1
|
Chen L, Ma A, Jiang L, Fan J, Jiang W, Xu M, Bai X, Zhou J, Zhang W, Tang S. Exploring the Regulatory Interaction of Differentially Expressed Proteins in Cleft Palate Induced by Retinoic Acid. Protein Pept Lett 2025; 32:54-61. [PMID: 39473103 DOI: 10.2174/0109298665308502240820115618] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/01/2024] [Accepted: 06/13/2024] [Indexed: 04/11/2025]
Abstract
OBJECTIVE This study aimed to identify novel proteins involved in retinoic acid (RA)-induced embryonic cleft palate development. METHODS The palate tissues of the control and RA-treated E14.5 were dissected and subjected to iTRAQ-based proteomic analysis. RESULTS Differential expression analysis identified 196 significantly upregulated and 149 downregulated considerably proteins in RA-induced palate tissues. Comprehensive Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed the significant involvement of cytoplasmic translation, ribosome biogenesis, glycolysis/gluconeogenesis, and glutathione metabolism pathways in cleft palate pathogenesis triggered by RA. In particular, ribosome-related pathways were highly enriched, while glycolysis was disrupted. Protein-protein interaction analysis, facilitated by the STRING database, revealed a tightly interconnected network of differentially expressed proteins. Further analysis using the cytoHubba plugin in Cytoscape identified ten hub proteins, including Eif4a1, Gapdh, Eno1, Imp3, Rps20, Rps27a, Eef2, Hsp90ab1, Rpl19, and Rps16, indicating their potential roles in RA-induced cleft palate development, and thus positioning them as potential biomarkers for cleft palate. CONCLUSION These findings provide valuable insights into the proteomic changes associated with RA-induced cleft palate and shed light on key pathways and proteins that can contribute significantly to the pathogenesis of this congenital condition.
Collapse
Affiliation(s)
- Liyun Chen
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, China
- Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, China
| | - Aiwei Ma
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, China
- Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, China
| | - Lewen Jiang
- Department of Plastic and Aesthetic Surgery, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City, Shen Zhen, Guangdong, China
| | - Jufeng Fan
- Plastic Surgery Department, Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
| | - Wenshi Jiang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, China
- Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, China
| | - Mengjing Xu
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, China
- Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, China
| | - Xujue Bai
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, China
- Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, China
| | - Jianda Zhou
- Department of Plastic and Reconstructive Surgery, Central South University Third Xiangya Hospital, Changsha, Hunan, China
| | - Wancong Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, China
- Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, China
- Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, China
| |
Collapse
|
2
|
Matuszewska-Mach E, Packi K, Rzetecka N, Wieliński W, Kokot ZJ, Kowalczyk D, Matysiak J. Insights into the nutritional value of honeybee drone larvae (Apis mellifera) through proteomic profiling. Sci Rep 2024; 14:28562. [PMID: 39557895 PMCID: PMC11574269 DOI: 10.1038/s41598-024-79479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
There is a growing interest and demand for insect-based foods. Edible insects are rich in protein and other nutrients, making them valuable in the daily diet. However, their composition is not yet fully characterised. Therefore, this study aimed to analyse for the first time the qualitative proteome of honeybee (Apis mellifera) drone larvae using sophisticated sample preparation techniques and mass spectrometry. A total of 109 proteins were identified in the larvae. Of these, the largest plurality (38%) were enzymes. In addition, we identified proteins considered to be allergens - the cause of potentially dangerous effects after insect consumption. The results of the analyses may suggest that honeybee larvae are a protein-rich product, with over 100 unique proteins identified based on 1080 peptides. Enzymes indicate intensive development of the larvae. However, as well as nutritious compounds, honeybee larvae contain dangerous allergens. The composition of bee larvae needs to be further tested to make them safe for consumption.
Collapse
Affiliation(s)
- Eliza Matuszewska-Mach
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 3 Rokietnicka Street, Poznań, 60-806, Poland.
| | - Kacper Packi
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, Lodz, 92-213, Poland
- AllerGen Center of Personalized Medicine, Piotrkow Trybunalski, 97-300, Poland
- Wladyslaw Bieganski Collegium Medicum, Jan Dlugosz University in Czestochowa, Częstochowa, 42-200, Poland
| | - Natalia Rzetecka
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 3 Rokietnicka Street, Poznań, 60-806, Poland
| | - Wojciech Wieliński
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 3 Rokietnicka Street, Poznań, 60-806, Poland
| | - Zenon J Kokot
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 3 Rokietnicka Street, Poznań, 60-806, Poland
| | - Dariusz Kowalczyk
- Faculty of Health Sciences, Calisia University, Kaszubska 13 Street, Kalisz, 62-800, Poland
| | - Jan Matysiak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 3 Rokietnicka Street, Poznań, 60-806, Poland
| |
Collapse
|
3
|
Bandyopadhyay K, Verma A, Pandey A, Walia R, Saha S. The crucial role of stability of intercalating agent for DNA binding studies in DMSO/water system. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124265. [PMID: 38626674 DOI: 10.1016/j.saa.2024.124265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/18/2024]
Abstract
In recent years, extensive research has been directed towards understanding the interactions between various zinc complexes with DNA, specifically delving into their intercalation and binding behaviors. The binding of zinc complexes to DNA is particularly intriguing due to their distinctive intercalating capabilities. This study unveils a remarkable phenomenon observed with a specific Zn complex, ([B-Zn-N3], where B is a Schiff base ligand), during DNA intercalation investigations in the popular DMSO-Water binary solvent mixture. An unanticipated observation revealed time-dependent changes in the UV-visible absorption spectroscopic studies, coupled with the existence of an isosbestic point. This observation questions the stability of the intercalating agent itself during the intercalation process. The emergence of a decomposed product during the intercalation study has been confirmed through various analytical techniques, including CHN analysis, MALDI mass, XPS, Raman spectroscopy, and Powder XRD. The change in the chemical species on intercalation is further substantiated by theoretical studies, adding depth to our understanding of the intricate dynamics at play during DNA intercalation with the [B-Zn-N3] complex in the DMSO-Water system.
Collapse
Affiliation(s)
- Krishanu Bandyopadhyay
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Abhineet Verma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ankita Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rajat Walia
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR
| | - Satyen Saha
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
4
|
Yan Y, Liao L. MicroRNA Expression Profile in Patients Admitted to ICU as Novel and Reliable Approach for Diagnostic and Therapeutic Purposes. Mol Biotechnol 2024; 66:1357-1375. [PMID: 37314613 DOI: 10.1007/s12033-023-00767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/06/2023] [Indexed: 06/15/2023]
Abstract
The ability to detect early metabolic changes in patients who have an increased mortality risk in the intensive care units (ICUs) could increase the likelihood of predicting recovery patterns and assist in disease management. Markers that can predict the disease progression of patients in the ICU might also be beneficial for improving their medical profile. Although biomarkers have been used in the ICU more frequently in recent years, the clinical use of most of them is limited. A wide range of biological processes are influenced by microRNAs (miRNAs) that modulate the translation and stability of specific mRNAs. Studies suggest that miRNAs may serve as a diagnostic and therapeutic biomarker in ICUs by profiling miRNA dysregulation in patient samples. To improve the predictive value of biomarkers for ICU patients, researchers have proposed both investigating miRNAs as novel biomarkers and combining them with other clinical biomarkers. Herein, we discuss recent approaches to the diagnosis and prognosis of patients admitted to an ICU, highlighting the use of miRNAs as novel and robust biomarkers for this purpose. In addition, we discuss emerging approaches to biomarker development and ways to improve the quality of biomarkers so that patients in ICU get the best outcomes possible.
Collapse
Affiliation(s)
- Youqin Yan
- ICU Department, People's Hospital of Changshan, Changshan, China
| | - Linjun Liao
- ICU Department, People's Hospital of Changshan, Changshan, China.
| |
Collapse
|
5
|
Jung J, Jo D, Kim SJ. Transcriptional Response of Pectobacterium carotovorum to Cinnamaldehyde Treatment. J Microbiol Biotechnol 2024; 34:538-546. [PMID: 38146216 PMCID: PMC11016793 DOI: 10.4014/jmb.2311.11043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 12/27/2023]
Abstract
Cinnamaldehyde is a natural compound extracted from cinnamon bark essential oil, acclaimed for its versatile properties in both pharmaceutical and agricultural fields, including antimicrobial, antioxidant, and anticancer activities. Although potential of cinnamaldehyde against plant pathogenic bacteria like Agrobacterium tumefaciens and Pseudomonas syringae pv. actinidiae causative agents of crown gall and bacterial canker diseases, respectively has been documented, indepth studies into cinnamaldehyde's broader influence on plant pathogenic bacteria are relatively unexplored. Particularly, Pectobacterium spp., gram-negative soil-borne pathogens, notoriously cause soft rot damage across a spectrum of plant families, emphasizing the urgency for effective treatments. Our investigation established that the Minimum Inhibitory Concentrations (MICs) of cinnamaldehyde against strains P. odoriferum JK2, P. carotovorum BP201601, and P. versatile MYP201603 were 250 μg/ml, 125 μg/ml, and 125 μg/ml, respectively. Concurrently, their Minimum Bactericidal Concentrations (MBCs) were found to be 500 μg/ml, 250 μg/ml, and 500 μg/ml, respectively. Using RNA-sequencing analysis, we identified 1,907 differentially expressed genes in P. carotovorum BP201601 treated with 500 μg/ml cinnamaldehyde. Notably, our results indicate that cinnamaldehyde upregulated nitrate reductase pathways while downregulating the citrate cycle, suggesting a potential disruption in the aerobic respiration system of P. carotovorum during cinnamaldehyde exposure. This study serves as a pioneering exploration of the transcriptional response of P. carotovorum to cinnamaldehyde, providing insights into the bactericidal mechanisms employed by cinnamaldehyde against this bacterium.
Collapse
Affiliation(s)
- Jihye Jung
- Division of Agricultural Microbiology, National Institute of Agricultural Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Dawon Jo
- Division of Agricultural Microbiology, National Institute of Agricultural Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Soo-Jin Kim
- Division of Agricultural Microbiology, National Institute of Agricultural Science, Rural Development Administration, Wanju 55365, Republic of Korea
| |
Collapse
|
6
|
Perez JA, Lopez JJ, Torres Badillo CC, Novak P, Temnikov M, Byshovets R, Bychkov O. Phase 1 First-in-Human Dose Escalation and Dose Expansion Study of KLS-1 (64Zinc Aspartate) in Patients With Cancer and Neurodegenerative Diseases. Cureus 2022; 14:e29921. [DOI: 10.7759/cureus.29921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
|
7
|
|
8
|
Mohapatra S, Lin CT, Feng XA, Basu A, Ha T. Single-Molecule Analysis and Engineering of DNA Motors. Chem Rev 2019; 120:36-78. [DOI: 10.1021/acs.chemrev.9b00361] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | | | | | | | - Taekjip Ha
- Howard Hughes Medical Institute, Baltimore, Maryland 21205, United States
| |
Collapse
|
9
|
Sequiera GL, Sareen N, Sharma V, Surendran A, Abu-El-Rub E, Ravandi A, Dhingra S. High throughput screening reveals no significant changes in protein synthesis, processing, and degradation machinery during passaging of mesenchymal stem cells. Can J Physiol Pharmacol 2019; 97:536-543. [DOI: 10.1139/cjpp-2018-0553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increasing reports of successful and safe application of bone marrow derived mesenchymal stem cells (BM-MSCs) for cell therapy are pouring in from numerous studies. However poor survival of transplanted cells in the recipient has impaired the benefits of BM-MSCs based therapies. Therefore cell product preparation procedures pertaining to MSC therapy need to be optimized to improve the survival of transplanted cells. One of the important ex vivo procedures in the preparation of cells for therapy is passaging of BM-MSCs to ensure a suitable number of cells for transplantation, which may affect the turnover of proteins involved in regulation of cell survival and (or) death pathways. In the current study, we investigated the effect of an increase in passage number of BM-MSCs in cell culture on the intracellular protein turnover (protein synthesis, processing, and degradation machinery). We performed proteomic analysis of BM-MSCs at different passages. There was no significant difference observed in the ribosomal, protein processing, and proteasomal pathways related proteins in BM-MSCs with an increase in passage number from P3 to P7. Therefore, expansion of MSCs in the cell culture in clinically relevant passages (Passage 3–7) does not affect the quality of MSCs in terms of intracellular protein synthesis and turnover.
Collapse
Affiliation(s)
- Glen Lester Sequiera
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
- Regenerative Medicine Program, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Niketa Sareen
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
- Regenerative Medicine Program, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Vikram Sharma
- School of Biomedical and Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, England
| | - Arun Surendran
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Ejlal Abu-El-Rub
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
- Regenerative Medicine Program, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Amir Ravandi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
- Regenerative Medicine Program, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| |
Collapse
|
10
|
Beren C, Liu KN, Dreesens LL, Knobler CM, Gelbart WM. Enzymatic Synthesis and Fractionation of Fluorescent PolyU RNAs. Bio Protoc 2018; 8:e2988. [PMID: 34395788 DOI: 10.21769/bioprotoc.2988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/07/2018] [Accepted: 08/17/2018] [Indexed: 11/02/2022] Open
Abstract
The physical properties of viral-length polyuridine (PolyU) RNAs, which cannot base-pair and form secondary structures, are compared with those of normal-composition RNAs, composed of comparable numbers of each of A, U, G and C nucleobases. In this protocol, we describe how to synthesize fluorescent polyU RNAs using the enzyme polynucleotide phosphorylase (PNPase) from Uridine diphosphate (UDP) monomers and how to fractionate the polydisperse synthesis mixture using gel electrophoresis, and, after electroelution, how to quantify the amount of polyU recovered with UV-Vis spectrophotometry. Dynamic light scattering was used to determine the hydrodynamic radii of normal-composition RNAs as compared to polyU. It showed that long polyU RNAs behave like linear polymers for which the radii scale with chain length as N1/2, as opposed to normal-composition RNAs that act as compact, branched RNAs for which the radii scale as N1/3.
Collapse
Affiliation(s)
- Christian Beren
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Katherine N Liu
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Lisa L Dreesens
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Charles M Knobler
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - William M Gelbart
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| |
Collapse
|
11
|
Kovari DT, Yan Y, Finzi L, Dunlap D. Tethered Particle Motion: An Easy Technique for Probing DNA Topology and Interactions with Transcription Factors. Methods Mol Biol 2018; 1665:317-340. [PMID: 28940077 DOI: 10.1007/978-1-4939-7271-5_17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tethered Particle Motion (TPM) is a versatile in vitro technique for monitoring the conformations a linear macromolecule, such as DNA, can exhibit. The technique involves monitoring the diffusive motion of a particle anchored to a fixed point via the macromolecule of interest, which acts as a tether. In this chapter, we provide an overview of TPM, review the fundamental principles that determine the accuracy with which effective tether lengths can be used to distinguish different tether conformations, present software tools that assist in capturing and analyzing TPM data, and provide a protocol which uses TPM to characterize lac repressor-induced DNA looping. Critical to any TPM assay is the understanding of the timescale over which the diffusive motion of the particle must be observed to accurately distinguish tether conformations. Approximating the tether as a Hookean spring, we show how to estimate the diffusion timescale and discuss how it relates to the confidence with which tether conformations can be distinguished. Applying those estimates to a lac repressor titration assay, we describe how to perform a TPM experiment. We also provide graphically driven software which can be used to speed up data collection and analysis. Lastly, we detail how TPM data from the titration assay can be used to calculate relevant molecular descriptors such as the J factor for DNA looping and lac repressor-operator dissociation constants. While the included protocol is geared toward studying DNA looping, the technique, fundamental principles, and analytical methods are more general and can be adapted to a wide variety of molecular systems.
Collapse
Affiliation(s)
- Daniel T Kovari
- Department of Physics, Emory University, 400 Dowman Dr, Atlanta, GA, 30322, USA
| | - Yan Yan
- Department of Physics, Emory University, 400 Dowman Dr, Atlanta, GA, 30322, USA
| | - Laura Finzi
- Department of Physics, Emory University, 400 Dowman Dr, Atlanta, GA, 30322, USA
| | - David Dunlap
- Department of Physics, Emory University, 400 Dowman Dr, Atlanta, GA, 30322, USA.
| |
Collapse
|
12
|
Beren C, Dreesens LL, Liu KN, Knobler CM, Gelbart WM. The Effect of RNA Secondary Structure on the Self-Assembly of Viral Capsids. Biophys J 2017; 113:339-347. [PMID: 28711172 DOI: 10.1016/j.bpj.2017.06.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/31/2017] [Accepted: 06/20/2017] [Indexed: 12/31/2022] Open
Abstract
Previous work has shown that purified capsid protein (CP) of cowpea chlorotic mottle virus (CCMV) is capable of packaging both purified single-stranded RNA molecules of normal composition (comparable numbers of A, U, G, and C nucleobases) and of varying length and sequence, and anionic synthetic polymers such as polystyrene sulfonate. We find that CCMV CP is also capable of packaging polyU RNAs, which-unlike normal-composition RNAs-do not form secondary structures and which act as essentially structureless linear polymers. Following our canonical two-step assembly protocol, polyU RNAs ranging in length from 1000 to 9000 nucleotides (nt) are completely packaged. Surprisingly, negative-stain electron microscopy shows that all lengths of polyU are packaged into 22-nm-diameter particles despite the fact that CCMV CP prefers to form 28-nm-diameter (T = 3) particles when packaging normal-composition RNAs. PolyU RNAs >5000 nt in length are packaged into multiplet capsids, in which a single RNA molecule is shared between two or more 22-nm-diameter capsids, in analogy with the multiplets of 28-nm-diameter particles formed with normal-composition RNAs >5000 nt long. Experiments in which viral RNA competes for viral CP with polyUs of equal length show that polyU, despite its lack of secondary structure, is packaged more efficiently than viral RNA. These findings illustrate that the secondary structure of the RNA molecule-and its absence-plays an essential role in determining capsid structure during the self-assembly of CCMV-like particles.
Collapse
Affiliation(s)
- Christian Beren
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California
| | - Lisa L Dreesens
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California
| | - Katherine N Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California
| | - Charles M Knobler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California.
| | - William M Gelbart
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
13
|
Zimmermann MT, Jia K, Jernigan RL. Ribosome Mechanics Informs about Mechanism. J Mol Biol 2015; 428:802-810. [PMID: 26687034 DOI: 10.1016/j.jmb.2015.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 12/04/2015] [Accepted: 12/04/2015] [Indexed: 12/27/2022]
Abstract
The essential aspects of the ribosome's mechanism can be extracted from coarse-grained simulations, including the ratchet motion, the movement together of critical bases at the decoding center, and movements of the peptide tunnel lining that assist in the expulsion of the synthesized peptide. Because of its large size, coarse graining helps to simplify and to aid in the understanding of its mechanism. Results presented here utilize coarse-grained elastic network modeling to extract the dynamics, and both RNAs and proteins are coarse grained. We review our previous results, showing the well-known ratchet motions and the motions in the peptide tunnel and in the mRNA tunnel. The motions of the lining of the peptide tunnel appear to assist in the expulsion of the growing peptide chain, and clamps at the ends of the mRNA tunnel with three proteins ensure that the mRNA is held tightly during decoding and essential for the helicase activity at the entrance. The entry clamp may also assist in base recognition to ensure proper selection of the incoming tRNA. The overall precision of the ribosome machine-like motions is remarkable.
Collapse
Affiliation(s)
| | - Kejue Jia
- Jernigan Laboratory, Iowa State University, Ames, IA 50011, USA.
| | - Robert L Jernigan
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
14
|
Cnossen JP, Dulin D, Dekker NH. An optimized software framework for real-time, high-throughput tracking of spherical beads. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:103712. [PMID: 25362408 DOI: 10.1063/1.4898178] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Numerous biophysical techniques such as magnetic tweezers, flow stretching assays, or tethered particle motion assays rely on the tracking of spherical beads to obtain quantitative information about the individual biomolecules to which these beads are bound. The determination of these beads' coordinates from video-based images typically forms an essential component of these techniques. Recent advances in camera technology permit the simultaneous imaging of many beads, greatly increasing the information that can be captured in a single experiment. However, computational aspects such as frame capture rates or tracking algorithms often limit the rapid determination of such beads' coordinates. Here, we present a scalable and open source software framework to accelerate bead localization calculations based on the CUDA parallel computing framework. Within this framework, we implement the Quadrant Interpolation algorithm in order to accurately and simultaneously track hundreds of beads in real time using consumer hardware. In doing so, we show that the scatter derived from the bead tracking algorithms remains close to the theoretical optimum defined by the Cramer-Rao Lower Bound. We also explore the trade-offs between processing speed, size of the region-of-interests utilized, and tracking bias, highlighting in passing a bias in tracking along the optical axis that has previously gone unreported. To demonstrate the practical application of this software, we demonstrate how its implementation on magnetic tweezers can accurately track (with ∼1 nm standard deviation) 228 DNA-tethered beads at 58 Hz. These advances will facilitate the development and use of high-throughput single-molecule approaches.
Collapse
Affiliation(s)
- J P Cnossen
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - D Dulin
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - N H Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| |
Collapse
|
15
|
Johnson S, van de Meent JW, Phillips R, Wiggins CH, Lindén M. Multiple LacI-mediated loops revealed by Bayesian statistics and tethered particle motion. Nucleic Acids Res 2014; 42:10265-77. [PMID: 25120267 PMCID: PMC4176382 DOI: 10.1093/nar/gku563] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The bacterial transcription factor LacI loops DNA by binding to two separate locations on the DNA simultaneously. Despite being one of the best-studied model systems for transcriptional regulation, the number and conformations of loop structures accessible to LacI remain unclear, though the importance of multiple coexisting loops has been implicated in interactions between LacI and other cellular regulators of gene expression. To probe this issue, we have developed a new analysis method for tethered particle motion, a versatile and commonly used in vitro single-molecule technique. Our method, vbTPM, performs variational Bayesian inference in hidden Markov models. It learns the number of distinct states (i.e. DNA–protein conformations) directly from tethered particle motion data with better resolution than existing methods, while easily correcting for common experimental artifacts. Studying short (roughly 100 bp) LacI-mediated loops, we provide evidence for three distinct loop structures, more than previously reported in single-molecule studies. Moreover, our results confirm that changes in LacI conformation and DNA-binding topology both contribute to the repertoire of LacI-mediated loops formed in vitro, and provide qualitatively new input for models of looping and transcriptional regulation. We expect vbTPM to be broadly useful for probing complex protein–nucleic acid interactions.
Collapse
Affiliation(s)
- Stephanie Johnson
- Department of Biochemistry and Molecular Biophysics, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125
| | - Jan-Willem van de Meent
- Department of Statistics, Columbia University, 1255 Amsterdam Avenue MC 4690, New York, New York 10027
| | - Rob Phillips
- Departments of Applied Physics and Biology, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125
| | - Chris H Wiggins
- Department of Applied Physics and Applied Mathematics, Columbia University, 200 S.W. Mudd, 500 W. 120th St. MC 4701, New York, New York 10027
| | - Martin Lindén
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, SE-106 91 Stockholm, Sweden Department of Cell and Molecular Biology, Uppsala University, Box 256, SE-751 05 Uppsala, Sweden
| |
Collapse
|
16
|
Kostopoulou ON, Kouvela EC, Magoulas GE, Garnelis T, Panagoulias I, Rodi M, Papadopoulos G, Mouzaki A, Dinos GP, Papaioannou D, Kalpaxis DL. Conjugation with polyamines enhances the antibacterial and anticancer activity of chloramphenicol. Nucleic Acids Res 2014; 42:8621-34. [PMID: 24939899 PMCID: PMC4117768 DOI: 10.1093/nar/gku539] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chloramphenicol (CAM) is a broad-spectrum antibiotic, limited to occasional only use in developed countries because of its potential toxicity. To explore the influence of polyamines on the uptake and activity of CAM into cells, a series of polyamine–CAM conjugates were synthesized. Both polyamine architecture and the position of CAM-scaffold substitution were crucial in augmenting the antibacterial and anticancer potency of the synthesized conjugates. Compounds 4 and 5, prepared by replacement of dichloro-acetyl group of CAM with succinic acid attached to N4 and N1 positions of N8,N8-dibenzylspermidine, respectively, exhibited higher activity than CAM in inhibiting the puromycin reaction in a bacterial cell-free system. Kinetic and footprinting analysis revealed that whereas the CAM-scaffold preserved its role in competing with the binding of aminoacyl-tRNA 3′-terminus to ribosomal A-site, the polyamine-tail could interfere with the rotatory motion of aminoacyl-tRNA 3′-terminus toward the P-site. Compared to CAM, compounds 4 and 5 exhibited comparable or improved antibacterial activity, particularly against CAM-resistant strains. Compound 4 also possessed enhanced toxicity against human cancer cells, and lower toxicity against healthy human cells. Thus, the designed conjugates proved to be suitable tools in investigating the ribosomal catalytic center plasticity and some of them exhibited greater efficacy than CAM itself.
Collapse
Affiliation(s)
- Ourania N Kostopoulou
- Department of Biochemistry, School of Medicine, University of Patras, GR-26504 Patras, Greece
| | - Ekaterini C Kouvela
- Department of Biochemistry, School of Medicine, University of Patras, GR-26504 Patras, Greece
| | - George E Magoulas
- Division of Hematology, Department of Internal Medicine, School of Medicine, University of Patras, GR-26504 Patras, Greece
| | - Thomas Garnelis
- Division of Hematology, Department of Internal Medicine, School of Medicine, University of Patras, GR-26504 Patras, Greece
| | - Ioannis Panagoulias
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | - Maria Rodi
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | - Georgios Papadopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Ploutonos 26, GR-41221 Larissa, Greece
| | - Athanasia Mouzaki
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | - George P Dinos
- Department of Biochemistry, School of Medicine, University of Patras, GR-26504 Patras, Greece
| | - Dionissios Papaioannou
- Division of Hematology, Department of Internal Medicine, School of Medicine, University of Patras, GR-26504 Patras, Greece
| | - Dimitrios L Kalpaxis
- Department of Biochemistry, School of Medicine, University of Patras, GR-26504 Patras, Greece
| |
Collapse
|
17
|
Wang L, Wasserman MR, Feldman MB, Altman RB, Blanchard SC. Mechanistic insights into antibiotic action on the ribosome through single-molecule fluorescence imaging. Ann N Y Acad Sci 2013; 1241:E1-16. [PMID: 23419024 DOI: 10.1111/j.1749-6632.2012.06839.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Single-molecule fluorescence imaging has provided unprecedented access to the dynamics of ribosome function, revealing transient intermediate states that are critical to ribosome activity. Imaging platforms have now been developed that are capable of probing many hundreds of molecules simultaneously at temporal and spatial resolutions approaching the sub-millisecond time and the sub-nanometer scales. These advances enable both steady- and pre-steady state measurements of individual steps in the translation process as well as processive reactions. The data generated using these methods have yielded new, quantitative structural and kinetic insights into ribosomal activity. They have also shed light on the mechanisms of antibiotic targeting the translation apparatus, revealing features of the structure-function relationship that would be difficult to obtain by other means. This review provides an overview of the types of information that can be obtained using such imaging platforms and a blueprint for using the technique to assess how small-molecule antibiotics alter macromolecular functions.
Collapse
Affiliation(s)
- Leyi Wang
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
18
|
SHARMA AJEETK, CHOWDHURY DEBASHISH. TEMPLATE-DIRECTED BIOPOLYMERIZATION: TAPE-COPYING TURING MACHINES. ACTA ACUST UNITED AC 2013. [DOI: 10.1142/s1793048012300083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
DNA, RNA and proteins are among the most important macromolecules in a living cell. These molecules are polymerized by molecular machines. These natural nano-machines polymerize such macromolecules, adding one monomer at a time, using another linear polymer as the corresponding template. The machine utilizes input chemical energy to move along the template which also serves as a track for the movements of the machine. In the Alan Turing year 2012, it is worth pointing out that these machines are "tape-copying Turing machines". We review the operational mechanisms of the polymerizer machines and their collective behavior from the perspective of statistical physics, emphasizing their common features in spite of the crucial differences in their biological functions. We also draw the attention of the physics community to another class of modular machines that carry out a different type of template-directed polymerization. We hope this review will inspire new kinetic models for these modular machines.
Collapse
Affiliation(s)
- AJEET K. SHARMA
- Department of Physics, Indian Institute of Technology, Kanpur 208016, India
| | | |
Collapse
|
19
|
Xie P. Dynamics of tRNA occupancy and dissociation during translation by the ribosome. J Theor Biol 2013; 316:49-60. [DOI: 10.1016/j.jtbi.2012.09.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 09/17/2012] [Accepted: 09/18/2012] [Indexed: 12/23/2022]
|
20
|
In vitro and in vivo single-molecule fluorescence imaging of ribosome-catalyzed protein synthesis. Curr Opin Chem Biol 2011; 15:853-63. [PMID: 22104181 DOI: 10.1016/j.cbpa.2011.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 11/01/2011] [Accepted: 11/01/2011] [Indexed: 11/22/2022]
Abstract
Combined with the availability of highly purified, fluorescently labeled in vitro translation systems, the advent of single-molecule fluorescence imaging has ushered in a new era in high-resolution mechanistic studies of ribosome-catalyzed protein synthesis, or translation. Together with ensemble biochemical investigations of translation and structural studies of functional ribosomal complexes, in vitro single-molecule fluorescence imaging of protein synthesis is providing unique mechanistic insight into this fundamental biological process. More recently, rapidly evolving breakthroughs in fluorescence-based molecular imaging in live cells with sub-diffraction-limit spatial resolution and ever-increasing temporal resolution provide great promise for conducting mechanistic studies of translation and its regulation in living cells. Here we review the remarkable recent progress that has been made in these fields, highlight important mechanistic insights that have been gleaned from these studies thus far, and discuss what we envision lies ahead as these approaches continue to evolve and expand to address increasingly complex mechanistic and regulatory aspects of translation.
Collapse
|
21
|
Ellis-Davies GCR, Pugh EN. The 64th Symposium of the Society for General Physiologists: optogenetics and superresolution microscopy take center stage. J Gen Physiol 2011; 138:1-11. [PMID: 21708951 PMCID: PMC3135327 DOI: 10.1085/jgp.201110673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
22
|
Force measurements of the disruption of the nascent polypeptide chain from the ribosome by optical tweezers. FEBS Lett 2011; 585:1859-63. [DOI: 10.1016/j.febslet.2011.04.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 04/19/2011] [Indexed: 11/20/2022]
|
23
|
Klein DA. A simple wooden ribosome model: helping students understand transpeptidation. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2010; 11:172-174. [PMID: 23653724 PMCID: PMC3577162 DOI: 10.1128/jmbe.v11i2.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In teaching biology, it is critical to communicate broad concepts before considering more specific details of a process. This is particularly important when attempting to communicate the essence of transpeptidation, a key process in translation. Based on my experience in teaching general microbiology, transpeptidation is the most difficult aspect of translation for students to understand.
Typically, figures given in microbiology and biochemistry texts show movement of the nascent peptide attached to the P position t-RNA to the incoming single amino acid attached to the A position amino acid-tRNA by the use of arrows, an approach that makes it difficult to understand the dynamic aspects of this process. To attempt to improve understanding of this process, tutorials also are available that emphasize decoding “messages” and the use of “Do-it-Yourself DNA Kits” where the process of transpeptidation is not specifically discussed. The simple model described in this communication provides a clear demonstration of the transpeptidation process.
Collapse
Affiliation(s)
- Donald A Klein
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
24
|
Abstract
There is mounting evidence indicating that protein synthesis is driven and regulated by mechanisms that direct stochastic, large-scale conformational fluctuations of the translational apparatus. This mechanistic paradigm implies that a free-energy landscape governs the conformational states that are accessible to and sampled by the translating ribosome. This scenario presents interdependent opportunities and challenges for structural and dynamic studies of protein synthesis. Indeed, the synergism between cryogenic electron microscopic and X-ray crystallographic structural studies, on the one hand, and single-molecule fluorescence resonance energy transfer (smFRET) dynamic studies, on the other, is emerging as a powerful means for investigating the complex free-energy landscape of the translating ribosome and uncovering the mechanisms that direct the stochastic conformational fluctuations of the translational machinery. In this review, we highlight the principal insights obtained from cryogenic electron microscopic, X-ray crystallographic, and smFRET studies of the elongation stage of protein synthesis and outline the emerging themes, questions, and challenges that lie ahead in mechanistic studies of translation.
Collapse
Affiliation(s)
- Joachim Frank
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York City, New York 10032
- Department of Biological Sciences, Columbia University, New York City, New York 10027
| | - Ruben L. Gonzalez
- Department of Chemistry, Columbia University, New York City, New York 10027
| |
Collapse
|
25
|
Brinkers S, Dietrich HRC, de Groote FH, Young IT, Rieger B. The persistence length of double stranded DNA determined using dark field tethered particle motion. J Chem Phys 2009; 130:215105. [PMID: 19508104 DOI: 10.1063/1.3142699] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The wormlike chain model describes the micromechanics of semiflexible polymers by introducing the persistence length. We propose a method of measuring the persistence length of DNA in a controllable near-native environment. Using a dark field microscope, the projected positions of a gold nanoparticle undergoing constrained Brownian motion are captured. The nanoparticle is tethered to a substrate using a single double stranded DNA (dsDNA) molecule and immersed in buffer. No force is exerted on the DNA. We carried out Monte Carlo simulations of the experiment, which give insight into the micromechanics of the DNA and can be used to interpret the motion of the nanoparticle. Our simulations and experiments demonstrate that, unlike other similar experiments, the use of nanometer instead of micrometer sized particles causes particle-substrate and particle-DNA interactions to be of negligible effect on the position distribution of the particle. We also show that the persistence length of the tethering DNA can be estimated with a statistical error of 2 nm, by comparing the statistics of the projected position distribution of the nanoparticle to the Monte Carlo simulations. The persistence lengths of 45 single molecules of four different lengths of dsDNA were measured under the same environmental conditions at high salt concentration. The persistence lengths we found had a mean value of 35 nm (standard error of 2.8 nm), which compares well to previously found values using similar salt concentrations. Our method can be used to directly study the effect of the environmental conditions (e.g., buffer and temperature) on the persistence length.
Collapse
Affiliation(s)
- Sanneke Brinkers
- Quantitative Imaging Group, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands.
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Abstract
In the cell, proteins are synthesized by ribosomes in a multi-step process called translation. The ribosome translocates along the messenger RNA to read the codons that encode the amino acid sequence of a protein. Elongation factors, including EF-G and EF-Tu, are used to catalyze the process. Recently, we have shown that translation can be followed at the single-molecule level using optical tweezers; this technique allows us to study the kinetics of translation by measuring the lifetime the ribosome spends at each codon. Here, we analyze the data from single-molecule experiments and fit the data with simple kinetic models. We also simulate the translation kinetics based on a multi-step mechanism from ensemble kinetic measurements. The mean lifetimes from the simulation were consistent with our experimental single-molecule measurements. We found that the calculated lifetime distributions were fit in general by equations with up to five rate-determining steps. Two rate-determining steps were only obtained at low concentrations of elongation factors. These analyses can be used to design new single-molecule experiments to better understand the kinetics and mechanism of translation.
Collapse
Affiliation(s)
- Ignacio Tinoco
- Department of Chemistry, University of California, Berkeley, CA 94720-1460, USA.
| | | |
Collapse
|
28
|
Towles KB, Beausang JF, Garcia HG, Phillips R, Nelson PC. First-principles calculation of DNA looping in tethered particle experiments. Phys Biol 2009; 6:025001. [PMID: 19571369 PMCID: PMC3298194 DOI: 10.1088/1478-3975/6/2/025001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We calculate the probability of DNA loop formation mediated by regulatory proteins such as Lac repressor (LacI), using a mathematical model of DNA elasticity. Our model is adapted to calculating quantities directly observable in tethered particle motion (TPM) experiments, and it accounts for all the entropic forces present in such experiments. Our model has no free parameters; it characterizes DNA elasticity using information obtained in other kinds of experiments. It assumes a harmonic elastic energy function (or wormlike chain type elasticity), but our Monte Carlo calculation scheme is flexible enough to accommodate arbitrary elastic energy functions. We show how to compute both the 'looping J factor' (or equivalently, the looping free energy) for various DNA construct geometries and LacI concentrations, as well as the detailed probability density function of bead excursions. We also show how to extract the same quantities from recent experimental data on TPM, and then compare to our model's predictions. In particular, we present a new method to correct observed data for finite camera shutter time and other experimental effects. Although the currently available experimental data give large uncertainties, our first-principles predictions for the looping free energy change are confirmed to within about 1 k(B)T, for loops of length around 300 basepairs. More significantly, our model successfully reproduces the detailed distributions of bead excursion, including their surprising three-peak structure, without any fit parameters and without invoking any alternative conformation of the LacI tetramer. Indeed, the model qualitatively reproduces the observed dependence of these distributions on tether length (e.g., phasing) and on LacI concentration (titration). However, for short DNA loops (around 95 basepairs) the experiments show more looping than is predicted by the harmonic-elasticity model, echoing other recent experimental results. Because the experiments we study are done in vitro, this anomalously high looping cannot be rationalized as resulting from the presence of DNA-bending proteins or other cellular machinery. We also show that it is unlikely to be the result of a hypothetical 'open' conformation of the LacI tetramer.
Collapse
Affiliation(s)
- Kevin B Towles
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John F Beausang
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hernan G Garcia
- Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rob Phillips
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Philip C Nelson
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Garai A, Chowdhury D, Chowdhury D, Ramakrishnan TV. Stochastic kinetics of ribosomes: single motor properties and collective behavior. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:011908. [PMID: 19658730 DOI: 10.1103/physreve.80.011908] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 06/04/2009] [Indexed: 05/28/2023]
Abstract
Syntheses of protein molecules in a cell are carried out by ribosomes. A ribosome can be regarded as a molecular motor which utilizes the input chemical energy to move on a messenger RNA (mRNA) track that also serves as a template for the polymerization of the corresponding protein. The forward movement, however, is characterized by an alternating sequence of translocation and pause. Using a quantitative model, which captures the mechanochemical cycle of an individual ribosome, we derive an exact analytical expression for the distribution of its dwell times at the successive positions on the mRNA track. Inverse of the average dwell time satisfies a "Michaelis-Menten-type" equation and is consistent with the general formula for the average velocity of a molecular motor with an unbranched mechanochemical cycle. Extending this formula appropriately, we also derive the exact force-velocity relation for a ribosome. Often many ribosomes simultaneously move on the same mRNA track, while each synthesizes a copy of the same protein. We extend the model of a single ribosome by incorporating steric exclusion of different individuals on the same track. We draw the phase diagram of this model of ribosome traffic in three-dimensional spaces spanned by experimentally controllable parameters. We suggest new experimental tests of our theoretical predictions.
Collapse
Affiliation(s)
- Ashok Garai
- Department of Physics, Indian Institute of Technology, Kanpur 208016, India
| | | | | | | |
Collapse
|
30
|
Concentration and length dependence of DNA looping in transcriptional regulation. PLoS One 2009; 4:e5621. [PMID: 19479049 PMCID: PMC2682762 DOI: 10.1371/journal.pone.0005621] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 04/06/2009] [Indexed: 11/19/2022] Open
Abstract
In many cases, transcriptional regulation involves the binding of transcription factors at sites on the DNA that are not immediately adjacent to the promoter of interest. This action at a distance is often mediated by the formation of DNA loops: Binding at two or more sites on the DNA results in the formation of a loop, which can bring the transcription factor into the immediate neighborhood of the relevant promoter. These processes are important in settings ranging from the historic bacterial examples (bacterial metabolism and the lytic-lysogeny decision in bacteriophage), to the modern concept of gene regulation to regulatory processes central to pattern formation during development of multicellular organisms. Though there have been a variety of insights into the combinatorial aspects of transcriptional control, the mechanism of DNA looping as an agent of combinatorial control in both prokaryotes and eukaryotes remains unclear. We use single-molecule techniques to dissect DNA looping in the lac operon. In particular, we measure the propensity for DNA looping by the Lac repressor as a function of the concentration of repressor protein and as a function of the distance between repressor binding sites. As with earlier single-molecule studies, we find (at least) two distinct looped states and demonstrate that the presence of these two states depends both upon the concentration of repressor protein and the distance between the two repressor binding sites. We find that loops form even at interoperator spacings considerably shorter than the DNA persistence length, without the intervention of any other proteins to prebend the DNA. The concentration measurements also permit us to use a simple statistical mechanical model of DNA loop formation to determine the free energy of DNA looping, or equivalently, the for looping.
Collapse
|
31
|
Katranidis A, Atta D, Schlesinger R, Nierhaus KH, Choli-Papadopoulou T, Gregor I, Gerrits M, Büldt G, Fitter J. Fast biosynthesis of GFP molecules: a single-molecule fluorescence study. Angew Chem Int Ed Engl 2009; 48:1758-61. [PMID: 19173359 DOI: 10.1002/anie.200806070] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
It's not easy being green: Real-time visualization of labeled ribosomes and de novo synthesized green fluorescent protein molecules using single-molecule-sensitive fluorescence microscopy demonstrates that the mutant GFPem is produced with a characteristic time of five minutes. Fluorescence of the fastest GFP molecules appears within one minute (see picture).
Collapse
|
32
|
Katranidis A, Atta D, Schlesinger R, Nierhaus K, Choli-Papadopoulou T, Gregor I, Gerrits M, Büldt G, Fitter J. Fast Biosynthesis of GFP Molecules: A Single-Molecule Fluorescence Study. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200806070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Garai A, Chowdhury D, Ramakrishnan TV. Fluctuations in protein synthesis from a single RNA template: stochastic kinetics of ribosomes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:011916. [PMID: 19257078 DOI: 10.1103/physreve.79.011916] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 11/28/2008] [Indexed: 05/27/2023]
Abstract
Proteins are polymerized by cyclic machines called ribosomes, which use their messenger RNA (mRNA) track also as the corresponding template, and the process is called translation. We explore, in depth and detail, the stochastic nature of the translation. We compute various distributions associated with the translation process; one of them--namely, the dwell time distribution--has been measured in recent single-ribosome experiments. The form of the distribution, which fits best with our simulation data, is consistent with that extracted from the experimental data. For our computations, we use a model that captures both the mechanochemistry of each individual ribosome and their steric interactions. We also demonstrate the effects of the sequence inhomogeneities of real genes on the fluctuations and noise in translation. Finally, inspired by recent advances in the experimental techniques of manipulating single ribosomes, we make theoretical predictions on the force-velocity relation for individual ribosomes. In principle, all our predictions can be tested by carrying out in vitro experiments.
Collapse
Affiliation(s)
- Ashok Garai
- Department of Physics, Indian Institute of Technology, Kanpur 208016, India.
| | | | | |
Collapse
|
34
|
Stapulionis R, Wang Y, Dempsey GT, Khudaravalli R, Nielsen KM, Cooperman BS, Goldman YE, Knudsen CR. Fast in vitro translation system immobilized on a surface via specific biotinylation of the ribosome. Biol Chem 2008; 389:1239-49. [PMID: 18713011 DOI: 10.1515/bc.2008.141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The ribosome is the macromolecular machine responsible for translating the genetic code into polypeptide chains. Despite impressive structural and kinetic studies of the translation process, a number of challenges remain with respect to understanding the dynamic properties of the translation apparatus. Single-molecule techniques hold the potential of characterizing the structural and mechanical properties of macromolecules during their functional cycles in real time. These techniques often necessitate the specific coupling of biologically active molecules to a surface. Here, we describe a procedure for such coupling of functionally active ribosomes that permits single-molecule studies of protein synthesis. Oxidation with NaIO4 at the 3' end of 23S rRNA and subsequent reaction with a biotin hydrazide produces biotinylated 70S ribosomes, which can be immobilized on a streptavidin-coated surface. The surface-attached ribosomes are fully active in poly(U) translation in vitro, synthesizing poly(Phe) at a rate of 3-6 peptide bonds/s per active ribosome at 37 degrees C. Specificity of binding of biotinylated ribosomes to a streptavidin-coated quartz surface was confirmed by observation of individual fluorescently labeled, biotinylated 70S ribosomes, using total internal reflection fluorescence microscopy. Functional interactions of the immobilized ribosomes with various components of the protein synthesis apparatus are shown by use of surface plasmon resonance.
Collapse
Affiliation(s)
- Romualdas Stapulionis
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade, Bldg. 1520, DK-8000 Arhus C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Meskauskas A, Dinman JD. Ribosomal protein L3 functions as a 'rocker switch' to aid in coordinating of large subunit-associated functions in eukaryotes and Archaea. Nucleic Acids Res 2008; 36:6175-86. [PMID: 18832371 PMCID: PMC2577335 DOI: 10.1093/nar/gkn642] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Although ribosomal RNAs (rRNAs) comprise the bulk of the ribosome and carry out its main functions, ribosomal proteins also appear to play important structural and functional roles. Many ribosomal proteins contain long, nonglobular domains that extend deep into the rRNA cores. In eukaryotes and Archaea, ribosomal protein L3 contains two such extended domains tethered to a common globular hub, thus providing an excellent model to address basic questions relating to ribosomal protein structure/function relationships. Previous work in our laboratory identified the central ‘W-finger’ extension of yeast L3 in helping to coordinate ribosomal functions. New studies on the ‘N-terminal’ extension in yeast suggest that it works with the W-finger to coordinate opening and closing of the corridor through which the 3′ end of aa-tRNA moves during the process of accommodation. Additionally, the effect of one of the L3 N-terminal extension mutants on the interaction between C75 of the aa-tRNA and G2921 (Escherichia coli G2553) of 25S rRNA provides the first evidence of the effect of a ribosomal protein on aa-tRNA positioning and peptidyltransfer, possibly through the induced fit model. A model is presented describing how all three domains of L3 may function together as a ‘rocker switch’ to coordinate the stepwise processes of translation elongation.
Collapse
Affiliation(s)
- Arturas Meskauskas
- Department of Cell Biology and Molecular Genetics, Microbiology Building Rm. 2135, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
36
|
Abstract
Decades of studies have established translation as a multistep, multicomponent process that requires intricate communication to achieve high levels of speed, accuracy, and regulation. A crucial next step in understanding translation is to reveal the functional significance of the large-scale motions implied by static ribosome structures. This requires determining the trajectories, timescales, forces, and biochemical signals that underlie these dynamic conformational changes. Single-molecule methods have emerged as important tools for the characterization of motion in complex systems, including translation. In this review, we chronicle the key discoveries in this nascent field, which have demonstrated the power and promise of single-molecule techniques in the study of translation.
Collapse
Affiliation(s)
- R Andrew Marshall
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
37
|
|
38
|
Normanno D, Vanzi F, Pavone FS. Single-molecule manipulation reveals supercoiling-dependent modulation of lac repressor-mediated DNA looping. Nucleic Acids Res 2008; 36:2505-13. [PMID: 18310101 PMCID: PMC2377426 DOI: 10.1093/nar/gkn071] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 01/07/2008] [Accepted: 02/05/2008] [Indexed: 11/12/2022] Open
Abstract
Gene expression regulation is a fundamental biological process which deploys specific sets of genomic information depending on physiological or environmental conditions. Several transcription factors (including lac repressor, LacI) are present in the cell at very low copy number and increase their local concentration by binding to multiple sites on DNA and looping the intervening sequence. In this work, we employ single-molecule manipulation to experimentally address the role of DNA supercoiling in the dynamics and stability of LacI-mediated DNA looping. We performed measurements over a range of degrees of supercoiling between -0.026 and +0.026, in the absence of axial stretching forces. A supercoiling-dependent modulation of the lifetimes of both the looped and unlooped states was observed. Our experiments also provide evidence for multiple structural conformations of the LacI-DNA complex, depending on torsional constraints. The supercoiling-dependent modulation demonstrated here adds an important element to the model of the lac operon. In fact, the complex network of proteins acting on the DNA in a living cell constantly modifies its topological and mechanical properties: our observations demonstrate the possibility of establishing a signaling pathway from factors affecting DNA supercoiling to transcription factors responsible for the regulation of specific sets of genes.
Collapse
Affiliation(s)
- Davide Normanno
- LENS, European Laboratory for Non-linear Spectroscopy, Università degli Studi di Firenze, Via N. Carrara 1, I-50019 Sesto Fiorentino (FI), Italy.
| | | | | |
Collapse
|
39
|
Rakauskaitė R, Dinman JD. rRNA mutants in the yeast peptidyltransferase center reveal allosteric information networks and mechanisms of drug resistance. Nucleic Acids Res 2008; 36:1497-507. [PMID: 18203742 PMCID: PMC2275155 DOI: 10.1093/nar/gkm1179] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 12/24/2007] [Accepted: 12/26/2007] [Indexed: 11/29/2022] Open
Abstract
To ensure accurate and rapid protein synthesis, nearby and distantly located functional regions of the ribosome must dynamically communicate and coordinate with one another through a series of information exchange networks. The ribosome is approximately 2/3 rRNA and information should pass mostly through this medium. Here, two viable mutants located in the peptidyltransferase center (PTC) of yeast ribosomes were created using a yeast genetic system that enables stable production of ribosomes containing only mutant rRNAs. The specific mutants were C2820U (Escherichia coli C2452) and Psi2922C (E. coli U2554). Biochemical and genetic analyses of these mutants suggest that they may trap the PTC in the 'open' or aa-tRNA bound conformation, decreasing peptidyl-tRNA binding. We suggest that these structural changes are manifested at the biological level by affecting large ribosomal subunit biogenesis, ribosomal subunit joining during initiation, susceptibility/resistance to peptidyltransferase inhibitors, and the ability of ribosomes to properly decode termination codons. These studies also add to our understanding of how information is transmitted both locally and over long distances through allosteric networks of rRNA-rRNA and rRNA-protein interactions.
Collapse
Affiliation(s)
| | - Jonathan D. Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, 2135 Microbiology Building, College Park, MD 20742, USA
| |
Collapse
|
40
|
Beausang JF, Nelson PC. Diffusive hidden Markov model characterization of DNA looping dynamics in tethered particle experiments. Phys Biol 2007; 4:205-19. [PMID: 17928659 DOI: 10.1088/1478-3975/4/3/007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In many biochemical processes, proteins bound to DNA at distant sites are brought into close proximity by loops in the underlying DNA. For example, the function of some gene-regulatory proteins depends on such 'DNA looping' interactions. We present a new technique for characterizing the kinetics of loop formation in vitro, as observed using the tethered particle method, and apply it to experimental data on looping induced by lambda repressor. Our method uses a modified ('diffusive') hidden Markov analysis that directly incorporates the Brownian motion of the observed tethered bead. We compare looping lifetimes found with our method (which we find are consistent over a range of sampling frequencies) to those obtained via the traditional threshold-crossing analysis (which can vary depending on how the raw data are filtered in the time domain). Our method does not involve any time filtering and can detect sudden changes in looping behavior. For example, we show how our method can identify transitions between long-lived, kinetically distinct states that would otherwise be difficult to discern.
Collapse
Affiliation(s)
- John F Beausang
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
41
|
Vilfan ID, Kamping W, van den Hout M, Candelli A, Hage S, Dekker NH. An RNA toolbox for single-molecule force spectroscopy studies. Nucleic Acids Res 2007; 35:6625-39. [PMID: 17905817 PMCID: PMC2095808 DOI: 10.1093/nar/gkm585] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 07/15/2007] [Accepted: 07/17/2007] [Indexed: 01/29/2023] Open
Abstract
Precise, controllable single-molecule force spectroscopy studies of RNA and RNA-dependent processes have recently shed new light on the dynamics and pathways of RNA folding and RNA-enzyme interactions. A crucial component of this research is the design and assembly of an appropriate RNA construct. Such a construct is typically subject to several criteria. First, single-molecule force spectroscopy techniques often require an RNA construct that is longer than the RNA molecules used for bulk biochemical studies. Next, the incorporation of modified nucleotides into the RNA construct is required for its surface immobilization. In addition, RNA constructs for single-molecule studies are commonly assembled from different single-stranded RNA molecules, demanding good control of hybridization or ligation. Finally, precautions to prevent RNase- and divalent cation-dependent RNA digestion must be taken. The rather limited selection of molecular biology tools adapted to the manipulation of RNA molecules, as well as the sensitivity of RNA to degradation, make RNA construct preparation a challenging task. We briefly illustrate the types of single-molecule force spectroscopy experiments that can be performed on RNA, and then present an overview of the toolkit of molecular biology techniques at one's disposal for the assembly of such RNA constructs. Within this context, we evaluate the molecular biology protocols in terms of their effectiveness in producing long and stable RNA constructs.
Collapse
Affiliation(s)
| | | | | | | | | | - Nynke H. Dekker
- Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, 2628 CJ Delft, The Netherlands
| |
Collapse
|
42
|
Vanzi F, Sacconi L, Pavone FS. Analysis of kinetics in noisy systems: application to single molecule tethered particle motion. Biophys J 2007; 93:21-36. [PMID: 17434935 PMCID: PMC1914433 DOI: 10.1529/biophysj.106.094151] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 02/15/2007] [Indexed: 11/18/2022] Open
Abstract
In the tethered particle motion method the length of a DNA molecule is monitored by measuring the range of diffusion of a microsphere tethered to the surface of a microscope coverslip through the DNA molecule itself. Looping of DNA (induced by binding of a specific protein) can be detected with this method and the kinetics of the looping/unlooping processes can be measured at the single molecule level. The microsphere's position variance represents the experimental variable reporting on the polymer length. Therefore, data windowing is required to obtain position variance from raw position data. Due to the characteristic diffusion time of the microsphere, the low-pass filtering required to attain a good signal/noise ratio (S/N) in the discrimination of looped versus unlooped state impacts significantly the measurement's time resolution. Here we present a method for measuring lifetimes based on half-amplitude thresholding and then correcting the kinetic measurements, taking into account low S/N (leading to false events) and limited time resolution (leading to missed events). This method allows an accurate and unbiased estimation of the kinetic parameters under investigation, independently of the choice of the window used for variance calculation, with potential applications to other single molecule measurements with low S/N.
Collapse
Affiliation(s)
- F Vanzi
- LENS-European Laboratory for Nonlinear Spectroscopy, Sesto Fiorentino, Italy.
| | | | | |
Collapse
|
43
|
Beausang JF, Zurla C, Manzo C, Dunlap D, Finzi L, Nelson PC. DNA looping kinetics analyzed using diffusive hidden Markov model. Biophys J 2007; 92:L64-6. [PMID: 17277177 PMCID: PMC1831694 DOI: 10.1529/biophysj.107.104828] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tethered particle experiments use light microscopy to measure the position of a micrometer-sized bead tethered to a microscope slide via an approximately micrometer-length polymer, to infer the behavior of the invisible polymer. Currently, this method is used to measure rate constants of DNA loop formation and breakdown mediated by repressor protein that binds to the DNA. We report a new technique for measuring these rates using a modified hidden Markov analysis that directly incorporates the diffusive motion of the bead, which is an inherent complication of tethered particle motion because it occurs on a timescale between the sampling frequency and the looping time. We compare looping lifetimes found with our method, which are consistent over a range of sampling frequencies, to those obtained via the traditional threshold-crossing analysis, which vary depending on how the raw data are filtered in the time domain. Our method does not involve such filtering, and so can detect short-lived looping events and sudden changes in looping behavior.
Collapse
|
44
|
Abstract
The role of mRNA localization is presumably to effect cell asymmetry by synthesizing proteins in specific cellular compartments. However, protein synthesis has never been directly demonstrated at the sites of mRNA localization. To address this, we developed a live cell method for imaging translation of β-actin mRNA. Constructs coding for β-actin, containing tetracysteine motifs, were transfected into C2C12 cells, and sites of nascent polypeptide chains were detected using the biarsenial dyes FlAsH and ReAsH, a technique we call translation site imaging. These sites colocalized with β-actin mRNA at the leading edge of motile myoblasts, confirming that they were translating. β-Actin mRNA lacking the sequence (zipcode) that localizes the mRNA to the cell periphery, eliminated the translation there. A pulse-chase experiment on living cells showed that the recently synthesized protein correlated spatially with the sites of its translation. Additionally, localization of β-actin mRNA and translation activity was enhanced at cell contacts and facilitated the formation of intercellular junctions.
Collapse
Affiliation(s)
- Alexis J Rodriguez
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | |
Collapse
|
45
|
Ritort F. Single-molecule experiments in biological physics: methods and applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2006; 18:R531-R583. [PMID: 21690856 DOI: 10.1088/0953-8984/18/32/r01] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
I review single-molecule experiments (SMEs) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SMEs it is possible to manipulate molecules one at a time and measure distributions describing molecular properties, characterize the kinetics of biomolecular reactions and detect molecular intermediates. SMEs provide additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SMEs it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level, emphasizing the importance of SMEs to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SMEs from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOTs), magnetic tweezers (MTs), biomembrane force probes (BFPs) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation) and proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SMEs to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.
Collapse
Affiliation(s)
- F Ritort
- Departament de Física Fonamental, Facultat de Física, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|
46
|
Vanzi F, Broggio C, Sacconi L, Pavone FS. Lac repressor hinge flexibility and DNA looping: single molecule kinetics by tethered particle motion. Nucleic Acids Res 2006; 34:3409-20. [PMID: 16835309 PMCID: PMC1524907 DOI: 10.1093/nar/gkl393] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The tethered particle motion (TPM) allows the direct detection of activity of a variety of biomolecules at the single molecule level. First pioneered for RNA polymerase, it has recently been applied also to other enzymes. In this work we employ TPM for a systematic investigation of the kinetics of DNA looping by wild-type Lac repressor (wt-LacI) and by hinge mutants Q60G and Q60 + 1. We implement a novel method for TPM data analysis to reliably measure the kinetics of loop formation and disruption and to quantify the effects of the protein hinge flexibility and of DNA loop strain on such kinetics. We demonstrate that the flexibility of the protein hinge has a profound effect on the lifetime of the looped state. Our measurements also show that the DNA bending energy plays a minor role on loop disruption kinetics, while a strong effect is seen on the kinetics of loop formation. These observations substantiate the growing number of theoretical studies aimed at characterizing the effects of DNA flexibility, tension and torsion on the kinetics of protein binding and dissociation, strengthening the idea that these mechanical factors in vivo may play an important role in the modulation of gene expression regulation.
Collapse
Affiliation(s)
- Francesco Vanzi
- LENS-European Laboratory for Nonlinear Spectroscopy, University of Florence, Italy.
| | | | | | | |
Collapse
|
47
|
Segall DE, Nelson PC, Phillips R. Volume-exclusion effects in tethered-particle experiments: bead size matters. PHYSICAL REVIEW LETTERS 2006; 96:088306. [PMID: 16606235 PMCID: PMC3261840 DOI: 10.1103/physrevlett.96.088306] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/20/2005] [Indexed: 05/08/2023]
Abstract
We give a theoretical analysis of bead motion in tethered-particle experiments, a single-molecule technique that has been used to explore the dynamics of a variety of macromolecules of biological interest. Our analysis reveals that the proximity of the tethered bead to a nearby surface gives rise to a volume-exclusion effect, resulting in an entropic stretching-force on the molecule that changes its statistical properties. In addition, volume exclusion brings about intriguing scaling relations between key observables (statistical moments of the bead) and parameters such as bead size and contour length of the molecule. We present analytic and numerical results for these effects in both flexible and semiflexible tethers. Finally, our results give a precise, experimentally testable prediction for the probability distribution of the bead center measured from the polymer attachment point.
Collapse
Affiliation(s)
- Darren E Segall
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
48
|
Newby Lambert M, Vöcker E, Blumberg S, Redemann S, Gajraj A, Meiners JC, Walter NG. Mg2+-induced compaction of single RNA molecules monitored by tethered particle microscopy. Biophys J 2006; 90:3672-85. [PMID: 16500956 PMCID: PMC1440748 DOI: 10.1529/biophysj.105.067793] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have applied tethered particle microscopy (TPM) as a single molecule analysis tool to studies of the conformational dynamics of poly-uridine(U) messenger (m)RNA and 16S ribosomal (r)RNA molecules. Using stroboscopic total internal reflection illumination and rigorous selection criteria to distinguish from nonspecific tethering, we have tracked the nanometer-scale Brownian motion of RNA-tethered fluorescent microspheres in all three dimensions at pH 7.5, 22 degrees C, in 10 mM or 100 mM NaCl in the absence or presence of 10 mM MgCl(2). The addition of Mg(2+) to low-ionic strength buffer results in significant compaction and stiffening of poly(U) mRNA, but not of 16S rRNA. Furthermore, the motion of poly(U)-tethered microspheres is more heterogeneous than that of 16S rRNA-tethered microspheres. Analysis of in-plane bead motion suggests that poly(U) RNA, but less so 16S rRNA, can be modeled both in the presence and absence of Mg(2+) by a statistical Gaussian polymer model. We attribute these differences to the Mg(2+)-induced compaction of the relatively weakly structured and structurally disperse poly(U) mRNA, in contrast to Mg(2+)-induced reinforcement of existing secondary and tertiary structure contacts in the highly structured 16S rRNA. Both effects are nonspecific, however, as they are dampened in the presence of higher concentrations of monovalent cations.
Collapse
Affiliation(s)
- Meredith Newby Lambert
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Vanzi F, Takagi Y, Shuman H, Cooperman BS, Goldman YE. Mechanical studies of single ribosome/mRNA complexes. Biophys J 2005; 89:1909-19. [PMID: 15951374 PMCID: PMC1366694 DOI: 10.1529/biophysj.104.056283] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Methodology was developed for specifically anchoring Escherichia coli 70S ribosomes onto a chemically modified, cysteine-reactive glass surface. Immobilized ribosomes maintain the capability of binding a polyuridylic acid (poly(U)) template, enabling investigation of mechanical properties of individual ribosome-poly(U) complexes using laser tweezers. Streptavidin-coated polystyrene microspheres bound specifically to the biotinylated 3' end of long (up to 10,000 bases) poly(U) strands. A novel optical method was built to control the position of the laser trap along the microscope optical axis at 2 nm resolution, facilitating measurement of the force-extension relationship for poly(U). Some immobilized ribosome-poly(U) complexes supported 100 pN of force applied at the 3' end of the mRNA. Binding of N-acetylated Phe-tRNA(Phe), an analog of the initiator fMet-tRNA(Met), enhanced the population of complexes that could withstand high forces. The persistence length of poly(U) RNA homopolymer, modeled as a worm-like chain, was found to be 0.79 +/- 0.05 nm and the backbone elasticity was 900 +/- 140 pN, similar to values for single-stranded DNA.
Collapse
Affiliation(s)
- Francesco Vanzi
- Pennsylvania Muscle Institute, Department of Bioengineering, and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
50
|
Blumberg S, Gajraj A, Pennington MW, Meiners JC. Three-dimensional characterization of tethered microspheres by total internal reflection fluorescence microscopy. Biophys J 2005; 89:1272-81. [PMID: 15923224 PMCID: PMC1366611 DOI: 10.1529/biophysj.105.061242] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tethered particle microscopy is a powerful tool to study the dynamics of DNA molecules and DNA-protein complexes in single-molecule experiments. We demonstrate that stroboscopic total internal reflection microscopy can be used to characterize the three-dimensional spatiotemporal motion of DNA-tethered particles. By calculating characteristic measures such as symmetry and time constants of the motion, well-formed tethers can be distinguished from defective ones for which the motion is dominated by aberrant surface effects. This improves the reliability of measurements on tether dynamics. For instance, in observations of protein-mediated DNA looping, loop formation is distinguished from adsorption and other nonspecific events.
Collapse
Affiliation(s)
- Seth Blumberg
- Department of Physics, Biophysics Research Division, Randall Laboratory, University of Michigan, Ann Arbor, 48109-1120, USA
| | | | | | | |
Collapse
|