1
|
Hong Z, Tesic N, Bofill-De Ros X. Analysis of Processing, Post-Maturation, and By-Products of shRNA in Gene and Cell Therapy Applications. Methods Protoc 2025; 8:38. [PMID: 40278512 PMCID: PMC12029666 DOI: 10.3390/mps8020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 04/26/2025] Open
Abstract
Short hairpin RNAs (shRNAs) are potent tools for gene silencing, offering therapeutic potential for gene and cell therapy applications. However, their efficacy and safety depend on precise processing by the RNA interference machinery and the generation of minimal by-products. In this protocol, we describe how to systematically analyze the processing of therapeutic small RNAs by DROSHA and DICER1 and their incorporation into functional AGO complexes. Using standard small RNA sequencing and tailored bioinformatic analysis (QuagmiR), we evaluate the different steps of shRNA maturation that influence processing efficiency and specificity. We provide guidelines for troubleshooting common design pitfalls and off-target effects in transcriptome-wide profiling to identify unintended mRNA targeting via the miRNA-like effect. We provide examples of the bioinformatic analysis that can be performed to characterize therapeutic shRNA. Finally, we provide guidelines for troubleshooting shRNA designs that result in suboptimal processing or undesired off-target effects. This protocol underscores the importance of rational shRNA design to enhance specificity and reduce biogenesis by-products that can lead to off-target effects, providing a framework for optimizing the use of small RNAs in gene and cell therapies.
Collapse
Affiliation(s)
- Zhenyi Hong
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Nikola Tesic
- Seven Bridges Genomics Inc., Cambridge, MA 02138, USA
| | - Xavier Bofill-De Ros
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
2
|
Andersson P, Burel SA, Estrella H, Foy J, Hagedorn PH, Harper TA, Henry SP, Hoflack JC, Holgersen EM, Levin AA, Morrison E, Pavlicek A, Penso-Dolfin L, Saxena U. Assessing Hybridization-Dependent Off-Target Risk for Therapeutic Oligonucleotides: Updated Industry Recommendations. Nucleic Acid Ther 2025; 35:16-33. [PMID: 39912803 DOI: 10.1089/nat.2024.0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
Hybridization-dependent off-target (OffT) effects, occurring when oligonucleotides bind via Watson-Crick-Franklin hybridization to unintended RNA transcripts, remain a critical safety concern for oligonucleotide therapeutics (ONTs). Despite the importance of OffT assessment of clinical trial ONT candidates, formal guidelines are lacking, with only brief mentions in Japanese regulatory documents (2020) and US Food and Drug Administration (FDA) recommendations for hepatitis B virus treatments (2022). This article presents updated industry recommendations for assessing OffTs of ONTs, building upon the 2012 Oligonucleotide Safety Working Group (OSWG) recommendations and accounting for recent technological advancements. A new OSWG subcommittee, comprising industry experts in RNase H-dependent and steric blocking antisense oligonucleotides and small interfering RNAs, has developed a comprehensive framework for OffT assessment. The proposed workflow encompasses five key steps: (1) OffT identification through in silico complementarity prediction and transcriptomics analysis, (2) focus on cell types with relevant ONT activity, (3) in vitro verification and margin assessment, (4) risk assessment based on the OffT biological role, and (5) management of unavoidable OffTs. The authors provide detailed considerations for various ONT classes, emphasizing the importance of ONT-specific factors such as chemistry, delivery systems, and tissue distribution in OffT evaluation. The article also explores the potential of machine learning models to enhance OffT prediction and discusses strategies for experimental verification and risk assessment. These updated recommendations aim to improve the safety profile of ONTs entering clinical trials and to manage unavoidable OffTs. The authors hope that these recommendations will serve as a valuable resource for ONT development and for the forthcoming finalization of the FDA draft guidance and the International Council for Harmonization S13 guidance on Nonclinical Safety Assessment of Oligonucleotide-Based Therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jean-Christophe Hoflack
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | | | | | | | | | | | - Utsav Saxena
- Dicerna Pharmaceuticals, a Novo Nordisk Company, Lexington, Massachusetts, USA
| |
Collapse
|
3
|
Sellamuthu G, Chakraborty A, Vetukuri RR, Sarath S, Roy A. RNAi-biofungicides: a quantum leap for tree fungal pathogen management. Crit Rev Biotechnol 2024:1-28. [PMID: 39647992 DOI: 10.1080/07388551.2024.2430478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/03/2024] [Accepted: 10/27/2024] [Indexed: 12/10/2024]
Abstract
Fungal diseases threaten the forest ecosystem, impacting tree health, productivity, and biodiversity. Conventional approaches to combating diseases, such as biological control or fungicides, often reach limits regarding efficacy, resistance, non-target organisms, and environmental impact, enforcing alternative approaches. From an environmental and ecological standpoint, an RNA interference (RNAi) mediated double-stranded RNA (dsRNA)-based strategy can effectively manage forest fungal pathogens. The RNAi approach explicitly targets and suppresses gene expression through a conserved regulatory mechanism. Recently, it has evolved to be an effective tool in combating fungal diseases and promoting sustainable forest management approaches. RNAi bio-fungicides provide efficient and eco-friendly disease control alternatives using species-specific gene targeting, minimizing the off-target effects. With accessible data on fungal disease outbreaks, genomic resources, and effective delivery systems, RNAi-based biofungicides can be a promising tool for managing fungal pathogens in forests. However, concerns regarding the environmental fate of RNAi molecules and their potential impact on non-target organisms require an extensive investigation on a case-to-case basis. The current review critically evaluates the feasibility of RNAi bio-fungicides against forest pathogens by delving into the accessible delivery methods, environmental persistence, regulatory aspects, cost-effectiveness, community acceptance, and plausible future of RNAi-based forest protection products.
Collapse
Affiliation(s)
- Gothandapani Sellamuthu
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Amrita Chakraborty
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Ramesh R Vetukuri
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Saravanasakthi Sarath
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Amit Roy
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
4
|
Binder AK, Bremm F, Dörrie J, Schaft N. Non-Coding RNA in Tumor Cells and Tumor-Associated Myeloid Cells-Function and Therapeutic Potential. Int J Mol Sci 2024; 25:7275. [PMID: 39000381 PMCID: PMC11242727 DOI: 10.3390/ijms25137275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
The RNA world is wide, and besides mRNA, there is a variety of other RNA types, such as non-coding (nc)RNAs, which harbor various intracellular regulatory functions. This review focuses on small interfering (si)RNA and micro (mi)RNA, which form a complex network regulating mRNA translation and, consequently, gene expression. In fact, these RNAs are critically involved in the function and phenotype of all cells in the human body, including malignant cells. In cancer, the two main targets for therapy are dysregulated cancer cells and dysfunctional immune cells. To exploit the potential of mi- or siRNA therapeutics in cancer therapy, a profound understanding of the regulatory mechanisms of RNAs and following targeted intervention is needed to re-program cancer cells and immune cell functions in vivo. The first part focuses on the function of less well-known RNAs, including siRNA and miRNA, and presents RNA-based technologies. In the second part, the therapeutic potential of these technologies in treating cancer is discussed, with particular attention on manipulating tumor-associated immune cells, especially tumor-associated myeloid cells.
Collapse
Affiliation(s)
- Amanda Katharina Binder
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.K.B.); (F.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Franziska Bremm
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.K.B.); (F.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.K.B.); (F.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.K.B.); (F.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| |
Collapse
|
5
|
Raja Xavier JP, Rianna C, Hellwich E, Nikolou I, Lankapalli AK, Brucker SY, Singh Y, Lang F, Schäffer TE, Salker MS. Excessive endometrial PlGF- Rac1 signalling underlies endometrial cell stiffness linked to pre-eclampsia. Commun Biol 2024; 7:530. [PMID: 38704457 PMCID: PMC11069541 DOI: 10.1038/s42003-024-06220-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 04/19/2024] [Indexed: 05/06/2024] Open
Abstract
Cell stiffness is regulated by dynamic interaction between ras-related C3 botulinum toxin substrate 1 (Rac1) and p21 protein-activated kinase 1 (PAK1) proteins, besides other biochemical and molecular regulators. In this study, we investigated how the Placental Growth Factor (PlGF) changes endometrial mechanics by modifying the actin cytoskeleton at the maternal interface. We explored the global effects of PlGF in endometrial stromal cells (EnSCs) using the concerted approach of proteomics, atomic force microscopy (AFM), and electrical impedance spectroscopy (EIS). Proteomic analysis shows PlGF upregulated RhoGTPases activating proteins and extracellular matrix organization-associated proteins in EnSCs. Rac1 and PAK1 transcript levels, activity, and actin polymerization were significantly increased with PlGF treatment. AFM further revealed an increase in cell stiffness with PlGF treatment. The additive effect of PlGF on actin polymerization was suppressed with siRNA-mediated inhibition of Rac1, PAK1, and WAVE2. Interestingly, the increase in cell stiffness by PlGF treatment was pharmacologically reversed with pravastatin, resulting in improved trophoblast cell invasion. Taken together, aberrant PlGF levels in the endometrium can contribute to an altered pre-pregnancy maternal microenvironment and offer a unifying explanation for the pathological changes observed in conditions such as pre-eclampsia (PE).
Collapse
Affiliation(s)
| | - Carmela Rianna
- Institute of Applied Physics, University of Tübingen, Tübingen, Germany
| | - Emily Hellwich
- Institute of Applied Physics, University of Tübingen, Tübingen, Germany
| | - Iliana Nikolou
- Department of Women's Health, University of Tübingen, Tübingen, Germany
| | | | - Sara Y Brucker
- Department of Women's Health, University of Tübingen, Tübingen, Germany
| | - Yogesh Singh
- Department of Women's Health, University of Tübingen, Tübingen, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Tilman E Schäffer
- Institute of Applied Physics, University of Tübingen, Tübingen, Germany
| | - Madhuri S Salker
- Department of Women's Health, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
6
|
Tang Q, Khvorova A. RNAi-based drug design: considerations and future directions. Nat Rev Drug Discov 2024; 23:341-364. [PMID: 38570694 PMCID: PMC11144061 DOI: 10.1038/s41573-024-00912-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 04/05/2024]
Abstract
More than 25 years after its discovery, the post-transcriptional gene regulation mechanism termed RNAi is now transforming pharmaceutical development, proved by the recent FDA approval of multiple small interfering RNA (siRNA) drugs that target the liver. Synthetic siRNAs that trigger RNAi have the potential to specifically silence virtually any therapeutic target with unprecedented potency and durability. Bringing this innovative class of medicines to patients, however, has been riddled with substantial challenges, with delivery issues at the forefront. Several classes of siRNA drug are under clinical evaluation, but their utility in treating extrahepatic diseases remains limited, demanding continued innovation. In this Review, we discuss principal considerations and future directions in the design of therapeutic siRNAs, with a particular emphasis on chemistry, the application of informatics, delivery strategies and the importance of careful target selection, which together influence therapeutic success.
Collapse
Affiliation(s)
- Qi Tang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
7
|
Ma XK, Gao X, Cao M, Yang L. Base-Editor-Mediated circRNA Knockout by Targeting Predominantly Back-Splice Sites. Methods Mol Biol 2024; 2765:193-208. [PMID: 38381341 DOI: 10.1007/978-1-0716-3678-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Back-splicing of eukaryotic exon(s) leads to the production of covalently closed circular RNAs (circRNAs). Generally, most circRNAs contain overlapping sequences to their cognate linear RNAs from the same gene loci, leading to difficulties in distinguishing them from each other. A recent study has shown that some circRNAs can be specifically depleted by using base editing systems to target their predominantly back-splice sites for circularization, suggesting an efficient approach for circRNA knockout (KO). Here, we describe the detailed protocol for applying base editors to disrupt back-splice sites of predominantly circularized exons for circRNA KO at the genomic DNA level.
Collapse
Affiliation(s)
- Xu-Kai Ma
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiang Gao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mei Cao
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Traband EL, Hammerlund SR, Shameem M, Narayan A, Ramana S, Tella A, Sobeck A, Shima N. Mitotic DNA Synthesis in Untransformed Human Cells Preserves Common Fragile Site Stability via a FANCD2-Driven Mechanism That Requires HELQ. J Mol Biol 2023; 435:168294. [PMID: 37777152 PMCID: PMC10839910 DOI: 10.1016/j.jmb.2023.168294] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Faithful genome duplication is a challenging task for dividing mammalian cells, particularly under replication stress where timely resolution of late replication intermediates (LRIs) becomes crucial prior to cell division. In human cancer cells, mitotic DNA repair synthesis (MiDAS) is described as a final mechanism for the resolution of LRIs to avoid lethal chromosome mis-segregation. RAD52-driven MiDAS achieves this mission in part by generating gaps/breaks on metaphase chromosomes, which preferentially occur at common fragile sites (CFS). We previously demonstrated that a MiDAS mechanism also exists in untransformed and primary human cells, which is RAD52 independent but requires FANCD2. However, the properties of this form of MiDAS are not well understood. Here, we report that FANCD2-driven MiDAS in untransformed human cells: 1) requires a prerequisite step of FANCD2 mono-ubiquitination by a subset of Fanconi anemia (FA) proteins, 2) primarily acts to preserve CFS stability but not to prevent chromosome mis-segregation, and 3) depends on HELQ, which potentially functions at an early step. Hence, FANCD2-driven MiDAS in untransformed cells is built to protect CFS stability, whereas RAD52-driven MiDAS in cancer cells is likely adapted to prevent chromosome mis-segregation at the cost of CFS expression. Notably, we also identified a novel form of MiDAS, which surfaces to function when FANCD2 is absent in untransformed cells. Our findings substantiate the complex nature of MiDAS and a link between its deficiencies and the pathogenesis of FA, a human genetic disease.
Collapse
Affiliation(s)
- Emma L Traband
- Department of Genetics, Cell Biology and Development, Medical School, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology, and Biophysics, College of Biological Sciences, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Sarah R Hammerlund
- Department of Genetics, Cell Biology and Development, Medical School, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology, and Biophysics, College of Biological Sciences, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Mohammad Shameem
- Department of Biochemistry, Molecular Biology, and Biophysics, College of Biological Sciences, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Ananya Narayan
- Department of Genetics, Cell Biology and Development, Medical School, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Sanjiv Ramana
- Department of Genetics, Cell Biology and Development, Medical School, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Anika Tella
- Department of Genetics, Cell Biology and Development, Medical School, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Alexandra Sobeck
- Department of Biochemistry, Molecular Biology, and Biophysics, College of Biological Sciences, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, Minneapolis, MN 55455, USA
| | - Naoko Shima
- Department of Genetics, Cell Biology and Development, Medical School, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, Minneapolis, MN 55455, USA.
| |
Collapse
|
9
|
Ahmad M, Weiswald LB, Poulain L, Denoyelle C, Meryet-Figuiere M. Involvement of lncRNAs in cancer cells migration, invasion and metastasis: cytoskeleton and ECM crosstalk. J Exp Clin Cancer Res 2023; 42:173. [PMID: 37464436 PMCID: PMC10353155 DOI: 10.1186/s13046-023-02741-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
Cancer is the main cause of death worldwide and metastasis is a major cause of poor prognosis and cancer-associated mortality. Metastatic conversion of cancer cells is a multiplex process, including EMT through cytoskeleton remodeling and interaction with TME. Tens of thousands of putative lncRNAs have been identified, but the biological functions of most are still to be identified. However, lncRNAs have already emerged as key regulators of gene expression at transcriptional and post-transcriptional level to control gene expression in a spatio-temporal fashion. LncRNA-dependent mechanisms can control cell fates during development and their perturbed expression is associated with the onset and progression of many diseases including cancer. LncRNAs have been involved in each step of cancer cells metastasis through different modes of action. The investigation of lncRNAs different roles in cancer metastasis could possibly lead to the identification of new biomarkers and innovative cancer therapeutic options.
Collapse
Affiliation(s)
- Mohammad Ahmad
- (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Baclesse Cancer Centre, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, F-14000 François 3 Avenue Général Harris, BP 45026, 14 076, cedex 05, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
- Biochemistry Division, Chemistry Department, Faculty of Science, Damanhour University, Damanhour, 14000, Egypt
| | - Louis-Bastien Weiswald
- (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Baclesse Cancer Centre, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, F-14000 François 3 Avenue Général Harris, BP 45026, 14 076, cedex 05, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Laurent Poulain
- (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Baclesse Cancer Centre, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, F-14000 François 3 Avenue Général Harris, BP 45026, 14 076, cedex 05, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Christophe Denoyelle
- (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Baclesse Cancer Centre, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, F-14000 François 3 Avenue Général Harris, BP 45026, 14 076, cedex 05, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Matthieu Meryet-Figuiere
- (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Baclesse Cancer Centre, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, F-14000 François 3 Avenue Général Harris, BP 45026, 14 076, cedex 05, Caen, France.
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France.
| |
Collapse
|
10
|
Akbarimotlagh M, Azizi A, Shams-Bakhsh M, Jafari M, Ghasemzadeh A, Palukaitis P. Critical points for the design and application of RNA silencing constructs for plant virus resistance. Adv Virus Res 2023; 115:159-203. [PMID: 37173065 DOI: 10.1016/bs.aivir.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Control of plant virus diseases is a big challenge in agriculture as is resistance in plant lines to infection by viruses. Recent progress using advanced technologies has provided fast and durable alternatives. One of the most promising techniques against plant viruses that is cost-effective and environmentally safe is RNA silencing or RNA interference (RNAi), a technology that could be used alone or along with other control methods. To achieve the goals of fast and durable resistance, the expressed and target RNAs have been examined in many studies, with regard to the variability in silencing efficiency, which is regulated by various factors such as target sequences, target accessibility, RNA secondary structures, sequence variation in matching positions, and other intrinsic characteristics of various small RNAs. Developing a comprehensive and applicable toolbox for the prediction and construction of RNAi helps researchers to achieve the acceptable performance level of silencing elements. Although the attainment of complete prediction of RNAi robustness is not possible, as it also depends on the cellular genetic background and the nature of the target sequences, some important critical points have been discerned. Thus, the efficiency and robustness of RNA silencing against viruses can be improved by considering the various parameters of the target sequence and the construct design. In this review, we provide a comprehensive treatise regarding past, present and future prospective developments toward designing and applying RNAi constructs for resistance to plant viruses.
Collapse
Affiliation(s)
- Masoud Akbarimotlagh
- Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University (TMU), Tehran, Iran
| | - Abdolbaset Azizi
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
| | - Masoud Shams-Bakhsh
- Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University (TMU), Tehran, Iran
| | - Majid Jafari
- Department of Plant Protection, Higher Education Complex of Saravan, Saravan, Iran
| | - Aysan Ghasemzadeh
- Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University (TMU), Tehran, Iran
| | - Peter Palukaitis
- Department of Horticulture Sciences, Seoul Women's University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Cason C, Lord T. RNA Interference as a Method of Gene Knockdown in Cultured Spermatogonia. Methods Mol Biol 2023; 2656:161-177. [PMID: 37249871 DOI: 10.1007/978-1-0716-3139-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Maintenance and self-renewal of the spermatogonial stem cell (SSC) population in the testis are dictated by the expression of a unique suite of genes. In manipulating gene expression through loss-of-function approaches, we can identify important regulatory mechanisms that dictate spermatogonial fate decisions. One such approach is RNA interference (RNAi), which uses natural cellular responses to small interfering RNAs to decrease levels of a targeted transcript. RNAi is performed in primary cultures of undifferentiated spermatogonia, and can be paired with techniques such as spermatogonial transplantation to assess the functional consequences of downregulated expression of the target gene on stem cell maintenance. This approach provides an alternative or complementary strategy to the generation of knockout mouse lines / cell lines. Here, we describe the methodology of RNAi in undifferentiated spermatogonia, and outline its inherent advantages and disadvantages over other technologies in the study of gene regulation in these cells.
Collapse
Affiliation(s)
- Connor Cason
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Tessa Lord
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia.
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| |
Collapse
|
12
|
Smirnova VV, Shestakova ED, Nogina DS, Mishchenko PA, Prikazchikova TA, Zatsepin TS, Kulakovskiy IV, Shatsky IN, Terenin IM. Ribosomal leaky scanning through a translated uORF requires eIF4G2. Nucleic Acids Res 2022; 50:1111-1127. [PMID: 35018467 PMCID: PMC8789081 DOI: 10.1093/nar/gkab1286] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/07/2021] [Accepted: 12/18/2021] [Indexed: 11/21/2022] Open
Abstract
eIF4G2 (DAP5 or Nat1) is a homologue of the canonical translation initiation factor eIF4G1 in higher eukaryotes but its function remains poorly understood. Unlike eIF4G1, eIF4G2 does not interact with the cap-binding protein eIF4E and is believed to drive translation under stress when eIF4E activity is impaired. Here, we show that eIF4G2 operates under normal conditions as well and promotes scanning downstream of the eIF4G1-mediated 40S recruitment and cap-proximal scanning. Specifically, eIF4G2 facilitates leaky scanning for a subset of mRNAs. Apparently, eIF4G2 replaces eIF4G1 during scanning of 5′ UTR and the necessity for eIF4G2 only arises when eIF4G1 dissociates from the scanning complex. In particular, this event can occur when the leaky scanning complexes interfere with initiating or elongating 80S ribosomes within a translated uORF. This mechanism is therefore crucial for higher eukaryotes which are known to have long 5′ UTRs with highly frequent uORFs. We suggest that uORFs are not the only obstacle on the way of scanning complexes towards the main start codon, because certain eIF4G2 mRNA targets lack uORF(s). Thus, higher eukaryotes possess two distinct scanning complexes: the principal one that binds mRNA and initiates scanning, and the accessory one that rescues scanning when the former fails.
Collapse
Affiliation(s)
- Victoria V Smirnova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Ekaterina D Shestakova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Daria S Nogina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Polina A Mishchenko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
| | | | - Timofei S Zatsepin
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow 121205, Russia.,Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ivan V Kulakovskiy
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.,Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Russia.,Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Sirius University of Science and Technology, Sochi, Olimpiyskiy ave. b.1, 354349, Russia
| |
Collapse
|
13
|
Weitzenböck HP, Gschwendtner A, Wiesner C, Depke M, Schmidt F, Trautinger F, Hengstschläger M, Hundsberger H, Mikula M. Proteome analysis of NRF2 inhibition in melanoma reveals CD44 up-regulation and increased apoptosis resistance upon vemurafenib treatment. Cancer Med 2021; 11:956-967. [PMID: 34951143 PMCID: PMC8855890 DOI: 10.1002/cam4.4506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 12/27/2022] Open
Abstract
Malignant melanoma is the deadliest form of skin cancer and NRF2 has been proposed as a main regulator of tumor cell malignancy. Still the mechanisms how NRF2 is contributing to melanoma progression are incompletely understood. Here we analyzed the effects of either NRF2 induction or depletion, and we also quantified changes on the whole cell proteome level. Our results showed that inhibition of NRF2 leads to a loss of reactive oxygen species protection, but at the same time to an induction of an epithelial mesenchymal transition (EMT) phenotype and an up‐regulation of the stem cell marker CD44. Additionally, cells devoid of NRF2 showed increased cell viability after treatment with a MYC and a BRAF inhibitor. Importantly, survival upon vemurafenib treatment was dependent on CD44 expression. Finally, analysis of archival melanoma patient samples confirmed a vice versa relationship of NRF2 and CD44 expression. In summary, we recorded changes in the proteome after NRF2 modulation in melanoma cells. Surprisingly, we identified that NRF2 inhibition lead to induction of an EMT phenotype and an increase in survival of cells after apoptosis induction. Therefore, we propose that it is important for future therapies targeting NRF2 to consider blocking EMT promoting pathways in order to achieve efficient tumor therapy.
Collapse
Affiliation(s)
- Hans Peter Weitzenböck
- Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, Krems, Austria
| | - Anna Gschwendtner
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Christoph Wiesner
- Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, Krems, Austria
| | - Maren Depke
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Frank Schmidt
- Proteomics Core, Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, Doha, Qatar
| | - Franz Trautinger
- Department of Dermatology and Venereology, University Hospital of St. Pölten, Karl Landsteiner University of Health Sciences, St. Pölten, Austria.,Karl Landsteiner Institute of Dermatological Research, St. Pölten, Austria
| | - Markus Hengstschläger
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Harald Hundsberger
- Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, Krems, Austria.,Department of Dermatology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Mario Mikula
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Montazeri H, Coto-Llerena M, Bianco G, Zangene E, Taha-Mehlitz S, Paradiso V, Srivatsa S, de Weck A, Roma G, Lanzafame M, Bolli M, Beerenwinkel N, von Flüe M, Terracciano L, Piscuoglio S, Ng CKY. Systematic identification of novel cancer genes through analysis of deep shRNA perturbation screens. Nucleic Acids Res 2021; 49:8488-8504. [PMID: 34313788 PMCID: PMC8421231 DOI: 10.1093/nar/gkab627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022] Open
Abstract
Systematic perturbation screens provide comprehensive resources for the elucidation of cancer driver genes. The perturbation of many genes in relatively few cell lines in such functional screens necessitates the development of specialized computational tools with sufficient statistical power. Here we developed APSiC (Analysis of Perturbation Screens for identifying novel Cancer genes) to identify genetic drivers and effectors in perturbation screens even with few samples. Applying APSiC to the shRNA screen Project DRIVE, APSiC identified well-known and novel putative mutational and amplified cancer genes across all cancer types and in specific cancer types. Additionally, APSiC discovered tumor-promoting and tumor-suppressive effectors, respectively, for individual cancer types, including genes involved in cell cycle control, Wnt/β-catenin and hippo signalling pathways. We functionally demonstrated that LRRC4B, a putative novel tumor-suppressive effector, suppresses proliferation by delaying cell cycle and modulates apoptosis in breast cancer. We demonstrate APSiC is a robust statistical framework for discovery of novel cancer genes through analysis of large-scale perturbation screens. The analysis of DRIVE using APSiC is provided as a web portal and represents a valuable resource for the discovery of novel cancer genes.
Collapse
Affiliation(s)
- Hesam Montazeri
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Mairene Coto-Llerena
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Visceral Surgery and Precision Medicine Research laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Gaia Bianco
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Visceral Surgery and Precision Medicine Research laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Ehsan Zangene
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Stephanie Taha-Mehlitz
- Visceral Surgery and Precision Medicine Research laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Viola Paradiso
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Sumana Srivatsa
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Antoine de Weck
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Guglielmo Roma
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Manuela Lanzafame
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Martin Bolli
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Markus von Flüe
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Switzerland
| | - Luigi M Terracciano
- Department of Pathology, Humanitas Clinical and Research Center, IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Salvatore Piscuoglio
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Visceral Surgery and Precision Medicine Research laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Charlotte K Y Ng
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
15
|
Sergeeva O, Abakumova T, Kurochkin I, Ialchina R, Kosyreva A, Prikazchikova T, Varlamova V, Shcherbinina E, Zatsepin T. Level of Murine DDX3 RNA Helicase Determines Phenotype Changes of Hepatocytes In Vitro and In Vivo. Int J Mol Sci 2021; 22:ijms22136958. [PMID: 34203429 PMCID: PMC8269429 DOI: 10.3390/ijms22136958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 11/26/2022] Open
Abstract
DDX3 RNA helicase is intensively studied as a therapeutic target due to participation in the replication of some viruses and involvement in cancer progression. Here we used transcriptome analysis to estimate the primary response of hepatocytes to different levels of RNAi-mediated knockdown of DDX3 RNA helicase both in vitro and in vivo. We found that a strong reduction of DDX3 protein (>85%) led to similar changes in vitro and in vivo—deregulation of the cell cycle and Wnt and cadherin pathways. Also, we observed the appearance of dead hepatocytes in the healthy liver and a decrease of cell viability in vitro after prolonged treatment. However, more modest downregulation of the DDX3 protein (60–65%) showed discordant results in vitro and in vivo—similar changes in vitro as in the case of strong knockdown and a different phenotype in vivo. These results demonstrate that the level of DDX3 protein can dramatically influence the cell phenotype in vivo and the decrease of DDX3, for more than 85% leads to cell death in normal tissues, which should be taken into account during the drug development of DDX3 inhibitors.
Collapse
Affiliation(s)
- Olga Sergeeva
- Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia; (T.A.); (I.K.); (R.I.); (T.P.); (V.V.); (E.S.); (T.Z.)
- Correspondence: ; Tel.: +7-926-388-0865
| | - Tatiana Abakumova
- Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia; (T.A.); (I.K.); (R.I.); (T.P.); (V.V.); (E.S.); (T.Z.)
| | - Ilia Kurochkin
- Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia; (T.A.); (I.K.); (R.I.); (T.P.); (V.V.); (E.S.); (T.Z.)
| | - Renata Ialchina
- Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia; (T.A.); (I.K.); (R.I.); (T.P.); (V.V.); (E.S.); (T.Z.)
| | - Anna Kosyreva
- Research Institute of Human Morphology, 117418 Moscow, Russia;
| | - Tatiana Prikazchikova
- Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia; (T.A.); (I.K.); (R.I.); (T.P.); (V.V.); (E.S.); (T.Z.)
| | - Varvara Varlamova
- Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia; (T.A.); (I.K.); (R.I.); (T.P.); (V.V.); (E.S.); (T.Z.)
| | - Evgeniya Shcherbinina
- Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia; (T.A.); (I.K.); (R.I.); (T.P.); (V.V.); (E.S.); (T.Z.)
| | - Timofei Zatsepin
- Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia; (T.A.); (I.K.); (R.I.); (T.P.); (V.V.); (E.S.); (T.Z.)
- Department of Chemistry, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
16
|
He AT, Liu J, Li F, Yang BB. Targeting circular RNAs as a therapeutic approach: current strategies and challenges. Signal Transduct Target Ther 2021; 6:185. [PMID: 34016945 PMCID: PMC8137869 DOI: 10.1038/s41392-021-00569-5] [Citation(s) in RCA: 313] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/28/2021] [Accepted: 03/16/2021] [Indexed: 02/04/2023] Open
Abstract
Significant progress has been made in circular RNA (circRNA) research in recent years. Increasing evidence suggests that circRNAs play important roles in many cellular processes, and their dysregulation is implicated in the pathogenesis of various diseases. CircRNAs are highly stable and usually expressed in a tissue- or cell type-specific manner. Therefore, they are currently being explored as potential therapeutic targets. Gain-of-function and loss-of-function approaches are typically performed using circRNA expression plasmids and RNA interference-based strategies, respectively. These strategies have limitations that can be mitigated using nanoparticle and exosome delivery systems. Furthermore, recent developments show that the cre-lox system can be used to knockdown circRNAs in a cell-specific manner. While still in the early stages of development, the CRISPR/Cas13 system has shown promise in knocking down circRNAs with high specificity and efficiency. In this review, we describe circRNA properties and functions and highlight their significance in disease. We summarize strategies that can be used to overexpress or knockdown circRNAs as a therapeutic approach. Lastly, we discuss major challenges and propose future directions for the development of circRNA-based therapeutics.
Collapse
Affiliation(s)
- Alina T. He
- grid.17063.330000 0001 2157 2938Sunnybrook Research Institute, Toronto, ON Canada
| | - Jinglei Liu
- Department of Bioinformatics, ATCGene Inc, Guangzhou, China
| | - Feiya Li
- grid.17063.330000 0001 2157 2938Sunnybrook Research Institute, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
| | - Burton B. Yang
- grid.17063.330000 0001 2157 2938Sunnybrook Research Institute, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
| |
Collapse
|
17
|
Evseeva MN, Dyikanov DT, Karagyaur MN, Prikazchikova TA, Sheptulina AF, Balashova MS, Zatsepin TS, Rubtsov YP, Kulebyakin KY. Hematopoietically-expressed homeobox protein HHEX regulates adipogenesis in preadipocytes. Biochimie 2021; 185:68-77. [PMID: 33677034 DOI: 10.1016/j.biochi.2021.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 11/18/2022]
Abstract
Obesity is a key health problem and is associated with a high risk of type 2 diabetes and other metabolic diseases. Increased weight as well as dysregulation of adipocyte homeostasis are the main drivers of obesity. Pathological adipogenesis plays a central role in obesity-related complications such as type 2 diabetes, hypertension and others. Thus, an understanding of the molecular mechanisms involved in physiological and pathogenic adipogenesis can help to develop new strategies to prevent or cure obesity and related diseases. Previously, genetic polymorphisms in the HHEX gene that encodes the homeobox transcription factor HEX (PRH) were found to be associated with type 2 diabetes and high body mass index at birth by GWAS in distinct human populations. To understand whether HHEX has a regulatory function in adipogenesis, we performed RNAi-mediated knockdown of Hhex in preadipocyte cell line 3T3-L1 in vitro, and studied changes in the efficacy of adipogenesis. We found that Hhex knockdown blocks adipogenesis in preadipocytes in a dose-dependent manner and leads to a significant decrease of PPAR-gamma protein - the main regulator of adipogenesis. We also propose that Hhex can play an important role in adipocyte differentiation by affecting the level of the PPAR-gamma protein. Our study supports the claim that Hhex plays an important role in adipocyte differentiation program and can contribute to fat tissue homeostasis.
Collapse
Affiliation(s)
- Maria N Evseeva
- Faculty of Medicine, Lomonosov Moscow State University, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Russia.
| | | | | | - Tatyana A Prikazchikova
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia; Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Anna F Sheptulina
- Department of Gastroenterology and Hepatology, Sechenov 1st State Medical University, Moscow, Russia
| | - Maria S Balashova
- Department of Medical Genetics, Sechenov 1st State Medical University, Moscow, Russia
| | - Timofei S Zatsepin
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia; Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Yury P Rubtsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Russia
| | | |
Collapse
|
18
|
Xiao Q, Gao P, Huang X, Chen X, Chen Q, Lv X, Fu Y, Song Y, Wang Z. tRFTars: predicting the targets of tRNA-derived fragments. J Transl Med 2021; 19:88. [PMID: 33632236 PMCID: PMC7908658 DOI: 10.1186/s12967-021-02731-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 01/29/2021] [Indexed: 12/30/2022] Open
Abstract
Background tRNA-derived fragments (tRFs) are 14–40-nucleotide-long, small non-coding RNAs derived from specific tRNA cleavage events with key regulatory functions in many biological processes. Many studies have shown that tRFs are associated with Argonaute (AGO) complexes and inhibit gene expression in the same manner as miRNAs. However, there are currently no tools for accurately predicting tRF target genes. Methods We used tRF-mRNA pairs identified by crosslinking, ligation, and sequencing of hybrids (CLASH) and covalent ligation of endogenous AGO-bound RNAs (CLEAR)-CLIP to assess features that may participate in tRF targeting, including the sequence context of each site and tRF-mRNA interactions. We applied genetic algorithm (GA) to select key features and support vector machine (SVM) to construct tRF prediction models. Results We first identified features that globally influenced tRF targeting. Among these features, the most significant were the minimum free folding energy (MFE), position 8 match, number of bases paired in the tRF-mRNA duplex, and length of the tRF, which were consistent with previous findings. Our constructed model yielded an area under the receiver operating characteristic (ROC) curve (AUC) = 0.980 (0.977–0.983) in the training process and an AUC = 0.847 (0.83–0.861) in the test process. The model was applied to all the sites with perfect Watson–Crick complementarity to the seed in the 3′ untranslated region (3′-UTR) of the human genome. Seven of nine target/nontarget genes of tRFs confirmed by reporter assay were predicted. We also validated the predictions via quantitative real-time PCR (qRT-PCR). Thirteen potential target genes from the top of the predictions were significantly down-regulated at the mRNA levels by overexpression of the tRFs (tRF-3001a, tRF-3003a or tRF-3009a). Conclusions Predictions can be obtained online, tRFTars, freely available at http://trftars.cmuzhenninglab.org:3838/tar/, which is the first tool to predict targets of tRFs in humans with a user-friendly interface.
Collapse
Affiliation(s)
- Qiong Xiao
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Peng Gao
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Xuanzhang Huang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Xiaowan Chen
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Quan Chen
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Xinger Lv
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Yu Fu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| |
Collapse
|
19
|
Varley AJ, Desaulniers JP. Chemical strategies for strand selection in short-interfering RNAs. RSC Adv 2021; 11:2415-2426. [PMID: 35424193 PMCID: PMC8693850 DOI: 10.1039/d0ra07747j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Therapeutic small interfering RNAs (siRNAs) are double stranded RNAs capable of potent and specific gene silencing through activation of the RNA interference (RNAi) pathway. The potential of siRNA drugs has recently been highlighted by the approval of multiple siRNA therapeutics. These successes relied heavily on chemically modified nucleic acids and their impact on stability, delivery, potency, and off-target effects. Despite remarkable progress, clinical trials still face failure due to off-target effects such as off-target gene dysregulation. Each siRNA strand can downregulate numerous gene targets while also contributing towards saturation of the RNAi machinery, leading to the upregulation of miRNA-repressed genes. Eliminating sense strand uptake effectively reduces off-target gene silencing and helps limit the disruption to endogenous regulatory mechanisms. Therefore, our understanding of strand selection has a direct impact on the success of future siRNA therapeutics. In this review, the approaches used to improve strand uptake are discussed and effective methods are summarized.
Collapse
Affiliation(s)
- Andrew J Varley
- Faculty of Science, University of Ontario Institute of Technology Oshawa Ontario L1G 0C5 Canada +1 905 721 3304 +1 905 721 8668 (ext. 3621)
| | - Jean-Paul Desaulniers
- Faculty of Science, University of Ontario Institute of Technology Oshawa Ontario L1G 0C5 Canada +1 905 721 3304 +1 905 721 8668 (ext. 3621)
| |
Collapse
|
20
|
Zhang Y, Teng Y, Xiao W, Xu B, Zhao Y, Li W, Wu L. Identifying Cleaved and Noncleaved Targets of Small Interfering RNAs and MicroRNAs in Mammalian Cells by SpyCLIP. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:900-909. [PMID: 33251041 PMCID: PMC7666362 DOI: 10.1016/j.omtn.2020.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 10/09/2020] [Indexed: 11/03/2022]
Abstract
Recently, the US Food and Drug Administration (FDA) approved the first small interfering RNA (siRNA) drug, marking a significant milestone in the therapeutic use of RNA interference (RNAi) technology. However, off-target gene silencing by siRNA remains one of the major obstacles in siRNA therapy. Although siRNA off-target effects caused by a mechanism known for microRNA (miRNA)-mediated gene repression have been extensively discussed, whether RNAi can cause unintended cleavage through the effector protein AGO2 at sites harboring partially complementary sequences to the siRNA remains unknown. Here, we report a strategy to establish a comprehensive picture of siRNA cleaved and noncleaved off-targets by performing SpyCLIP using wild-type and catalytically inactive AGO2 mutants in parallel. Additionally, we investigated naturally occurring cleavage events mediated by endogenous miRNAs using the same strategy. Our results demonstrated that AGO2 SpyCLIP is a powerful method to identify both the cleaved and noncleaved targets of siRNAs, providing valuable information for improving siRNA design rules.
Collapse
Affiliation(s)
- Yao Zhang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai 200032, China.,State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yilan Teng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Wangwen Xiao
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Beiying Xu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Ya Zhao
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Weihua Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Ligang Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
21
|
Murine Long Noncoding RNA Morrbid Contributes in the Regulation of NRAS Splicing in Hepatocytes In Vitro. Int J Mol Sci 2020; 21:ijms21165605. [PMID: 32764370 PMCID: PMC7460575 DOI: 10.3390/ijms21165605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/19/2022] Open
Abstract
The coupling of alternative splicing with the nonsense-mediated decay (NMD) pathway maintains quality control of the transcriptome in eukaryotes by eliminating transcripts with premature termination codons (PTC) and fine-tunes gene expression. Long noncoding RNA (lncRNA) can regulate multiple cellular processes, including alternative splicing. Previously, murine Morrbid (myeloid RNA repressor of Bcl2l11 induced death) lncRNA was described as a locus-specific controller of the lifespan of short-living myeloid cells via transcription regulation of the apoptosis-related Bcl2l11 protein. Here, we report that murine Morrbid lncRNA in hepatocytes participates in the regulation of proto-oncogene NRAS (neuroblastoma RAS viral oncogene homolog) splicing, including the formation of the isoform with PTC. We observed a significant increase of the NRAS isoform with PTC in hepatocytes with depleted Morrbid lncRNA. We demonstrated that the NRAS isoform with PTC is degraded via the NMD pathway. This transcript is presented almost only in the nucleus and has a half-life ~four times lower than other NRAS transcripts. Additionally, in UPF1 knockdown hepatocytes (the key NMD factor), we observed a significant increase of the NRAS isoform with PTC. By a modified capture hybridization (CHART) analysis of the protein targets, we uncovered interactions of Morrbid lncRNA with the SFPQ (splicing factor proline and glutamine rich)-NONO (non-POU domain-containing octamer-binding protein) splicing complex. Finally, we propose the regulation mechanism of NRAS splicing in murine hepatocytes by alternative splicing coupled with the NMD pathway with the input of Morrbid lncRNA.
Collapse
|
22
|
Sergeeva O, Sergeev P, Melnikov P, Prikazchikova T, Dontsova O, Zatsepin T. Modification of Adenosine196 by Mettl3 Methyltransferase in the 5'-External Transcribed Spacer of 47S Pre-rRNA Affects rRNA Maturation. Cells 2020; 9:cells9041061. [PMID: 32344536 PMCID: PMC7226171 DOI: 10.3390/cells9041061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 01/08/2023] Open
Abstract
Ribosome biogenesis is among the founding processes in the cell. During the first stages of ribosome biogenesis, polycistronic precursor of ribosomal RNA passes complex multistage maturation after transcription. Quality control of preribosomal RNA (pre-rRNA) processing is precisely regulated by non-ribosomal proteins and structural features of pre-rRNA molecules, including modified nucleotides. However, many participants of rRNA maturation are still unknown or poorly characterized. We report that RNA m6A methyltransferase Mettl3 interacts with the 5' external transcribed spacer (5'ETS) of the 47S rRNA precursor and modifies adenosine 196. We demonstrated that Mettl3 knockdown results in the increase of pre-rRNA processing rates, while intracellular amounts of rRNA processing machinery components (U3, U8, U13, U14, and U17 small nucleolar RNA (snoRNA)and fibrillarin, nucleolin, Xrn2, and rrp9 proteins), rRNA degradation rates, and total amount of mature rRNA in the cell stay unchanged. Increased efficacy of pre-rRNA cleavage at A' and A0 positions led to the decrease of 47S and 45S pre-rRNAs in the cell and increase of mature rRNA amount in the cytoplasm. The newly identified conserved motif DRACH sequence modified by Mettl3 in the 5'-ETS region is found and conserved only in primates, which may suggest participation of m6A196 in quality control of pre-rRNA processing at initial stages demanded by increased complexity of ribosome biogenesis.
Collapse
Affiliation(s)
- Olga Sergeeva
- Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia
- Correspondence: ; Tel.: +79-263-880-865
| | - Philipp Sergeev
- Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia
| | - Pavel Melnikov
- Serbsky National Medical Research Center for Psychiatry and Narcology, Kropotkinsky Lane 23, 119034 Moscow, Russia
| | | | - Olga Dontsova
- Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Timofei Zatsepin
- Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
23
|
Leboeuf D, Abakumova T, Prikazchikova T, Rhym L, Anderson DG, Zatsepin TS, Piatkov KI. Downregulation of the Arg/N-degron Pathway Sensitizes Cancer Cells to Chemotherapy In Vivo. Mol Ther 2020; 28:1092-1104. [PMID: 32087767 DOI: 10.1016/j.ymthe.2020.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
The N-degron pathway is an emerging target for anti-tumor therapies, because of its capacity to positively regulate many hallmarks of cancer, including angiogenesis, cell proliferation, motility, and survival. Thus, inhibition of the N-degron pathway offers the potential to be a highly effective anti-cancer treatment. With the use of a small interfering RNA (siRNA)-mediated approach for selective downregulation of the four Arg/N-degron-dependent ubiquitin ligases, UBR1, UBR2, UBR4, and UBR5, we demonstrated decreased cell migration and proliferation and increased spontaneous apoptosis in cancer cells. Chronic treatment with lipid nanoparticles (LNPs) loaded with siRNA in mice efficiently downregulates the expression of UBR-ubiquitin ligases in the liver without any significant toxic effects but engages the immune system and causes inflammation. However, when used in a lower dose, in combination with a chemotherapeutic drug, downregulation of the Arg/N-degron pathway E3 ligases successfully reduced tumor load by decreasing proliferation and increasing apoptosis in a mouse model of hepatocellular carcinoma, while avoiding the inflammatory response. Our study demonstrates that UBR-ubiquitin ligases of the Arg/N-degron pathway are promising targets for the development of improved therapies for many cancer types.
Collapse
Affiliation(s)
| | | | | | - Luke Rhym
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | |
Collapse
|
24
|
Shkurnikov M, Nikulin S, Nersisyan S, Poloznikov A, Zaidi S, Baranova A, Schumacher U, Wicklein D, Tonevitsky A. LAMA4-Regulating miR-4274 and Its Host Gene SORCS2 Play a Role in IGFBP6-Dependent Effects on Phenotype of Basal-Like Breast Cancer. Front Mol Biosci 2019; 6:122. [PMID: 31781574 PMCID: PMC6857517 DOI: 10.3389/fmolb.2019.00122] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022] Open
Abstract
Specificity of RNAi to selected target is challenged by off-target effects, both canonical and non-canonical. Notably, more than half of all human microRNAs are co-expressed with hosting them proteincoding genes. Here we dissect regulatory subnetwork centered on IGFBP6 gene, which is associated with low proliferative state and high migratory activity of basal-like breast cancer. We inhibited expression of IGFBP6 gene in a model cell line for basal-like breast carcinoma MDA-MB-231, then traced secondary and tertiary effects of this knockdown to LAMA4, a laminin encoding gene that contributes to the phenotype of triple-negative breast cancer. LAMA4-regulating miRNA miR-4274 and its host gene SORCS2 were highlighted as intermediate regulators of the expression levels of LAMA4, which correlated in a basal-like breast carcinoma sample subset of TCGA to the levels of SORCS2 negatively. Overall, our study points that the secondary and tertiary layers of regulatory interactions are certainly underappreciated. As these types of molecular event may significantly contribute to the formation of the cell phenotypes after RNA interference based knockdowns, further studies of multilayered molecular networks affected by RNAi are warranted.
Collapse
Affiliation(s)
- Maxim Shkurnikov
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Obninks, Russia
| | | | - Stepan Nersisyan
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
| | - Andrey Poloznikov
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Obninks, Russia.,Far Eastern Federal University, Vladivostok, Russia
| | - Shan Zaidi
- School of Systems Biology, George Mason University, Fairfax, VA, United States
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Fairfax, VA, United States.,Research Center of Medical Genetics, Moscow, Russia
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Wicklein
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia.,Art Photonics GmbH, Berlin, Germany
| |
Collapse
|
25
|
Jiang MC, Ni JJ, Cui WY, Wang BY, Zhuo W. Emerging roles of lncRNA in cancer and therapeutic opportunities. Am J Cancer Res 2019; 9:1354-1366. [PMID: 31392074 PMCID: PMC6682721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/14/2019] [Indexed: 06/10/2023] Open
Abstract
Cancer is difficult to cure due to frequent metastasis, and developing effective therapeutic approaches to treat cancer is urgently important. Long non-coding RNAs (lncRNAs) have diverse roles in regulating gene expression at both the transcriptional and translational levels and have been reported to be involved in tumorigenesis and tumor metastasis. In this article, we review the emerging roles of lncRNAs in cancer, especially in cancer immunity, cancer metabolism and cancer metastasis. We also discuss the use of novel technologies, such as antisense oligonucleotides, CRISPR-Cas9 and nanomedicines, to target lncRNAs and thus control cancers.
Collapse
Affiliation(s)
- Ming-Chun Jiang
- Department of Cell Biology, Zhejiang University School of MedicineHangzhou 310058, Zhejiang, China
| | - Jiao-Jiao Ni
- Department of Cell Biology, Zhejiang University School of MedicineHangzhou 310058, Zhejiang, China
- Institute of Gastroenterology, Zhejiang UniversityHangzhou 310016, Zhejiang, China
| | - Wen-Yu Cui
- Department of Cell Biology, Zhejiang University School of MedicineHangzhou 310058, Zhejiang, China
| | - Bo-Ya Wang
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhou 310016, Zhejiang, China
- Institute of Gastroenterology, Zhejiang UniversityHangzhou 310016, Zhejiang, China
| | - Wei Zhuo
- Department of Cell Biology, Zhejiang University School of MedicineHangzhou 310058, Zhejiang, China
- Institute of Gastroenterology, Zhejiang UniversityHangzhou 310016, Zhejiang, China
| |
Collapse
|
26
|
Turanov AA, Lo A, Hassler MR, Makris A, Ashar-Patel A, Alterman JF, Coles AH, Haraszti RA, Roux L, Godinho BMDC, Echeverria D, Pears S, Iliopoulos J, Shanmugalingam R, Ogle R, Zsengeller ZK, Hennessy A, Karumanchi SA, Moore MJ, Khvorova A. RNAi modulation of placental sFLT1 for the treatment of preeclampsia. Nat Biotechnol 2018; 36:nbt.4297. [PMID: 30451990 PMCID: PMC6526074 DOI: 10.1038/nbt.4297] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 10/05/2018] [Indexed: 12/14/2022]
Abstract
Preeclampsia is a placentally induced hypertensive disorder of pregnancy that is associated with substantial morbidity and mortality to mothers and fetuses. Clinical manifestations of preterm preeclampsia result from excess circulating soluble vascular endothelial growth factor receptor FLT1 (sFLT1 or sVEGFR1) of placental origin. Here we identify short interfering RNAs (siRNAs) that selectively silence the three sFLT1 mRNA isoforms primarily responsible for placental overexpression of sFLT1 without reducing levels of full-length FLT1 mRNA. Full chemical stabilization in the context of hydrophobic modifications enabled productive siRNA accumulation in the placenta (up to 7% of injected dose) and reduced circulating sFLT1 in pregnant mice (up to 50%). In a baboon preeclampsia model, a single dose of siRNAs suppressed sFLT1 overexpression and clinical signs of preeclampsia. Our results demonstrate RNAi-based extrahepatic modulation of gene expression with nonformulated siRNAs in nonhuman primates and establish a path toward a new treatment paradigm for patients with preterm preeclampsia.
Collapse
Affiliation(s)
- Anton A Turanov
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Agnes Lo
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew R Hassler
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Angela Makris
- Heart Research Institute, Sydney, New South Wales, Australia
- School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
- Renal Department, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Ami Ashar-Patel
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Julia F Alterman
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Andrew H Coles
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Reka A Haraszti
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Loic Roux
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Bruno M D C Godinho
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Suzanne Pears
- Heart Research Institute, Sydney, New South Wales, Australia
| | - Jim Iliopoulos
- School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
| | - Renuka Shanmugalingam
- Heart Research Institute, Sydney, New South Wales, Australia
- School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
- Renal Department, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Robert Ogle
- Women's and Babies, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Zsuzsanna K Zsengeller
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Annemarie Hennessy
- Heart Research Institute, Sydney, New South Wales, Australia
- School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
| | - S Ananth Karumanchi
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Melissa J Moore
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Moderna Therapeutics, Cambridge, Massachusetts, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
27
|
Li Z, Xu R, Li N. MicroRNAs from plants to animals, do they define a new messenger for communication? Nutr Metab (Lond) 2018; 15:68. [PMID: 30302122 PMCID: PMC6167836 DOI: 10.1186/s12986-018-0305-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs), a class of single-stranded non-coding RNA of about 22 nucleotides, are potent regulators of gene expression existing in both plants and animals. Recent studies showed that plant miRNAs could enter mammalian bloodstream via gastrointestinal tract, through which access a variety of tissues and cells of recipients to exert therapeutic effects. This intriguing phenomenon indicates that miRNAs of diet/plant origin may act as a new class of bioactive ingredients communicating with mammalian systems. In this review, in order to pinpoint the reason underlying discrepancies of miRNAs transmission from diet/plant to animals, the pathways that generate miRNAs and machineries involved in the functions of miRNAs in both kingdoms were outlined and compared. Then, the current controversies concerning cross-kingdom regulations and the potential mechanisms responsible for absorption and transfer of diet/plant-derived miRNAs were interpreted. Furthermore, the hormone-like action of miRNAs and the intricate interplay between miRNAs and hormones were implicated. Finally, how these findings may impact nutrition and medicine were briefly discussed.
Collapse
Affiliation(s)
- Zhiqing Li
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing, 100005 People's Republic of China
| | - Ruodan Xu
- 2Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700 People's Republic of China.,3Department of Engineering, Aarhus University, 8000 Aarhus, Denmark
| | - Ning Li
- 2Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700 People's Republic of China
| |
Collapse
|
28
|
Alhendi AMN, Patrikakis M, Daub CO, Kawaji H, Itoh M, de Hoon M, Carninci P, Hayashizaki Y, Arner E, Khachigian LM. Promoter Usage and Dynamics in Vascular Smooth Muscle Cells Exposed to Fibroblast Growth Factor-2 or Interleukin-1β. Sci Rep 2018; 8:13164. [PMID: 30177712 PMCID: PMC6120868 DOI: 10.1038/s41598-018-30702-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/03/2018] [Indexed: 01/22/2023] Open
Abstract
Smooth muscle cells (SMC) in blood vessels are normally growth quiescent and transcriptionally inactive. Our objective was to understand promoter usage and dynamics in SMC acutely exposed to a prototypic growth factor or pro-inflammatory cytokine. Using cap analysis gene expression (FANTOM5 project) we report differences in promoter dynamics for immediate-early genes (IEG) and other genes when SMC are exposed to fibroblast growth factor-2 or interleukin-1β. Of the 1871 promoters responding to FGF2 or IL-1β considerably more responded to FGF2 (68.4%) than IL-1β (18.5%) and 13.2% responded to both. Expression clustering reveals sets of genes induced, repressed or unchanged. Among IEG responding rapidly to FGF2 or IL-1β were FOS, FOSB and EGR-1, which mediates human SMC migration. Motif activity response analysis (MARA) indicates most transcription factor binding motifs in response to FGF2 were associated with a sharp induction at 1 h, whereas in response to IL-1β, most motifs were associated with a biphasic change peaking generally later. MARA revealed motifs for FOS_FOS{B,L1}_JUN{B,D} and EGR-1..3 in the cluster peaking 1 h after FGF2 exposure whereas these motifs were in clusters peaking 1 h or later in response to IL-1β. Our findings interrogating CAGE data demonstrate important differences in promoter usage and dynamics in SMC exposed to FGF2 or IL-1β.
Collapse
Affiliation(s)
- Ahmad M N Alhendi
- Vascular Biology and Translational Research, School of Medical Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Margaret Patrikakis
- Vascular Biology and Translational Research, School of Medical Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Carsten O Daub
- RIKEN Center for Life Science Technologies (Division of Genomic Technologies) (CLST DGT), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Department of Biosciences and Nutrition and Science for Life Laboratory, Karolinska Institutet, SE-141 86, Stockholm, Sweden
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Hideya Kawaji
- RIKEN Center for Life Science Technologies (Division of Genomic Technologies) (CLST DGT), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Omics Science Center (OSC), 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama, 230-0045, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program (PMI), 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
- Preventive Medicine and Applied Genomics Unit, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Masayoshi Itoh
- RIKEN Center for Life Science Technologies (Division of Genomic Technologies) (CLST DGT), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Omics Science Center (OSC), 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama, 230-0045, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program (PMI), 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Michiel de Hoon
- RIKEN Center for Life Science Technologies (Division of Genomic Technologies) (CLST DGT), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Omics Science Center (OSC), 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama, 230-0045, Japan
- Laboratory for Applied Computational Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Piero Carninci
- RIKEN Center for Life Science Technologies (Division of Genomic Technologies) (CLST DGT), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Omics Science Center (OSC), 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama, 230-0045, Japan
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Yoshihide Hayashizaki
- RIKEN Omics Science Center (OSC), 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama, 230-0045, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program (PMI), 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Erik Arner
- RIKEN Center for Life Science Technologies (Division of Genomic Technologies) (CLST DGT), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Omics Science Center (OSC), 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama, 230-0045, Japan
- Laboratory for Applied Regulatory Genomics Network Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Levon M Khachigian
- Vascular Biology and Translational Research, School of Medical Sciences, University of New South Wales, Sydney, 2052, Australia.
| |
Collapse
|
29
|
Seok H, Lee H, Jang ES, Chi SW. Evaluation and control of miRNA-like off-target repression for RNA interference. Cell Mol Life Sci 2018; 75:797-814. [PMID: 28905147 PMCID: PMC11105550 DOI: 10.1007/s00018-017-2656-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 01/08/2023]
Abstract
RNA interference (RNAi) has been widely adopted to repress specific gene expression and is easily achieved by designing small interfering RNAs (siRNAs) with perfect sequence complementarity to the intended target mRNAs. Although siRNAs direct Argonaute (Ago), a core component of the RNA-induced silencing complex (RISC), to recognize and silence target mRNAs, they also inevitably function as microRNAs (miRNAs) and suppress hundreds of off-targets. Such miRNA-like off-target repression is potentially detrimental, resulting in unwanted toxicity and phenotypes. Despite early recognition of the severity of miRNA-like off-target repression, this effect has often been overlooked because of difficulties in recognizing and avoiding off-targets. However, recent advances in genome-wide methods and knowledge of Ago-miRNA target interactions have set the stage for properly evaluating and controlling miRNA-like off-target repression. Here, we describe the intrinsic problems of miRNA-like off-target effects caused by canonical and noncanonical interactions. We particularly focus on various genome-wide approaches and chemical modifications for the evaluation and prevention of off-target repression to facilitate the use of RNAi with secured specificity.
Collapse
Affiliation(s)
- Heeyoung Seok
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
| | - Haejeong Lee
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
| | - Eun-Sook Jang
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
- EncodeGEN Co. Ltd, Seoul, 06329, Korea
| | - Sung Wook Chi
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
30
|
Abstract
Exciting new technologies are often self-limiting in their rollout, as access to state-of-the-art instrumentation or the need for years of hands-on experience, for better or worse, ensures slow adoption by the community. CRISPR technology, however, presents the opposite dilemma, where the simplicity of the system enabled the parallel development of many applications, improvements and derivatives, and new users are now presented with an almost paralyzing abundance of choices. This Review intends to guide users through the process of applying CRISPR technology to their biological problems of interest, especially in the context of discovering gene function at scale.
Collapse
Affiliation(s)
- John G Doench
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, 02142, USA
| |
Collapse
|
31
|
Genomic analysis of 220 CTCLs identifies a novel recurrent gain-of-function alteration in RLTPR (p.Q575E). Blood 2017; 130:1430-1440. [PMID: 28694326 PMCID: PMC5609333 DOI: 10.1182/blood-2017-02-768234] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/26/2017] [Indexed: 12/26/2022] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is an incurable non-Hodgkin lymphoma of the skin-homing T cell. In early-stage disease, lesions are limited to the skin, but in later-stage disease, the tumor cells can escape into the blood, the lymph nodes, and at times the visceral organs. To clarify the genomic basis of CTCL, we performed genomic analysis of 220 CTCLs. Our analyses identify 55 putative driver genes, including 17 genes not previously implicated in CTCL. These novel mutations are predicted to affect chromatin (BCOR, KDM6A, SMARCB1, TRRAP), immune surveillance (CD58, RFXAP), MAPK signaling (MAP2K1, NF1), NF-κB signaling (PRKCB, CSNK1A1), PI-3-kinase signaling (PIK3R1, VAV1), RHOA/cytoskeleton remodeling (ARHGEF3), RNA splicing (U2AF1), T-cell receptor signaling (PTPRN2, RLTPR), and T-cell differentiation (RARA). Our analyses identify recurrent mutations in 4 genes not previously identified in cancer. These include CK1α (encoded by CSNK1A1) (p.S27F; p.S27C), PTPRN2 (p.G526E), RARA (p.G303S), and RLTPR (p.Q575E). Last, we functionally validate CSNK1A1 and RLTPR as putative oncogenes. RLTPR encodes a recently described scaffolding protein in the T-cell receptor signaling pathway. We show that RLTPR (p.Q575E) increases binding of RLTPR to downstream components of the NF-κB signaling pathway, selectively upregulates the NF-κB pathway in activated T cells, and ultimately augments T-cell-receptor-dependent production of interleukin 2 by 34-fold. Collectively, our analysis provides novel insights into CTCL pathogenesis and elucidates the landscape of potentially targetable gene mutations.
Collapse
|
32
|
Jamnongkan W, Thanan R, Techasen A, Namwat N, Loilome W, Intarawichian P, Titapun A, Yongvanit P. Upregulation of transferrin receptor-1 induces cholangiocarcinoma progression via induction of labile iron pool. Tumour Biol 2017; 39:1010428317717655. [DOI: 10.1177/1010428317717655] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Labile iron pool is a cellular source of ions available for Fenton reactions resulting in oxidative stress. Living organisms avoid an excess of free irons by a tight control of iron homeostasis. We investigated the altered expression of iron regulatory proteins and iron discrimination in the development of liver fluke–associated cholangiocarcinoma. Additionally, the levels of labile iron pool and the functions of transferrin receptor-1 on cholangiocarcinoma development were also identified. Iron deposition was determined using the Prussian blue staining method in human cholangiocarcinoma tissues. We investigated the alteration of iron regulatory proteins including transferrin, transferrin receptor-1, ferritin, ferroportin, hepcidin, and divalent metal transporter-1 in cholangiocarcinoma tissues using immunohistochemistry. The clinicopathological data of cholangiocarcinoma patients and the expressions of proteins were analyzed. Moreover, the level of intracellular labile iron pool in cholangiocarcinoma cell lines was identified by the RhoNox-1 staining method. We further demonstrated transferrin receptor-1 functions on cell proliferation and migration upon small interfering RNA for human transferrin receptor 1 transfection. Results show that Iron was strongly stained in tumor tissues, whereas negative staining was observed in normal bile ducts of healthy donors. Interestingly, high iron accumulation was significantly correlated with poor prognosis of cholangiocarcinoma patients. The expressions of iron regulatory proteins in human cholangiocarcinoma tissues and normal liver from cadaveric donors revealed that transferrin receptor-1 expression was increased in the cancer cells of cholangiocarcinoma tissues when compared with the adjacent normal bile ducts and was significantly correlated with cholangiocarcinoma metastasis. Labile iron pool level and transferrin receptor-1 expression were significantly increased in KKU-214 and KKU-213 when compared with cholangiocyte cells (MMNK1). Additionally, the suppression of transferrin receptor-1 expression significantly decreased intracellular labile iron pool, cholangiocarcinoma migration, and cell proliferation when compared with control media and control small interfering RNA. In Conclusion, high expression of transferrin receptor-1 resulting in iron uptake contributes to increase in the labile iron pool which plays roles in cholangiocarcinoma progression with aggressive clinical outcomes.
Collapse
Affiliation(s)
- Wassana Jamnongkan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Raynoo Thanan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Anchalee Techasen
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Piyapharom Intarawichian
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Attapol Titapun
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Puangrat Yongvanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
33
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
34
|
Kim D, Sung YM, Park J, Kim S, Kim J, Park J, Ha H, Bae JY, Kim S, Baek D. General rules for functional microRNA targeting. Nat Genet 2016; 48:1517-1526. [DOI: 10.1038/ng.3694] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/14/2016] [Indexed: 02/06/2023]
|
35
|
PMCA2 silencing potentiates MDA-MB-231 breast cancer cell death initiated with the Bcl-2 inhibitor ABT-263. Biochem Biophys Res Commun 2016; 478:1792-7. [PMID: 27613092 DOI: 10.1016/j.bbrc.2016.09.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/06/2016] [Indexed: 12/15/2022]
Abstract
PMCA2 overexpression in some breast cancers suggests that this calcium pump isoform may play a role in breast pathophysiology. To investigate PMCA2 as a potential drug target for breast cancer therapy, we assessed the functional consequence of PMCA2 silencing on cell death pathways and calcium signals in the basal-like MDA-MB-231 breast cancer cell line. Silencing PMCA2 expression alone has no effect on MDA-MB-231 cell viability, however, PMCA2 silencing promotes calcium-induced cell death initiated with the calcium ionophore ionomycin. Assessment of cytoplasmic calcium responses generated with various agents including ionomycin demonstrates that in MDA-MB-231 cells, PMCA2 does not play a major role in shaping global calcium signals. We also examined the ability of PMCA2 silencing to modulate caspase-dependent cell death triggered by a Bcl-2 inhibitor that is in clinical development for the treatment of various cancers, ABT-263 (Navitoclax). Despite the lack of effect on global calcium responses, PMCA2 silencing augmented Bcl-2 inhibitor (ABT-263)-mediated MDA-MB-231 breast cancer cell death. These studies provide evidence that PMCA2 inhibitors could sensitize PMCA2-positive breast cancers to cell death initiators that work through mechanisms involving the Bcl-2 survival pathway.
Collapse
|
36
|
Malhotra M, Toulouse A, Godinho BMDC, Mc Carthy DJ, Cryan JF, O'Driscoll CM. RNAi therapeutics for brain cancer: current advancements in RNAi delivery strategies. MOLECULAR BIOSYSTEMS 2016; 11:2635-57. [PMID: 26135606 DOI: 10.1039/c5mb00278h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Malignant primary brain tumors are aggressive cancerous cells that invade the surrounding tissues of the central nervous system. The current treatment options for malignant brain tumors are limited due to the inability to cross the blood-brain barrier. The advancements in current research has identified and characterized certain molecular markers that are essential for tumor survival, progression, metastasis and angiogenesis. These molecular markers have served as therapeutic targets for the RNAi based therapies, which enable site-specific silencing of the gene responsible for tumor proliferation. However, to bring about therapeutic success, an efficient delivery carrier that can cross the blood-brain barrier and reach the targeted site is essential. The current review focuses on the potential of targeted, non-viral and viral particles containing RNAi therapeutic molecules as delivery strategies specifically for brain tumors.
Collapse
Affiliation(s)
- Meenakshi Malhotra
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
37
|
Li C, Liu Z, Yang F, Liu W, Wang D, Dong E, Wang Y, Wu CI, Lu X. siRNAs with decreased off-target effect facilitate the identification of essential genes in cancer cells. Oncotarget 2016; 6:21603-13. [PMID: 26057633 PMCID: PMC4673289 DOI: 10.18632/oncotarget.4269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/13/2015] [Indexed: 01/15/2023] Open
Abstract
Since the essential genes are crucial to the proliferation and survival of cancer cells, the interference of these genes is promising to be an option for cancer therapy to overcome heterogeneity. However, the essential genes are highly overestimated by RNA interference (RNAi) screenings, which is mainly caused by the pervasive off-target effect of small interference RNA (siRNA) and short hairpin RNA (shRNA). In the present study, we designed Match-Mismatch paired siRNAs to discriminate the on-target effect from off-target effect of siRNAs on cell viability. Only one of the 7 potential essential genes was validated as essential to cell viability, which demonstrates the high false positive rate in RNAi screenings. We modified the siRNA by introducing random nucleotides (N) into the guide strand to mitigate the off-target effect, without significantly compromising the on-target effect. The whole transcriptome profile analysis of cells transfected with siRNAs with or without Nindicates that siRNA-dN (with Ns on both the 2nd and the 18th bases of the guide strand) weakens the off-target effect by decreasing the unintended targets. The optimized siRNAs can be applied in the characterization of essential genes in cancer cells.
Collapse
Affiliation(s)
- Chunyan Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China
| | - Zhenzhen Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China.,University of Chinese Academy of Sciences, Shijingshan District, Beijing, P. R. China
| | - Fang Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China
| | - Wensheng Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China
| | - Di Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China
| | - Encheng Dong
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China
| | - Yu Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China
| | - Chung-I Wu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China
| | - Xuemei Lu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China
| |
Collapse
|
38
|
Abstract
The competitive endogenous RNA (ceRNA) hypothesis proposes that transcripts with shared microRNA (miRNA) binding sites compete for post-transcriptional control. This hypothesis has gained substantial attention as a unifying function for long non-coding RNAs, pseudogene transcripts and circular RNAs, as well as an alternative function for messenger RNAs. Empirical evidence supporting the hypothesis is accumulating but not without attracting scepticism. Recent studies that model transcriptome-wide binding-site abundance suggest that physiological changes in expression of most individual transcripts will not compromise miRNA activity. In this Review, we critically evaluate the evidence for and against the ceRNA hypothesis to assess the impact of endogenous miRNA-sponge interactions.
Collapse
Affiliation(s)
- Daniel W Thomson
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst NSW 2010, Australia.,St Vincent's Clinical School, UNSW Australia, Kensington NSW 2052, Australia
| | - Marcel E Dinger
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst NSW 2010, Australia.,St Vincent's Clinical School, UNSW Australia, Kensington NSW 2052, Australia
| |
Collapse
|
39
|
Deffrasnes C, Marsh GA, Foo CH, Rootes CL, Gould CM, Grusovin J, Monaghan P, Lo MK, Tompkins SM, Adams TE, Lowenthal JW, Simpson KJ, Stewart CR, Bean AGD, Wang LF. Genome-wide siRNA Screening at Biosafety Level 4 Reveals a Crucial Role for Fibrillarin in Henipavirus Infection. PLoS Pathog 2016; 12:e1005478. [PMID: 27010548 PMCID: PMC4806981 DOI: 10.1371/journal.ppat.1005478] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 02/08/2016] [Indexed: 12/16/2022] Open
Abstract
Hendra and Nipah viruses (genus Henipavirus, family Paramyxoviridae) are highly pathogenic bat-borne viruses. The need for high biocontainment when studying henipaviruses has hindered the development of therapeutics and knowledge of the viral infection cycle. We have performed a genome-wide siRNA screen at biosafety level 4 that identified 585 human proteins required for henipavirus infection. The host protein with the largest impact was fibrillarin, a nucleolar methyltransferase that was also required by measles, mumps and respiratory syncytial viruses for infection. While not required for cell entry, henipavirus RNA and protein syntheses were greatly impaired in cells lacking fibrillarin, indicating a crucial role in the RNA replication phase of infection. During infection, the Hendra virus matrix protein co-localized with fibrillarin in cell nucleoli, and co-associated as a complex in pulldown studies, while its nuclear import was unaffected in fibrillarin-depleted cells. Mutagenesis studies showed that the methyltransferase activity of fibrillarin was required for henipavirus infection, suggesting that this enzyme could be targeted therapeutically to combat henipavirus infections. The henipaviruses Hendra and Nipah are bat-borne paramyxoviruses that are highly pathogenic in humans. The need for high biocontainment when studying Hendra and Nipah virus biology has hindered the development of therapeutics and knowledge of the viral infection cycle. This study describes a genome-wide functional genomics screen of human host genes required for henipavirus infection, to our knowledge the first such study conducted at biosafety level 4. Our study demonstrates that henipavirus infection is critically reliant on fibrillarin, a methyltransferase enzyme residing in the cell nucleolus. Despite henipavirus genome replication occurring in the cytoplasm of infected cells, viral RNA synthesis was greatly impaired in cells lacking fibrillarin. Furthermore during the early stages of infection the Hendra virus matrix protein shuttles to the nucleolus and binds fibrillarin. Collectively these results suggest a hitherto unappreciated role for nucleolar host-virus interactions in the early replication phase of henipavirus infection. Finally, mutating the catalytic activity of fibrillarin inhibits henipavirus infection, suggesting that this enzyme could be targeted therapeutically to combat henipavirus infections.
Collapse
Affiliation(s)
- Celine Deffrasnes
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Glenn A. Marsh
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Chwan Hong Foo
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Christina L. Rootes
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Cathryn M. Gould
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | | | - Paul Monaghan
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Michael K. Lo
- Centers for Disease Control & Prevention, Viral Special Pathogens Branch, Atlanta, Georgia, United States of America
| | - S. Mark Tompkins
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America, and School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | | | - John W. Lowenthal
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America, and School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Kaylene J. Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Cameron R. Stewart
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
- * E-mail:
| | - Andrew G. D. Bean
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Lin-Fa Wang
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| |
Collapse
|
40
|
Alagia A, Eritja R. siRNA and RNAi optimization. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:316-29. [PMID: 26840434 DOI: 10.1002/wrna.1337] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 12/12/2022]
Abstract
The discovery and examination of the posttranscriptional gene regulatory mechanism known as RNA interference (RNAi) contributed to the identification of small interfering RNA (siRNA) and the comprehension of its enormous potential for clinical purposes. Theoretically, the ability of specific target gene downregulation makes the RNAi pathway an appealing solution for several diseases. Despite numerous hurdles resulting from the inherent properties of siRNA molecule and proper delivery to the target tissue, more than 50 RNA-based drugs are currently under clinical testing. In this work, we analyze the recent literature in the optimization of siRNA molecules. In detail, we focused on describing the most recent advances of siRNA field aimed at optimize siRNA pharmacokinetic properties. Special attention has been given in describing the impact of RNA modifications in the potential off-target effects (OTEs) such as saturation of the RNAi machinery, passenger strand-mediated silencing, immunostimulation, and miRNA-like OTEs as well as to recent developments on the delivery issue. The novel delivery systems and modified siRNA provide significant steps toward the development of reliable siRNA molecules for therapeutic use. WIREs RNA 2016, 7:316-329. doi: 10.1002/wrna.1337 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Adele Alagia
- Chemical and Biomolecular Nanotechnology, CIBER-BBN, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | - Ramon Eritja
- Chemical and Biomolecular Nanotechnology, CIBER-BBN, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| |
Collapse
|
41
|
Schmich F, Szczurek E, Kreibich S, Dilling S, Andritschke D, Casanova A, Low SH, Eicher S, Muntwiler S, Emmenlauer M, Rämö P, Conde-Alvarez R, von Mering C, Hardt WD, Dehio C, Beerenwinkel N. gespeR: a statistical model for deconvoluting off-target-confounded RNA interference screens. Genome Biol 2015; 16:220. [PMID: 26445817 PMCID: PMC4597449 DOI: 10.1186/s13059-015-0783-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/16/2015] [Indexed: 12/31/2022] Open
Abstract
Small interfering RNAs (siRNAs) exhibit strong off-target effects, which confound the gene-level interpretation of RNA interference screens and thus limit their utility for functional genomics studies. Here, we present gespeR, a statistical model for reconstructing individual, gene-specific phenotypes. Using 115,878 siRNAs, single and pooled, from three companies in three pathogen infection screens, we demonstrate that deconvolution of image-based phenotypes substantially improves the reproducibility between independent siRNA sets targeting the same genes. Genes selected and prioritized by gespeR are validated and shown to constitute biologically relevant components of pathogen entry mechanisms and TGF-β signaling. gespeR is available as a Bioconductor R-package.
Collapse
Affiliation(s)
- Fabian Schmich
- Department of Biosystems Science and Engineering, ETH, Zurich, Switzerland. .,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Ewa Szczurek
- Department of Biosystems Science and Engineering, ETH, Zurich, Switzerland. .,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | | | | | | | | | | | - Simone Eicher
- Biozentrum, University of Basel, Basel, Switzerland.
| | | | | | - Pauli Rämö
- Biozentrum, University of Basel, Basel, Switzerland.
| | - Raquel Conde-Alvarez
- Institute for Tropical Health and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain.
| | - Christian von Mering
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland. .,Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| | | | | | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH, Zurich, Switzerland. .,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
42
|
Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015; 4. [PMID: 26267216 PMCID: PMC4532895 DOI: 10.7554/elife.05005] [Citation(s) in RCA: 5340] [Impact Index Per Article: 534.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 07/12/2015] [Indexed: 12/20/2022] Open
Abstract
MicroRNA targets are often recognized through pairing between the miRNA seed region and complementary sites within target mRNAs, but not all of these canonical sites are equally effective, and both computational and in vivo UV-crosslinking approaches suggest that many mRNAs are targeted through non-canonical interactions. Here, we show that recently reported non-canonical sites do not mediate repression despite binding the miRNA, which indicates that the vast majority of functional sites are canonical. Accordingly, we developed an improved quantitative model of canonical targeting, using a compendium of experimental datasets that we pre-processed to minimize confounding biases. This model, which considers site type and another 14 features to predict the most effectively targeted mRNAs, performed significantly better than existing models and was as informative as the best high-throughput in vivo crosslinking approaches. It drives the latest version of TargetScan (v7.0; targetscan.org), thereby providing a valuable resource for placing miRNAs into gene-regulatory networks.
Collapse
Affiliation(s)
- Vikram Agarwal
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Cambridge, United States
| | - George W Bell
- Bioinformatics and Research Computing, Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Jin-Wu Nam
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Cambridge, United States
| | - David P Bartel
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Cambridge, United States
| |
Collapse
|
43
|
Kreibich S, Hardt WD. Experimental approaches to phenotypic diversity in infection. Curr Opin Microbiol 2015; 27:25-36. [PMID: 26143306 DOI: 10.1016/j.mib.2015.06.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/03/2015] [Accepted: 06/06/2015] [Indexed: 12/16/2022]
Abstract
Microbial infections are burdening human health, even after the advent of antibiotics, vaccines and hygiene. Thus, infection biology has aimed at the molecular understanding of the pathogen-host interaction. This has revealed key virulence factors, host cell signaling pathways and immune responses. However, our understanding of the infection process is still incomplete. Recent evidence suggests that phenotypic diversity can have important consequences for the infection process. Diversity arises from the formation of distinct subpopulations of pathogen cells (with distinct virulence factor expression patterns) and host cells (with distinct response capacities). For technical reasons, such phenotypic diversity has often been overlooked. We are highlighting several striking examples and discuss the experimental approaches available for analyzing the different subpopulations. Single cell reporters and approaches from systems biology do hold much promise.
Collapse
Affiliation(s)
- Saskia Kreibich
- Institute of Microbiology, ETH Zürich, CH-8093 Zürich, Switzerland
| | | |
Collapse
|
44
|
Knocking down schistosomes - promise for lentiviral transduction in parasites. Trends Parasitol 2015; 31:324-32. [PMID: 25933926 DOI: 10.1016/j.pt.2015.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 12/21/2022]
Abstract
Underpinned by major advances in our understanding of the genomes of schistosomes, progress in the development of functional genomic tools is providing unique prospects to gain insights into the intricacies of the biology of these blood flukes, their host relationships, and the diseases that they cause. This article reviews some key applications of double-stranded RNA interference (RNAi) in Schistosoma mansoni, appraises delivery systems for transgenesis and stable gene silencing, considers ways of increasing efficiency and specificity of gene silencing, and discusses the prospects of using a lentivirus delivery system for future functional genomic-phenomic explorations of schistosomes and other parasites. The ability to achieve effective and stable gene perturbation in parasites has major biological implications and could facilitate the development of new interventions.
Collapse
|
45
|
Hasan NM, Longacre MJ, Stoker SW, Kendrick MA, MacDonald MJ. Mitochondrial malic enzyme 3 is important for insulin secretion in pancreatic β-cells. Mol Endocrinol 2015; 29:396-410. [PMID: 25594249 DOI: 10.1210/me.2014-1249] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic β-cells with severely knocked down cytosolic malic enzyme (ME1) and mitochondrial NAD(P) malic enzyme (ME2) show normal insulin secretion. The mitochondrial NADP malic enzyme (ME3) is very low in pancreatic β-cells, and ME3 was previously thought unimportant for insulin secretion. Using short hairpin RNAs that targeted one or more malic enzyme mRNAs in the same cell, we generated more than 25 stable INS-1 832/13-derived insulin cell lines expressing extremely low levels of ME1, ME2, and ME3 alone or low levels of two of these enzymes in the same cell line. We also used double targeting of the same Me gene to achieve even more severe reduction in Me1 and Me2 mRNAs and enzyme activities than we reported previously. Knockdown of ME3, but not ME1 or ME2 alone or together, inhibited insulin release stimulated by glucose, pyruvate or 2-aminobicyclo [2,2,1]heptane-2-carboxylic acid-plus-glutamine. The data suggest that ME3, far more than ME1 or ME2, is necessary for insulin release. Because ME3 enzyme activity is low in β-cells, its role in insulin secretion may involve a function other than its ME catalytic activity.
Collapse
Affiliation(s)
- Noaman M Hasan
- Childrens Diabetes Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| | | | | | | | | |
Collapse
|
46
|
Bauer DE, Canver MC, Orkin SH. Generation of genomic deletions in mammalian cell lines via CRISPR/Cas9. J Vis Exp 2015:e52118. [PMID: 25549070 PMCID: PMC4279820 DOI: 10.3791/52118] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 system may be re-purposed for site-specific eukaryotic genome engineering. CRISPR/Cas9 is an inexpensive, facile, and efficient genome editing tool that allows genetic perturbation of genes and genetic elements. Here we present a simple methodology for CRISPR design, cloning, and delivery for the production of genomic deletions. In addition, we describe techniques for deletion, identification, and characterization. This strategy relies on cellular delivery of a pair of chimeric single guide RNAs (sgRNAs) to create two double strand breaks (DSBs) at a locus in order to delete the intervening DNA segment by non-homologous end joining (NHEJ) repair. Deletions have potential advantages as compared to single-site small indels given the efficiency of biallelic modification, ease of rapid identification by PCR, predictability of loss-of-function, and utility for the study of non-coding elements. This approach can be used for efficient loss-of-function studies of genes and genetic elements in mammalian cell lines.
Collapse
Affiliation(s)
- Daniel E Bauer
- Harvard Medical School; Division of Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana-Farber Cancer Institute;
| | | | - Stuart H Orkin
- Harvard Medical School; Division of Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana-Farber Cancer Institute; Howard Hughes Medical Institute;
| |
Collapse
|
47
|
González-Buendía E, Pérez-Molina R, Ayala-Ortega E, Guerrero G, Recillas-Targa F. Experimental strategies to manipulate the cellular levels of the multifunctional factor CTCF. Methods Mol Biol 2014; 1165:53-69. [PMID: 24839018 DOI: 10.1007/978-1-4939-0856-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cellular homeostasis is the result of an intricate and coordinated combinatorial of biochemical and molecular processes. Among them is the control of gene expression in the context of the chromatin structure which is central for cell survival. Interdependent action of transcription factors, cofactors, chromatin remodeling activities, and three-dimensional organization of the genome are responsible to reach exquisite levels of gene expression. Among such transcription factors there is a subset of highly specialized nuclear factors with features resembling master regulators with a large variety of functions. This is turning to be the case of the multifunctional nuclear factor CCCTC-binding protein (CTCF) which is involved in gene regulation, chromatin organization, and three-dimensional conformation of the genome inside the cell nucleus. Technically its study has turned to be challenging, in particular its posttranscriptional interference by small interference RNAs. Here we describe three main strategies to downregulate the overall abundance of CTCF in culture cell lines.
Collapse
Affiliation(s)
- Edgar González-Buendía
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, México, DF, 04510, México
| | | | | | | | | |
Collapse
|
48
|
Omega-1 knockdown in Schistosoma mansoni eggs by lentivirus transduction reduces granuloma size in vivo. Nat Commun 2014; 5:5375. [PMID: 25400038 PMCID: PMC4243216 DOI: 10.1038/ncomms6375] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 09/25/2014] [Indexed: 02/06/2023] Open
Abstract
Schistosomiasis, one of the most important neglected tropical diseases worldwide, is caused by flatworms (blood flukes or schistosomes) that live in the bloodstream of humans. The hepatointestinal form of this debilitating disease results from a chronic infection with Schistosoma mansoni or Schistosoma japonicum. No vaccine is available to prevent schistosomiasis, and treatment relies predominantly on the use of a single drug, praziquantel. In spite of considerable research effort over the years, very little is known about the complex in vivo events that lead to granuloma formation and other pathological changes during infection. Here we use, for the first time, a lentivirus-based transduction system to deliver microRNA-adapted short hairpin RNAs (shRNAmirs) into the parasite to silence and explore selected protein-encoding genes of S. mansoni implicated in the disease process. This gene-silencing system has potential to be used for functional genomic–phenomic studies of a range of socioeconomically important pathogens. Schistosomiasis, a neglected tropical disease, is caused by flatworms such as Schistosoma mansoni. Here, Hagen et al. describe a lentivirus-based transduction system to deliver microRNA-adapted small hairpin RNAs into S. mansoni to inhibit transcription of selected genes implicated in the disease process.
Collapse
|
49
|
Gu S, Zhang Y, Jin L, Huang Y, Zhang F, Bassik MC, Kampmann M, Kay MA. Weak base pairing in both seed and 3' regions reduces RNAi off-targets and enhances si/shRNA designs. Nucleic Acids Res 2014; 42:12169-76. [PMID: 25270879 PMCID: PMC4231738 DOI: 10.1093/nar/gku854] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The use of RNA interference is becoming routine in scientific discovery and treatment of human disease. However, its applications are hampered by unwanted effects, particularly off-targeting through miRNA-like pathways. Recent studies suggest that the efficacy of such off-targeting might be dependent on binding stability. Here, by testing shRNAs and siRNAs of various GC content in different guide strand segments with reporter assays, we establish that weak base pairing in both seed and 3' regions is required to achieve minimal off-targeting while maintaining the intended on-target activity. The reduced off-targeting was confirmed by RNA-Seq analyses from mouse liver RNAs expressing various anti-HCV shRNAs. Finally, our protocol was validated on a large scale by analyzing results of a genome-wide shRNA screen. Compared with previously established work, the new algorithm was more effective in reducing off-targeting without jeopardizing on-target potency. These studies provide new rules that should significantly improve on siRNA/shRNA design.
Collapse
Affiliation(s)
- Shuo Gu
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Yue Zhang
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Lan Jin
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Yong Huang
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Feijie Zhang
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Michael C Bassik
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Martin Kampmann
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Mark A Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
50
|
Bhinder B, Djaballah H. A simple method for analyzing actives in random RNAi screens: introducing the "H Score" for hit nomination & gene prioritization. Comb Chem High Throughput Screen 2014; 15:686-704. [PMID: 22934950 DOI: 10.2174/138620712803519671] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 08/06/2012] [Accepted: 08/07/2012] [Indexed: 12/21/2022]
Abstract
Due to the numerous challenges in hit identification from random RNAi screening, we have examined current practices with a discovery of a variety of methodologies employed and published in many reports; majority of them, unfortunately, do not address the minimum associated criteria for hit nomination, as this could potentially have been the cause or may well be the explanation as to the lack of confirmation and follow up studies, currently facing the RNAi field. Overall, we find that these criteria or parameters are not well defined, in most cases arbitrary in nature, and hence rendering it extremely difficult to judge the quality of and confidence in nominated hits across published studies. For this purpose, we have developed a simple method to score actives independent of assay readout; and provide, for the first time, a homogenous platform enabling cross-comparison of active gene lists resulting from different RNAi screening technologies. Here, we report on our recently developed method dedicated to RNAi data output analysis referred to as the BDA method applicable to both arrayed and pooled RNAi technologies; wherein the concerns pertaining to inconsistent hit nomination and off-target silencing in conjugation with minimal activity criteria to identify a high value target are addressed. In this report, a combined hit rate per gene, called "H score", is introduced and defined. The H score provides a very useful tool for stringent active gene nomination, gene list comparison across multiple studies, prioritization of hits, and evaluation of the quality of the nominated gene hits.
Collapse
Affiliation(s)
- Bhavneet Bhinder
- HTS Core Facility, Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, USA
| | | |
Collapse
|