1
|
Arnold J, Ghosh S, Kasprzyk R, Brakonier M, Hanna M, Marx A, Shuman S. Chemical synthesis of 2″OMeNAD+ and its deployment as an RNA 2'-phosphotransferase (Tpt1) 'poison' that traps the enzyme on its abortive RNA-2'-PO4-(ADP-2″OMe-ribose) reaction intermediate. Nucleic Acids Res 2024; 52:10533-10542. [PMID: 39162230 PMCID: PMC11417386 DOI: 10.1093/nar/gkae695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024] Open
Abstract
RNA 2'-phosphotransferase Tpt1 catalyzes the removal of an internal RNA 2'-PO4 via a two-step mechanism in which: (i) the 2'-PO4 attacks NAD+ C1″ to form an RNA-2'-phospho-(ADP-ribose) intermediate and nicotinamide; and (ii) transesterification of the ADP-ribose O2″ to the RNA 2'-phosphodiester yields 2'-OH RNA and ADP-ribose-1″,2″-cyclic phosphate. Although Tpt1 enzymes are prevalent in bacteria, archaea, and eukarya, Tpt1 is uniquely essential in fungi and plants, where it erases the 2'-PO4 mark installed by tRNA ligases during tRNA splicing. To identify a Tpt1 'poison' that arrests the reaction after step 1, we developed a chemical synthesis of 2″OMeNAD+, an analog that cannot, in principle, support step 2 transesterification. We report that 2″OMeNAD+ is an effective step 1 substrate for Runella slithyformis Tpt1 (RslTpt1) in a reaction that generates the normally undetectable RNA-2'-phospho-(ADP-ribose) intermediate in amounts stoichiometric to Tpt1. EMSA assays demonstrate that RslTpt1 remains trapped in a stable complex with the abortive RNA-2'-phospho-(ADP-2″OMe-ribose) intermediate. Although 2″OMeNAD+ establishes the feasibility of poisoning and trapping a Tpt1 enzyme, its application is limited insofar as Tpt1 enzymes from fungal pathogens are unable to utilize this analog for step 1 catalysis. Analogs with smaller 2″-substitutions may prove advantageous in targeting the fungal enzymes.
Collapse
Affiliation(s)
- Jakob Arnold
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Shreya Ghosh
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Renata Kasprzyk
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Marcel Brakonier
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Markus Hanna
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
2
|
Ellsworth PN, Herring JA, Leifer AH, Ray JD, Elison WS, Poulson PD, Crabtree JE, Van Ry PM, Tessem JS. CEBPA Overexpression Enhances β-Cell Proliferation and Survival. BIOLOGY 2024; 13:110. [PMID: 38392328 PMCID: PMC10887016 DOI: 10.3390/biology13020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
A commonality between type 1 and type 2 diabetes is the decline in functional β-cell mass. The transcription factor Nkx6.1 regulates β-cell development and is integral for proper β-cell function. We have previously demonstrated that Nkx6.1 depends on c-Fos mediated upregulation and the nuclear hormone receptors Nr4a1 and Nr4a3 to increase β-cell insulin secretion, survival, and replication. Here, we demonstrate that Nkx6.1 overexpression results in upregulation of the bZip transcription factor CEBPA and that CEBPA expression is independent of c-Fos regulation. In turn, CEBPA overexpression is sufficient to enhance INS-1 832/13 β-cell and primary rat islet proliferation. CEBPA overexpression also increases the survival of β-cells treated with thapsigargin. We demonstrate that increased survival in response to ER stress corresponds with changes in expression of various genes involved in the unfolded protein response, including decreased Ire1a expression. These data show that CEBPA is sufficient to enhance functional β-cell mass by increasing β-cell proliferation and modulating the unfolded protein response.
Collapse
Affiliation(s)
- Peter N Ellsworth
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA
| | - Jacob A Herring
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Aaron H Leifer
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA
| | - Jason D Ray
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA
| | - Weston S Elison
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA
| | - Peter Daniel Poulson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Jacqueline E Crabtree
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA
| | - Pam M Van Ry
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Jeffery S Tessem
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
3
|
Abstract
Enzymes that phosphorylate, dephosphorylate, and ligate RNA 5' and 3' ends were discovered more than half a century ago and were eventually shown to repair purposeful site-specific endonucleolytic breaks in the RNA phosphodiester backbone. The pace of discovery and characterization of new candidate RNA repair activities in taxa from all phylogenetic domains greatly exceeds our understanding of the biological pathways in which they act. The key questions anent RNA break repair in vivo are (a) identifying the triggers, agents, and targets of RNA cleavage and (b) determining whether RNA repair results in restoration of the original RNA, modification of the RNA (by loss or gain at the ends), or rearrangements of the broken RNA segments (i.e., RNA recombination). This review provides a perspective on the discovery, mechanisms, and physiology of purposeful RNA break repair, highlighting exemplary repair pathways (e.g., tRNA restriction-repair and tRNA splicing) for which genetics has figured prominently in their elucidation.
Collapse
Affiliation(s)
- Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA;
| |
Collapse
|
4
|
Abstract
The study of eukaryotic tRNA processing has given rise to an explosion of new information and insights in the last several years. We now have unprecedented knowledge of each step in the tRNA processing pathway, revealing unexpected twists in biochemical pathways, multiple new connections with regulatory pathways, and numerous biological effects of defects in processing steps that have profound consequences throughout eukaryotes, leading to growth phenotypes in the yeast Saccharomyces cerevisiae and to neurological and other disorders in humans. This review highlights seminal new results within the pathways that comprise the life of a tRNA, from its birth after transcription until its death by decay. We focus on new findings and revelations in each step of the pathway including the end-processing and splicing steps, many of the numerous modifications throughout the main body and anticodon loop of tRNA that are so crucial for tRNA function, the intricate tRNA trafficking pathways, and the quality control decay pathways, as well as the biogenesis and biology of tRNA-derived fragments. We also describe the many interactions of these pathways with signaling and other pathways in the cell.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, Ohio 43235, USA
| |
Collapse
|
5
|
White LK, Strugar SM, MacFadden A, Hesselberth JR. Nanopore sequencing of internal 2'-PO 4 modifications installed by RNA repair. RNA (NEW YORK, N.Y.) 2023; 29:847-861. [PMID: 36854608 PMCID: PMC10187680 DOI: 10.1261/rna.079290.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 02/09/2023] [Indexed: 05/18/2023]
Abstract
Ligation by plant and fungal RNA ligases yields an internal 2'-phosphate group on each RNA ligation product. In budding yeast, this covalent mark occurs at the splice junction of two targets of ligation: intron-containing tRNAs and the messenger RNA HAC1 The repertoire of RNA molecules repaired by RNA ligation has not been explored due to a lack of unbiased approaches for identifying RNA ligation products. Here, we define several unique signals produced by 2'-phosphorylated RNAs during nanopore sequencing. A 2'-phosphate at the splice junction of HAC1 mRNA inhibits 5' → 3' degradation, enabling detection of decay intermediates in yeast RNA repair mutants by nanopore sequencing. During direct RNA sequencing, intact 2'-phosphorylated RNAs on HAC1 and tRNAs produce diagnostic changes in nanopore current properties and base calling features, including stalls produced as the modified RNA translocates through the nanopore motor protein. These approaches enable directed studies to identify novel RNA repair events in other contexts.
Collapse
Affiliation(s)
- Laura K White
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Saylor M Strugar
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Andrea MacFadden
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Jay R Hesselberth
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
6
|
Kuntawala DH, Martins F, Vitorino R, Rebelo S. Automatic Text-Mining Approach to Identify Molecular Target Candidates Associated with Metabolic Processes for Myotonic Dystrophy Type 1. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2283. [PMID: 36767649 PMCID: PMC9915907 DOI: 10.3390/ijerph20032283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant hereditary disease caused by abnormal expansion of unstable CTG repeats in the 3' untranslated region of the myotonic dystrophy protein kinase (DMPK) gene. This disease mainly affects skeletal muscle, resulting in myotonia, progressive distal muscle weakness, and atrophy, but also affects other tissues and systems, such as the heart and central nervous system. Despite some studies reporting therapeutic strategies for DM1, many issues remain unsolved, such as the contribution of metabolic and mitochondrial dysfunctions to DM1 pathogenesis. Therefore, it is crucial to identify molecular target candidates associated with metabolic processes for DM1. In this study, resorting to a bibliometric analysis, articles combining DM1, and metabolic/metabolism terms were identified and further analyzed using an unbiased strategy of automatic text mining with VOSviewer software. A list of candidate molecular targets for DM1 associated with metabolic/metabolism was generated and compared with genes previously associated with DM1 in the DisGeNET database. Furthermore, g:Profiler was used to perform a functional enrichment analysis using the Gene Ontology (GO) and REAC databases. Enriched signaling pathways were identified using integrated bioinformatics enrichment analyses. The results revealed that only 15 of the genes identified in the bibliometric analysis were previously associated with DM1 in the DisGeNET database. Of note, we identified 71 genes not previously associated with DM1, which are of particular interest and should be further explored. The functional enrichment analysis of these genes revealed that regulation of cellular metabolic and metabolic processes were the most associated biological processes. Additionally, a number of signaling pathways were found to be enriched, e.g., signaling by receptor tyrosine kinases, signaling by NRTK1 (TRKA), TRKA activation by NGF, PI3K-AKT activation, prolonged ERK activation events, and axon guidance. Overall, several valuable target candidates related to metabolic processes for DM1 were identified, such as NGF, NTRK1, RhoA, ROCK1, ROCK2, DAG, ACTA, ID1, ID2 MYOD, and MYOG. Therefore, our study strengthens the hypothesis that metabolic dysfunctions contribute to DM1 pathogenesis, and the exploitation of metabolic dysfunction targets is crucial for the development of future therapeutic interventions for DM1.
Collapse
|
7
|
Weixler L, Feijs KLH, Zaja R. ADP-ribosylation of RNA in mammalian cells is mediated by TRPT1 and multiple PARPs. Nucleic Acids Res 2022; 50:9426-9441. [PMID: 36018800 PMCID: PMC9458441 DOI: 10.1093/nar/gkac711] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022] Open
Abstract
RNA function relies heavily on posttranscriptional modifications. Recently, it was shown that certain PARPs and TRPT1 can ADP-ribosylate RNA in vitro. Traditionally, intracellular ADP-ribosylation has been considered mainly as a protein posttranslational modification. To date, it is not clear whether RNA ADP-ribosylation occurs in cells. Here we present evidence that different RNA species are ADP-ribosylated in human cells. The modification of cellular RNA is mediated by several transferases such as TRPT1, PARP10, PARP11, PARP12 and PARP15 and is counteracted by different hydrolases including TARG1, PARG and ARH3. In addition, diverse cellular stressors can modulate the content of ADP-ribosylated RNA in cells. We next investigated potential consequences of ADP-ribosylation for RNA and found that ADPr-capped mRNA is protected against XRN1 mediated degradation but is not translated. T4 RNA ligase 1 can ligate ADPr-RNA in absence of ATP, resulting in the incorporation of an abasic site. We thus provide the first evidence of RNA ADP-ribosylation in mammalian cells and postulate potential functions of this novel RNA modification.
Collapse
Affiliation(s)
- Lisa Weixler
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany
| | - Karla L H Feijs
- Correspondence may also be addressed to Karla L.H. Feijs. Tel: +49 2418080692; Fax: +49 2418082427;
| | - Roko Zaja
- To whom correspondence should be addressed. Tel: +49 2418037944; Fax: +49 2418082427;
| |
Collapse
|
8
|
Gerber JL, Köhler S, Peschek J. Eukaryotic tRNA splicing - one goal, two strategies, many players. Biol Chem 2022; 403:765-778. [PMID: 35621519 DOI: 10.1515/hsz-2021-0402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 05/10/2022] [Indexed: 12/28/2022]
Abstract
Transfer RNAs (tRNAs) are transcribed as precursor molecules that undergo several maturation steps before becoming functional for protein synthesis. One such processing mechanism is the enzyme-catalysed splicing of intron-containing pre-tRNAs. Eukaryotic tRNA splicing is an essential process since intron-containing tRNAs cannot fulfil their canonical function at the ribosome. Splicing of pre-tRNAs occurs in two steps: The introns are first excised by a tRNA-splicing endonuclease and the exons are subsequently sealed by an RNA ligase. An intriguing complexity has emerged from newly identified tRNA splicing factors and their interplay with other RNA processing pathways during the past few years. This review summarises our current understanding of eukaryotic tRNA splicing and the underlying enzyme machinery. We highlight recent structural advances and how they have shaped our mechanistic understanding of tRNA splicing in eukaryotic cells. A special focus lies on biochemically distinct strategies for exon-exon ligation in fungi versus metazoans.
Collapse
Affiliation(s)
- Janina L Gerber
- Biochemistry Center (BZH), Heidelberg University, D-69120 Heidelberg, Germany
| | - Sandra Köhler
- Biochemistry Center (BZH), Heidelberg University, D-69120 Heidelberg, Germany
| | - Jirka Peschek
- Biochemistry Center (BZH), Heidelberg University, D-69120 Heidelberg, Germany
| |
Collapse
|
9
|
Alphonse S, Banerjee A, Dantuluri S, Shuman S, Ghose R. NMR solution structures of Runella slithyformis RNA 2'-phosphotransferase Tpt1 provide insights into NAD+ binding and specificity. Nucleic Acids Res 2021; 49:9607-9624. [PMID: 33880546 PMCID: PMC8464070 DOI: 10.1093/nar/gkab241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 11/18/2022] Open
Abstract
Tpt1, an essential component of the fungal and plant tRNA splicing machinery, catalyzes transfer of an internal RNA 2′-PO4 to NAD+ yielding RNA 2′-OH and ADP-ribose-1′,2′-cyclic phosphate products. Here, we report NMR structures of the Tpt1 ortholog from the bacterium Runella slithyformis (RslTpt1), as apoenzyme and bound to NAD+. RslTpt1 consists of N- and C-terminal lobes with substantial inter-lobe dynamics in the free and NAD+-bound states. ITC measurements of RslTpt1 binding to NAD+ (KD ∼31 μM), ADP-ribose (∼96 μM) and ADP (∼123 μM) indicate that substrate affinity is determined primarily by the ADP moiety; no binding of NMN or nicotinamide is observed by ITC. NAD+-induced chemical shift perturbations (CSPs) localize exclusively to the RslTpt1 C-lobe. NADP+, which contains an adenylate 2′-PO4 (mimicking the substrate RNA 2′-PO4), binds with lower affinity (KD ∼1 mM) and elicits only N-lobe CSPs. The RslTpt1·NAD+ binary complex reveals C-lobe contacts to adenosine ribose hydroxyls (His99, Thr101), the adenine nucleobase (Asn105, Asp112, Gly113, Met117) and the nicotinamide riboside (Ser125, Gln126, Asn163, Val165), several of which are essential for RslTpt1 activity in vivo. Proximity of the NAD+ β-phosphate to ribose-C1″ suggests that it may stabilize an oxocarbenium transition-state during the first step of the Tpt1-catalyzed reaction.
Collapse
Affiliation(s)
- Sébastien Alphonse
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
| | - Ankan Banerjee
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | - Swathi Dantuluri
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA.,Graduate Program in Chemistry, The Graduate Center of CUNY, New York, NY 10016, USA.,Graduate Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA.,Graduate Program in Physics, The Graduate Center of CUNY, New York, NY 10016, USA
| |
Collapse
|
10
|
Mikolčević P, Hloušek-Kasun A, Ahel I, Mikoč A. ADP-ribosylation systems in bacteria and viruses. Comput Struct Biotechnol J 2021; 19:2366-2383. [PMID: 34025930 PMCID: PMC8120803 DOI: 10.1016/j.csbj.2021.04.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/30/2022] Open
Abstract
ADP-ribosylation is an ancient posttranslational modification present in all kingdoms of life. The system likely originated in bacteria where it functions in inter- and intra-species conflict, stress response and pathogenicity. It was repeatedly adopted via lateral transfer by eukaryotes, including humans, where it has a pivotal role in epigenetics, DNA-damage repair, apoptosis, and other crucial pathways including the immune response to pathogenic bacteria and viruses. In other words, the same ammunition used by pathogens is adapted by eukaryotes to fight back. While we know quite a lot about the eukaryotic system, expanding rather patchy knowledge on bacterial and viral ADP-ribosylation would give us not only a better understanding of the system as a whole but a fighting advantage in this constant arms race. By writing this review we hope to put into focus the available information and give a perspective on how this system works and can be exploited in the search for therapeutic targets in the future. The relevance of the subject is especially highlighted by the current situation of being amid the world pandemic caused by a virus harbouring and dependent on a representative of such a system.
Collapse
Affiliation(s)
- Petra Mikolčević
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, UK
| | - Andreja Mikoč
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
11
|
Dantuluri S, Schwer B, Abdullahu L, Damha MJ, Shuman S. Activity and substrate specificity of Candida, Aspergillus, and Coccidioides Tpt1: essential tRNA splicing enzymes and potential anti-fungal targets. RNA (NEW YORK, N.Y.) 2021; 27:rna.078660.120. [PMID: 33509912 PMCID: PMC8051265 DOI: 10.1261/rna.078660.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
The enzyme Tpt1 is an essential agent of fungal tRNA splicing that removes an internal RNA 2'-PO4 generated by fungal tRNA ligase. Tpt1 performs a two-step reaction in which: (i) the 2'-PO4 attacks NAD+ to form an RNA-2'-phospho-(ADP-ribose) intermediate; and (ii) transesterification of the ADP-ribose O2'' to the RNA 2'-phosphodiester yields 2'-OH RNA and ADP-ribose-1'',2''-cyclic phosphate. Because Tpt1 does not participate in metazoan tRNA splicing, and Tpt1 knockout has no apparent impact on mammalian physiology, Tpt1 is considered a potential anti-fungal drug target. Here we characterize Tpt1 enzymes from four human fungal pathogens: Coccidioides immitis, the agent of Valley Fever; Aspergillus fumigatus and Candida albicans, which cause invasive, often fatal, infections in immunocompromised hosts; and Candida auris, an emerging pathogen that is resistant to current therapies. All four pathogen Tpt1s were active in vivo in complementing a lethal Saccharomyces cerevisiae tpt1∆ mutation and in vitro in NAD+-dependent conversion of a 2'-PO4 to a 2'-OH. The fungal Tpt1s utilized nicotinamide hypoxanthine dinucleotide as a substrate in lieu of NAD+, albeit with much lower affinity, whereas nicotinic acid adenine dinucleotide was ineffective. Fungal Tpt1s efficiently removed an internal ribonucleotide 2'-phosphate from an otherwise all-DNA substrate. Replacement of an RNA ribose-2'-PO4 nucleotide with arabinose-2'-PO4 diminished enzyme specific activity by ≥2000-fold and selectively slowed step 2 of the reaction pathway, resulting in transient accumulation of an ara-2'-phospho-ADP-ribosylated intermediate. Our results implicate the 2'-PO4 ribonucleotide as the principal determinant of fungal Tpt1 nucleic acid substrate specificity.
Collapse
|
12
|
Yang S, Qu G, Fu B, Yang F, Zeng W, Cai Y, Ye T, Yang Y, Deng X, Xiang W, Peng D, Zhou B. The function of KptA/Tpt1 gene - a minor review. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:577-591. [PMID: 32438974 DOI: 10.1071/fp19159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 02/06/2020] [Indexed: 06/11/2023]
Abstract
Rapid response of uni- and multicellular organisms to environmental changes and their own growth is achieved through a series of molecular mechanisms, often involving modification of macromolecules, including nucleic acids, proteins and lipids. The ADP-ribosylation process has ability to modify these different macromolecules in cells, and is closely related to the biological processes, such as DNA replication, transcription, signal transduction, cell division, stress, microbial aging and pathogenesis. In addition, tRNA plays an essential role in the regulation of gene expression, as effector molecules, no-load tRNA affects the overall gene expression level of cells under some nutritional stress. KptA/Tpt1 is an essential phosphotransferase in the process of pre-tRNA splicing, releasing mature tRNA and participating in ADP-ribose. The objective of this review is concluding the gene structure, the evolution history and the function of KptA/Tpt1 from prokaryote to eukaryote organisms. At the same time, the results of promoter elements analysis were also shown in the present study. Moreover, the problems in the function of KptA/Tpt1 that have not been clarified at the present time are summarised, and some suggestions to solve those problems are given. This review presents no only a summary of clear function of KptA/Tpt1 in the process of tRNA splicing and ADP-ribosylation of organisms, but also gives some proposals to clarify unclear problems of it in the future.
Collapse
Affiliation(s)
- Shiquan Yang
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology,410004, Changsha, China
| | - Gaoyi Qu
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology,410004, Changsha, China
| | - Bixia Fu
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology,410004, Changsha, China
| | - Feng Yang
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology,410004, Changsha, China
| | - Weixian Zeng
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology,410004, Changsha, China
| | - Yunzhang Cai
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology,410004, Changsha, China
| | - Tao Ye
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology,410004, Changsha, China
| | | | - Xiangwen Deng
- National Engineering Laboratory of Applied Technology for Forestry and Ecology in Southern China, Changsha, Hunan, 410004, China
| | - Wenhua Xiang
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology,410004, Changsha, China; and Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong 438107, China; and National Engineering Laboratory of Applied Technology for Forestry and Ecology in Southern China, Changsha, Hunan, 410004, China
| | - Dan Peng
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology,410004, Changsha, China; and Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong 438107, China; and Forestry Biotechnology Hunan Key Laboratories, Changsha, Hunan, 410004, China
| | - Bo Zhou
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology,410004, Changsha, China; and Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong 438107, China; and National Engineering Laboratory of Applied Technology for Forestry and Ecology in Southern China, Changsha, Hunan, 410004, China; and Forestry Biotechnology Hunan Key Laboratories, Changsha, Hunan, 410004, China; and Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China; and Corresponding author.
| |
Collapse
|
13
|
Banerjee A, Goldgur Y, Schwer B, Shuman S. Atomic structures of the RNA end-healing 5'-OH kinase and 2',3'-cyclic phosphodiesterase domains of fungal tRNA ligase: conformational switches in the kinase upon binding of the GTP phosphate donor. Nucleic Acids Res 2020; 47:11826-11838. [PMID: 31722405 PMCID: PMC7145591 DOI: 10.1093/nar/gkz1049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/16/2019] [Accepted: 11/07/2019] [Indexed: 01/17/2023] Open
Abstract
Fungal tRNA ligase (Trl1) rectifies RNA breaks with 2′,3′-cyclic-PO4 and 5′-OH termini. Trl1 consists of three catalytic modules: an N-terminal ligase (LIG) domain; a central polynucleotide kinase (KIN) domain; and a C-terminal cyclic phosphodiesterase (CPD) domain. Trl1 enzymes found in all human fungal pathogens are untapped targets for antifungal drug discovery. Here we report a 1.9 Å crystal structure of Trl1 KIN-CPD from the pathogenic fungus Candida albicans, which adopts an extended conformation in which separate KIN and CPD domains are connected by an unstructured linker. CPD belongs to the 2H phosphotransferase superfamily by dint of its conserved central concave β sheet and interactions of its dual HxT motif histidines and threonines with phosphate in the active site. Additional active site motifs conserved among the fungal CPD clade of 2H enzymes are identified. We present structures of the Candida Trl1 KIN domain at 1.5 to 2.0 Å resolution—as apoenzyme and in complexes with GTP•Mg2+, IDP•PO4, and dGDP•PO4—that highlight conformational switches in the G-loop (which recognizes the guanine base) and lid-loop (poised over the nucleotide phosphates) that accompany nucleotide binding.
Collapse
Affiliation(s)
- Ankan Banerjee
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Yehuda Goldgur
- Structural Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Beate Schwer
- Microbiology and Immunology Department, Weill Cornell Medical College, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
14
|
Dantuluri S, Abdullahu L, Munir A, Katolik A, Damha MJ, Shuman S. Substrate analogs that trap the 2'-phospho-ADP-ribosylated RNA intermediate of the Tpt1 (tRNA 2'-phosphotransferase) reaction pathway. RNA (NEW YORK, N.Y.) 2020; 26:373-381. [PMID: 31932322 PMCID: PMC7075268 DOI: 10.1261/rna.074377.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/10/2020] [Indexed: 05/06/2023]
Abstract
The enzyme Tpt1 removes an internal RNA 2'-PO4 via a two-step reaction in which: (i) the 2'-PO4 attacks NAD+ to form an RNA-2'-phospho-(ADP-ribose) intermediate and nicotinamide; and (ii) transesterification of the ADP-ribose O2″ to the RNA 2'-phosphodiester yields 2'-OH RNA and ADP-ribose-1″,2″-cyclic phosphate. Because step 2 is much faster than step 1, the ADP-ribosylated RNA intermediate is virtually undetectable under normal circumstances. Here, by testing chemically modified nucleic acid substrates for activity with bacterial Tpt1 enzymes, we find that replacement of the ribose-2'-PO4 nucleotide with arabinose-2'-PO4 selectively slows step 2 of the reaction pathway and results in the transient accumulation of high levels of the reaction intermediate. We report that replacing the NMN ribose of NAD+ with 2'-fluoroarabinose (thereby eliminating the ribose O2″ nucleophile) results in durable trapping of RNA-2'-phospho-(ADP-fluoroarabinose) as a "dead-end" product of step 1. Tpt1 enzymes from diverse taxa differ in their capacity to use ara-2″F-NAD+ as a substrate.
Collapse
Affiliation(s)
- Swathi Dantuluri
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Leonora Abdullahu
- Department of Chemistry, McGill University, Montreal, Quebec H3A0B8, Canada
| | - Annum Munir
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Adam Katolik
- Department of Chemistry, McGill University, Montreal, Quebec H3A0B8, Canada
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec H3A0B8, Canada
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
15
|
Schmidt CA, Giusto JD, Bao A, Hopper AK, Matera AG. Molecular determinants of metazoan tricRNA biogenesis. Nucleic Acids Res 2020; 47:6452-6465. [PMID: 31032518 PMCID: PMC6614914 DOI: 10.1093/nar/gkz311] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/12/2019] [Accepted: 04/18/2019] [Indexed: 12/22/2022] Open
Abstract
Mature tRNAs are generated by multiple post-transcriptional processing steps, which can include intron removal. Recently, we discovered a new class of circular non-coding RNAs in metazoans, called tRNA intronic circular (tric)RNAs. To investigate the mechanism of tricRNA biogenesis, we generated constructs that replace native introns of human and fruit fly tRNA genes with the Broccoli fluorescent RNA aptamer. Using these reporters, we identified cis-acting elements required for tricRNA formation in vivo. Disrupting a conserved base pair in the anticodon-intron helix dramatically reduces tricRNA levels. Although the integrity of this base pair is necessary for proper splicing, it is not sufficient. In contrast, strengthening weak bases in the helix also interferes with splicing and tricRNA production. Furthermore, we identified trans-acting factors important for tricRNA biogenesis, including several known tRNA processing enzymes such as the RtcB ligase and components of the TSEN endonuclease complex. Depletion of these factors inhibits Drosophila tRNA intron circularization. Notably, RtcB is missing from fungal genomes and these organisms normally produce linear tRNA introns. Here, we show that in the presence of ectopic RtcB, yeast lacking the tRNA ligase Rlg1/Trl1 are converted into producing tricRNAs. In summary, our work characterizes the major players in eukaryotic tricRNA biogenesis.
Collapse
Affiliation(s)
- Casey A Schmidt
- Curriculum in Genetics & Molecular Biology and Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joseph D Giusto
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Alicia Bao
- Center for RNA Biology and Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Anita K Hopper
- Center for RNA Biology and Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - A Gregory Matera
- Curriculum in Genetics & Molecular Biology and Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
16
|
Rajabi A, Saber A, Pourmahdi M, Emami A, Ravanbakhsh R, Khodavirdipour A, Khodaei M, Akbarzadeh M, Abdolahi S, Hosseinpourfeizi MA, Safaralizadeh R. Anti-Cancer Effect of Melatonin via Downregulation of Delta-like Ligand 4 in Estrogen-Responsive Breast Cancer Cells. Recent Pat Anticancer Drug Discov 2020; 15:329-340. [PMID: 32990541 DOI: 10.2174/1574892815666200929145236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The Notch signaling pathway has a key role in angiogenesis and Delta - Like Ligand 4 (DLL4) is one of the main ligands of Notch involved in cell proliferation in sprouting vessels. OBJECTIVE In this study, we aimed to evaluate the expression of DLL4 in primary breast tumors and to examine the effect of melatonin on DLL4 expression in vitro. METHODS Eighty-five breast tumor and paired adjacent non-tumor tissue samples were collected. Apoptosis assay was performed on breast cancer cells to evaluate melatonin effects. Western blot and quantitative RT-PCR were used to measure DLL4 expression. Then, we investigated the effect of melatonin on the expression of DLL4 in four breast cancer cell lines at RNA and protein levels. We also performed a probabilistic neural network analysis to study genes closely associated with DLL4 expression. RESULTS Our results showed a significantly higher expression of DLL4 in tumor tissues compared to non-tumor tissues (P = 0.027). Melatonin treatment substantially attenuated DLL4 expression in BT474 and MCF-7 cells, but not in SK-BR-3 and MDA-MB-231 cells. Also, melatonin induced apoptosis in all four cell lines. Network analysis revealed a set of 15 genes that had close association and interaction with DLL4. DLL4 was overexpressed in breast cancer tissues as compared to the non-tumor tissues. CONCLUSION It can be concluded that melatonin treatment attenuated DLL4 expression only in estrogen- responsive breast cancer cells and is able to induce apoptosis in breast cancer cells.
Collapse
Affiliation(s)
- Ali Rajabi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ali Saber
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Mahsa Pourmahdi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ali Emami
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reyhaneh Ravanbakhsh
- Department of Aquatic Biotechnology, Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| | - Amir Khodavirdipour
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mehran Khodaei
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Molood Akbarzadeh
- Department of Biology, Faculty of Sciences, Azerbaijan Shahid Madani University, Tabriz, Iran
| | - Sepehr Abdolahi
- Department of Biology, Faculty of Sciences, Azerbaijan Shahid Madani University, Tabriz, Iran
| | | | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
17
|
BRIÑEZ-ORTEGA EDWIN, ALMEIDA VERALDE, LOPES JULIOC, BURGOS ANAE. Partial inclusion of bis(1,10-phenanthroline)silver(I) salicylate in β-cyclodextrin: Spectroscopic characterization, in vitro and in silico antimicrobial evaluation. AN ACAD BRAS CIENC 2020; 92:e20181323. [DOI: 10.1590/0001-3765202020181323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/03/2019] [Indexed: 01/13/2023] Open
|
18
|
Schmidt CA, Matera AG. tRNA introns: Presence, processing, and purpose. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1583. [DOI: 10.1002/wrna.1583] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Casey A. Schmidt
- Curriculum in Genetics and Molecular Biology Integrative Program for Biological and Genome Sciences, University of North Carolina Chapel Hill North Carolina
| | - A. Gregory Matera
- Curriculum in Genetics and Molecular Biology Integrative Program for Biological and Genome Sciences, University of North Carolina Chapel Hill North Carolina
- Department of Biology, Lineberger Comprehensive Cancer Center University of North Carolina Chapel Hill North Carolina
- Department of Genetics, Lineberger Comprehensive Cancer Center University of North Carolina Chapel Hill North Carolina
| |
Collapse
|
19
|
Munir A, Banerjee A, Shuman S. NAD+-dependent synthesis of a 5'-phospho-ADP-ribosylated RNA/DNA cap by RNA 2'-phosphotransferase Tpt1. Nucleic Acids Res 2019; 46:9617-9624. [PMID: 30202863 PMCID: PMC6182162 DOI: 10.1093/nar/gky792] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 08/24/2018] [Indexed: 11/13/2022] Open
Abstract
RNA 2′-phosphotransferase Tpt1 converts an internal RNA 2′-monophosphate to a 2′-OH via a two-step NAD+-dependent mechanism in which: (i) the 2′-phosphate attacks the C1″ of NAD+ to expel nicotinamide and form a 2′-phospho-ADP-ribosylated RNA intermediate; and (ii) the ADP-ribose O2″ attacks the phosphate of the RNA 2′-phospho-ADPR intermediate to expel the RNA 2′-OH and generate ADP-ribose 1″–2″ cyclic phosphate. Tpt1 is an essential component of the fungal tRNA splicing pathway that generates a unique 2′-PO4, 3′-5′ phosphodiester splice junction during tRNA ligation. The wide distribution of Tpt1 enzymes in taxa that have no fungal-type RNA ligase raises the prospect that Tpt1 might catalyze reactions other than RNA 2′-phosphate removal. A survey of Tpt1 enzymes from diverse sources reveals that whereas all of the Tpt1 enzymes are capable of NAD+-dependent conversion of an internal RNA 2′-PO4 to a 2′-OH (the canonical Tpt1 reaction), a subset of Tpt1 enzymes also catalyzed NAD+-dependent ADP-ribosylation of an RNA or DNA 5′-monophosphate terminus. Aeropyrum pernix Tpt1 (ApeTpt1) is particularly adept in this respect. One-step synthesis of a 5′-phospho-ADP-ribosylated cap structure by ApeTpt1 (with no subsequent 5′-phosphotransferase step) extends the repertoire of the Tpt1 enzyme family and the catalogue of ADP-ribosylation reactions involving nucleic acid acceptors.
Collapse
Affiliation(s)
- Annum Munir
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Ankan Banerjee
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
20
|
Munnur D, Bartlett E, Mikolčević P, Kirby IT, Matthias Rack JG, Mikoč A, Cohen MS, Ahel I. Reversible ADP-ribosylation of RNA. Nucleic Acids Res 2019; 47:5658-5669. [PMID: 31216043 PMCID: PMC6582358 DOI: 10.1093/nar/gkz305] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/10/2019] [Accepted: 04/23/2019] [Indexed: 12/17/2022] Open
Abstract
ADP-ribosylation is a reversible chemical modification catalysed by ADP-ribosyltransferases such as PARPs that utilize nicotinamide adenine dinucleotide (NAD+) as a cofactor to transfer monomer or polymers of ADP-ribose nucleotide onto macromolecular targets such as proteins and DNA. ADP-ribosylation plays an important role in several biological processes such as DNA repair, transcription, chromatin remodelling, host-virus interactions, cellular stress response and many more. Using biochemical methods we identify RNA as a novel target of reversible mono-ADP-ribosylation. We demonstrate that the human PARPs - PARP10, PARP11 and PARP15 as well as a highly diverged PARP homologue TRPT1, ADP-ribosylate phosphorylated ends of RNA. We further reveal that ADP-ribosylation of RNA mediated by PARP10 and TRPT1 can be efficiently reversed by several cellular ADP-ribosylhydrolases (PARG, TARG1, MACROD1, MACROD2 and ARH3), as well as by MACROD-like hydrolases from VEEV and SARS viruses. Finally, we show that TRPT1 and MACROD homologues in bacteria possess activities equivalent to the human proteins. Our data suggest that RNA ADP-ribosylation may represent a widespread and physiologically relevant form of reversible ADP-ribosylation signalling.
Collapse
Affiliation(s)
- Deeksha Munnur
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Edward Bartlett
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Petra Mikolčević
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ilsa T Kirby
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | - Andreja Mikoč
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Michael S Cohen
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
21
|
Banerjee A, Munir A, Abdullahu L, Damha MJ, Goldgur Y, Shuman S. Structure of tRNA splicing enzyme Tpt1 illuminates the mechanism of RNA 2'-PO 4 recognition and ADP-ribosylation. Nat Commun 2019; 10:218. [PMID: 30644400 PMCID: PMC6333775 DOI: 10.1038/s41467-018-08211-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/20/2018] [Indexed: 11/30/2022] Open
Abstract
Tpt1 is an essential agent of fungal tRNA splicing that removes the 2′-PO4 at the splice junction generated by fungal tRNA ligase. Tpt1 catalyzes a unique two-step reaction whereby the 2′-PO4 attacks NAD+ to form an RNA-2′-phospho-ADP-ribosyl intermediate that undergoes transesterification to yield 2′-OH RNA and ADP-ribose-1″,2″-cyclic phosphate products. Because Tpt1 is inessential in exemplary bacterial and mammalian taxa, Tpt1 is seen as an attractive antifungal target. Here we report a 1.4 Å crystal structure of Tpt1 in a product-mimetic complex with ADP-ribose-1″-phosphate in the NAD+ site and pAp in the RNA site. The structure reveals how Tpt1 recognizes a 2′-PO4 RNA splice junction and the mechanism of RNA phospho-ADP-ribosylation. This study also provides evidence that a bacterium has an endogenous phosphorylated substrate with which Tpt1 reacts. Tpt1 catalyzes the final essential step in yeast tRNA splicing and is a potential antifungal target. Here the authors provide structural insights into how Tpt1 recognizes a 2’-PO4 RNA splice junction and the mechanism of RNA phospho-ADP-ribosylation.
Collapse
Affiliation(s)
- Ankan Banerjee
- Molecular Biology and Structural Biology Programs, Sloan-Kettering Institute, New York, NY, 10065, USA
| | - Annum Munir
- Molecular Biology and Structural Biology Programs, Sloan-Kettering Institute, New York, NY, 10065, USA
| | - Leonora Abdullahu
- Chemistry Department, McGill University, Montreal, Quebec, H3A0B8, Canada
| | - Masad J Damha
- Chemistry Department, McGill University, Montreal, Quebec, H3A0B8, Canada
| | - Yehuda Goldgur
- Molecular Biology and Structural Biology Programs, Sloan-Kettering Institute, New York, NY, 10065, USA
| | - Stewart Shuman
- Molecular Biology and Structural Biology Programs, Sloan-Kettering Institute, New York, NY, 10065, USA.
| |
Collapse
|
22
|
Unlu I, Lu Y, Wang X. The cyclic phosphodiesterase CNP and RNA cyclase RtcA fine-tune noncanonical XBP1 splicing during ER stress. J Biol Chem 2018; 293:19365-19376. [PMID: 30355738 PMCID: PMC6302167 DOI: 10.1074/jbc.ra118.004872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
The activity of X box-binding protein 1 (XBP1), a master transcriptional regulator of endoplasmic reticulum (ER) homeostasis and the unfolded protein response (UPR), is controlled by a two-step noncanonical splicing reaction in the cytoplasm. The first step of nuclease cleavage by inositol-requiring enzyme 1 (IRE1), a protein kinase/endoribonuclease, is conserved in all eukaryotic cells. The second step of RNA ligation differs biochemically among species. In yeast, tRNA ligase 1 (Trl1) and tRNA 2'-phosphotransferase 1 (Tpt1) act through a 5'-PO4/3'-OH pathway. In metazoans, RNA 2',3'-cyclic phosphate and 5'-OH ligase (RtcB) ligate XBP1 exons via a 3'-PO4/5'-OH reaction. Although RtcB has been identified as the primary RNA ligase, evidence suggests that yeast-like ligase components may also operate in mammals. In this study, using mouse and human cell lines along with in vitro splicing assays, we investigated whether these components contribute to XBP1 splicing during ER stress. We found that the mammalian 2'-phosphotransferase Trpt1 does not contribute to XBP1 splicing even in the absence of RtcB. Instead, we found that 2',3'-cyclic nucleotide phosphodiesterase (CNP) suppresses RtcB-mediated XBP1 splicing by hydrolyzing 2',3'-cyclic phosphate into 2'-phosphate on the cleaved exon termini. By contrast, RNA 3'-terminal cyclase (RtcA), which converts 2'-phosphate back to 2',3'-cyclic phosphate, facilitated XBP1 splicing by increasing the number of compatible RNA termini for RtcB. Taken together, our results provide evidence that CNP and RtcA fine-tune XBP1 output during ER stress.
Collapse
Affiliation(s)
- Irem Unlu
- From the Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208
| | - Yanyan Lu
- From the Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208
| | - Xiaozhong Wang
- From the Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
23
|
Thapar R, Bacolla A, Oyeniran C, Brickner JR, Chinnam NB, Mosammaparast N, Tainer JA. RNA Modifications: Reversal Mechanisms and Cancer. Biochemistry 2018; 58:312-329. [PMID: 30346748 DOI: 10.1021/acs.biochem.8b00949] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An emerging molecular understanding of RNA alkylation and its removal is transforming our knowledge of RNA biology and its interplay with cancer chemotherapy responses. DNA modifications are known to perform critical functions depending on the genome template, including gene expression, DNA replication timing, and DNA damage protection, yet current results suggest that the chemical diversity of DNA modifications pales in comparison to those on RNA. More than 150 RNA modifications have been identified to date, and their complete functional implications are still being unveiled. These include intrinsic roles such as proper processing and RNA maturation; emerging evidence has furthermore uncovered RNA modification "readers", seemingly analogous to those identified for histone modifications. These modification recognition factors may regulate mRNA stability, localization, and interaction with translation machinery, affecting gene expression. Not surprisingly, tumors differentially modulate factors involved in expressing these marks, contributing to both tumorigenesis and responses to alkylating chemotherapy. Here we describe the current understanding of RNA modifications and their removal, with a focus primarily on methylation and alkylation as functionally relevant changes to the transcriptome. Intriguingly, some of the same RNA modifications elicited by physiological processes are also produced by alkylating agents, thus blurring the lines between what is a physiological mark and a damage-induced modification. Furthermore, we find that a high level of gene expression of enzymes with RNA dealkylation activity is a sensitive readout for poor survival in four different cancer types, underscoring the likely importance of examining RNA dealkylation mechanisms to cancer biology and for cancer treatment and prognosis.
Collapse
Affiliation(s)
- Roopa Thapar
- Department of Molecular and Cellular Oncology , University of Texas M. D. Anderson Cancer Center , Houston , Texas 77030 , United States
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology , University of Texas M. D. Anderson Cancer Center , Houston , Texas 77030 , United States
| | - Clement Oyeniran
- Department of Pathology and Immunology, Siteman Cancer Center , Washington University in St. Louis School of Medicine , St. Louis , Missouri 63110 , United States
| | - Joshua R Brickner
- Department of Pathology and Immunology, Siteman Cancer Center , Washington University in St. Louis School of Medicine , St. Louis , Missouri 63110 , United States
| | - Naga Babu Chinnam
- Department of Molecular and Cellular Oncology , University of Texas M. D. Anderson Cancer Center , Houston , Texas 77030 , United States
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Siteman Cancer Center , Washington University in St. Louis School of Medicine , St. Louis , Missouri 63110 , United States
| | - John A Tainer
- Department of Molecular and Cellular Oncology , University of Texas M. D. Anderson Cancer Center , Houston , Texas 77030 , United States
| |
Collapse
|
24
|
Cherry PD, White LK, York K, Hesselberth JR. Genetic bypass of essential RNA repair enzymes in budding yeast. RNA (NEW YORK, N.Y.) 2018; 24:313-323. [PMID: 29212664 PMCID: PMC5824351 DOI: 10.1261/rna.061788.117] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 12/04/2017] [Indexed: 05/15/2023]
Abstract
RNA repair enzymes catalyze rejoining of an RNA molecule after cleavage of phosphodiester linkages. RNA repair in budding yeast is catalyzed by two separate enzymes that process tRNA exons during their splicing and HAC1 mRNA exons during activation of the unfolded protein response (UPR). The RNA ligase Trl1 joins 2',3'-cyclic phosphate and 5'-hydroxyl RNA fragments, creating a phosphodiester linkage with a 2'-phosphate at the junction. The 2'-phosphate is removed by the 2'-phosphotransferase Tpt1. We bypassed the essential functions of TRL1 and TPT1 in budding yeast by expressing "prespliced," intronless versions of the 10 normally intron-containing tRNAs, indicating this repair pathway does not have additional essential functions. Consistent with previous studies, expression of intronless tRNAs failed to rescue the growth of cells with deletions in components of the SEN complex, implying an additional essential role for the splicing endonuclease. The trl1Δ and tpt1Δ mutants accumulate tRNA and HAC1 splicing intermediates indicative of RNA repair defects and are hypersensitive to drugs that inhibit translation. Failure to induce the unfolded protein response in trl1Δ cells grown with tunicamycin is lethal owing to their inability to ligate HAC1 after its cleavage by Ire1. In contrast, tpt1Δ mutants grow in the presence of tunicamycin despite reduced accumulation of spliced HAC1 mRNA. We optimized a PCR-based method to detect RNA 2'-phosphate modifications and show they are present on ligated HAC1 mRNA. These RNA repair mutants enable new studies of the role of RNA repair in cellular physiology.
Collapse
Affiliation(s)
- Patrick D Cherry
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Laura K White
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Kerri York
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Jay R Hesselberth
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
25
|
|
26
|
Abstract
Stress induced by accumulation of misfolded proteins in the endoplasmic reticulum is observed in many physiological and pathological conditions. To cope with endoplasmic reticulum stress, cells activate the unfolded protein response, a dynamic signalling network that orchestrates the recovery of homeostasis or triggers apoptosis, depending on the level of damage. Here we provide an overview of recent insights into the mechanisms that cells employ to maintain proteostasis and how the unfolded protein response determines cell fate under endoplasmic reticulum stress.
Collapse
|
27
|
The natural history of ADP-ribosyltransferases and the ADP-ribosylation system. Curr Top Microbiol Immunol 2015; 384:3-32. [PMID: 25027823 DOI: 10.1007/82_2014_414] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Catalysis of NAD(+)-dependent ADP-ribosylation of proteins, nucleic acids, or small molecules has evolved in at least three structurally unrelated superfamilies of enzymes, namely ADP-ribosyltransferase (ART), the Sirtuins, and probably TM1506. Of these, the ART superfamily is the most diverse in terms of structure, active site residues, and targets that they modify. The primary diversification of the ART superfamily occurred in the context of diverse bacterial conflict systems, wherein ARTs play both offensive and defensive roles. These include toxin-antitoxin systems, virus-host interactions, intraspecific antagonism (polymorphic toxins), symbiont/parasite effectors/toxins, resistance to antibiotics, and repair of RNAs cleaved in conflicts. ARTs evolving in these systems have been repeatedly acquired by lateral transfer throughout eukaryotic evolution, starting from the PARP family, which was acquired prior to the last eukaryotic common ancestor. They were incorporated into eukaryotic regulatory/epigenetic control systems (e.g., PARP family and NEURL4), and also used as defensive (e.g., pierisin and CARP-1 families) or immunity-related proteins (e.g., Gig2-like ARTs). The ADP-ribosylation system also includes other domains, such as the Macro, ADP-ribosyl glycohydrolase, NADAR, and ADP-ribosyl cyclase, which appear to have initially diversified in bacterial conflict-related systems. Unlike ARTs, sirtuins appear to have a much smaller presence in conflict-related systems.
Collapse
|
28
|
Lopes RRS, Kessler AC, Polycarpo C, Alfonzo JD. Cutting, dicing, healing and sealing: the molecular surgery of tRNA. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:337-49. [PMID: 25755220 DOI: 10.1002/wrna.1279] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/13/2015] [Accepted: 01/15/2015] [Indexed: 11/09/2022]
Abstract
All organisms encode transfer RNAs (tRNAs) that are synthesized as precursor molecules bearing extra sequences at their 5' and 3' ends; some tRNAs also contain introns, which are removed by splicing. Despite commonality in what the ultimate goal is (i.e., producing a mature tRNA), mechanistically, tRNA splicing differs between Bacteria and Archaea or Eukarya. The number and position of tRNA introns varies between organisms and even between different tRNAs within the same organism, suggesting a degree of plasticity in both the evolution and persistence of modern tRNA splicing systems. Here we will review recent findings that not only highlight nuances in splicing pathways but also provide potential reasons for the maintenance of introns in tRNA. Recently, connections between defects in the components of the tRNA splicing machinery and medically relevant phenotypes in humans have been reported. These differences will be discussed in terms of the importance of splicing for tRNA function and in a broader context on how tRNA splicing defects can often have unpredictable consequences.
Collapse
Affiliation(s)
- Raphael R S Lopes
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
29
|
Katolik A, Johnsson R, Montemayor E, Lackey JG, Hart PJ, Damha MJ. Regiospecific solid-phase synthesis of branched oligoribonucleotides that mimic intronic lariat RNA intermediates. J Org Chem 2014; 79:963-75. [PMID: 24401015 DOI: 10.1021/jo4024182] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have developed new solid phase methods for the synthesis of branched RNAs that mimic intronic lariat RNA intermediates. These methods produce branched oligoribonucleotide sequences of arbitrary length, base composition, and regiochemistry at the branchpoint junction. The methods utilize branching monomers that allow for the growth of each branch regioselectively from any of the hydroxyl positions (5′, 3′, or 2′) at the branch-point junction. The integrity and branchpoint connectivity of the synthetic products have been confirmed by HPLC and MS analysis, and cleavage of the 2′,5′ linkage by recombinant debranching enzyme. Nonhydrolyzable branched RNA analogues containing arabinose instead of ribose at the branchpoint junction were shown to inhibit debranching activity and, hence, represent “decoys” for sequestering RNA binding proteins thought to drive amyotrophic lateral sclerosis (ALS).
Collapse
|
30
|
Structure and mechanism of action of the hydroxy-aryl-aldehyde class of IRE1 endoribonuclease inhibitors. Nat Commun 2014; 5:4202. [PMID: 25164867 PMCID: PMC4486471 DOI: 10.1038/ncomms5202] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 05/22/2014] [Indexed: 12/20/2022] Open
Abstract
Endoplasmic reticulum (ER) stress activates the unfolded protein response and its dysfunction is linked to multiple diseases. The stress transducer IRE1α is a transmembrane kinase endoribonuclease (RNase) that cleaves mRNA substrates to re-establish ER homeostasis. Aromatic ring systems containing hydroxy-aldehyde moieties, termed hydroxy aryl aldehydes (HAA), selectively inhibit IRE1α RNase and thus represent a novel chemical series for therapeutic development. We solved crystal structures of murine IRE1α in complex with three HAA inhibitors. HAA inhibitors engage a shallow pocket at the RNase active site through pi-stacking interactions with His910 and Phe889, an essential Schiff base with Lys907 and a H-bond with Tyr892. Structure activity studies and mutational analysis of contact residues define the optimal chemical space of inhibitors and validate the inhibitor binding site. These studies lay the foundation for understanding both the biochemical and cellular functions of IRE1α using small molecule inhibitors and suggest new avenues for inhibitor design.
Collapse
|
31
|
Weitzer S, Hanada T, Penninger JM, Martinez J. CLP1 as a novel player in linking tRNA splicing to neurodegenerative disorders. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:47-63. [DOI: 10.1002/wrna.1255] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Stefan Weitzer
- IMBA; Institute of Molecular Biotechnology of the Academy of Sciences; Vienna Austria
| | - Toshikatsu Hanada
- TK Project, Medical Innovation Center; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Josef M. Penninger
- IMBA; Institute of Molecular Biotechnology of the Academy of Sciences; Vienna Austria
| | - Javier Martinez
- IMBA; Institute of Molecular Biotechnology of the Academy of Sciences; Vienna Austria
| |
Collapse
|
32
|
Lu Y, Liang FX, Wang X. A synthetic biology approach identifies the mammalian UPR RNA ligase RtcB. Mol Cell 2014; 55:758-70. [PMID: 25087875 DOI: 10.1016/j.molcel.2014.06.032] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/01/2014] [Accepted: 06/25/2014] [Indexed: 01/21/2023]
Abstract
Signaling in the ancestral branch of the unfolded protein response (UPR) is initiated by unconventional splicing of HAC1/XBP1 mRNA during endoplasmic reticulum (ER) stress. In mammals, IRE1α has been known to cleave the XBP1 intron. However, the enzyme responsible for ligation of two XBP1 exons remains unknown. Using an XBP1 splicing-based synthetic circuit, we identify RtcB as the primary UPR RNA ligase. In RtcB knockout cells, XBP1 mRNA splicing is defective during ER stress. Genetic rescue and in vitro splicing show that the RNA ligase activity of RtcB is directly required for the splicing of XBP1 mRNA. Taken together, these data demonstrate that RtcB is the long-sought RNA ligase that catalyzes unconventional RNA splicing during the mammalian UPR.
Collapse
Affiliation(s)
- Yanyan Lu
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Feng-Xia Liang
- Office of Collaborative Science Microscopy Core, New York University School of Medicine, New York, NY 10016, USA
| | - Xiaozhong Wang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
33
|
Yoshihisa T. Handling tRNA introns, archaeal way and eukaryotic way. Front Genet 2014; 5:213. [PMID: 25071838 PMCID: PMC4090602 DOI: 10.3389/fgene.2014.00213] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/20/2014] [Indexed: 11/25/2022] Open
Abstract
Introns are found in various tRNA genes in all the three kingdoms of life. Especially, archaeal and eukaryotic genomes are good sources of tRNA introns that are removed by proteinaceous splicing machinery. Most intron-containing tRNA genes both in archaea and eukaryotes possess an intron at a so-called canonical position, one nucleotide 3′ to their anticodon, while recent bioinformatics have revealed unusual types of tRNA introns and their derivatives especially in archaeal genomes. Gain and loss of tRNA introns during various stages of evolution are obvious both in archaea and eukaryotes from analyses of comparative genomics. The splicing of tRNA molecules has been studied extensively from biochemical and cell biological points of view, and such analyses of eukaryotic systems provided interesting findings in the past years. Here, I summarize recent progresses in the analyses of tRNA introns and the splicing process, and try to clarify new and old questions to be solved in the next stages.
Collapse
Affiliation(s)
- Tohru Yoshihisa
- Graduate School of Life Science, University of Hyogo Ako-gun, Hyogo, Japan
| |
Collapse
|
34
|
Transfer RNA post-transcriptional processing, turnover, and subcellular dynamics in the yeast Saccharomyces cerevisiae. Genetics 2013; 194:43-67. [PMID: 23633143 DOI: 10.1534/genetics.112.147470] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transfer RNAs (tRNAs) are essential for protein synthesis. In eukaryotes, tRNA biosynthesis employs a specialized RNA polymerase that generates initial transcripts that must be subsequently altered via a multitude of post-transcriptional steps before the tRNAs beome mature molecules that function in protein synthesis. Genetic, genomic, biochemical, and cell biological approaches possible in the powerful Saccharomyces cerevisiae system have led to exciting advances in our understandings of tRNA post-transcriptional processing as well as to novel insights into tRNA turnover and tRNA subcellular dynamics. tRNA processing steps include removal of transcribed leader and trailer sequences, addition of CCA to the 3' mature sequence and, for tRNA(His), addition of a 5' G. About 20% of yeast tRNAs are encoded by intron-containing genes. The three-step splicing process to remove the introns surprisingly occurs in the cytoplasm in yeast and each of the splicing enzymes appears to moonlight in functions in addition to tRNA splicing. There are 25 different nucleoside modifications that are added post-transcriptionally, creating tRNAs in which ∼15% of the residues are nucleosides other than A, G, U, or C. These modified nucleosides serve numerous important functions including tRNA discrimination, translation fidelity, and tRNA quality control. Mature tRNAs are very stable, but nevertheless yeast cells possess multiple pathways to degrade inappropriately processed or folded tRNAs. Mature tRNAs are also dynamic in cells, moving from the cytoplasm to the nucleus and back again to the cytoplasm; the mechanism and function of this retrograde process is poorly understood. Here, the state of knowledge for tRNA post-transcriptional processing, turnover, and subcellular dynamics is addressed, highlighting the questions that remain.
Collapse
|
35
|
Dhungel N, Hopper AK. Beyond tRNA cleavage: novel essential function for yeast tRNA splicing endonuclease unrelated to tRNA processing. Genes Dev 2012; 26:503-14. [PMID: 22391451 DOI: 10.1101/gad.183004.111] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pre-tRNA splicing is an essential process in all eukaryotes. In yeast and vertebrates, the enzyme catalyzing intron removal from pre-tRNA is a heterotetrameric complex (splicing endonuclease [SEN] complex). Although the SEN complex is conserved, the subcellular location where pre-tRNA splicing occurs is not. In yeast, the SEN complex is located at the cytoplasmic surface of mitochondria, whereas in vertebrates, pre-tRNA splicing is nuclear. We engineered yeast to mimic the vertebrate cell biology and demonstrate that all three steps of pre-tRNA splicing, as well as tRNA nuclear export and aminoacylation, occur efficiently when the SEN complex is nuclear. However, nuclear pre-tRNA splicing fails to complement growth defects of cells with defective mitochondrial-located splicing, suggesting that the yeast SEN complex surprisingly serves a novel and essential function in the cytoplasm that is unrelated to tRNA splicing. The novel function requires all four SEN complex subunits and the catalytic core. A subset of pre-rRNAs accumulates when the SEN complex is restricted to the nucleus, indicating that the SEN complex moonlights in rRNA processing. Thus, findings suggest that selection for the subcellular distribution of the SEN complex may reside not in its canonical, but rather in a novel, activity.
Collapse
Affiliation(s)
- Nripesh Dhungel
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
36
|
Popow J, Schleiffer A, Martinez J. Diversity and roles of (t)RNA ligases. Cell Mol Life Sci 2012; 69:2657-70. [PMID: 22426497 PMCID: PMC3400036 DOI: 10.1007/s00018-012-0944-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/01/2012] [Accepted: 02/13/2012] [Indexed: 12/29/2022]
Abstract
The discovery of discontiguous tRNA genes triggered studies dissecting the process of tRNA splicing. As a result, we have gained detailed mechanistic knowledge on enzymatic removal of tRNA introns catalyzed by endonuclease and ligase proteins. In addition to the elucidation of tRNA processing, these studies facilitated the discovery of additional functions of RNA ligases such as RNA repair and non-conventional mRNA splicing events. Recently, the identification of a new type of RNA ligases in bacteria, archaea, and humans closed a long-standing gap in the field of tRNA processing. This review summarizes past and recent findings in the field of tRNA splicing with a focus on RNA ligation as it preferentially occurs in archaea and humans. In addition to providing an integrated view of the types and phyletic distribution of RNA ligase proteins known to date, this survey also aims at highlighting known and potential accessory biological functions of RNA ligases.
Collapse
Affiliation(s)
- Johannes Popow
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohrgasse 3, 1030 Vienna, Austria
| | | | | |
Collapse
|
37
|
A novel feedback loop regulates the response to endoplasmic reticulum stress via the cooperation of cytoplasmic splicing and mRNA translation. Mol Cell Biol 2012; 32:992-1003. [PMID: 22215619 DOI: 10.1128/mcb.06665-11] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The accumulation of unfolded proteins in the endoplasmic reticulum (ER) triggers transcriptional and translational reprogramming. This unfolded protein response (UPR) protects cells during transient stress and can lead to apoptosis during prolonged stress. Two key mediators of the UPR are PKR-like ER kinase (PERK), which phosphorylates the α subunit of eukaryotic translation initiation factor 2 (eIF2α), resulting in decreased protein synthesis, and the α subunit of inositol-requiring enzyme 1 (IRE1α), which initiates cytoplasmic splicing of the mRNA encoding the transcription factor X-box binding protein 1 (XBP1). XBP1 induces transcription of genes involved in protein quality control. This report describes cross talk between these two pathways: phosphorylation of eIF2α was required for maximal induction of spliced XBP1 (XBP1s) protein levels via a mechanism that involved stabilization of XBP1s mRNA. By using mouse embryo fibroblasts deficient in UPR signaling pathways, we demonstrate that stress-induced stabilization of XBP1s mRNA requires cytoplasmic splicing of the mRNA and inhibition of its translation. Because the XBP1s protein promotes transcription of its own gene, the UPR-induced mRNA stabilization is part of a positive feedback loop that induces XBP1s protein accumulation and transcription of target genes during stress. We propose a model in which eIF2α phosphorylation-mediated control of mRNA turnover is a molecular switch that regulates the stress response transcription program and the ER's capacity for protein folding during stress.
Collapse
|
38
|
Tanaka N, Meineke B, Shuman S. RtcB, a novel RNA ligase, can catalyze tRNA splicing and HAC1 mRNA splicing in vivo. J Biol Chem 2011; 286:30253-30257. [PMID: 21757685 DOI: 10.1074/jbc.c111.274597] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RtcB enzymes are novel RNA ligases that join 2',3'-cyclic phosphate and 5'-OH ends. The phylogenetic distribution of RtcB points to its candidacy as a tRNA splicing/repair enzyme. Here we show that Escherichia coli RtcB is competent and sufficient for tRNA splicing in vivo by virtue of its ability to complement growth of yeast cells that lack the endogenous "healing/sealing-type" tRNA ligase Trl1. RtcB also protects yeast trl1Δ cells against a fungal ribotoxin that incises the anticodon loop of cellular tRNAs. Moreover, RtcB can replace Trl1 as the catalyst of HAC1 mRNA splicing during the unfolded protein response. Thus, RtcB is a bona fide RNA repair enzyme with broad physiological actions. Biochemical analysis of RtcB highlights the uniqueness of its active site and catalytic mechanism. Our findings draw attention to tRNA ligase as a promising drug target.
Collapse
Affiliation(s)
- Naoko Tanaka
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065
| | - Birthe Meineke
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065.
| |
Collapse
|
39
|
Shinya S, Kadokura H, Imagawa Y, Inoue M, Yanagitani K, Kohno K. Reconstitution and characterization of the unconventional splicing of XBP1u mRNA in vitro. Nucleic Acids Res 2011; 39:5245-54. [PMID: 21398633 PMCID: PMC3130286 DOI: 10.1093/nar/gkr132] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Upon endoplasmic reticulum (ER) stress, mammalian cells induce the synthesis of a transcriptional activator XBP1s to alleviate the stress. Under unstressed conditions, the messenger RNA (mRNA) for XBP1s exists in the cytosol as an unspliced precursor form, XBP1u mRNA. Thus, its intron must be removed for the synthesis of XBP1s. Upon ER stress, a stress sensor IRE1α cleaves XBP1u mRNA to initiate the unconventional splicing of XBP1u mRNA on the ER membrane. The liberated two exons are ligated to form the mature XBP1s mRNA. However, the mechanism of this splicing is still obscure mainly because the enzyme that joins XBP1s mRNA halves is unknown. Here, we reconstituted the whole splicing reaction of XBP1u mRNA in vitro. Using this assay, we showed that, consistent with the in vivo studies, mammalian cytosol indeed had RNA ligase that could join XBP1s mRNA halves. Further, the cleavage of XBP1u mRNA with IRE1α generated 2′, 3′-cyclic phosphate structure at the cleavage site. Interestingly, this phosphate was incorporated into XBP1s mRNA by the enzyme in the cytosol to ligate the two exons. These studies reveal the utility of the assay system and the unique properties of the mammalian cytosolic enzyme that can promote the splicing of XBP1u mRNA.
Collapse
Affiliation(s)
- Sayoko Shinya
- Laboratory of Molecular and Cell Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Popow J, Englert M, Weitzer S, Schleiffer A, Mierzwa B, Mechtler K, Trowitzsch S, Will CL, Lührmann R, Söll D, Martinez J. HSPC117 is the essential subunit of a human tRNA splicing ligase complex. Science 2011; 331:760-4. [PMID: 21311021 DOI: 10.1126/science.1197847] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Splicing of mammalian precursor transfer RNA (tRNA) molecules involves two enzymatic steps. First, intron removal by the tRNA splicing endonuclease generates separate 5' and 3' exons. In animals, the second step predominantly entails direct exon ligation by an elusive RNA ligase. Using activity-guided purification of tRNA ligase from HeLa cell extracts, we identified HSPC117, a member of the UPF0027 (RtcB) family, as the essential subunit of a tRNA ligase complex. RNA interference-mediated depletion of HSPC117 inhibited maturation of intron-containing pre-tRNA both in vitro and in living cells. The high sequence conservation of HSPC117/RtcB proteins is suggestive of RNA ligase roles of this protein family in various organisms.
Collapse
Affiliation(s)
- Johannes Popow
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Volkmann K, Lucas JL, Vuga D, Wang X, Brumm D, Stiles C, Kriebel D, Der-Sarkissian A, Krishnan K, Schweitzer C, Liu Z, Malyankar UM, Chiovitti D, Canny M, Durocher D, Sicheri F, Patterson JB. Potent and selective inhibitors of the inositol-requiring enzyme 1 endoribonuclease. J Biol Chem 2011; 286:12743-55. [PMID: 21303903 PMCID: PMC3069474 DOI: 10.1074/jbc.m110.199737] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Inositol-requiring enzyme 1 (IRE1) is the most highly conserved signaling node of the unfolded protein response (UPR) and represents a potential therapeutic target for a number of diseases associated with endoplasmic reticulum stress. IRE1 activates the XBP-1 transcription factor by site-specific cleavage of two hairpin loops within its mRNA to facilitate its nonconventional splicing and alternative translation. We screened for inhibitors using a construct containing the unique cytosolic kinase and endoribonuclease domains of human IRE1α (hIRE1α-cyto) and a mini-XBP-1 stem-loop RNA as the substrate. One class compounds was salicylaldehyde analogs from the hydrolyzed product of salicylaldimines in the library. Salicylaldehyde analogs were active in inhibiting the site-specific cleavage of several mini-XBP-1 stem-loop RNAs in a dose-dependent manner. Salicyaldehyde analogs were also active in inhibiting yeast Ire1 but had little activity inhibiting RNase L or the unrelated RNases A and T1. Kinetic analysis revealed that one potent salicylaldehyde analog, 3-ethoxy-5,6-dibromosalicylaldehyde, is a non-competitive inhibitor with respect to the XBP-1 RNA substrate. Surface plasmon resonance studies confirmed this compound bound to IRE1 in a specific, reversible and dose-dependent manner. Salicylaldehydes inhibited XBP-1 splicing induced pharmacologically in human cells. These compounds also blocked transcriptional up-regulation of known XBP-1 targets as well as mRNAs targeted for degradation by IRE1. Finally, the salicylaldehyde analog 3-methoxy-6-bromosalicylaldehyde strongly inhibited XBP-1 splicing in an in vivo model of acute endoplasmic reticulum stress. To our knowledge, salicylaldehyde analogs are the first reported specific IRE1 endoribonuclease inhibitors.
Collapse
Affiliation(s)
- Kori Volkmann
- MannKind Corporation, Valencia, California 91355, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Mori T, Ogasawara C, Inada T, Englert M, Beier H, Takezawa M, Endo T, Yoshihisa T. Dual functions of yeast tRNA ligase in the unfolded protein response: unconventional cytoplasmic splicing of HAC1 pre-mRNA is not sufficient to release translational attenuation. Mol Biol Cell 2010; 21:3722-34. [PMID: 20844078 PMCID: PMC2965688 DOI: 10.1091/mbc.e10-08-0693] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 09/07/2010] [Indexed: 11/11/2022] Open
Abstract
The unfolded protein response (UPR) is an essential signal transduction to cope with protein-folding stress in the endoplasmic reticulum. In the yeast UPR, the unconventional splicing of HAC1 mRNA is a key step. Translation of HAC1 pre-mRNA (HAC1(u) mRNA) is attenuated on polysomes and restarted only after splicing upon the UPR. However, the precise mechanism of this restart remained unclear. Here we show that yeast tRNA ligase (Rlg1p/Trl1p) acting on HAC1 ligation has an unexpected role in HAC1 translation. An RLG1 homologue from Arabidopsis thaliana (AtRLG1) substitutes for yeast RLG1 in tRNA splicing but not in the UPR. Surprisingly, AtRlg1p ligates HAC1 exons, but the spliced mRNA (HAC1(i) mRNA) is not translated efficiently. In the AtRLG1 cells, the HAC1 intron is circularized after splicing and remains associated on polysomes, impairing relief of the translational repression of HAC1(i) mRNA. Furthermore, the HAC1 5' UTR itself enables yeast Rlg1p to regulate translation of the following ORF. RNA IP revealed that yeast Rlg1p is integrated in HAC1 mRNP, before Ire1p cleaves HAC1(u) mRNA. These results indicate that the splicing and the release of translational attenuation of HAC1 mRNA are separable steps and that Rlg1p has pivotal roles in both of these steps.
Collapse
Affiliation(s)
| | | | - Toshifumi Inada
- Division of Biological Science, Graduate School of Science, and
| | - Markus Englert
- Institut für Biochemie, Universität Würzburg, Biozentrum, D-97074, Würzburg, Germany
| | - Hildburg Beier
- Institut für Biochemie, Universität Würzburg, Biozentrum, D-97074, Würzburg, Germany
| | - Mine Takezawa
- Research Center for Materials Science, Nagoya University, Nagoya, 464-8602, Japan
| | | | - Tohru Yoshihisa
- *Department of Chemistry and
- Research Center for Materials Science, Nagoya University, Nagoya, 464-8602, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama, 332-0012, Japan; and
| |
Collapse
|
43
|
Abstract
tRNA biology has come of age, revealing an unprecedented level of understanding and many unexpected discoveries along the way. This review highlights new findings on the diverse pathways of tRNA maturation, and on the formation and function of a number of modifications. Topics of special focus include the regulation of tRNA biosynthesis, quality control tRNA turnover mechanisms, widespread tRNA cleavage pathways activated in response to stress and other growth conditions, emerging evidence of signaling pathways involving tRNA and cleavage fragments, and the sophisticated intracellular tRNA trafficking that occurs during and after biosynthesis.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA.
| | | |
Collapse
|
44
|
Branchiostoma floridae has separate healing and sealing enzymes for 5'-phosphate RNA ligation. Proc Natl Acad Sci U S A 2010; 107:16834-9. [PMID: 20837552 DOI: 10.1073/pnas.1011703107] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Animal cells have two tRNA splicing pathways: (i) a 5'-P ligation mechanism, where the 5'-phosphate of the 3' tRNA half becomes the junction phosphate of the new phosphodiester linkage, and (ii) a 3'-P ligation process, in which the 3'-phosphate of the 5' tRNA half turns into the junction phosphate. Although both activities are known to exist in animals, in almost three decades of investigation, neither of the two RNA ligases has been identified. Here we describe a gene from the chordate Branchiostoma floridae that encodes an RNA ligase (Bf RNL) with a strict requirement for RNA substrates with a 2'-phosphate terminus for the ligation of RNAs with 5'-phosphate and 3'-hydroxyl ends. Unlike the yeast and plant tRNA ligases involved in tRNA splicing, Bf RNL lacks healing activities and requires the action of a polynucleotide kinase (PNK) and a cyclic phosphodiesterase (CDPase) in trans. The activities of these two enzymes were identified in a single B. floridae protein (Bf PNK/CPDase). The combined activities of Bf RNL and Bf PNK/CPDase are sufficient for the joining of tRNA splicing intermediates in vitro, and for the functional complementation of a tRNA ligase-deficient Saccharomyces cerevisiae strain in vivo. Hence, these two proteins constitute the 5'-P RNA ligation pathway in an animal organism.
Collapse
|
45
|
Hopper AK, Pai DA, Engelke DR. Cellular dynamics of tRNAs and their genes. FEBS Lett 2009; 584:310-7. [PMID: 19931532 DOI: 10.1016/j.febslet.2009.11.053] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/10/2009] [Accepted: 11/13/2009] [Indexed: 10/20/2022]
Abstract
This discussion focuses on the cellular dynamics of tRNA transcription, processing, and turnover. Early tRNA biosynthesis steps are shared among most tRNAs, while later ones are often individualized for specific tRNAs. In yeast, tRNA transcription and early processing occur coordinately in the nucleolus, requiring topological arrangement of approximately 300 tRNA genes and early processing enzymes to this site; later processing events occur in the nucleoplasm or cytoplasm. tRNA nuclear export requires multiple exporters which function in parallel and the export process is coupled with other cellular events. Nuclear-cytoplasmic tRNA subcellular movement is not unidirectional as a retrograde pathway delivers mature cytoplasmic tRNAs to the nucleus. Despite the long half-lives, there are multiple pathways to turnover damaged tRNAs or normal tRNAs upon cellular stress.
Collapse
Affiliation(s)
- Anita K Hopper
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, 484 W. 12th Ave., Room Riffe 800, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
46
|
|
47
|
Ramirez A, Shuman S, Schwer B. Human RNA 5'-kinase (hClp1) can function as a tRNA splicing enzyme in vivo. RNA (NEW YORK, N.Y.) 2008; 14:1737-45. [PMID: 18648070 PMCID: PMC2525948 DOI: 10.1261/rna.1142908] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 05/16/2008] [Indexed: 05/22/2023]
Abstract
Yeast and human Clp1 proteins are homologous components of the mRNA 3'-cleavage-polyadenylation machinery. Recent studies highlighting an association of human Clp1 (hClp1) with tRNA splicing endonuclease and an intrinsic RNA-specific 5'-OH polynucleotide kinase activity of hClp1 have prompted speculation that Clp1 might play a catalytic role in tRNA splicing in animal cells. Here, we show that expression of hClp1 in budding yeast can complement conditional and lethal mutations in the essential 5'-OH RNA kinase module of yeast or plant tRNA ligases. The tRNA splicing activity of hClp1 in yeast is abolished by mutations in the kinase active site. In contrast, overexpression of yeast Clp1 (yClp1) cannot rescue kinase-defective tRNA ligase mutants, and, unlike hClp1, the purified recombinant yClp1 protein has no detectable RNA kinase activity in vitro. Mutations of the yClp1 ATP-binding site do not affect yeast viability. These findings, and the fact that hClp1 cannot complement growth of a yeast clp1Delta strain, indicate that yeast and human Clp1 proteins are not functional orthologs, despite their structural similarity. Although hClp1 can perform the 5'-end-healing step of a yeast-type tRNA splicing pathway in vivo, it is uncertain whether its kinase activity is necessary for tRNA splicing in human cells, given that other mammalian counterparts of yeast-type tRNA repair enzymes are nonessential in vivo.
Collapse
Affiliation(s)
- Alejandro Ramirez
- Graduate Program in Molecular Biology, Weill Cornell Medical College, New York, New York 10065, USA
| | | | | |
Collapse
|
48
|
Schwer B, Aronova A, Ramirez A, Braun P, Shuman S. Mammalian 2',3' cyclic nucleotide phosphodiesterase (CNP) can function as a tRNA splicing enzyme in vivo. RNA (NEW YORK, N.Y.) 2008; 14:204-10. [PMID: 18094118 PMCID: PMC2212240 DOI: 10.1261/rna.858108] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 11/06/2007] [Indexed: 05/24/2023]
Abstract
Yeast and plant tRNA splicing entails discrete healing and sealing steps catalyzed by a tRNA ligase that converts the 2',3' cyclic phosphate and 5'-OH termini of the broken tRNA exons to 3'-OH/2'-PO4 and 5'-PO4 ends, respectively, then joins the ends to yield a 2'-PO4, 3'-5' phosphodiester splice junction. The junction 2'-PO4 is removed by a tRNA phosphotransferase, Tpt1. Animal cells have two potential tRNA repair pathways: a yeast-like system plus a distinctive mechanism, also present in archaea, in which the 2',3' cyclic phosphate and 5'-OH termini are ligated directly. Here we report that a mammalian 2',3' cyclic nucleotide phosphodiesterase (CNP) can perform the essential 3' end-healing steps of tRNA splicing in yeast and thereby complement growth of strains bearing lethal or temperature-sensitive mutations in the tRNA ligase 3' end-healing domain. Although this is the first evidence of an RNA processing function in vivo for the mammalian CNP protein, it seems unlikely that the yeast-like pathway is responsible for animal tRNA splicing, insofar as neither CNP nor Tpt1 is essential in mice.
Collapse
|