural Py tracts. To better understand these apparently contradictory RNA binding characteristics, the X-ray structure of the U2AF(65) RNA binding domain bound to a Py tract composed of seven uridines has been determined at 2.5 A resolution. Specific hydrogen bonds between U2AF(65) and the uracil bases provide an explanation for polyuridine recognition. Flexible side chains and bound water molecules form the majority of the base contacts and potentially could rearrange when the U2AF(65) structure adapts to different Py tract sequences. The energetic importance of conserved residues for Py tract binding is established by analysis of site-directed mutant U2AF(65) proteins using surface plasmon resonance.
Collapse
Affiliation(s)
- E. Allen Sickmier
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | - Katherine E. Frato
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | - Haihong Shen
- Howard Hughes Medical Institute, Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Shanthi R. Paranawithana
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | - Michael R. Green
- Howard Hughes Medical Institute, Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Clara L. Kielkopf
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| |
Collapse
|
23
|
Sickmier EA, Frato KE, Kielkopf CL. Crystallization and preliminary X-ray analysis of a U2AF65 variant in complex with a polypyrimidine-tract analogue by use of protein engineering. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:457-9. [PMID: 16682775 PMCID: PMC2219975 DOI: 10.1107/s1744309106012504] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 04/06/2006] [Indexed: 11/10/2022]
Abstract
The large subunit of the essential pre-mRNA splicing factor U2 auxiliary factor (U2AF65) binds the polypyrimidine tract near the 3' splice site of pre-mRNA introns and directs the association of the U2 small nuclear ribonucleoprotein particle (U2 snRNP) of the spliceosome with the pre-mRNA. Protein engineering, in which the flexible linker region connecting tandem RNA-recognition motifs (RRMs) within the U2AF65 RNA-binding domain was partially deleted, allowed successful crystallization of the protein-nucleic acid complex. Cocrystals of a U2AF65 variant with a deoxyuridine dodecamer diffract X-rays to 2.9 angstroms resolution and contain one complex per asymmetric unit.
Collapse
Affiliation(s)
- E. Allen Sickmier
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | - Katherine E. Frato
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | - Clara L. Kielkopf
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
- Correspondence e-mail:
| |
Collapse
|
24
|
Manceau V, Swenson M, Le Caer JP, Sobel A, Kielkopf CL, Maucuer A. Major phosphorylation of SF1 on adjacent Ser-Pro motifs enhances interaction with U2AF65. FEBS J 2006; 273:577-87. [PMID: 16420481 PMCID: PMC1949809 DOI: 10.1111/j.1742-4658.2005.05091.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Protein phosphorylation ensures the accurate and controlled expression of the genome, for instance by regulating the activities of pre-mRNA splicing factors. Here we report that splicing factor 1 (SF1), which is involved in an early step of intronic sequence recognition, is highly phosphorylated in mammalian cells on two serines within an SPSP motif at the junction between its U2AF65 and RNA binding domains. We show that SF1 interacts in vitro with the protein kinase KIS, which possesses a 'U2AF homology motif' (UHM) domain. The UHM domain of KIS is required for KIS and SF1 to interact, and for KIS to efficiently phosphorylate SF1 on the SPSP motif. Importantly, SPSP phosphorylation by KIS increases binding of SF1 to U2AF65, and enhances formation of the ternary SF1-U2AF65-RNA complex. These results further suggest that this phosphorylation event has an important role for the function of SF1, and possibly for the structural rearrangements associated with spliceosome assembly and function.
Collapse
Affiliation(s)
- Valérie Manceau
- INSERM U706, Institut du Fer à Moulin, 17, rue du Fer à Moulin, F-75005 Paris, France; UPMC, F-75005 Paris, France
| | - Matthew Swenson
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205,USA
| | - Jean-Pierre Le Caer
- Ecole Polytechnique, Laboratoire de Chimie des Mécanismes Réactionnels, Route de Saclay, F-91128 Palaiseau, France
| | - André Sobel
- INSERM U706, Institut du Fer à Moulin, 17, rue du Fer à Moulin, F-75005 Paris, France; UPMC, F-75005 Paris, France
| | - Clara L. Kielkopf
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205,USA
| | - Alexandre Maucuer
- INSERM U706, Institut du Fer à Moulin, 17, rue du Fer à Moulin, F-75005 Paris, France; UPMC, F-75005 Paris, France
| |
Collapse
|
25
|
Thickman KR, Swenson M, Kabogo JM, Gryczynski Z, Kielkopf CL. Multiple U2AF65 binding sites within SF3b155: thermodynamic and spectroscopic characterization of protein-protein interactions among pre-mRNA splicing factors. J Mol Biol 2005; 356:664-83. [PMID: 16376933 PMCID: PMC2043113 DOI: 10.1016/j.jmb.2005.11.067] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 11/15/2005] [Accepted: 11/21/2005] [Indexed: 11/18/2022]
Abstract
Essential, protein-protein complexes between the large subunit of the U2 small nuclear RNA auxiliary factor (U2AF65) with the splicing factor 1 (SF1) or the spliceosomal component SF3b155 are exchanged during a critical, ATP-dependent step of pre-mRNA splicing. Both SF1 and the N-terminal domain of SF3b155 interact with a U2AF homology motif (UHM) of U2AF65. SF3b155 contains seven tryptophan-containing sites with sequence similarity to the previously characterized U2AF65-binding domain of SF1. We show that the SF3b155 domain lacks detectable secondary structure using circular dichroism spectroscopy, and demonstrate that five of the tryptophan-containing SF3b155 sites are recognized by the U2AF65-UHM using intrinsic tryptophan fluorescence experiments with SF3b155 variants. When compared with SF1, similar spectral shifts and sequence requirements indicate that U2AF65 interactions with each of the SF3b155 sites are similar to the minimal SF1 site. However, thermodynamic comparison of SF1 or SF3b155 proteins with minimal peptides demonstrates that formation the SF1/U2AF65 complex is likely to affect regions of SF1 beyond the previously identified, linear interaction site, in a remarkably distinct manner from the local U2AF65 binding mode of SF3b155. Furthermore, the complex of the SF1/U2AF65 interacting domains is stabilized by 3.3 kcal mol-1 relative to the complex of the SF3b155/U2AF65 interacting domains, consistent with the need for ATP hydrolysis to drive exchange of these partners during pre-mRNA splicing. We propose that the multiple U2AF65 binding sites within SF3b155 regulate conformational rearrangements during spliceosome assembly. Comparison of the SF3b155 sites defines an (R/K)nXRW(DE) consensus sequence for predicting U2AF65-UHM ligands from genomic sequences, where parentheses denote residues that contribute to, but are not required for binding.
Collapse
Affiliation(s)
- Karen R. Thickman
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Matthew Swenson
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Joseph M. Kabogo
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Zygmunt Gryczynski
- University of Maryland, School of Medicine, Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, Baltimore, MD 21201, USA
| | - Clara L. Kielkopf
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- * Corresponding author Phone: 443-287-4546, Fax: 410-955-2926, E-mail:
| |
Collapse
|
26
|
Chusainow J, Ajuh PM, Trinkle-Mulcahy L, Sleeman JE, Ellenberg J, Lamond AI. FRET analyses of the U2AF complex localize the U2AF35/U2AF65 interaction in vivo and reveal a novel self-interaction of U2AF35. RNA (NEW YORK, N.Y.) 2005; 11:1201-14. [PMID: 16043505 PMCID: PMC1370804 DOI: 10.1261/rna.7277705] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We have analyzed the interaction between the U2AF subunits U2AF35 and U2AF65 in vivo using fluorescence resonance energy transfer (FRET) microscopy. U2 snRNP Auxiliary Factor (U2AF) is an essential pre-mRNA splicing factor complex, comprising 35-kDa (U2AF35) and 65-kDa (U2AF65) subunits. U2AF65 interacts directly with the polypyrimidine tract and promotes binding of U2 snRNP to the pre-mRNA branchpoint, while U2AF35 associates with the conserved AG dinucleotide at the 3' end of the intron and has multiple functions in the splicing process. Using two different approaches for measuring FRET, we have identified and spatially localized sites of direct interaction between U2AF35 and U2AF65 in vivo in live cell nuclei. While U2AF is thought to function as a heterodimeric complex, the FRET data have also revealed a novel U2AF35 self-interaction in vivo, which is confirmed in vitro using biochemical assays. These results suggest that the stoichiometry of the U2AF complex may, at least in part, differ in vivo from the expected heterodimeric complex. The data show that FRET studies offer a valuable approach for probing interactions between pre-mRNA splicing factors in vivo.
Collapse
Affiliation(s)
- Janet Chusainow
- Wellcome Trust Biocentre, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
27
|
Webb CJ, Lakhe-Reddy S, Romfo CM, Wise JA. Analysis of mutant phenotypes and splicing defects demonstrates functional collaboration between the large and small subunits of the essential splicing factor U2AF in vivo. Mol Biol Cell 2004; 16:584-96. [PMID: 15548596 PMCID: PMC545896 DOI: 10.1091/mbc.e04-09-0768] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The heterodimeric splicing factor U2AF plays an important role in 3' splice site selection, but the division of labor between the two subunits in vivo remains unclear. In vitro assays led to the proposal that the human large subunit recognizes 3' splice sites with extensive polypyrimidine tracts independently of the small subunit. We report in vivo analysis demonstrating that all five domains of spU2AFLG are essential for viability; a partial deletion of the linker region, which forms the small subunit interface, produces a severe growth defect and an aberrant morphology. A small subunit zinc-binding domain mutant confers a similar phenotype, suggesting that the heterodimer functions as a unit during splicing in Schizosaccharomyces pombe. As this is not predicted by the model for metazoan 3' splice site recognition, we sought introns for which the spU2AFLG and spU2AFSM make distinct contributions by analyzing diverse splicing events in strains harboring mutations in each partner. Requirements for the two subunits are generally parallel and, moreover, do not correlate with the length or strength of the 3' pyrimidine tract. These and other studies performed in fission yeast support a model for 3' splice site recognition in which the two subunits of U2AF functionally collaborate in vivo.
Collapse
Affiliation(s)
- Christopher J Webb
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4960, USA
| | | | | | | |
Collapse
|
28
|
Abstract
Recent structures of the heterodimeric splicing factor U2 snRNP auxiliary factor (U2AF) have revealed two unexpected examples of RNA recognition motif (RRM)-like domains with specialized features for protein recognition. These unusual RRMs, called U2AF homology motifs (UHMs), represent a novel class of protein recognition motifs. Defining a set of rules to distinguish traditional RRMs from UHMs is key to identifying novel UHM family members. Here we review the critical sequence features necessary to mediate protein-UHM interactions, and perform comprehensive database searches to identify new members of the UHM family. The resulting implications for the functional and evolutionary relationships among candidate UHM family members are discussed.
Collapse
Affiliation(s)
- Clara L. Kielkopf
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
- Corresponding author. E-MAIL ; FAX (410) 955-2926
| | - Stephan Lücke
- Howard Hughes Medical Institute, Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Michael R. Green
- Howard Hughes Medical Institute, Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
- Corresponding author. E-MAIL ; FAX (508) 856-5473
| |
Collapse
|
29
|
Shomron N, Reznik M, Ast G. Splicing factor hSlu7 contains a unique functional domain required to retain the protein within the nucleus. Mol Biol Cell 2004; 15:3782-95. [PMID: 15181151 PMCID: PMC491837 DOI: 10.1091/mbc.e04-02-0152] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Revised: 05/17/2004] [Accepted: 05/21/2004] [Indexed: 12/23/2022] Open
Abstract
Precursor-mRNA splicing removes the introns and ligates the exons to form a mature mRNA. This process is carried out in a spliceosomal complex containing >150 proteins and five small nuclear ribonucleoproteins. Splicing protein hSlu7 is required for correct selection of the 3' splice site. Here, we identify by bioinformatics and mutational analyses three functional domains of the hSlu7 protein that have distinct roles in its subcellular localization: a nuclear localization signal, a zinc-knuckle motif, and a lysine-rich region. The zinc-knuckle motif is embedded within the nuclear localization signal in a unique functional structure that is not required for hSlu7's entrance into the nucleus but rather to maintain hSlu7 inside it, preventing its shuttle back to the cytoplasm via the chromosomal region maintenance 1 pathway. Thus, the zinc-knuckle motif of hSlu7 determines the cellular localization of the protein through a nucleocytoplasmic-sensitive shuttling balance. Altogether, this indicates that zinc-dependent nucleocytoplasmic shuttling might be the possible molecular basis by which hSlu7 protein levels are regulated within the nucleus.
Collapse
Affiliation(s)
- Noam Shomron
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel 69978
| | | | | |
Collapse
|