1
|
Wagner RE, Arnetzl L, Britto-Borges T, Heit-Mondrzyk A, Bakr A, Sollier E, Gkatza NA, Panten J, Delaunay S, Sohn D, Schmezer P, Odom DT, Müller-Decker K, Plass C, Dieterich C, Lutsik P, Bornelöv S, Frye M. SRSF2 safeguards efficient transcription of DNA damage and repair genes. Cell Rep 2024; 43:114869. [PMID: 39446588 DOI: 10.1016/j.celrep.2024.114869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
The serine-/arginine-rich splicing factor 2 (SRSF2) plays pivotal roles in pre-mRNA processing and gene transcription. Recurrent mutations, particularly a proline-to-histidine substitution at position 95 (P95H), are common in neoplastic diseases. Here, we assess SRSF2's diverse functions in squamous cell carcinoma. We show that SRSF2 deletion or homozygous P95H mutation both cause extensive DNA damage leading to cell-cycle arrest. Mechanistically, SRSF2 regulates efficient bi-directional transcription of DNA replication and repair genes, independent from its function in splicing. Further, SRSF2 haploinsufficiency induces DNA damage without halting the cell cycle. Exposing mouse skin to tumor-promoting carcinogens enhances the clonal expansion of heterozygous Srsf2 P95H epidermal cells but unexpectedly inhibits tumor formation. To survive carcinogen treatment, Srsf2 P95H+/- cells undergo substantial transcriptional rewiring and restore bi-directional gene expression. Thus, our study underscores SRSF2's importance in regulating transcription to orchestrate the cell cycle and the DNA damage response.
Collapse
Affiliation(s)
- Rebecca E Wagner
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany
| | - Leonie Arnetzl
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Thiago Britto-Borges
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Anke Heit-Mondrzyk
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ali Bakr
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Etienne Sollier
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | - Jasper Panten
- Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany; Division of Regulatory Genomics and Cancer Evolution, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sylvain Delaunay
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Daniela Sohn
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Peter Schmezer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Duncan T Odom
- Division of Regulatory Genomics and Cancer Evolution, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Karin Müller-Decker
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Susanne Bornelöv
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, CB2 0RE Cambridge, UK
| | - Michaela Frye
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
2
|
Li X, Wei Z, Hu Y, Zhu X. GraphNABP: Identifying nucleic acid-binding proteins with protein graphs and protein language models. Int J Biol Macromol 2024; 280:135599. [PMID: 39276905 DOI: 10.1016/j.ijbiomac.2024.135599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
The computational identification of nucleic acid-binding proteins (NABP) is of great significance for understanding the mechanisms of these biological activities and drug discovery. Although a bunch of sequence-based methods have been proposed to predict NABP and achieved promising performance, the structure information is often overlooked. On the other hand, the power of popular protein language models (pLM) has seldom been harnessed for predicting NABPs. In this study, we propose a novel framework called GraphNABP, to predict NABP by integrating sequence and predicted 3D structure information. Specifically, sequence embeddings and protein molecular graphs were first obtained from ProtT5 protein language model and predicted 3D structures, respectively. Then, graph attention (GAT) and bidirectional long short-term memory (BiLSTM) neural networks were used to enhance feature representations. Finally, a fully connected layer is used to predict NABPs. To the best of our knowledge, this is the first time to integrate AlphaFold and protein language models for the prediction of NABPs. The performances on multiple independent test sets indicate that GraphNABP outperforms other state-of-the-art methods. Our results demonstrate the effectiveness of pLM embeddings and structural information for NABP prediction. The codes and data used in this study are available at https://github.com/lixiangli01/GraphNABP.
Collapse
Affiliation(s)
- Xiang Li
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhuoyu Wei
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yueran Hu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiaolei Zhu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
3
|
Betz R, Heidt S, Figueira-Galán D, Hartmann M, Langner T, Requena N. Alternative splicing regulation in plants by SP7-like effectors from symbiotic arbuscular mycorrhizal fungi. Nat Commun 2024; 15:7107. [PMID: 39160162 PMCID: PMC11333574 DOI: 10.1038/s41467-024-51512-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 08/08/2024] [Indexed: 08/21/2024] Open
Abstract
Most plants in natural ecosystems associate with arbuscular mycorrhizal (AM) fungi to survive soil nutrient limitations. To engage in symbiosis, AM fungi secrete effector molecules that, similar to pathogenic effectors, reprogram plant cells. Here we show that the Glomeromycotina-specific SP7 effector family impacts on the alternative splicing program of their hosts. SP7-like effectors localize at nuclear condensates and interact with the plant mRNA processing machinery, most prominently with the splicing factor SR45 and the core splicing proteins U1-70K and U2AF35. Ectopic expression of these effectors in the crop plant potato and in Arabidopsis induced developmental changes that paralleled to the alternative splicing modulation of a specific subset of genes. We propose that SP7-like proteins act as negative regulators of SR45 to modulate the fate of specific mRNAs in arbuscule-containing cells. Unraveling the communication mechanisms between symbiotic fungi and their host plants will help to identify targets to improve plant nutrition.
Collapse
Affiliation(s)
- Ruben Betz
- Joseph Kölreuter Institute for Plant Sciences. Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, Germany
| | - Sven Heidt
- Joseph Kölreuter Institute for Plant Sciences. Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, Germany
| | - David Figueira-Galán
- Joseph Kölreuter Institute for Plant Sciences. Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, Germany
| | - Meike Hartmann
- Joseph Kölreuter Institute for Plant Sciences. Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, Germany
| | - Thorsten Langner
- Max Planck Institute for Biology Tübingen - Max-Planck-Ring 5, Tübingen, Germany
| | - Natalia Requena
- Joseph Kölreuter Institute for Plant Sciences. Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, Germany.
| |
Collapse
|
4
|
Luna R, Gómez-González B, Aguilera A. RNA biogenesis and RNA metabolism factors as R-loop suppressors: a hidden role in genome integrity. Genes Dev 2024; 38:504-527. [PMID: 38986581 PMCID: PMC11293400 DOI: 10.1101/gad.351853.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Genome integrity relies on the accuracy of DNA metabolism, but as appreciated for more than four decades, transcription enhances mutation and recombination frequencies. More recent research provided evidence for a previously unforeseen link between RNA and DNA metabolism, which is often related to the accumulation of DNA-RNA hybrids and R-loops. In addition to physiological roles, R-loops interfere with DNA replication and repair, providing a molecular scenario for the origin of genome instability. Here, we review current knowledge on the multiple RNA factors that prevent or resolve R-loops and consequent transcription-replication conflicts and thus act as modulators of genome dynamics.
Collapse
Affiliation(s)
- Rosa Luna
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Universidad de Sevilla-Spanish National Research Council (CSIC), 41092 Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Belén Gómez-González
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Universidad de Sevilla-Spanish National Research Council (CSIC), 41092 Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Andrés Aguilera
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Universidad de Sevilla-Spanish National Research Council (CSIC), 41092 Seville, Spain;
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
5
|
Zhang X, Guo J, Shi X, Zhou X, Chen Q. LUC7L3 is a downstream factor of SRSF1 and prevents genomic instability. CELL INSIGHT 2024; 3:100170. [PMID: 38590928 PMCID: PMC10999515 DOI: 10.1016/j.cellin.2024.100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/10/2024]
Abstract
The RNA-binding protein LUC7L3 is the human homolog of yeast U1 small nuclear RNA (snRNA)-related splicing factor Luc7p. While the primary function of LUC7L3 as an RNA-binding protein is believed to be involved in RNA metabolism, particularly in the splicing process, its exact role and other functions are still not fully understood. In this study, we aimed to elucidate the role of LUC7L3 and its impact on cell proliferation. Our study revealed that LUC7L3 depletion impairs cell proliferation compared to the other Luc7p paralogs, resulting in cell apoptosis and senescence. We explored the underlying mechanisms and found that LUC7L3 depletion leads to R-loop accumulation, DNA replication stress, and genome instability. Furthermore, we discovered that LUC7L3 depletion caused abnormalities in spindle assembly, leading to the formation of multinuclear cells. This was attributed to the dysregulation of protein translation of spindle-associated proteins. Additionally, we investigated the interplay between LUC7L3 and SRSF1 and identified SRSF1 as an upper stream regulator of LUC7L3, promoting the translation of LUC7L3 protein. These findings highlight the importance of LUC7L3 in maintaining genome stability and its relationship with SRSF1 in this regulatory pathway.
Collapse
Affiliation(s)
- Xiaqing Zhang
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Jing Guo
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Xin Shi
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Xin Zhou
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Qiang Chen
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Province Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
6
|
Zhang B, Li Y, Zhang J, Wang Y, Liang C, Lu T, Zhang C, Liu L, Qin Y, He J, Zhao X, Yu J, Hao J, Yang J, Li MJ, Yao Z, Ma S, Cheng H, Cheng T, Shi L. ADAR1 links R-loop homeostasis to ATR activation in replication stress response. Nucleic Acids Res 2023; 51:11668-11687. [PMID: 37831098 PMCID: PMC10681745 DOI: 10.1093/nar/gkad839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
Unscheduled R-loops are a major source of replication stress and DNA damage. R-loop-induced replication defects are sensed and suppressed by ATR kinase, whereas it is not known whether R-loop itself is actively involved in ATR activation and, if so, how this is achieved. Here, we report that the nuclear form of RNA-editing enzyme ADAR1 promotes ATR activation and resolves genome-wide R-loops, a process that requires its double-stranded RNA-binding domains. Mechanistically, ADAR1 interacts with TOPBP1 and facilitates its loading on perturbed replication forks by enhancing the association of TOPBP1 with RAD9 of the 9-1-1 complex. When replication is inhibited, DNA-RNA hybrid competes with TOPBP1 for ADAR1 binding to promote the translocation of ADAR1 from damaged fork to accumulate at R-loop region. There, ADAR1 recruits RNA helicases DHX9 and DDX21 to unwind R-loops, simultaneously allowing TOPBP1 to stimulate ATR more efficiently. Collectively, we propose that the tempo-spatially regulated assembly of ADAR1-nucleated protein complexes link R-loop clearance and ATR activation, while R-loops crosstalk with blocked replication forks by transposing ADAR1 to finetune ATR activity and safeguard the genome.
Collapse
Affiliation(s)
- Biao Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Yi Li
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Jieyou Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Yuejiao Wang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Can Liang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Ting Lu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Chunyong Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Ling Liu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Yan Qin
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Jiahuan He
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 100006, Beijing, China
| | - Xiangnan Zhao
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Jia Yu
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 100006, Beijing, China
| | - Jihui Hao
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Jie Yang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Mulin Jun Li
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Zhi Yao
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Shuai Ma
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Lei Shi
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
7
|
Jiang Y, Huang F, Chen L, Gu JH, Wu YW, Jia MY, Lin Z, Zhou Y, Li YC, Yu C, Tong MH, Shen L, Fan HY, Sha QQ. Genome-wide map of R-loops reveals its interplay with transcription and genome integrity during germ cell meiosis. J Adv Res 2023; 51:45-57. [PMID: 36396044 PMCID: PMC10491972 DOI: 10.1016/j.jare.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/14/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION The R-loop is a naturally formed three-strand nucleic acid structure that recently has been reported to participate in multiple biological processes and helped answer some previously unexplained scientific questions. Meiosis process involves multiple chromatin-related events such as DNA double-stranded breaks (DSB) formation, repairing and transcriptional dynamics. OBJECTIVES Explore the regulatory roles and physiological functions of R-loops in the mammalian meiosis process. METHODS In our study, using genome-wide S9.6 CUT & Tag seq, we first mapped the genomic distribution and dynamic changes of R-loop during the meiotic process in mice, from spermatogonia to secondary spermatocytes. And we further explore the role of R-loop in physiological conditions by constructing conditional knockout mice of Rnaseh1, which deleted the R-loop endonuclease before meiosis entry. RESULTS R-loop predominantly distributes at promoter-related regions and varies across different meiotic stages. By joint analysis with the corresponding transcriptome, we found that the R-loop was closely related to transcription during the meiotic process. The high frequency of promoter-related R-loop in meiotic cells is usually accompanied by high transcription activity, and we further verified this in the leptotene/zygotene to the pachytene transition process. Moreover, the lack of RNase H1 caused sterility in male mice with R-loop accumulation and abnormal DSB repair in spermatocytes. Further analysis showed that abnormal R-loop accumulation in the leptotene/zygotene stages influenced transcriptional regulation in the pachytene stage. CONCLUSION The mutual regulation of the R-loop and transcription plays an essential role in spermatogenesis. And R-loop is also important for the normal repair process of DSB during meiosis.
Collapse
Affiliation(s)
- Yu Jiang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fei Huang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lu Chen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jia-Hui Gu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yun-Wen Wu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Meng-Yan Jia
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhen Lin
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong Zhou
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, 510317 Guangzhou, China
| | - Yan-Chu Li
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, 510317 Guangzhou, China
| | - Chao Yu
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ming-Han Tong
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Shen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Heng-Yu Fan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Qian-Qian Sha
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, 510317 Guangzhou, China.
| |
Collapse
|
8
|
Kumar K, Sinha SK, Maity U, Kirti PB, Kumar KRR. Insights into established and emerging roles of SR protein family in plants and animals. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1763. [PMID: 36131558 DOI: 10.1002/wrna.1763] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 05/13/2023]
Abstract
Splicing of pre-mRNA is an essential part of eukaryotic gene expression. Serine-/arginine-rich (SR) proteins are highly conserved RNA-binding proteins present in all metazoans and plants. SR proteins are involved in constitutive and alternative splicing, thereby regulating the transcriptome and proteome diversity in the organism. In addition to their role in splicing, SR proteins are also involved in mRNA export, nonsense-mediated mRNA decay, mRNA stability, and translation. Due to their pivotal roles in mRNA metabolism, SR proteins play essential roles in normal growth and development. Hence, any misregulation of this set of proteins causes developmental defects in both plants and animals. SR proteins from the animal kingdom are extensively studied for their canonical and noncanonical functions. Compared with the animal kingdom, plant genomes harbor more SR protein-encoding genes and greater diversity of SR proteins, which are probably evolved for plant-specific functions. Evidence from both plants and animals confirms the essential role of SR proteins as regulators of gene expression influencing cellular processes, developmental stages, and disease conditions. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Kundan Kumar
- Department of Biotechnology, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Shubham Kumar Sinha
- Department of Biotechnology, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Upasana Maity
- Department of Biotechnology, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | | | | |
Collapse
|
9
|
de Luxán-Hernández C, Lohmann J, Tranque E, Chumova J, Binarova P, Salinas J, Weingartner M. MDF is a conserved splicing factor and modulates cell division and stress response in Arabidopsis. Life Sci Alliance 2022; 6:6/1/e202201507. [PMID: 36265897 PMCID: PMC9585968 DOI: 10.26508/lsa.202201507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 02/05/2023] Open
Abstract
The coordination of cell division with stress response is essential for maintaining genome stability in plant meristems. Proteins involved in pre-mRNA splicing are important for these processes in animal and human cells. Based on its homology to the splicing factor SART1, which is implicated in the control of cell division and genome stability in human cells, we analyzed if MDF has similar functions in plants. We found that MDF associates with U4/U6.U5 tri-snRNP proteins and is essential for correct splicing of 2,037 transcripts. Loss of MDF function leads to cell division defects and cell death in meristems and was associated with up-regulation of stress-induced genes and down-regulation of mitotic regulators. In addition, the mdf-1 mutant is hypersensitive to DNA damage treatment supporting its role in coordinating stress response with cell division. Our analysis of a dephosphomutant of MDF suggested how its protein activity might be controlled. Our work uncovers the conserved function of a plant splicing factor and provides novel insight into the interplay of pre-mRNA processing and genome stability in plants.
Collapse
Affiliation(s)
| | - Julia Lohmann
- Institute of Plant Sciences and Microbiology, University of Hamburg, Hamburg, Germany
| | - Eduardo Tranque
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas “Margarita Salas” (CSIC), Madrid, Spain
| | - Jana Chumova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavla Binarova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Julio Salinas
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas “Margarita Salas” (CSIC), Madrid, Spain
| | - Magdalena Weingartner
- Institute of Plant Sciences and Microbiology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
10
|
Secchi M, Lodola C, Garbelli A, Bione S, Maga G. DEAD-Box RNA Helicases DDX3X and DDX5 as Oncogenes or Oncosuppressors: A Network Perspective. Cancers (Basel) 2022; 14:cancers14153820. [PMID: 35954483 PMCID: PMC9367324 DOI: 10.3390/cancers14153820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The transformation of a normal cell into a cancerous one is caused by the deregulation of different metabolic pathways, involving a complex network of protein–protein interactions. The cellular enzymes DDX3X and DDX5 play important roles in the maintenance of normal cell metabolism, but their deregulation can accelerate tumor transformation. Both DDX3X and DDX5 interact with hundreds of different cellular proteins, and depending on the specific pathways in which they are involved, both proteins can either act as suppressors of cancer or as oncogenes. In this review, we summarize the current knowledge about the roles of DDX3X and DDX5 in different tumors. In addition, we present a list of interacting proteins and discuss the possible contribution of some of these protein–protein interactions in determining the roles of DDX3X and DDX5 in the process of cancer proliferation, also suggesting novel hypotheses for future studies. Abstract RNA helicases of the DEAD-box family are involved in several metabolic pathways, from transcription and translation to cell proliferation, innate immunity and stress response. Given their multiple roles, it is not surprising that their deregulation or mutation is linked to different pathological conditions, including cancer. However, while in some cases the loss of function of a given DEAD-box helicase promotes tumor transformation, indicating an oncosuppressive role, in other contexts the overexpression of the same enzyme favors cancer progression, thus acting as a typical oncogene. The roles of two well-characterized members of this family, DDX3X and DDX5, as both oncogenes and oncosuppressors have been documented in several cancer types. Understanding the interplay of the different cellular contexts, as defined by the molecular interaction networks of DDX3X and DDX5 in different tumors, with the cancer-specific roles played by these proteins could help to explain their apparently conflicting roles as cancer drivers or suppressors.
Collapse
|
11
|
RNPS1 inhibits excessive tumor necrosis factor/tumor necrosis factor receptor signaling to support hematopoiesis in mice. Proc Natl Acad Sci U S A 2022; 119:e2200128119. [PMID: 35482923 DOI: 10.1073/pnas.2200128119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceMessenger RNA (mRNA) splicing is fundamental to protein expression in mammals. Homozygous deletion of single protein components of the splicing machinery or its regulatory factors is embryonic lethal. However, through forward genetic screening in mice, we identified a viable hypomorphic missense mutation of the splicing regulator RNPS1. Homozygous mutant mice displayed altered immune cell development due to excessive tumor necrosis factor (TNF)-dependent immune cell apoptosis. Splicing was impaired in CD8+ T cells and hematopoietic stem cells from RNPS1 mutant mice. TNF knockout rescued hematopoiesis and dramatically reduced splicing defects in RNPS1 hematopoietic cells, demonstrating a surprising link between elevated TNF and defects in splicing caused by RNPS1 deficiency.
Collapse
|
12
|
Kang HJ, Eom HJ, Kim H, Myung K, Kwon HM, Choi JH. Thrap3 promotes R-loop resolution via interaction with methylated DDX5. Exp Mol Med 2021; 53:1602-1611. [PMID: 34697388 PMCID: PMC8569202 DOI: 10.1038/s12276-021-00689-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/03/2022] Open
Abstract
Transcription-replication conflicts lead to DNA damage and genomic instability, which are closely related to human diseases. A major source of these conflicts is the formation of R-loops, which consist of an RNA-DNA hybrid and a displaced single-stranded DNA. Although these structures have been studied, many aspects of R-loop biology and R-loop-mediated genome instability remain unclear. Here, we demonstrate that thyroid hormone receptor-associated protein 3 (Thrap3) plays a critical role in regulating R-loop resolution. In cancer cells, Thrap3 interacts with DEAD-box helicase 5 (DDX5) and localizes to R-loops. Arginine-mediated methylation of DDX5 is required for its interaction with Thrap3, and the Thrap3-DDX5 axis induces the recruitment of 5'-3' exoribonuclease 2 (XRN2) into R-loops. Loss of Thrap3 increases R-loop accumulation and DNA damage. These findings suggest that Thrap3 mediates resistance to cell death by preventing R-loop accumulation in cancer cells.
Collapse
Affiliation(s)
- Hyun Je Kang
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea
| | - Hye-jin Eom
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea
| | - Hongtae Kim
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea
| | - Kyungjae Myung
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea ,grid.42687.3f0000 0004 0381 814XCenter for Genomic Integrity (CGI), Institute for Basic Science (IBS), Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea
| | - Hyug Moo Kwon
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea
| | - Jang Hyun Choi
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea
| |
Collapse
|
13
|
Pellagatti A, Boultwood J. SF3B1 mutant myelodysplastic syndrome: Recent advances. Adv Biol Regul 2020; 79:100776. [PMID: 33358369 DOI: 10.1016/j.jbior.2020.100776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022]
Abstract
The myelodysplastic syndromes (MDS) are common myeloid malignancies. Mutations in genes encoding different components of the spliceosome occur in more than half of all MDS patients. SF3B1 is the most frequently mutated splicing factor gene in MDS, and there is a strong association between SF3B1 mutations and the presence of ring sideroblasts in the bone marrow of MDS patients. It has been recently proposed that SF3B1 mutant MDS should be recognized as a distinct nosologic entity. Splicing factor mutations cause aberrant pre-mRNA splicing of many target genes, some of which have been shown to impact on hematopoiesis in functional studies. Emerging data show that some of the downstream effects of different mutated splicing factors converge on common cellular processes, such as hyperactivation of NF-κB signaling and increased R-loops. The aberrantly spliced target genes and the dysregulated pathways and cellular processes associated with splicing factor mutations provided the rationale for new potential therapeutic approaches to target MDS cells with mutations of SF3B1 and other splicing factors.
Collapse
Affiliation(s)
- Andrea Pellagatti
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, And NIHR Oxford BRC Haematology Theme, Oxford, UK.
| | - Jacqueline Boultwood
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, And NIHR Oxford BRC Haematology Theme, Oxford, UK.
| |
Collapse
|
14
|
Abstract
Physiological and pathological roles for R-loop structures continue to be discovered, and studies suggest that R-loops could contribute to human disease. R-loops are nucleic acid structures characterized by a DNA:RNA hybrid and displaced single-stranded DNA that occur in connection with transcription. R-loops form naturally and have been shown to be important for a number of physiological processes such as mitochondrial replication initiation, class switch recombination, DNA repair, modulating DNA topology, and regulation of gene expression. However, subsets of R-loops or persistent R-loops lead to DNA breaks, chromosome rearrangement, and genome instability. In addition, R-loops have been linked to human diseases, specifically neurological disorders and cancer. Of the large amount of research produced recently on R-loops, this review covers evidence for R-loop involvement in normal cellular physiology and pathophysiology, as well as describing factors that contribute to R-loop regulation.
Collapse
Affiliation(s)
- Ryan Patrick Mackay
- Department of Molecular and Cellular Physiology and Louisiana State University Health Sciences Center - Shreveport, Shreveport, Louisiana, USA
| | - Qinqin Xu
- Department of Otolaryngology - Head & Neck Surgery, Louisiana State University Health Sciences Center - Shreveport, Shreveport, Louisiana, USA
| | - Paul M Weinberger
- Department of Molecular and Cellular Physiology and Louisiana State University Health Sciences Center - Shreveport, Shreveport, Louisiana, USA.,Department of Otolaryngology - Head & Neck Surgery, Louisiana State University Health Sciences Center - Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
15
|
Rogan PK, Mucaki EJ, Shirley BC. A proposed molecular mechanism for pathogenesis of severe RNA-viral pulmonary infections. F1000Res 2020; 9:943. [PMID: 33299552 PMCID: PMC7676395 DOI: 10.12688/f1000research.25390.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Certain riboviruses can cause severe pulmonary complications leading to death in some infected patients. We propose that DNA damage induced-apoptosis accelerates viral release, triggered by depletion of host RNA binding proteins (RBPs) from nuclear RNA bound to replicating viral sequences. Methods: Information theory-based analysis of interactions between RBPs and individual sequences in the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), Influenza A (H3N1), HIV-1, and Dengue genomes identifies strong RBP binding sites in these viral genomes. Replication and expression of viral sequences is expected to increasingly sequester RBPs - SRSF1 and RNPS1. Ordinarily, RBPs bound to nascent host transcripts prevents their annealing to complementary DNA. Their depletion induces destabilizing R-loops. Chromosomal breakage occurs when an excess of unresolved R-loops collide with incoming replication forks, overwhelming the DNA repair machinery. We estimated stoichiometry of inhibition of RBPs in host nuclear RNA by counting competing binding sites in replicating viral genomes and host RNA. Results: Host RBP binding sites are frequent and conserved among different strains of RNA viral genomes. Similar binding motifs of SRSF1 and RNPS1 explain why DNA damage resulting from SRSF1 depletion is complemented by expression of RNPS1. Clustering of strong RBP binding sites coincides with the distribution of RNA-DNA hybridization sites across the genome. SARS-CoV-2 replication is estimated to require 32.5-41.8 hours to effectively compete for binding of an equal proportion of SRSF1 binding sites in host encoded nuclear RNAs. Significant changes in expression of transcripts encoding DNA repair and apoptotic proteins were found in an analysis of influenza A and Dengue-infected cells in some individuals. Conclusions: R-loop-induced apoptosis indirectly resulting from viral replication could release significant quantities of membrane-associated virions into neighboring alveoli. These could infect adjacent pneumocytes and other tissues, rapidly compromising lung function, causing multiorgan system failure and other described symptoms.
Collapse
Affiliation(s)
- Peter K. Rogan
- Biochemistry, University of Western Ontario, London, Ontario, N6A 2C8, Canada
- CytoGnomix Inc, London, Ontario, N5X 3X5, Canada
| | - Eliseos J. Mucaki
- Biochemistry, University of Western Ontario, London, Ontario, N6A 2C8, Canada
| | | |
Collapse
|
16
|
Rogan PK, Mucaki EJ, Shirley BC. A proposed molecular mechanism for pathogenesis of severe RNA-viral pulmonary infections. F1000Res 2020; 9:943. [PMID: 33299552 PMCID: PMC7676395 DOI: 10.12688/f1000research.25390.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Certain riboviruses can cause severe pulmonary complications leading to death in some infected patients. We propose that DNA damage induced-apoptosis accelerates viral release, triggered by depletion of host RNA binding proteins (RBPs) from nuclear RNA bound to replicating viral sequences. Methods: Information theory-based analysis of interactions between RBPs and individual sequences in the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), Influenza A (H3N2), HIV-1, and Dengue genomes identifies strong RBP binding sites in these viral genomes. Replication and expression of viral sequences is expected to increasingly sequester RBPs - SRSF1 and RNPS1. Ordinarily, RBPs bound to nascent host transcripts prevents their annealing to complementary DNA. Their depletion induces destabilizing R-loops. Chromosomal breakage occurs when an excess of unresolved R-loops collide with incoming replication forks, overwhelming the DNA repair machinery. We estimated stoichiometry of inhibition of RBPs in host nuclear RNA by counting competing binding sites in replicating viral genomes and host RNA. Results: Host RBP binding sites are frequent and conserved among different strains of RNA viral genomes. Similar binding motifs of SRSF1 and RNPS1 explain why DNA damage resulting from SRSF1 depletion is complemented by expression of RNPS1. Clustering of strong RBP binding sites coincides with the distribution of RNA-DNA hybridization sites across the genome. SARS-CoV-2 replication is estimated to require 32.5-41.8 hours to effectively compete for binding of an equal proportion of SRSF1 binding sites in host encoded nuclear RNAs. Significant changes in expression of transcripts encoding DNA repair and apoptotic proteins were found in an analysis of influenza A and Dengue-infected cells in some individuals. Conclusions: R-loop-induced apoptosis indirectly resulting from viral replication could release significant quantities of membrane-associated virions into neighboring alveoli. These could infect adjacent pneumocytes and other tissues, rapidly compromising lung function, causing multiorgan system failure and other described symptoms.
Collapse
Affiliation(s)
- Peter K. Rogan
- Biochemistry, University of Western Ontario, London, Ontario, N6A 2C8, Canada
- CytoGnomix Inc, London, Ontario, N5X 3X5, Canada
| | - Eliseos J. Mucaki
- Biochemistry, University of Western Ontario, London, Ontario, N6A 2C8, Canada
| | | |
Collapse
|
17
|
Luna R, Rondón AG, Pérez-Calero C, Salas-Armenteros I, Aguilera A. The THO Complex as a Paradigm for the Prevention of Cotranscriptional R-Loops. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:105-114. [PMID: 32493765 DOI: 10.1101/sqb.2019.84.039594] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Different proteins associate with the nascent RNA and the RNA polymerase (RNAP) to catalyze the transcription cycle and RNA export. If these processes are not properly controlled, the nascent RNA can thread back and hybridize to the DNA template forming R-loops capable of stalling replication, leading to DNA breaks. Given the transcriptional promiscuity of the genome, which leads to large amounts of RNAs from mRNAs to different types of ncRNAs, these can become a major threat to genome integrity if they form R-loops. Consequently, cells have evolved nuclear factors to prevent this phenomenon that includes THO, a conserved eukaryotic complex acting in transcription elongation and RNA processing and export that upon inactivation causes genome instability linked to R-loop accumulation. We revise and discuss here the biological relevance of THO and a number of RNA helicases, including the THO partner UAP56/DDX39B, as a paradigm of the cellular mechanisms of cotranscriptional R-loop prevention.
Collapse
Affiliation(s)
- Rosa Luna
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092 Seville, Spain
| | - Ana G Rondón
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092 Seville, Spain
| | - Carmen Pérez-Calero
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092 Seville, Spain
| | - Irene Salas-Armenteros
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092 Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092 Seville, Spain
| |
Collapse
|
18
|
Park HJ, You YN, Lee A, Jung H, Jo SH, Oh N, Kim HS, Lee HJ, Kim JK, Kim YS, Jung C, Cho HS. OsFKBP20-1b interacts with the splicing factor OsSR45 and participates in the environmental stress response at the post-transcriptional level in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:992-1007. [PMID: 31925835 DOI: 10.1111/tpj.14682] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 11/28/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Sessile plants have evolved distinct mechanisms to respond and adapt to adverse environmental conditions through diverse mechanisms including RNA processing. While the role of RNA processing in the stress response is well understood for Arabidopsis thaliana, limited information is available for rice (Oryza sativa). Here, we show that OsFKBP20-1b, belonging to the immunophilin family, interacts with the splicing factor OsSR45 in both nuclear speckles and cytoplasmic foci, and plays an essential role in post-transcriptional regulation of abiotic stress response. The expression of OsFKBP20-1b was highly upregulated under various abiotic stresses. Moreover genetic analysis revealed that OsFKBP20-1b positively affected transcription and pre-mRNA splicing of stress-responsive genes under abiotic stress conditions. In osfkbp20-1b loss-of-function mutants, the expression of stress-responsive genes was downregulated, while that of their splicing variants was increased. Conversely, in plants overexpressing OsFKBP20-1b, the expression of the same stress-responsive genes was strikingly upregulated under abiotic stress. In vivo experiments demonstrated that OsFKBP20-1b directly maintains protein stability of OsSR45 splicing factor. Furthermore, we found that the plant-specific OsFKBP20-1b gene has uniquely evolved as a paralogue only in some Poaceae species. Together, our findings suggest that OsFKBP20-1b-mediated RNA processing contributes to stress adaptation in rice.
Collapse
Affiliation(s)
- Hyun J Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Young N You
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Areum Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Korea
| | - Haemyeong Jung
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Korea
| | - Seung H Jo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Korea
| | - Nuri Oh
- Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Ju-Kon Kim
- Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Youn S Kim
- Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Choonkyun Jung
- Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Hye S Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Korea
| |
Collapse
|
19
|
New insight into the biology of R-loops. Mutat Res 2020; 821:111711. [PMID: 32516653 DOI: 10.1016/j.mrfmmm.2020.111711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 11/24/2022]
Abstract
R-loops form when RNA hybridizes with its template DNA generating a three-stranded structure leaving a displaced single strand non-template DNA. During transcription negative supercoiling of DNA behind the advancing RNA polymerase will facilitate the formation of R-loops by the nascent RNA as the DNA is under wound to facilitate transcription. In theory R-loops are classified into pathological and non-pathological depending on the context of its formation. R-loop which are formed normally in various physiological events like in gene regulation and at immunoglobulin class switch regions are considered non-pathological, whereas abnormally stable R-loop which leads to genomic instability are considered pathological. Although pathological R-loop formation is a rare event but once formed completely blocks transcription, mRNA export, elevates mutagenesis, and inhibits gene expression. Hence, R-loop either prevents or induces genomic instability indirectly and are potentially an endogenous source of DNA lesion. Although the existence of R-loop has been reported few decades ago, but only recently we have gained knowledge about its formation and resolution in cells due to the availability of reagents. R-loop biology has generated immense interest in past few years since it connects the important biological processes such as transcription, mRNA splicing, DNA replication, recombination and repair. In this review I will focus on the recent progress made about formation and resolution of R-loop, based on the methodologies that are currently available to study R-loop using biochemical, cell biology and molecular biology approaches.
Collapse
|
20
|
Singh S, Ahmed D, Dolatshad H, Tatwavedi D, Schulze U, Sanchi A, Ryley S, Dhir A, Carpenter L, Watt SM, Roberts DJ, Abdel-Aal AM, Sayed SK, Mohamed SA, Schuh A, Vyas P, Killick S, Kotini AG, Papapetrou EP, Wiseman DH, Pellagatti A, Boultwood J. SF3B1 mutations induce R-loop accumulation and DNA damage in MDS and leukemia cells with therapeutic implications. Leukemia 2020; 34:2525-2530. [PMID: 32076118 PMCID: PMC7449882 DOI: 10.1038/s41375-020-0753-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/22/2020] [Accepted: 02/07/2020] [Indexed: 12/05/2022]
Affiliation(s)
- Shalini Singh
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Doaa Ahmed
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,Clinical Pathology Department, Assiut University, Assiut, Egypt
| | - Hamid Dolatshad
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Dharamveer Tatwavedi
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ulrike Schulze
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrea Sanchi
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah Ryley
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, The Churchill Hospital, Oxford, UK
| | - Ashish Dhir
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Lee Carpenter
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Suzanne M Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - David J Roberts
- National Health Service Blood and Transplant, John Radcliffe Hospital, Oxford, UK
| | | | - Sohair K Sayed
- Clinical Pathology Department, Assiut University, Assiut, Egypt
| | | | - Anna Schuh
- Molecular Diagnostic Centre, Department of Oncology, University of Oxford, Oxford, UK
| | - Paresh Vyas
- MRC Molecular Hematology Unit, WIMM, University of Oxford, Oxford, UK.,Haematology Theme Oxford Biomedical Research Centre and Department of Hematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Sally Killick
- Department of Haematology, Royal Bournemouth Hospital, Bournemouth, UK
| | - Andriana G Kotini
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eirini P Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel H Wiseman
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Andrea Pellagatti
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| | - Jacqueline Boultwood
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
21
|
Matos DA, Zhang JM, Ouyang J, Nguyen HD, Genois MM, Zou L. ATR Protects the Genome against R Loops through a MUS81-Triggered Feedback Loop. Mol Cell 2019; 77:514-527.e4. [PMID: 31708417 DOI: 10.1016/j.molcel.2019.10.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/11/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022]
Abstract
R loops arising during transcription induce genomic instability, but how cells respond to the R loop-associated genomic stress is still poorly understood. Here, we show that cells harboring high levels of R loops rely on the ATR kinase for survival. In response to aberrant R loop accumulation, the ataxia telangiectasia and Rad3-related (ATR)-Chk1 pathway is activated by R loop-induced reversed replication forks. In contrast to the activation of ATR by replication inhibitors, R loop-induced ATR activation requires the MUS81 endonuclease. ATR protects the genome from R loops by suppressing transcription-replication collisions, promoting replication fork recovery, and enforcing a G2/M cell-cycle arrest. Furthermore, ATR prevents excessive cleavage of reversed forks by MUS81, revealing a MUS81-triggered and ATR-mediated feedback loop that fine-tunes MUS81 activity at replication forks. These results suggest that ATR is a key sensor and suppressor of R loop-induced genomic instability, uncovering a signaling circuitry that safeguards the genome against R loops.
Collapse
Affiliation(s)
- Dominick A Matos
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jia-Min Zhang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jian Ouyang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Hai Dang Nguyen
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Marie-Michelle Genois
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
22
|
Splicing factor mutant myelodysplastic syndromes: Recent advances. Adv Biol Regul 2019; 75:100655. [PMID: 31558432 DOI: 10.1016/j.jbior.2019.100655] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 11/23/2022]
Abstract
The myelodysplastic syndromes (MDS) are common myeloid malignancies showing frequent progression to acute myeloid leukemia (AML). Pre-mRNA splicing is an essential cellular process carried out by the spliceosome. Mutations in splicing factor genes (including SF3B1, SRSF2, U2AF1 and ZRSR2) occur in over half of MDS patients and result in aberrant pre-mRNA splicing of many target genes, implicating aberrant spliceosome function in MDS disease pathogenesis. Recent functional studies have illuminated the impact on hematopoiesis of some aberrantly spliced target genes associated with splicing factor mutations. Emerging data show that the commonly mutated splicing factors have convergent effects on aberrant splicing of mRNAs that promote NF-κB signaling and on R-loop elevation leading to DNA damage, providing novel insights into MDS disease pathophysiology. It is recognized that the survival of splicing factor mutant cells is dependent on the presence of the wildtype allele, providing a rationale for the use of spliceosome inhibitors in splicing factor mutant MDS. Pre-clinical studies involving E7107 and H3B-8800 have shown the potential of these spliceosome inhibitors for the treatment of splicing factor mutant MDS and AML.
Collapse
|
23
|
Sugaya K. Chromosome instability caused by mutations in the genes involved in transcription and splicing. RNA Biol 2019; 16:1521-1525. [PMID: 31385554 DOI: 10.1080/15476286.2019.1652523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Mutations in molecules involved in transcription and splicing can cause chromosome instability such as sister chromatid exchanges. We isolated and characterized responsible genes from mammalian temperature-sensitive mutant cells showing chromosome instability. A mutation in the largest subunit of RNA polymerase II affected DNA synthesis in S phase-arrested cells, resulting in abnormal induction of sister chromatid exchanges. The yeast mutant harboring a homologous mutation showed very similar phenotype to that of the mammalian mutant. A mutation in Smu1, which is involved in splicing, also affected DNA synthesis in S and G2 phase-arrested cells, resulting in abnormal induction of sister chromatid exchanges and chromosomal aberrations. These cells showed a connection between defects of RNA metabolism and induction of chromosome instability. Genome instability appeared to be caused by links between RNA metabolism and replication resulting in genomic recombination. RNA metabolism can be regarded as one possible driver of genome modification triggering genome evolution.
Collapse
Affiliation(s)
- Kimihiko Sugaya
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST) , Chiba , Japan.,Group of Quantum-state Controlled MRI, QST , Chiba , Japan
| |
Collapse
|
24
|
Abstract
Exposure of genomic, single-stranded DNA (ssDNA) during transcription and replication creates opportunities for the formation of inappropriate secondary structures. Cells manage this exposure by using topoisomerases and helicases to reduce the inherent topological stress that arises from unwinding the double helix and by coating ssDNA with protective protein complexes. Interestingly, specific DNA-RNA hybrids, known as R-loops, form during transcription and exist in homeostasis throughout the genomes of prokaryotes and eukaryotes. These hybrids nucleate from guanine rich clusters in the template strand and extend across GC rich spans of transcribed genes. In vivo regulatory functions have evolved from R-loops, including regulation of gene expression and telomere lengthening. However, they also exist as a form of stress, particularly when replication forks collide with the transcription machinery. New methodologies and models are being developed to delineate the biology of R-loops, including those related to cell stress-based diseases like cancer. As accumulation of R-loops is associated with disease, targeting molecular pathways that regulate their formation or removal could provide new avenues for therapeutic intervention. This review covers recent understandings of the molecular basis for R-loop formation, removal, and biological outcomes in the context of cellular stress.
Collapse
Affiliation(s)
- David F Allison
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
25
|
Genome instability is a consequence of transcription deficiency in patients with bone marrow failure harboring biallelic ERCC6L2 variants. Proc Natl Acad Sci U S A 2018; 115:7777-7782. [PMID: 29987015 PMCID: PMC6064997 DOI: 10.1073/pnas.1803275115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bone marrow failure (BMF) is an inherited life-threatening condition characterized by defective hematopoiesis, developmental abnormalities, and predisposition to cancer. BMF caused by ERCC6L2 mutations is considered to be a genome instability syndrome, because DNA repair is compromised in patient cells. In this study, we report BMF cases with biallelic disease-causing variants and provide evidence from patients’ cells that transcription deficiency can explain the genome instability. Specifically, we demonstrate that ERCC6L2 participates in RNA polymerase II-mediated transcription via interaction with DNA-dependent protein kinase (DNA-PK) and resolves DNA–RNA hybrids (R loops). Collectively, our data point to a causal mechanism in BMF in which patients with ERCC6L2 mutations are defective in the repair of transcription-associated DNA damage. Biallelic variants in the ERCC excision repair 6 like 2 gene (ERCC6L2) are known to cause bone marrow failure (BMF) due to defects in DNA repair and mitochondrial function. Here, we report on eight cases of BMF from five families harboring biallelic variants in ERCC6L2, two of whom present with myelodysplasia. We confirm that ERCC6L2 patients’ lymphoblastoid cell lines (LCLs) are hypersensitive to DNA-damaging agents that specifically activate the transcription coupled nucleotide excision repair (TCNER) pathway. Interestingly, patients’ LCLs are also hypersensitive to transcription inhibitors that interfere with RNA polymerase II (RNA Pol II) and display an abnormal delay in transcription recovery. Using affinity-based mass spectrometry we found that ERCC6L2 interacts with DNA-dependent protein kinase (DNA-PK), a regulatory component of the RNA Pol II transcription complex. Chromatin immunoprecipitation PCR studies revealed ERCC6L2 occupancy on gene bodies along with RNA Pol II and DNA-PK. Patients’ LCLs fail to terminate transcript elongation accurately upon DNA damage and display a significant increase in nuclear DNA–RNA hybrids (R loops). Collectively, we conclude that ERCC6L2 is involved in regulating RNA Pol II-mediated transcription via its interaction with DNA-PK to resolve R loops and minimize transcription-associated genome instability. The inherited BMF syndrome caused by biallelic variants in ERCC6L2 can be considered as a primary transcription deficiency rather than a DNA repair defect.
Collapse
|
26
|
Auboeuf D. Alternative mRNA processing sites decrease genetic variability while increasing functional diversity. Transcription 2017; 9:75-87. [PMID: 29099315 PMCID: PMC5834221 DOI: 10.1080/21541264.2017.1373891] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Recent large-scale RNA sequencing efforts have revealed the extensive diversity of mRNA molecules produced from most eukaryotic coding genes, which arises from the usage of alternative, cryptic or non-canonical splicing and intronic polyadenylation sites. The prevailing view regarding the tremendous diversity of coding gene transcripts is that mRNA processing is a flexible and more-or-less noisy process leading to a diversity of proteins on which natural selection can act depending on protein-mediated cellular functions. However, this concept raises two main questions. First, do alternative mRNA processing pathways have a role other than generating mRNA and protein diversity? Second, is the cellular function of mRNA variants restricted to the biogenesis of functional protein isoforms? Here, I propose that the co-transcriptional use of alternative mRNA processing sites allows first, the resolution of co-transcriptional biophysical constraints that may otherwise result in DNA instability, and second, increases the diversity of cellular functions of mRNAs in a manner that is not restricted to protein synthesis.
Collapse
Affiliation(s)
- Didier Auboeuf
- a Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell , 46 Allée d'Italie Site Jacques Monod, Lyon , France
| |
Collapse
|
27
|
Salas-Armenteros I, Pérez-Calero C, Bayona-Feliu A, Tumini E, Luna R, Aguilera A. Human THO-Sin3A interaction reveals new mechanisms to prevent R-loops that cause genome instability. EMBO J 2017; 36:3532-3547. [PMID: 29074626 DOI: 10.15252/embj.201797208] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 09/22/2017] [Accepted: 09/28/2017] [Indexed: 11/09/2022] Open
Abstract
R-loops, formed by co-transcriptional DNA-RNA hybrids and a displaced DNA single strand (ssDNA), fulfill certain positive regulatory roles but are also a source of genomic instability. One key cellular mechanism to prevent R-loop accumulation centers on the conserved THO/TREX complex, an RNA-binding factor involved in transcription elongation and RNA export that contributes to messenger ribonucleoprotein (mRNP) assembly, but whose precise function is still unclear. To understand how THO restrains harmful R-loops, we searched for new THO-interacting factors. We found that human THO interacts with the Sin3A histone deacetylase complex to suppress co-transcriptional R-loops, DNA damage, and replication impairment. Functional analyses show that histone hypo-acetylation prevents accumulation of harmful R-loops and RNA-mediated genomic instability. Diminished histone deacetylase activity in THO- and Sin3A-depleted cell lines correlates with increased R-loop formation, genomic instability, and replication fork stalling. Our study thus uncovers physical and functional crosstalk between RNA-binding factors and chromatin modifiers with a major role in preventing R-loop formation and RNA-mediated genome instability.
Collapse
Affiliation(s)
- Irene Salas-Armenteros
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Universidad de Sevilla, Seville, Spain
| | - Carmen Pérez-Calero
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Universidad de Sevilla, Seville, Spain
| | - Aleix Bayona-Feliu
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Universidad de Sevilla, Seville, Spain
| | - Emanuela Tumini
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Universidad de Sevilla, Seville, Spain
| | - Rosa Luna
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Universidad de Sevilla, Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Universidad de Sevilla, Seville, Spain
| |
Collapse
|
28
|
Auboeuf D. Genome evolution is driven by gene expression-generated biophysical constraints through RNA-directed genetic variation: A hypothesis. Bioessays 2017; 39. [DOI: 10.1002/bies.201700069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Didier Auboeuf
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210; Laboratory of Biology and Modelling of the Cell; Site Jacques Monod; Lyon France
| |
Collapse
|
29
|
Deka B, Singh KK. Multifaceted Regulation of Gene Expression by the Apoptosis- and Splicing-Associated Protein Complex and Its Components. Int J Biol Sci 2017; 13:545-560. [PMID: 28539829 PMCID: PMC5441173 DOI: 10.7150/ijbs.18649] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/24/2017] [Indexed: 11/24/2022] Open
Abstract
The differential deposition of RNA-binding proteins (RBPs) on pre-mRNA mediates the processes of gene expression. One of the complexes containing RBPs that play a crucial part in RNA metabolism is the apoptosis-and splicing-associated protein (ASAP) complex. In this review, we present a summary of the structure of ASAP complex and its localization. Also, we discuss the findings by different groups on various functions of the subunits of the ASAP complex in RNA metabolism. The subunits of the ASAP complex are RNPS1, Acinus and SAP18. Originally, the ASAP complex was thought to link RNA processing with apoptosis. Further studies have shown the role of these components in RNA metabolism of cells, including transcription, splicing, translation and nonsense-mediated mRNA decay (NMD). In transcription, RNPS1 is involved in preventing the formation of R-loop, while Acinus and SAP18 suppress transcription with the help of histone deacetylase. On the one hand, individual components of the ASAP complex, namely RNPS1 and Acinus act as splicing activators, whereas on the other hand, in-vitro assay shows that the ASAP complex behaves as splicing repressor. In addition, the individual members of the ASAP complex associates with the exon junction complex (EJC) to play roles in splicing and translation. RNPS1 increases the translation efficiency by participating in the 3'end processing and polysome association of mRNAs. Similarly, during NMD RNPS1 aids in the recruitment of decay factors by interacting with EJC.
Collapse
Affiliation(s)
| | - Kusum Kumari Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
30
|
Kwon SK, Kim EH, Baek KH. RNPS1 is modulated by ubiquitin-specific protease 4. FEBS Lett 2017; 591:369-381. [DOI: 10.1002/1873-3468.12531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/01/2016] [Accepted: 12/12/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Seul-Ki Kwon
- Department of Biomedical Science; CHA University; Gyeonggi-Do Korea
| | - Eun-Hea Kim
- Department of Biomedical Science; CHA University; Gyeonggi-Do Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science; CHA University; Gyeonggi-Do Korea
| |
Collapse
|
31
|
Richard P, Manley JL. R Loops and Links to Human Disease. J Mol Biol 2016; 429:3168-3180. [PMID: 27600412 DOI: 10.1016/j.jmb.2016.08.031] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022]
Abstract
Aberrant R-loop structures are increasingly being realized as an important contributor to human disease. R loops, which are mainly co-transcriptional, abundant RNA/DNA hybrids, form naturally and can indeed be beneficial for transcription regulation at certain loci. However, their unwanted persistence elsewhere or in particular situations can lead to DNA double-strand breaks, chromosome rearrangements, and hypermutation, which are all sources of genomic instability. Mutations in genes involved in R-loop resolution or mutations leading to R-loop formation at specific genes affect the normal physiology of the cell. We discuss here the examples of diseases for which a link with R loops has been described, as well as how disease-causing mutations might participate in the development and/or progression of diseases that include repeat-associated conditions, other neurological disorders, and cancers.
Collapse
Affiliation(s)
- Patricia Richard
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
32
|
Carvalho RF, Szakonyi D, Simpson CG, Barbosa ICR, Brown JWS, Baena-González E, Duque P. The Arabidopsis SR45 Splicing Factor, a Negative Regulator of Sugar Signaling, Modulates SNF1-Related Protein Kinase 1 Stability. THE PLANT CELL 2016; 28:1910-25. [PMID: 27436712 PMCID: PMC5006706 DOI: 10.1105/tpc.16.00301] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/05/2016] [Accepted: 07/19/2016] [Indexed: 05/19/2023]
Abstract
The ability to sense and respond to sugar signals allows plants to cope with environmental and metabolic changes by adjusting growth and development accordingly. We previously reported that the SR45 splicing factor negatively regulates glucose signaling during early seedling development in Arabidopsis thaliana Here, we show that under glucose-fed conditions, the Arabidopsis sr45-1 loss-of-function mutant contains higher amounts of the energy-sensing SNF1-Related Protein Kinase 1 (SnRK1) despite unaffected SnRK1 transcript levels. In agreement, marker genes for SnRK1 activity are upregulated in sr45-1 plants, and the glucose hypersensitivity of sr45-1 is attenuated by disruption of the SnRK1 gene. Using a high-resolution RT-PCR panel, we found that the sr45-1 mutation broadly targets alternative splicing in vivo, including that of the SR45 pre-mRNA itself. Importantly, the enhanced SnRK1 levels in sr45-1 are suppressed by a proteasome inhibitor, indicating that SR45 promotes targeting of the SnRK1 protein for proteasomal destruction. Finally, we demonstrate that SR45 regulates alternative splicing of the Arabidopsis 5PTase13 gene, which encodes an inositol polyphosphate 5-phosphatase previously shown to interact with and regulate the stability of SnRK1 in vitro, thus providing a mechanistic link between SR45 function and the modulation of degradation of the SnRK1 energy sensor in response to sugars.
Collapse
Affiliation(s)
| | - Dóra Szakonyi
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Craig G Simpson
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, United Kingdom
| | | | - John W S Brown
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, United Kingdom University of Dundee at The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, United Kingdom
| | | | - Paula Duque
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| |
Collapse
|
33
|
Affiliation(s)
- Hélène Gaillard
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, Sevilla 41092, Spain; ,
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, Sevilla 41092, Spain; ,
| |
Collapse
|
34
|
Abstract
Examples of associations between human disease and defects in pre-messenger RNA splicing/alternative splicing are accumulating. Although many alterations are caused by mutations in splicing signals or regulatory sequence elements, recent studies have noted the disruptive impact of mutated generic spliceosome components and splicing regulatory proteins. This review highlights recent progress in our understanding of how the altered splicing function of RNA-binding proteins contributes to myelodysplastic syndromes, cancer, and neuropathologies.
Collapse
Affiliation(s)
- Benoit Chabot
- Centre of Excellence in RNA Biology, Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Lulzim Shkreta
- Centre of Excellence in RNA Biology, Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| |
Collapse
|
35
|
Xing D, Wang Y, Hamilton M, Ben-Hur A, Reddy ASN. Transcriptome-Wide Identification of RNA Targets of Arabidopsis SERINE/ARGININE-RICH45 Uncovers the Unexpected Roles of This RNA Binding Protein in RNA Processing. THE PLANT CELL 2015; 27:3294-308. [PMID: 26603559 PMCID: PMC4707455 DOI: 10.1105/tpc.15.00641] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/19/2015] [Accepted: 11/03/2015] [Indexed: 05/20/2023]
Abstract
Plant SR45 and its metazoan ortholog RNPS1 are serine/arginine-rich (SR)-like RNA binding proteins that function in splicing/postsplicing events and regulate diverse processes in eukaryotes. Interactions of SR45 with both RNAs and proteins are crucial for regulating RNA processing. However, in vivo RNA targets of SR45 are currently unclear. Using RNA immunoprecipitation followed by high-throughput sequencing, we identified over 4000 Arabidopsis thaliana RNAs that directly or indirectly associate with SR45, designated as SR45-associated RNAs (SARs). Comprehensive analyses of these SARs revealed several roles for SR45. First, SR45 associates with and regulates the expression of 30% of abscisic acid (ABA) signaling genes at the postsplicing level. Second, although most SARs are derived from intron-containing genes, surprisingly, 340 SARs are derived from intronless genes. Expression analysis of the SARs suggests that SR45 differentially regulates intronless and intron-containing SARs. Finally, we identified four overrepresented RNA motifs in SARs that likely mediate SR45's recognition of its targets. Therefore, SR45 plays an unexpected role in mRNA processing of intronless genes, and numerous ABA signaling genes are targeted for regulation at the posttranscriptional level. The diverse molecular functions of SR45 uncovered in this study are likely applicable to other species in view of its conservation across eukaryotes.
Collapse
Affiliation(s)
- Denghui Xing
- Department of Biology and Program in Molecular Plant Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Yajun Wang
- Department of Biology and Program in Molecular Plant Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Michael Hamilton
- Computer Science Department, Colorado State University, Fort Collins, Colorado 80523
| | - Asa Ben-Hur
- Computer Science Department, Colorado State University, Fort Collins, Colorado 80523
| | - Anireddy S N Reddy
- Department of Biology and Program in Molecular Plant Biology, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|
36
|
Shkreta L, Chabot B. The RNA Splicing Response to DNA Damage. Biomolecules 2015; 5:2935-77. [PMID: 26529031 PMCID: PMC4693264 DOI: 10.3390/biom5042935] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/20/2015] [Accepted: 10/16/2015] [Indexed: 12/29/2022] Open
Abstract
The number of factors known to participate in the DNA damage response (DDR) has expanded considerably in recent years to include splicing and alternative splicing factors. While the binding of splicing proteins and ribonucleoprotein complexes to nascent transcripts prevents genomic instability by deterring the formation of RNA/DNA duplexes, splicing factors are also recruited to, or removed from, sites of DNA damage. The first steps of the DDR promote the post-translational modification of splicing factors to affect their localization and activity, while more downstream DDR events alter their expression. Although descriptions of molecular mechanisms remain limited, an emerging trend is that DNA damage disrupts the coupling of constitutive and alternative splicing with the transcription of genes involved in DNA repair, cell-cycle control and apoptosis. A better understanding of how changes in splice site selection are integrated into the DDR may provide new avenues to combat cancer and delay aging.
Collapse
Affiliation(s)
- Lulzim Shkreta
- Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| | - Benoit Chabot
- Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| |
Collapse
|
37
|
Santos-Pereira JM, Aguilera A. R loops: new modulators of genome dynamics and function. Nat Rev Genet 2015; 16:583-97. [PMID: 26370899 DOI: 10.1038/nrg3961] [Citation(s) in RCA: 553] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
R loops are nucleic acid structures composed of an RNA-DNA hybrid and a displaced single-stranded DNA. Recently, evidence has emerged that R loops occur more often in the genome and have greater physiological relevance, including roles in transcription and chromatin structure, than was previously predicted. Importantly, however, R loops are also a major threat to genome stability. For this reason, several DNA and RNA metabolism factors prevent R-loop formation in cells. Dysfunction of these factors causes R-loop accumulation, which leads to replication stress, genome instability, chromatin alterations or gene silencing, phenomena that are frequently associated with cancer and a number of genetic diseases. We review the current knowledge of the mechanisms controlling R loops and their putative relationship with disease.
Collapse
Affiliation(s)
- José M Santos-Pereira
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Av. Américo Vespucio s/n, Seville 41092, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Av. Américo Vespucio s/n, Seville 41092, Spain
| |
Collapse
|
38
|
Sollier J, Cimprich KA. Breaking bad: R-loops and genome integrity. Trends Cell Biol 2015; 25:514-22. [PMID: 26045257 DOI: 10.1016/j.tcb.2015.05.003] [Citation(s) in RCA: 272] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 11/18/2022]
Abstract
R-loops, nucleic acid structures consisting of an RNA-DNA hybrid and displaced single-stranded (ss) DNA, are ubiquitous in organisms from bacteria to mammals. First described in bacteria where they initiate DNA replication, it now appears that R-loops regulate diverse cellular processes such as gene expression, immunoglobulin (Ig) class switching, and DNA repair. Changes in R-loop regulation induce DNA damage and genome instability, and recently it was shown that R-loops are associated with neurodegenerative disorders. We discuss recent developments in the field; in particular, the regulation and effects of R-loops in cells, their effect on genomic and epigenomic stability, and their potential contribution to the origin of diseases including cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Julie Sollier
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
39
|
RECQ5-dependent SUMOylation of DNA topoisomerase I prevents transcription-associated genome instability. Nat Commun 2015; 6:6720. [PMID: 25851487 DOI: 10.1038/ncomms7720] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 02/23/2015] [Indexed: 02/07/2023] Open
Abstract
DNA topoisomerase I (TOP1) has an important role in maintaining DNA topology by relaxing supercoiled DNA. Here we show that the K391 and K436 residues of TOP1 are SUMOylated by the PIAS1-SRSF1 E3 ligase complex in the chromatin fraction containing active RNA polymerase II (RNAPIIo). This modification is necessary for the binding of TOP1 to RNAPIIo and for the recruitment of RNA splicing factors to the actively transcribed chromatin, thereby reducing the formation of R-loops that lead to genome instability. RECQ5 helicase promotes TOP1 SUMOylation by facilitating the interaction between PIAS1, SRSF1 and TOP1. Unexpectedly, the topoisomerase activity is compromised by K391/K436 SUMOylation, and this provides the first in vivo evidence that TOP1 activity is negatively regulated at transcriptionally active chromatin to prevent TOP1-induced DNA damage. Therefore, our data provide mechanistic insight into how TOP1 SUMOylation contributes to genome maintenance during transcription.
Collapse
|
40
|
Singh G, Pratt G, Yeo GW, Moore MJ. The Clothes Make the mRNA: Past and Present Trends in mRNP Fashion. Annu Rev Biochem 2015; 84:325-54. [PMID: 25784054 DOI: 10.1146/annurev-biochem-080111-092106] [Citation(s) in RCA: 288] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Throughout their lifetimes, messenger RNAs (mRNAs) associate with proteins to form ribonucleoproteins (mRNPs). Since the discovery of the first mRNP component more than 40 years ago, what is known as the mRNA interactome now comprises >1,000 proteins. These proteins bind mRNAs in myriad ways with varying affinities and stoichiometries, with many assembling onto nascent RNAs in a highly ordered process during transcription and precursor mRNA (pre-mRNA) processing. The nonrandom distribution of major mRNP proteins observed in transcriptome-wide studies leads us to propose that mRNPs are organized into three major domains loosely corresponding to 5' untranslated regions (UTRs), open reading frames, and 3' UTRs. Moving from the nucleus to the cytoplasm, mRNPs undergo extensive remodeling as they are first acted upon by the nuclear pore complex and then by the ribosome. When not being actively translated, cytoplasmic mRNPs can assemble into large multi-mRNP assemblies or be permanently disassembled and degraded. In this review, we aim to give the reader a thorough understanding of past and current eukaryotic mRNP research.
Collapse
Affiliation(s)
- Guramrit Singh
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210;
| | | | | | | |
Collapse
|
41
|
Sollier J, Stork CT, García-Rubio ML, Paulsen RD, Aguilera A, Cimprich KA. Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability. Mol Cell 2014; 56:777-85. [PMID: 25435140 DOI: 10.1016/j.molcel.2014.10.020] [Citation(s) in RCA: 431] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/07/2014] [Accepted: 10/22/2014] [Indexed: 11/19/2022]
Abstract
R-loops, consisting of an RNA-DNA hybrid and displaced single-stranded DNA, are physiological structures that regulate various cellular processes occurring on chromatin. Intriguingly, changes in R-loop dynamics have also been associated with DNA damage accumulation and genome instability; however, the mechanisms underlying R-loop-induced DNA damage remain unknown. Here we demonstrate in human cells that R-loops induced by the absence of diverse RNA processing factors, including the RNA/DNA helicases Aquarius (AQR) and Senataxin (SETX), or by the inhibition of topoisomerase I, are actively processed into DNA double-strand breaks (DSBs) by the nucleotide excision repair endonucleases XPF and XPG. Surprisingly, DSB formation requires the transcription-coupled nucleotide excision repair (TC-NER) factor Cockayne syndrome group B (CSB), but not the global genome repair protein XPC. These findings reveal an unexpected and potentially deleterious role for TC-NER factors in driving R-loop-induced DNA damage and genome instability.
Collapse
Affiliation(s)
- Julie Sollier
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caroline Townsend Stork
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - María L García-Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Avenida Américo Vespucio, 41092 Seville, Spain
| | - Renee D Paulsen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Avenida Américo Vespucio, 41092 Seville, Spain
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
42
|
The thermodynamic patterns of eukaryotic genes suggest a mechanism for intron-exon recognition. Nat Commun 2013; 4:2101. [PMID: 23817463 DOI: 10.1038/ncomms3101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/03/2013] [Indexed: 12/11/2022] Open
Abstract
The essential cis- and trans-acting elements required for RNA splicing have been defined, however, the detailed molecular mechanisms underlying intron-exon recognition are still unclear. Here we demonstrate that the ratio between stability of mRNA/DNA and DNA/DNA duplexes near 3'-spice sites is a characteristic feature that can contribute to intron-exon differentiation. Remarkably, throughout all transcripts, the most unstable mRNA/DNA duplexes, compared with the corresponding DNA/DNA duplexes, are situated upstream of the 3'-splice sites and include the polypyrimidine tracts. This characteristic instability is less pronounced in weak alternative splice sites and disease-associated cryptic 3'-splice sites. Our results suggest that this thermodynamic pattern can prevent the re-annealing of mRNA to the DNA template behind the RNA polymerase to ensure access of the splicing machinery to the polypyrimidine tract and the branch point. In support of this mechanism, we demonstrate that RNA/DNA duplex formation at this region prevents pre-spliceosome A complex assembly.
Collapse
|
43
|
Montecucco A, Biamonti G. Pre-mRNA processing factors meet the DNA damage response. Front Genet 2013; 4:102. [PMID: 23761808 PMCID: PMC3674313 DOI: 10.3389/fgene.2013.00102] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/20/2013] [Indexed: 12/04/2022] Open
Abstract
It is well-known that DNA-damaging agents induce genome instability, but only recently have we begun to appreciate that chromosomes are fragile per se and frequently subject to DNA breakage. DNA replication further magnifies such fragility, because it leads to accumulation of single-stranded DNA. Recent findings suggest that chromosome fragility is similarly increased during transcription. Transcripts produced by RNA polymerase II (RNAPII) are subject to multiple processing steps, including maturation of 5′ and 3′ ends and splicing, followed by transport to the cytoplasm. RNA maturation starts on nascent transcripts and is mediated by a number of diverse proteins and ribonucleoprotein particles some of which are recruited cotranscriptionally through interactions with the carboxy-terminal domain of RNAPII. This coupling is thought to maximize efficiency of pre-mRNA maturation and directly impacts the choice of alternative splice sites. Mounting evidence suggests that lack of coordination among different RNA maturation steps, by perturbing the interaction of nascent transcripts with the DNA template, has deleterious effects on genome stability. Thus, in the absence of proper surveillance mechanisms, transcription could be a major source of DNA damage in cancer. Recent high-throughput screenings in human cells and budding yeast have identified several factors implicated in RNA metabolism that are targets of DNA damage checkpoint kinases: ATM (ataxia telangiectasia mutated) and ATR (ATM-Rad3 related) (Tel1 and Mec1 in budding yeast, respectively). Moreover, inactivation of various RNA processing factors induces accumulation of γH2AX foci, an early sign of DNA damage. Thus, a complex network is emerging that links DNA repair and RNA metabolism. In this review we provide a comprehensive overview of the role played by pre-mRNA processing factors in the cell response to DNA damage and in the maintenance of genome stability.
Collapse
|
44
|
Gaillard H, Herrera-Moyano E, Aguilera A. Transcription-associated genome instability. Chem Rev 2013; 113:8638-61. [PMID: 23597121 DOI: 10.1021/cr400017y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hélène Gaillard
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla , Av. Américo Vespucio s/n, 41092 Seville, Spain
| | | | | |
Collapse
|
45
|
Johnsen SA. The enigmatic role of H2Bub1 in cancer. FEBS Lett 2012; 586:1592-601. [PMID: 22564770 DOI: 10.1016/j.febslet.2012.04.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/02/2012] [Accepted: 04/03/2012] [Indexed: 12/19/2022]
Abstract
The post-translational modification of histone proteins plays an important role in controlling cell fate by directing essentially all DNA-associated nuclear processes. Misregulation and mutation of histone modifying enzymes is a hallmark of tumorigenesis. However, how these different epigenetic modifications lead to tumor initiation and/or progression remains poorly understood. Recent studies have uncovered a potential tumor suppressor role for histone H2B monoubiquitination (H2Bub1). Like many other histone modifications, H2Bub1 has diverse functions and plays roles both in transcriptional activation and repression as well as in controlling mRNA processing and directing DNA repair processes. Notably, H2Bub1 has been linked to transcriptional elongation and is preferentially found in the transcribed region of active genes. Its activity is intimately connected to active transcription and the transcriptional elongation regulatory protein cyclin-dependent kinase-9 (CDK9) and the facilitates chromatin transcription (FACT) complex. This review provides an overview of the current understanding of H2Bub1 function in mammalian systems with a particular emphasis on its role in cancer and potential options for exploiting this knowledge for the treatment of cancer.
Collapse
Affiliation(s)
- Steven A Johnsen
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany.
| |
Collapse
|
46
|
Simonis N, Rual JF, Lemmens I, Boxus M, Hirozane-Kishikawa T, Gatot JS, Dricot A, Hao T, Vertommen D, Legros S, Daakour S, Klitgord N, Martin M, Willaert JF, Dequiedt F, Navratil V, Cusick ME, Burny A, Van Lint C, Hill DE, Tavernier J, Kettmann R, Vidal M, Twizere JC. Host-pathogen interactome mapping for HTLV-1 and -2 retroviruses. Retrovirology 2012; 9:26. [PMID: 22458338 PMCID: PMC3351729 DOI: 10.1186/1742-4690-9-26] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 03/29/2012] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Human T-cell leukemia virus type 1 (HTLV-1) and type 2 both target T lymphocytes, yet induce radically different phenotypic outcomes. HTLV-1 is a causative agent of Adult T-cell leukemia (ATL), whereas HTLV-2, highly similar to HTLV-1, causes no known overt disease. HTLV gene products are engaged in a dynamic struggle of activating and antagonistic interactions with host cells. Investigations focused on one or a few genes have identified several human factors interacting with HTLV viral proteins. Most of the available interaction data concern the highly investigated HTLV-1 Tax protein. Identifying shared and distinct host-pathogen protein interaction profiles for these two viruses would enlighten how they exploit distinctive or common strategies to subvert cellular pathways toward disease progression. RESULTS We employ a scalable methodology for the systematic mapping and comparison of pathogen-host protein interactions that includes stringent yeast two-hybrid screening and systematic retest, as well as two independent validations through an additional protein interaction detection method and a functional transactivation assay. The final data set contained 166 interactions between 10 viral proteins and 122 human proteins. Among the 166 interactions identified, 87 and 79 involved HTLV-1 and HTLV-2 -encoded proteins, respectively. Targets for HTLV-1 and HTLV-2 proteins implicate a diverse set of cellular processes including the ubiquitin-proteasome system, the apoptosis, different cancer pathways and the Notch signaling pathway. CONCLUSIONS This study constitutes a first pass, with homogeneous data, at comparative analysis of host targets for HTLV-1 and -2 retroviruses, complements currently existing data for formulation of systems biology models of retroviral induced diseases and presents new insights on biological pathways involved in retroviral infection.
Collapse
Affiliation(s)
- Nicolas Simonis
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Ave,, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Domínguez-Sánchez MS, Barroso S, Gómez-González B, Luna R, Aguilera A. Genome instability and transcription elongation impairment in human cells depleted of THO/TREX. PLoS Genet 2011; 7:e1002386. [PMID: 22144908 PMCID: PMC3228816 DOI: 10.1371/journal.pgen.1002386] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 09/30/2011] [Indexed: 02/07/2023] Open
Abstract
THO/TREX connects transcription with genome integrity in yeast, but a role of mammalian THO in these processes is uncertain, which suggests a differential implication of mRNP biogenesis factors in genome integrity in yeast and humans. We show that human THO depletion impairs transcription elongation and mRNA export and increases instability associated with DNA breaks, leading to hyper-recombination and γH2AX and 53BP1 foci accumulation. This is accompanied by replication alteration as determined by DNA combing. Genome instability is R-loop–dependent, as deduced from the ability of the AID enzyme to increase DNA damage and of RNaseH to reduce it, or from the enhancement of R-loop–dependent class-switching caused by THOC1-depletion in CH12 murine cells. Therefore, mammalian THO prevents R-loop formation and has a role in genome dynamics and function consistent with an evolutionary conservation of the functional connection between these mRNP biogenesis factors and genome integrity that had not been anticipated. THO/TREX is an eukaryotic conserved complex, first identified in budding yeast, that acts at the interface between transcription and mRNP (ribonucleoprotein) export. In yeast, THO mutants show gene expression defects and a transcription-associated recombination phenotype. Despite the structural conservation of THO/TREX, it is unclear whether the functional relevance is the same in mammals, in which several reports have identified a role of THO/TREX separated from transcription. We have asked whether mammalian THO/TREX function is connected to transcription and whether this function is required to prevent R-loop formation and to maintain genome integrity. Our study reveals that depletion of human THO subunits, in particular THOC1/hHPR1, reduces transcription elongation, affects mRNA export, and increases genome instability associated with the accumulation of DNA breaks. This genome instability is R-loop–dependent and is accompanied by an alteration of global replication patterns and an increase in recombination. We conclude that human THO/TREX prevents the formation of R-loops that can compromise genome integrity. This work, therefore, provides experimental evidence for a role of mRNP biogenesis factors and R loops in genome integrity in humans.
Collapse
Affiliation(s)
- María S. Domínguez-Sánchez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla – Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Sonia Barroso
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla – Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla – Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Rosa Luna
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla – Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
- * E-mail: (AA); (RL)
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla – Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
- * E-mail: (AA); (RL)
| |
Collapse
|
48
|
Paronetto M, Miñana B, Valcárcel J. The Ewing Sarcoma Protein Regulates DNA Damage-Induced Alternative Splicing. Mol Cell 2011; 43:353-68. [DOI: 10.1016/j.molcel.2011.05.035] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 04/14/2011] [Accepted: 05/25/2011] [Indexed: 01/20/2023]
|
49
|
Duque P. A role for SR proteins in plant stress responses. PLANT SIGNALING & BEHAVIOR 2011; 6:49-54. [PMID: 21258207 PMCID: PMC3122005 DOI: 10.4161/psb.6.1.14063] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 10/31/2010] [Indexed: 05/19/2023]
Abstract
Members of the SR (serine/arginine-rich) protein gene family are key players in the regulation of alternative splicing, an important means of generating proteome diversity and regulating gene expression. In plants, marked changes in alternative splicing are induced by a wide variety of abiotic stresses, suggesting a role for this highly versatile gene regulation mechanism in the response to environmental cues. In support of this notion, the expression of plant SR proteins is stress-regulated at multiple levels, with environmental signals controlling their own alternative splicing patterns, phosphorylation status and subcellular distribution. Most importantly, functional links between these RNA-binding proteins and plant stress tolerance are beginning to emerge, including a role in the regulation of abscisic acid (ABA) signaling. Future identification of the physiological mRNA targets of plant SR proteins holds much promise for the elucidation of the molecular mechanisms underlying their role in the response to abiotic stress.
Collapse
Affiliation(s)
- Paula Duque
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| |
Collapse
|
50
|
The interface between transcription and mRNP export: from THO to THSC/TREX-2. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:533-8. [PMID: 20601280 DOI: 10.1016/j.bbagrm.2010.06.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 06/10/2010] [Accepted: 06/14/2010] [Indexed: 11/20/2022]
Abstract
Eukaryotic gene expression is a multilayer process covering transcription to post-translational protein modifications. As the nascent pre-mRNA emerges from the RNA polymerase II (RNAPII), it is packed in a messenger ribonucleoparticle (mRNP) whose optimal configuration is critical for the normal pre-mRNA processing and mRNA export, mRNA integrity as well as for transcription elongation efficiency. The interplay between transcription and mRNP formation feeds forward and backward and involves a number of conserved factors, from THO to THSC/TREX-2, which in addition have a unique impact on transcription-dependent genome instability. Here we review our actual knowledge of the role that these factors play at the interface between transcription and mRNA export in the model organism Saccharomyces cerevisiae.
Collapse
|