1
|
Pandey P, Wackowski K, Dubey AP, Read LK. DRBD18 acts as a transcript-specific RNA editing auxiliary factor in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2025; 31:245-257. [PMID: 39658097 PMCID: PMC11789491 DOI: 10.1261/rna.080295.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/16/2024] [Indexed: 12/12/2024]
Abstract
Uridine insertion/deletion (U-indel) RNA editing of mitochondrial transcripts is a posttranscriptional modification in kinetoplastid organisms, resulting in the generation of mature mRNAs from cryptic precursors. This RNA editing process involves a multiprotein complex holoenzyme and multiple accessory factors. Recent investigations have highlighted the pivotal involvement of accessory RNA-binding proteins (RBPs) in modulating RNA editing in Trypanosoma brucei, often in a transcript-specific manner. DRBD18 is a multifunctional RBP that reportedly impacts the stability, processing, export, and translation of nuclear-encoded mRNAs. However, mass spectrometry studies report DRBD18-RESC interactions, prompting us to investigate its role in mitochondrial U-indel RNA editing. In this study, we demonstrate the specific and RNase-sensitive interaction of DRBD18 with multiple RESC factors. Depletion of DRBD18 through RNA interference in procyclic form T. brucei leads to a significant reduction in the levels of edited A6 and COIII mitochondrial transcripts, whereas its overexpression causes a notable increase in the abundance of these edited mRNAs. RNA immunoprecipitation/qRT-PCR analysis indicates a direct role for DRBD18 in A6 and COIII mRNA editing. We also examined the impact of arginine methylation of DRBD18 in the editing process, revealing that the hypomethylated form of DRBD18, rather than the arginine-methylated version, is essential for promoting these editing events. In conclusion, our findings demonstrate that DRBD18 directly affects the editing of A6 and COIII mRNAs, with its function being modulated by its arginine methylation status, marking the first report of a mitochondrial function for this protein and identifying it as a newly characterized RNA editing auxiliary factor.
Collapse
Affiliation(s)
- Parul Pandey
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| | - Katherine Wackowski
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| | - Ashutosh P Dubey
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| | - Laurie K Read
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| |
Collapse
|
2
|
Meehan J, Ivens A, Grote S, Rodshagen T, Chen Z, Goode C, Sharma S, Kumar V, Frese A, Goodall Z, McCleskey L, Sechrist R, Zeng L, Savill N, Rouskin S, Schnaufer A, McDermott S, Cruz-Reyes J. KREH2 helicase represses ND7 mRNA editing in procyclic-stage Trypanosoma brucei by opposite modulation of canonical and 'moonlighting' gRNA utilization creating a proposed mRNA structure. Nucleic Acids Res 2024; 52:11940-11959. [PMID: 39149912 PMCID: PMC11514453 DOI: 10.1093/nar/gkae699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024] Open
Abstract
Unknown factors regulate mitochondrial U-insertion/deletion (U-indel) RNA editing in procyclic-form (PCF) and bloodstream-form (BSF) T. brucei. This editing, directed by anti-sense gRNAs, creates canonical protein-encoding mRNAs and may developmentally control respiration. Canonical editing by gRNAs that specify protein-encoding mRNA sequences occurs amid massive non-canonical editing of unclear sources and biological significance. We found PCF-specific repression at a major early checkpoint in mRNA ND7, involving helicase KREH2-dependent opposite modulation of canonical and non-canonical 'terminator' gRNA utilization. Terminator-programmed editing derails canonical editing and installs proposed repressive structure in 30% of the ND7 transcriptome. BSF-to-PCF differentiation in vitro recreated this negative control. Remarkably, KREH2-RNAi knockdown relieved repression and increased editing progression by reverting canonical/terminator gRNA utilization. ND7 transcripts lacking early terminator-directed editing in PCF exhibited similar negative editing control along the mRNA sequence, suggesting global modulation of gRNA utilization fidelity. The terminator is a 'moonlighting' gRNA also associated with mRNA COX3 canonical editing, so the gRNA transcriptome seems multifunctional. Thus, KREH2 is the first identified repressor in developmental editing control. This and our prior work support a model whereby KREH2 activates or represses editing in a stage and substrate-specific manner. KREH2's novel dual role tunes mitochondrial gene expression in either direction during development.
Collapse
Affiliation(s)
- Joshua Meehan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Alasdair Ivens
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Scott Grote
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Tyler Rodshagen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Zihao Chen
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Cody Goode
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Sunil K Sharma
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Vikas Kumar
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Addison Frese
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Zachary Goodall
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Laura McCleskey
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Rebecca Sechrist
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Lanying Zeng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Nicholas J Savill
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Silvi Rouskin
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Achim Schnaufer
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Suzanne M McDermott
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Jorge Cruz-Reyes
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
3
|
Meehan J, McDermott SM, Ivens A, Goodall Z, Chen Z, Yu Z, Woo J, Rodshagen T, McCleskey L, Sechrist R, Stuart K, Zeng L, Rouskin S, Savill N, Schnaufer A, Zhang X, Cruz-Reyes J. Trypanosome RNA helicase KREH2 differentially controls non-canonical editing and putative repressive structure via a novel proposed 'bifunctional' gRNA in mRNA A6. Nucleic Acids Res 2023; 51:6944-6965. [PMID: 37246647 PMCID: PMC10359474 DOI: 10.1093/nar/gkad453] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/07/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023] Open
Abstract
U-insertion/deletion (U-indel) RNA editing in trypanosome mitochondria is directed by guide RNAs (gRNAs). This editing may developmentally control respiration in bloodstream forms (BSF) and insect procyclic forms (PCF). Holo-editosomes include the accessory RNA Editing Substrate Binding Complex (RESC) and RNA Editing Helicase 2 Complex (REH2C), but the specific proteins controlling differential editing remain unknown. Also, RNA editing appears highly error prone because most U-indels do not match the canonical pattern. However, despite extensive non-canonical editing of unknown functions, accurate canonical editing is required for normal cell growth. In PCF, REH2C controls editing fidelity in RESC-bound mRNAs. Here, we report that KREH2, a REH2C-associated helicase, developmentally controls programmed non-canonical editing, including an abundant 3' element in ATPase subunit 6 (A6) mRNA. The 3' element sequence is directed by a proposed novel regulatory gRNA. In PCF, KREH2 RNAi-knockdown up-regulates the 3' element, which establishes a stable structure hindering element removal by canonical initiator-gRNA-directed editing. In BSF, KREH2-knockdown does not up-regulate the 3' element but reduces its high abundance. Thus, KREH2 differentially controls extensive non-canonical editing and associated RNA structure via a novel regulatory gRNA, potentially hijacking factors as a 'molecular sponge'. Furthermore, this gRNA is bifunctional, serving in canonical CR4 mRNA editing whilst installing a structural element in A6 mRNA.
Collapse
Affiliation(s)
- Joshua Meehan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Suzanne M McDermott
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
- Departments of Pediatrics and Global Health, University of Washington School of Medicine, Seattle, WA, USA
| | - Alasdair Ivens
- Departments of Pediatrics and Global Health, University of Washington School of Medicine, Seattle, WA, USA
| | - Zachary Goodall
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Zihao Chen
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Zihao Yu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Jia Woo
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Tyler Rodshagen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Laura McCleskey
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Rebecca Sechrist
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Kenneth Stuart
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
- Departments of Pediatrics and Global Health, University of Washington School of Medicine, Seattle, WA, USA
| | - Lanying Zeng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Silvi Rouskin
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas J Savill
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Achim Schnaufer
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Jorge Cruz-Reyes
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
4
|
Carnes J, Gendrin C, McDermott SM, Stuart K. KRGG1 function in RNA editing in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2023; 29:228-240. [PMID: 36400448 PMCID: PMC9891254 DOI: 10.1261/rna.079418.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/11/2022] [Indexed: 05/20/2023]
Abstract
Mitochondrial gene expression in trypanosomes requires numerous multiprotein complexes that are unique to kinetoplastids. Among these, the most well characterized are RNA editing catalytic complexes (RECCs) that catalyze the guide RNA (gRNA)-specified insertion and deletion of uridines during mitochondrial mRNA maturation. This post-transcriptional resequencing of mitochondrial mRNAs can be extensive, involving dozens of different gRNAs and hundreds of editing sites with most of the mature mRNA sequences resulting from the editing process. Proper coordination of the editing with the cognate gRNAs is attributed to RNA editing substrate-binding complexes (RESCs), which are also required for RNA editing. Although the precise mechanism of RESC function is less well understood, their affinity for binding both editing substrates and products suggests that these complexes may provide a scaffold for RECC catalytic processing. KRGG1 has been shown to bind RNAs, and although affinity purification co-isolates RESC complexes, its role in RNA editing remains uncertain. We show here that KRGG1 is essential in BF parasites and required for normal editing. KRGG1 repression results in reduced amounts of edited A6 mRNA and increased amounts of edited ND8 mRNA. Sequence and structure analysis of KRGG1 identified a region of homology with RESC6, and both proteins have predicted tandem helical repeats that resemble ARM/HEAT motifs. The ARM/HEAT-like region is critical for function as exclusive expression of mutated KRGG1 results in growth inhibition and disruption of KRGG1 association with RESCs. These results indicate that KRGG1 is critical for RNA editing and its specific function is associated with RESC activity.
Collapse
Affiliation(s)
- Jason Carnes
- Seattle Children's Research Institute, Seattle, Washington 98109, USA
| | - Claire Gendrin
- Seattle Children's Research Institute, Seattle, Washington 98109, USA
| | | | - Kenneth Stuart
- Seattle Children's Research Institute, Seattle, Washington 98109, USA
- Department of Pediatrics and Global Health, University of Washington, Seattle, Washington 98105, USA
| |
Collapse
|
5
|
Dubey AP, Tylec BL, McAdams NM, Sortino K, Read L. Trypanosome RNAEditing Substrate Binding Complex integrity and function depends on the upstream action of RESC10. Nucleic Acids Res 2021; 49:3557-3572. [PMID: 33677542 PMCID: PMC8034615 DOI: 10.1093/nar/gkab129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 01/17/2023] Open
Abstract
Uridine insertion/deletion editing of mitochondrial mRNAs is a characteristic feature of kinetoplastids, including Trypanosoma brucei. Editing is directed by trans-acting gRNAs and catalyzed by related RNA Editing Core Complexes (RECCs). The non-catalytic RNA Editing Substrate Binding Complex (RESC) coordinates interactions between RECC, gRNA and mRNA. RESC is a dynamic complex comprising GRBC (Guide RNA Binding Complex) and heterogeneous REMCs (RNA Editing Mediator Complexes). Here, we show that RESC10 is an essential, low abundance, RNA binding protein that exhibits RNase-sensitive and RNase-insensitive interactions with RESC proteins, albeit its minimal in vivo interaction with RESC13. RESC10 RNAi causes extensive RESC disorganization, including disruption of intra-GRBC protein-protein interactions, as well as mRNA depletion from GRBC and accumulation on REMCs. Analysis of mitochondrial RNAs at single nucleotide resolution reveals transcript-specific effects: RESC10 dramatically impacts editing progression in pan-edited RPS12 mRNA, but is critical for editing initiation in mRNAs with internally initiating gRNAs, pointing to distinct initiation mechanisms for these RNA classes. Correlations between sites at which editing pauses in RESC10 depleted cells and those in knockdowns of previously studied RESC proteins suggest that RESC10 acts upstream of these factors and that RESC is particularly important in promoting transitions between uridine insertion and deletion RECCs.
Collapse
Affiliation(s)
- Ashutosh P Dubey
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Brianna L Tylec
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Natalie M McAdams
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Katherine Sortino
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Laurie K Read
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
6
|
Kumar V, Ivens A, Goodall Z, Meehan J, Doharey PK, Hillhouse A, Hurtado DO, Cai JJ, Zhang X, Schnaufer A, Cruz-Reyes J. Site-specific and substrate-specific control of accurate mRNA editing by a helicase complex in trypanosomes. RNA (NEW YORK, N.Y.) 2020; 26:1862-1881. [PMID: 32873716 PMCID: PMC7668249 DOI: 10.1261/rna.076513.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/22/2020] [Indexed: 05/21/2023]
Abstract
Trypanosome U-insertion/deletion RNA editing in mitochondrial mRNAs involves guide RNAs (gRNAs) and the auxiliary RNA editing substrate binding complex (RESC) and RNA editing helicase 2 complex (REH2C). RESC and REH2C stably copurify with editing mRNAs but the functional interplay between these complexes remains unclear. Most steady-state mRNAs are partially edited and include misedited "junction" regions that match neither pre-mRNA nor fully edited transcripts. Editing specificity is central to mitochondrial RNA maturation and function, but its basic control mechanisms remain unclear. Here we applied a novel nucleotide-resolution RNA-seq approach to examine ribosomal protein subunit 12 (RPS12) and ATPase subunit 6 (A6) mRNA transcripts. We directly compared transcripts associated with RESC and REH2C to those found in total mitochondrial RNA. RESC-associated transcripts exhibited site-preferential enrichments in total and accurate edits. REH2C loss-of-function induced similar substrate-specific and site-specific editing effects in total and RESC-associated RNA. It decreased total editing primarily at RPS12 5' positions but increased total editing at examined A6 3' positions. REH2C loss-of-function caused site-preferential loss of accurate editing in both transcripts. However, changes in total or accurate edits did not necessarily involve common sites. A few 5' nucleotides of the initiating gRNA (gRNA-1) directed accurate editing in both transcripts. However, in RPS12, two conserved 3'-terminal adenines in gRNA-1 could direct a noncanonical 2U-insertion that causes major pausing in 3'-5' progression. In A6, a noncanonical sequence element that depends on REH2C in a region normally targeted by the 3' half of gRNA-1 may hinder early editing progression. Overall, we defined transcript-specific effects of REH2C loss.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Biochemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Alasdair Ivens
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, Scotland, United Kingdom
| | - Zachary Goodall
- Department of Biochemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Joshua Meehan
- Department of Biochemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Pawan Kumar Doharey
- Department of Biochemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Andrew Hillhouse
- Texas A&M Institute for Genome Sciences and Society, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - Daniel Osorio Hurtado
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA
| | - James J Cai
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA
| | - Xiuren Zhang
- Department of Biochemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Achim Schnaufer
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, Scotland, United Kingdom
| | - Jorge Cruz-Reyes
- Department of Biochemistry, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
7
|
Aphasizheva I, Alfonzo J, Carnes J, Cestari I, Cruz-Reyes J, Göringer HU, Hajduk S, Lukeš J, Madison-Antenucci S, Maslov DA, McDermott SM, Ochsenreiter T, Read LK, Salavati R, Schnaufer A, Schneider A, Simpson L, Stuart K, Yurchenko V, Zhou ZH, Zíková A, Zhang L, Zimmer S, Aphasizhev R. Lexis and Grammar of Mitochondrial RNA Processing in Trypanosomes. Trends Parasitol 2020; 36:337-355. [PMID: 32191849 PMCID: PMC7083771 DOI: 10.1016/j.pt.2020.01.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 12/15/2022]
Abstract
Trypanosoma brucei spp. cause African human and animal trypanosomiasis, a burden on health and economy in Africa. These hemoflagellates are distinguished by a kinetoplast nucleoid containing mitochondrial DNAs of two kinds: maxicircles encoding ribosomal RNAs (rRNAs) and proteins and minicircles bearing guide RNAs (gRNAs) for mRNA editing. All RNAs are produced by a phage-type RNA polymerase as 3' extended precursors, which undergo exonucleolytic trimming. Most pre-mRNAs proceed through 3' adenylation, uridine insertion/deletion editing, and 3' A/U-tailing. The rRNAs and gRNAs are 3' uridylated. Historically, RNA editing has attracted major research effort, and recently essential pre- and postediting processing events have been discovered. Here, we classify the key players that transform primary transcripts into mature molecules and regulate their function and turnover.
Collapse
Affiliation(s)
- Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA 02118, USA.
| | - Juan Alfonzo
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Jason Carnes
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Igor Cestari
- Institute of Parasitology, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, H9X3V9, Québec, Canada
| | - Jorge Cruz-Reyes
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - H Ulrich Göringer
- Department of Molecular Genetics, Darmstadt University of Technology, 64287 Darmstadt, Germany
| | - Stephen Hajduk
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Susan Madison-Antenucci
- Parasitology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | - Dmitri A Maslov
- Department of Molecular, Cell, and Systems Biology, University of California - Riverside, Riverside, CA 92521, USA
| | - Suzanne M McDermott
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Torsten Ochsenreiter
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern CH-3012, Switzerland
| | - Laurie K Read
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Reza Salavati
- Institute of Parasitology, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, H9X3V9, Québec, Canada
| | - Achim Schnaufer
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Bern CH-3012, Switzerland
| | - Larry Simpson
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095, USA
| | - Kenneth Stuart
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic; Martsinovsky Institute of Medical Parasitology, Sechenov University, Moscow, Russia
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095, USA
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Liye Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Sara Zimmer
- University of Minnesota Medical School, Duluth campus, Duluth, MN 55812, USA
| | - Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA 02118, USA
| |
Collapse
|
8
|
McAdams NM, Harrison GL, Tylec BL, Ammerman ML, Chen R, Sun Y, Read LK. MRB10130 is a RESC assembly factor that promotes kinetoplastid RNA editing initiation and progression. RNA (NEW YORK, N.Y.) 2019; 25:1177-1191. [PMID: 31221726 PMCID: PMC6800514 DOI: 10.1261/rna.071902.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/18/2019] [Indexed: 05/03/2023]
Abstract
Uridine insertion deletion editing in kinetoplastid protozoa requires a complex machinery, a primary component of which is the RNA editing substrate binding complex (RESC). RESC contains two modules termed GRBC (guide RNA binding complex) and REMC (RNA editing mediator complex), although how interactions between these modules and their mRNA and gRNA binding partners are controlled is not well understood. Here, we demonstrate that the ARM/HEAT repeat containing RESC protein, MRB10130, controls REMC association with mRNA- and gRNA-loaded GRBC. High-throughput sequencing analyses show that MRB10130 functions in both initiation and 3' to 5' progression of editing through gRNA-defined domains. Editing intermediates that accumulate upon MRB10130 depletion significantly intersect those in cells depleted of another RESC organizer, MRB7260, but are distinct from those in cells depleted of specific REMC proteins. We present a model in which MRB10130 coordinates numerous protein-protein and protein-RNA interactions during editing progression.
Collapse
Affiliation(s)
- Natalie M McAdams
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| | - Gregory L Harrison
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| | - Brianna L Tylec
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| | - Michelle L Ammerman
- Department of Chemistry and Biochemistry, Kettering University, Flint, Michigan 48504, USA
| | - Runpu Chen
- Department of Computer Science and Engineering, University at Buffalo, Buffalo, New York 14260, USA
| | - Yijun Sun
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| | - Laurie K Read
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| |
Collapse
|
9
|
Kumar V, Doharey PK, Gulati S, Meehan J, Martinez MG, Hughes K, Mooers BHM, Cruz-Reyes J. Protein features for assembly of the RNA editing helicase 2 subcomplex (REH2C) in Trypanosome holo-editosomes. PLoS One 2019; 14:e0211525. [PMID: 31034523 PMCID: PMC6488192 DOI: 10.1371/journal.pone.0211525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023] Open
Abstract
Uridylate insertion/deletion RNA editing in Trypanosoma brucei is a complex system that is not found in humans, so there is interest in targeting this system for drug development. This system uses hundreds of small non-coding guide RNAs (gRNAs) to modify the mitochondrial mRNA transcriptome. This process occurs in holo-editosomes that assemble several macromolecular trans factors around mRNA including the RNA-free RNA editing core complex (RECC) and auxiliary ribonucleoprotein (RNP) complexes. Yet, the regulatory mechanisms of editing remain obscure. The enzymatic accessory RNP complex, termed the REH2C, includes mRNA substrates and products, the multi-domain 240 kDa RNA Editing Helicase 2 (REH2) and an intriguing 8-zinc finger protein termed REH2-Associated Factor 1 (H2F1). Both of these proteins are essential in editing. REH2 is a member of the DExH/RHA subfamily of RNA helicases with a conserved C-terminus that includes a regulatory OB-fold domain. In trypanosomes, H2F1 recruits REH2 to the editing apparatus, and H2F1 downregulation causes REH2 fragmentation. Our systematic mutagenesis dissected determinants in REH2 and H2F1 for the assembly of REH2C, the stability of REH2, and the RNA-mediated association of REH2C with other editing trans factors. We identified functional OB-fold amino acids in eukaryotic DExH/RHA helicases that are conserved in REH2 and that impact the assembly and interactions of REH2C. H2F1 upregulation stabilized REH2 in vivo. Mutation of the core cysteines or basic amino acids in individual zinc fingers affected the stabilizing property of H2F1 but not its interactions with other examined editing components. This result suggests that most, if not all, fingers may contribute to REH2 stabilization. Finally, a recombinant REH2 (240 kDa) established that the full-length protein is a bona fide RNA helicase with ATP-dependent unwinding activity. REH2 is the only DExH/RHA-type helicase in kinetoplastid holo-editosomes.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Pawan K. Doharey
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Shelly Gulati
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Joshua Meehan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Mary G. Martinez
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Karrisa Hughes
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Blaine H. M. Mooers
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail: (JC); (BM)
| | - Jorge Cruz-Reyes
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (JC); (BM)
| |
Collapse
|
10
|
Travis B, Shaw PLR, Liu B, Ravindra K, Iliff H, Al-Hashimi H, Schumacher MA. The RRM of the kRNA-editing protein TbRGG2 uses multiple surfaces to bind and remodel RNA. Nucleic Acids Res 2019; 47:2130-2142. [PMID: 30544166 PMCID: PMC6393287 DOI: 10.1093/nar/gky1259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/29/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
Kinetoplastid RNA (kRNA) editing takes place in the mitochondria of kinetoplastid protists and creates translatable mRNAs by uridine insertion/deletion. Extensively edited (pan-edited) transcripts contain quadruplex forming guanine stretches, which must be remodeled to promote uridine insertion/deletion. Here we show that the RRM domain of the essential kRNA-editing factor TbRGG2 binds poly(G) and poly(U) RNA and can unfold both. A region C-terminal to the RRM mediates TbRGG2 dimerization, enhancing RNA binding. A RRM-U4 RNA structure reveals a unique RNA-binding mechanism in which the two RRMs of the dimer employ aromatic residues outside the canonical RRM RNA-binding motifs to encase and wrench open the RNA, while backbone atoms specify the uridine bases. Notably, poly(G) RNA is bound via a different binding surface. Thus, these data indicate that TbRGG2 RRM can bind and remodel several RNA substrates suggesting how it might play multiple roles in the kRNA editing process.
Collapse
Affiliation(s)
- Brady Travis
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Porsha L R Shaw
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Bei Liu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Krishna Ravindra
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hadley Iliff
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Chemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
11
|
Chen NWG, Serres-Giardi L, Ruh M, Briand M, Bonneau S, Darrasse A, Barbe V, Gagnevin L, Koebnik R, Jacques MA. Horizontal gene transfer plays a major role in the pathological convergence of Xanthomonas lineages on common bean. BMC Genomics 2018; 19:606. [PMID: 30103675 PMCID: PMC6090828 DOI: 10.1186/s12864-018-4975-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Host specialization is a hallmark of numerous plant pathogens including bacteria, fungi, oomycetes and viruses. Yet, the molecular and evolutionary bases of host specificity are poorly understood. In some cases, pathological convergence is observed for individuals belonging to distant phylogenetic clades. This is the case for Xanthomonas strains responsible for common bacterial blight of bean, spread across four genetic lineages. All the strains from these four lineages converged for pathogenicity on common bean, implying possible gene convergences and/or sharing of a common arsenal of genes conferring the ability to infect common bean. RESULTS To search for genes involved in common bean specificity, we used a combination of whole-genome analyses without a priori, including a genome scan based on k-mer search. Analysis of 72 genomes from a collection of Xanthomonas pathovars unveiled 115 genes bearing DNA sequences specific to strains responsible for common bacterial blight, including 20 genes located on a plasmid. Of these 115 genes, 88 were involved in successive events of horizontal gene transfers among the four genetic lineages, and 44 contained nonsynonymous polymorphisms unique to the causal agents of common bacterial blight. CONCLUSIONS Our study revealed that host specificity of common bacterial blight agents is associated with a combination of horizontal transfers of genes, and highlights the role of plasmids in these horizontal transfers.
Collapse
Affiliation(s)
- Nicolas W. G. Chen
- IRHS, INRA, AGROCAMPUS OUEST, Université d’Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071 Beaucouzé, France
| | - Laurana Serres-Giardi
- IRHS, INRA, AGROCAMPUS OUEST, Université d’Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071 Beaucouzé, France
| | - Mylène Ruh
- IRHS, INRA, AGROCAMPUS OUEST, Université d’Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071 Beaucouzé, France
| | - Martial Briand
- IRHS, INRA, AGROCAMPUS OUEST, Université d’Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071 Beaucouzé, France
| | - Sophie Bonneau
- IRHS, INRA, AGROCAMPUS OUEST, Université d’Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071 Beaucouzé, France
| | - Armelle Darrasse
- IRHS, INRA, AGROCAMPUS OUEST, Université d’Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071 Beaucouzé, France
| | - Valérie Barbe
- CEA/DSV/IG/Genoscope, 2 rue Gaston Crémieux, BP5706, 91057 Evry, France
| | - Lionel Gagnevin
- CIRAD, UMR PVBMT, F-97410 Saint-Pierre, La Réunion France
- IRD, CIRAD, Université de Montpellier, IPME, Montpellier, France
| | - Ralf Koebnik
- IRD, CIRAD, Université de Montpellier, IPME, Montpellier, France
| | - Marie-Agnès Jacques
- IRHS, INRA, AGROCAMPUS OUEST, Université d’Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071 Beaucouzé, France
| |
Collapse
|
12
|
Cruz-Reyes J, Mooers BHM, Doharey PK, Meehan J, Gulati S. Dynamic RNA holo-editosomes with subcomplex variants: Insights into the control of trypanosome editing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1502. [PMID: 30101566 DOI: 10.1002/wrna.1502] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022]
Abstract
RNA editing causes massive remodeling of the mitochondrial mRNA transcriptome in trypanosomes and related kinetoplastid protozoa. This type of editing involves the specific insertion or deletion of uridylates (U) directed by small noncoding guide RNAs (gRNAs). Because U-insertion exceeds U-deletion by a factor of 10, editing increases the nascent mRNA size by up to 55%. In Trypanosoma brucei, the editing apparatus uses ~40 proteins and >1,200 gRNAs to create the functional open reading frame in 12 mRNAs. Thousands of sites are specifically recognized in the pre-edited mRNAs and a myriad of partially edited transcript intermediates accumulates in mitochondria. The control of editing is poorly understood, but past work suggests that it occurs during substrate recognition, the initiation and progression of editing, and during the life-cycle in different hosts. The growing understanding of the editing proteins offers clues about editing control. Most editing proteins reside in the "RNA-free" RNA editing core complex (RECC) and in the accessory RNA editing substrate complex (RESC) that contains gRNA. Two accessory RNA helicases are known, including one in the RNA editing helicase 2 complex (REH2C). Both the RESC and the REH2C associate with mRNA, providing a rationale for the assembly of mRNA or its mRNPs, RESC, and the RECC enzyme. Identified variants of the canonical editing complexes further complicate the model of RNA editing. We examine specific examples of complex variants, differential effects of editing proteins on the mRNAs within and between T. brucei life stages, and possible control points in RNA holo-editosomes. This article is categorized under: RNA Processing > RNA Editing and Modification RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Jorge Cruz-Reyes
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Blaine H M Mooers
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Pawan K Doharey
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Joshua Meehan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Shelly Gulati
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
13
|
Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology 2018; 146:1-27. [PMID: 29898792 DOI: 10.1017/s0031182018000951] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Unicellular flagellates of the family Trypanosomatidae are obligatory parasites of invertebrates, vertebrates and plants. Dixenous species are aetiological agents of a number of diseases in humans, domestic animals and plants. Their monoxenous relatives are restricted to insects. Because of the high biological diversity, adaptability to dramatically different environmental conditions, and omnipresence, these protists have major impact on all biotic communities that still needs to be fully elucidated. In addition, as these organisms represent a highly divergent evolutionary lineage, they are strikingly different from the common 'model system' eukaryotes, such as some mammals, plants or fungi. A number of excellent reviews, published over the past decade, were dedicated to specialized topics from the areas of trypanosomatid molecular and cell biology, biochemistry, host-parasite relationships or other aspects of these fascinating organisms. However, there is a need for a more comprehensive review that summarizing recent advances in the studies of trypanosomatids in the last 30 years, a task, which we tried to accomplish with the current paper.
Collapse
|
14
|
McAdams NM, Simpson RM, Chen R, Sun Y, Read LK. MRB7260 is essential for productive protein-RNA interactions within the RNA editing substrate binding complex during trypanosome RNA editing. RNA (NEW YORK, N.Y.) 2018; 24:540-556. [PMID: 29330168 PMCID: PMC5855954 DOI: 10.1261/rna.065169.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/08/2018] [Indexed: 05/20/2023]
Abstract
The trypanosome RNA editing substrate binding complex (RESC) acts as the platform for mitochondrial uridine insertion/deletion RNA editing and facilitates the protein-protein and protein-RNA interactions required for the editing process. RESC is broadly comprised of two subcomplexes: GRBC (guide RNA binding complex) and REMC (RNA editing mediator complex). Here, we characterize the function and position in RESC organization of a previously unstudied RESC protein, MRB7260. We show that MRB7260 forms numerous RESC-related complexes, including a novel, small complex with the guide RNA binding protein, GAP1, which is a canonical GRBC component, and REMC components MRB8170 and TbRGG2. RNA immunoprecipitations in MRB7260-depleted cells show that MRB7260 is critical for normal RNA trafficking between REMC and GRBC. Analysis of protein-protein interactions also reveals an important role for MRB7260 in promoting stable association of the two subcomplexes. High-throughput sequencing analysis of RPS12 mRNAs from MRB7260 replete and depleted cells demonstrates that MRB7260 is critical for gRNA exchange and early gRNA utilization, with the exception of the initiating gRNA. Together, these data demonstrate that MRB7260 is essential for productive protein-RNA interactions with RESC during RNA editing.
Collapse
Affiliation(s)
- Natalie M McAdams
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| | - Rachel M Simpson
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| | - Runpu Chen
- Department of Computer Science and Engineering, University at Buffalo, Buffalo, New York 14260, USA
| | - Yijun Sun
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| | - Laurie K Read
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| |
Collapse
|
15
|
|
16
|
McDermott SM, Stuart K. The essential functions of KREPB4 are developmentally distinct and required for endonuclease association with editosomes. RNA (NEW YORK, N.Y.) 2017; 23:1672-1684. [PMID: 28802260 PMCID: PMC5648035 DOI: 10.1261/rna.062786.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/07/2017] [Indexed: 05/20/2023]
Abstract
Uridine insertion and deletion RNA editing generates functional mitochondrial mRNAs in Trypanosoma brucei, and several transcripts are differentially edited in bloodstream (BF) and procyclic form (PF) cells correlating with changes in mitochondrial function. Editing is catalyzed by three ∼20S editosomes that have a common set of 12 proteins, but are typified by mutually exclusive RNase III KREN1, N2, and N3 endonucleases with distinct cleavage specificities. KREPB4 is a common editosome protein that has a degenerate RNase III domain lacking conserved catalytic residues, in addition to zinc-finger and Pumilio/fem-3 mRNA binding factor (PUF) motifs. Here we show that KREPB4 is essential for BF and PF growth, in vivo RNA editing, and editosome integrity, but that loss of KREPB4 has differential effects on editosome components and complexes between BF and PF cells. We used targeted mutagenesis to investigate the functions of the conserved PUF and RNase III domains in both life-cycle stages and show that the PUF motif is not essential for function in BF or PF. In contrast, specific mutations in the RNase III domain severely inhibit BF and PF growth and editing, and disrupt ∼20S editosomes, while others indicate that the RNase III domain is noncatalytic. We further show that KREPB4, specifically the noncatalytic RNase III domain, is required for the association of KREN1, N2, and N3 with PF editosomes. These results, combined with previous studies, support a model in which KREPB4 acts as a pseudoenzyme to form the noncatalytic half of an RNase III heterodimer with the editing endonucleases.
Collapse
Affiliation(s)
- Suzanne M McDermott
- Center for Infectious Disease Research (formerly Seattle BioMed), Seattle, Washington 98109, USA
| | - Kenneth Stuart
- Center for Infectious Disease Research (formerly Seattle BioMed), Seattle, Washington 98109, USA
| |
Collapse
|
17
|
Simpson RM, Bruno AE, Chen R, Lott K, Tylec BL, Bard JE, Sun Y, Buck MJ, Read LK. Trypanosome RNA Editing Mediator Complex proteins have distinct functions in gRNA utilization. Nucleic Acids Res 2017; 45:7965-7983. [PMID: 28535252 PMCID: PMC5737529 DOI: 10.1093/nar/gkx458] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/01/2017] [Accepted: 05/10/2017] [Indexed: 11/13/2022] Open
Abstract
Uridine insertion/deletion RNA editing is an essential process in kinetoplastid parasites whereby mitochondrial mRNAs are modified through the specific insertion and deletion of uridines to generate functional open reading frames, many of which encode components of the mitochondrial respiratory chain. The roles of numerous non-enzymatic editing factors have remained opaque given the limitations of conventional methods to interrogate the order and mechanism by which editing progresses and thus roles of individual proteins. Here, we examined whole populations of partially edited sequences using high throughput sequencing and a novel bioinformatic platform, the Trypanosome RNA Editing Alignment Tool (TREAT), to elucidate the roles of three proteins in the RNA Editing Mediator Complex (REMC). We determined that the factors examined function in the progression of editing through a gRNA; however, they have distinct roles and REMC is likely heterogeneous in composition. We provide the first evidence that editing can proceed through numerous paths within a single gRNA and that non-linear modifications are essential, generating commonly observed junction regions. Our data support a model in which RNA editing is executed via multiple paths that necessitate successive re-modification of junction regions facilitated, in part, by the REMC variant containing TbRGG2 and MRB8180.
Collapse
Affiliation(s)
- Rachel M. Simpson
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, 3435 Main Street, Buffalo, NY 14214, USA
| | - Andrew E. Bruno
- Center for Computational Research, University at Buffalo, 701 Ellicott St., Buffalo, NY 14203, USA
| | - Runpu Chen
- Department of Computer Science and Engineering, New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott St., Buffalo, NY 14203, USA
| | - Kaylen Lott
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, 3435 Main Street, Buffalo, NY 14214, USA
| | - Brianna L. Tylec
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, 3435 Main Street, Buffalo, NY 14214, USA
| | - Jonathan E. Bard
- Genomics and Bioinformatics Core, University at Buffalo, 701 Ellicott St., Buffalo, NY 14203, USA
| | - Yijun Sun
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, 3435 Main Street, Buffalo, NY 14214, USA
- Center for Computational Research, University at Buffalo, 701 Ellicott St., Buffalo, NY 14203, USA
| | - Michael J. Buck
- Department of Biochemistry, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, 701 Ellicott St., Buffalo, NY 14203, USA
| | - Laurie K. Read
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, 3435 Main Street, Buffalo, NY 14214, USA
| |
Collapse
|
18
|
RSM22, mtYsxC and PNKD-like proteins are required for mitochondrial translation in Trypanosoma brucei. Mitochondrion 2017; 34:67-74. [DOI: 10.1016/j.mito.2017.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/07/2016] [Accepted: 01/10/2017] [Indexed: 11/20/2022]
|
19
|
Peña-Diaz P, Vancová M, Resl C, Field MC, Lukeš J. A leucine aminopeptidase is involved in kinetoplast DNA segregation in Trypanosoma brucei. PLoS Pathog 2017; 13:e1006310. [PMID: 28388690 PMCID: PMC5397073 DOI: 10.1371/journal.ppat.1006310] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 04/19/2017] [Accepted: 03/23/2017] [Indexed: 12/29/2022] Open
Abstract
The kinetoplast (k), the uniquely packaged mitochondrial DNA of trypanosomatid protists is formed by a catenated network of minicircles and maxicircles that divide and segregate once each cell cycle. Although many proteins involved in kDNA replication and segregation are now known, several key steps in the replication mechanism remain uncharacterized at the molecular level, one of which is the nabelschnur or umbilicus, a prominent structure which in the mammalian parasite Trypanosoma brucei connects the daughter kDNA networks prior to their segregation. Here we characterize an M17 family leucyl aminopeptidase metalloprotease, termed TbLAP1, which specifically localizes to the kDNA disk and the nabelschur and represents the first described protein found in this structure. We show that TbLAP1 is required for correct segregation of kDNA, with knockdown resulting in delayed cytokinesis and ectopic expression leading to kDNA loss and decreased cell proliferation. We propose that TbLAP1 is required for efficient kDNA division and specifically participates in the separation of daughter kDNA networks.
Collapse
Affiliation(s)
- Priscila Peña-Diaz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Marie Vancová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Christian Resl
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Mark C. Field
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
- Canadian Institute for Advanced Research, Toronto, ON, Canada
| |
Collapse
|
20
|
Horáková E, Changmai P, Vancová M, Sobotka R, Van Den Abbeele J, Vanhollebeke B, Lukeš J. The Trypanosoma brucei TbHrg protein is a heme transporter involved in the regulation of stage-specific morphological transitions. J Biol Chem 2017; 292:6998-7010. [PMID: 28232490 DOI: 10.1074/jbc.m116.762997] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/21/2017] [Indexed: 12/27/2022] Open
Abstract
The human parasite Trypanosoma brucei does not synthesize heme de novo and instead relies entirely on heme supplied by its vertebrate host or its insect vector, the tsetse fly. In the host bloodstream T. brucei scavenges heme via haptoglobin-hemoglobin (HpHb) receptor-mediated endocytosis occurring in the flagellar pocket. However, in the procyclic developmental stage, in which T. brucei is confined to the tsetse fly midgut, this receptor is apparently not expressed, suggesting that T. brucei takes up heme by a different, unknown route. To define this alternative route, we functionally characterized heme transporter TbHrg in the procyclic stage. RNAi-induced down-regulation of TbHrg in heme-limited culture conditions resulted in slower proliferation, decreased cellular heme, and marked changes in cellular morphology so that the cells resemble mesocyclic trypomastigotes. Nevertheless, the TbHrg KO developed normally in the tsetse flies at rates comparable with wild-type cells. T. brucei cells overexpressing TbHrg displayed up-regulation of the early procyclin GPEET and down-regulation of the late procyclin EP1, two proteins coating the T. brucei surface in the procyclic stage. Light microscopy of immunostained TbHrg indicated localization to the flagellar membrane, and scanning electron microscopy revealed more intense TbHrg accumulation toward the flagellar pocket. Based on these findings, we postulate that T. brucei senses heme levels via the flagellar TbHrg protein. Heme deprivation in the tsetse fly anterior midgut might represent an environmental stimulus involved in the transformation of this important human parasite, possibly through metabolic remodeling.
Collapse
Affiliation(s)
- Eva Horáková
- From the Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic
| | - Piya Changmai
- From the Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic
| | - Marie Vancová
- From the Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Roman Sobotka
- Faculty of Sciences, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic.,Institute of Microbiology, Czech Academy of Sciences, 37981 Třeboň, Czech Republic
| | - Jan Van Den Abbeele
- Department of Biomedical Sciences, Unit of Veterinary Protozoology, Institute of Tropical Medicine, B2000 Antwerp, Belgium
| | - Benoit Vanhollebeke
- Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, B6041 Gosselies, Belgium, and
| | - Julius Lukeš
- From the Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic, .,Faculty of Sciences, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic.,Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| |
Collapse
|
21
|
Differential Binding of Mitochondrial Transcripts by MRB8170 and MRB4160 Regulates Distinct Editing Fates of Mitochondrial mRNA in Trypanosomes. mBio 2017; 8:mBio.02288-16. [PMID: 28143982 PMCID: PMC5285507 DOI: 10.1128/mbio.02288-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A dozen mRNAs are edited by multiple insertions and/or deletions of uridine residues in the mitochondrion of Trypanosoma brucei Several protein complexes have been implicated in performing this type of RNA editing, including the mitochondrial RNA-binding complex 1 (MRB1). Two paralogous novel RNA-binding proteins, MRB8170 and MRB4160, are loosely associated with the core MRB1 complex. Their roles in RNA editing and effects on target mRNAs are so far not well understood. In this study, individual-nucleotide-resolution UV-cross-linking and affinity purification (iCLAP) revealed a preferential binding of both proteins to mitochondrial mRNAs, which was positively correlated with their extent of editing. Integrating additional in vivo and in vitro data, we propose that binding of MRB8170 and/or MRB4160 onto pre-mRNA marks it for the initiation of editing and that initial binding of both proteins may facilitate the recruitment of other components of the RNA editing/processing machinery to ensure efficient editing. Surprisingly, MRB8170 also binds never-edited mRNAs, suggesting that at least this paralog has an additional role outside RNA editing to shape the mitochondrial transcriptome. IMPORTANCE Trypanosoma brucei mitochondrial mRNAs undergo maturation by RNA editing, a unique process involving decrypting open reading frames by the precise deletion and/or insertion of uridine (U) residues at specific positions on an mRNA. This process is catalyzed by multiprotein complexes, such as the RNA editing core complex, which provides the enzymatic activities needed for U insertion/deletion at a single editing site. Less well understood is how RNA editing occurs throughout an mRNA bearing multiple sites. To address this question, we mapped at single-nucleotide resolution the RNA interactions of two unique RNA-binding proteins (RBPs). These RBPs are part of the mitochondrial RNA-binding complex 1, hypothesized to mediate multiple rounds of RNA editing. Both RBPs were shown to mark mRNAs for the process in correlation with the number of editing sites on the transcript. Surprisingly, one also binds mRNAs that bypass RNA editing, indicating that it may have an additional role outside RNA editing.
Collapse
|
22
|
Simpson RM, Bruno AE, Bard JE, Buck MJ, Read LK. High-throughput sequencing of partially edited trypanosome mRNAs reveals barriers to editing progression and evidence for alternative editing. RNA (NEW YORK, N.Y.) 2016; 22:677-95. [PMID: 26908922 PMCID: PMC4836643 DOI: 10.1261/rna.055160.115] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/28/2016] [Indexed: 05/20/2023]
Abstract
Uridine insertion/deletion RNA editing in kinetoplastids entails the addition and deletion of uridine residues throughout the length of mitochondrial transcripts to generate translatable mRNAs. This complex process requires the coordinated use of several multiprotein complexes as well as the sequential use of noncoding template RNAs called guide RNAs. The majority of steady-state mitochondrial mRNAs are partially edited and often contain regions of mis-editing, termed junctions, whose role is unclear. Here, we report a novel method for sequencing entire populations of pre-edited partially edited, and fully edited RNAs and analyzing editing characteristics across populations using a new bioinformatics tool, the Trypanosome RNA Editing Alignment Tool (TREAT). Using TREAT, we examined populations of two transcripts, RPS12 and ND7-5', in wild-typeTrypanosoma brucei We provide evidence that the majority of partially edited sequences contain junctions, that intrinsic pause sites arise during the progression of editing, and that the mechanisms that mediate pausing in the generation of canonical fully edited sequences are distinct from those that mediate the ends of junction regions. Furthermore, we identify alternatively edited sequences that constitute plausible alternative open reading frames and identify substantial variability in the 5' UTRs of both canonical and alternatively edited sequences. This work is the first to use high-throughput sequencing to examine full-length sequences of whole populations of partially edited transcripts. Our method is highly applicable to current questions in the RNA editing field, including defining mechanisms of action for editing factors and identifying potential alternatively edited sequences.
Collapse
Affiliation(s)
- Rachel M Simpson
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14214, USA
| | - Andrew E Bruno
- Center for Computational Research, University at Buffalo, Buffalo, New York 14203, USA
| | - Jonathan E Bard
- University at Buffalo Genomics and Bioinformatics Core, Buffalo, New York 14222, USA
| | - Michael J Buck
- Deparment of Biochemistry, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14214, USA
| | - Laurie K Read
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14214, USA
| |
Collapse
|
23
|
Kumar V, Madina BR, Gulati S, Vashisht AA, Kanyumbu C, Pieters B, Shakir A, Wohlschlegel JA, Read LK, Mooers BHM, Cruz-Reyes J. REH2C Helicase and GRBC Subcomplexes May Base Pair through mRNA and Small Guide RNA in Kinetoplastid Editosomes. J Biol Chem 2016; 291:5753-5764. [PMID: 26769962 PMCID: PMC4786712 DOI: 10.1074/jbc.m115.708164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/05/2016] [Indexed: 01/03/2023] Open
Abstract
Mitochondrial mRNAs in Trypanosoma brucei undergo extensive insertion and deletion of uridylates that are catalyzed by the RNA editing core complex (RECC) and directed by hundreds of small guide RNAs (gRNAs) that base pair with mRNA. RECC is largely RNA-free, and accessory mitochondrial RNA-binding complex 1 (MRB1) variants serve as scaffolds for the assembly of mRNA-gRNA hybrids and RECC. However, the molecular steps that create higher-order holoenzymes ("editosomes") are unknown. Previously, we identified an RNA editing helicase 2-associated subcomplex (REH2C) and showed that REH2 binds RNA. Here we showed that REH2C is an mRNA-associated ribonucleoprotein (mRNP) subcomplex with editing substrates, intermediates, and products. We isolated this mRNP from mitochondria lacking gRNA-bound RNP (gRNP) subcomplexes and identified REH2-associated cofactors 1 and 2 ((H2)F1 and (H2)F2). (H2)F1 is an octa-zinc finger protein required for mRNP-gRNP docking, pre-mRNA and RECC loading, and RNP formation with a short synthetic RNA duplex. REH2 and other eukaryotic DEAH/RHA-type helicases share a conserved regulatory C-terminal domain cluster that includes an oligonucleotide-binding fold. Recombinant REH2 and (H2)F1 constructs associate in a purified complex in vitro. We propose a model of stepwise editosome assembly that entails controlled docking of mRNP and gRNP modules via specific base pairing between their respective mRNA and gRNA cargo and regulatory REH2 and (H2)F1 subunits of the novel mRNP that may control specificity checkpoints in the editing pathway.
Collapse
Affiliation(s)
- Vikas Kumar
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Bhaskara R Madina
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Shelly Gulati
- the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Ajay A Vashisht
- the Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Chiedza Kanyumbu
- the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Brittany Pieters
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Afzal Shakir
- the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - James A Wohlschlegel
- the Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Laurie K Read
- the Department of Microbiology and Immunology, University of Buffalo School of Medicine, Buffalo, New York, and
| | - Blaine H M Mooers
- the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Jorge Cruz-Reyes
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843,.
| |
Collapse
|
24
|
Huang Z, Faktorová D, Křížová A, Kafková L, Read LK, Lukeš J, Hashimi H. Integrity of the core mitochondrial RNA-binding complex 1 is vital for trypanosome RNA editing. RNA (NEW YORK, N.Y.) 2015; 21:2088-102. [PMID: 26447184 PMCID: PMC4647463 DOI: 10.1261/rna.052340.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/09/2015] [Indexed: 05/20/2023]
Abstract
Trypanosoma brucei is the causative agent of the human and veterinarian diseases African sleeping sickness and nagana. A majority of its mitochondrial-encoded transcripts undergo RNA editing, an essential process of post-transcriptional uridine insertion and deletion to produce translatable mRNA. Besides the well-characterized RNA editing core complex, the mitochondrial RNA-binding 1 (MRB1) complex is one of the key players. It comprises a core complex of about six proteins, guide RNA-associated proteins (GAPs) 1/2, which form a heterotetramer that binds and stabilizes gRNAs, plus MRB5390, MRB3010, and MRB11870, which play roles in initial stages of RNA editing, presumably guided by the first gRNA:mRNA duplex in the case of the latter two proteins. To better understand all functions of the MRB1 complex, we performed a functional analysis of the MRB8620 core subunit, the only one not characterized so far. Here we show that MRB8620 plays a role in RNA editing in both procyclic and bloodstream stages of T. brucei, which reside in the tsetse fly vector and mammalian circulatory system, respectively. While RNAi silencing of MRB8620 does not affect procyclic T. brucei fitness when grown in glucose-containing media, it is somewhat compromised in cells grown in the absence of this carbon source. MRB8620 is crucial for integrity of the MRB1 core, such as its association with GAP1/2, which presumably acts to deliver gRNAs to this complex. In contrast, GAP1/2 is not required for the fabrication of the MRB1 core. Disruption of the MRB1 core assembly is followed by the accumulation of mRNAs associated with GAP1/2.
Collapse
Affiliation(s)
- Zhenqiu Huang
- Biology Center, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), 370 05, Czech Republic Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), 370 05, Czech Republic
| | - Drahomíra Faktorová
- Biology Center, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), 370 05, Czech Republic Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), 370 05, Czech Republic
| | - Adéla Křížová
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), 370 05, Czech Republic
| | - Lucie Kafková
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Laurie K Read
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Julius Lukeš
- Biology Center, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), 370 05, Czech Republic Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), 370 05, Czech Republic Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| | - Hassan Hashimi
- Biology Center, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), 370 05, Czech Republic Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), 370 05, Czech Republic
| |
Collapse
|
25
|
Gene Loss and Error-Prone RNA Editing in the Mitochondrion of Perkinsela, an Endosymbiotic Kinetoplastid. mBio 2015; 6:e01498-15. [PMID: 26628723 PMCID: PMC4669381 DOI: 10.1128/mbio.01498-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Perkinsela is an enigmatic early-branching kinetoplastid protist that lives as an obligate endosymbiont inside Paramoeba (Amoebozoa). We have sequenced the highly reduced mitochondrial genome of Perkinsela, which possesses only six protein-coding genes (cox1, cox2, cox3, cob, atp6, and rps12), despite the fact that the organelle itself contains more DNA than is present in either the host or endosymbiont nuclear genomes. An in silico analysis of two Perkinsela strains showed that mitochondrial RNA editing and processing machineries typical of kinetoplastid flagellates are generally conserved, and all mitochondrial transcripts undergo U-insertion/deletion editing. Canonical kinetoplastid mitochondrial ribosomes are also present. We have developed software tools for accurate and exhaustive mapping of transcriptome sequencing (RNA-seq) reads with extensive U-insertions/deletions, which allows detailed investigation of RNA editing via deep sequencing. With these methods, we show that up to 50% of reads for a given edited region contain errors of the editing system or, less likely, correspond to alternatively edited transcripts. Uridine insertion/deletion-type RNA editing, which occurs in the mitochondrion of kinetoplastid protists, has been well-studied in the model parasite genera Trypanosoma, Leishmania, and Crithidia. Perkinsela provides a unique opportunity to broaden our knowledge of RNA editing machinery from an evolutionary perspective, as it represents the earliest kinetoplastid branch and is an obligatory endosymbiont with extensive reductive trends. Interestingly, up to 50% of mitochondrial transcripts in Perkinsela contain errors. Our study was complemented by use of newly developed software designed for accurate mapping of extensively edited RNA-seq reads obtained by deep sequencing.
Collapse
|
26
|
Read LK, Lukeš J, Hashimi H. Trypanosome RNA editing: the complexity of getting U in and taking U out. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 7:33-51. [PMID: 26522170 DOI: 10.1002/wrna.1313] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 12/27/2022]
Abstract
RNA editing, which adds sequence information to RNAs post-transcriptionally, is a widespread phenomenon throughout eukaryotes. The most complex form of this process is the uridine (U) insertion/deletion editing that occurs in the mitochondria of kinetoplastid protists. RNA editing in these flagellates is specified by trans-acting guide RNAs and entails the insertion of hundreds and deletion of dozens of U residues from mitochondrial RNAs to produce mature, translatable mRNAs. An emerging model indicates that the machinery required for trypanosome RNA editing is much more complicated than previously appreciated. A family of RNA editing core complexes (RECCs), which contain the required enzymes and several structural proteins, catalyze cycles of U insertion and deletion. A second, dynamic multiprotein complex, the Mitochondrial RNA Binding 1 (MRB1) complex, has recently come to light as another essential component of the trypanosome RNA editing machinery. MRB1 likely serves as the platform for kinetoplastid RNA editing, and plays critical roles in RNA utilization and editing processivity. MRB1 also appears to act as a hub for coordination of RNA editing with additional mitochondrial RNA processing events. This review highlights the current knowledge regarding the complex molecular machinery involved in trypanosome RNA editing. WIREs RNA 2016, 7:33-51. doi: 10.1002/wrna.1313 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Laurie K Read
- University at Buffalo School of Medicine, Buffalo, NY, USA
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.,Canadian Institute for Advanced Research, Toronto, ON, Canada
| | - Hassan Hashimi
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
27
|
Wong RG, Kazane K, Maslov DA, Rogers K, Aphasizhev R, Simpson L. U-insertion/deletion RNA editing multiprotein complexes and mitochondrial ribosomes in Leishmania tarentolae are located in antipodal nodes adjacent to the kinetoplast DNA. Mitochondrion 2015; 25:76-86. [PMID: 26462764 DOI: 10.1016/j.mito.2015.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 10/05/2015] [Accepted: 10/08/2015] [Indexed: 11/28/2022]
Abstract
We studied the intramitochondrial localization of several multiprotein complexes involved in U-insertion/deletion RNA editing in trypanosome mitochondria. The editing complexes are located in one or two antipodal nodes adjacent to the kinetoplast DNA (kDNA) disk, which are distinct from but associated with the minicircle catenation nodes. In some cases the proteins are in a bilateral sheet configuration. We also found that mitoribosomes have a nodal configuration. This type of organization is consistent with evidence for protein and RNA interactions of multiple editing complexes to form an ~40S editosome and also an interaction of editosomes with mitochondrial ribosomes.
Collapse
Affiliation(s)
- Richard G Wong
- Department of Gerontology, Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States; Department of Microbiology, Immunology and Molecular Genetics, Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| | - Katelynn Kazane
- Multispan Inc., Hayward, CA 94544, United States; Department of Microbiology, Immunology and Molecular Genetics, Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| | - Dmitri A Maslov
- Department of Biology, University of California - Riverside, Riverside, CA 92521, United States
| | - Kestrel Rogers
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, United States
| | - Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA 02118, United States
| | - Larry Simpson
- Department of Microbiology, Immunology and Molecular Genetics, Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States.
| |
Collapse
|
28
|
Horáková E, Changmai P, Paris Z, Salmon D, Lukeš J. Simultaneous depletion of Atm and Mdl rebalances cytosolic Fe-S cluster assembly but not heme import into the mitochondrion ofTrypanosoma brucei. FEBS J 2015; 282:4157-75. [DOI: 10.1111/febs.13411] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 07/24/2015] [Accepted: 08/10/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Eva Horáková
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) Czech Republic
| | - Piya Changmai
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) Czech Republic
- Faculty of Sciences; University of South Bohemia; České Budějovice (Budweis) Czech Republic
| | - Zdeněk Paris
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) Czech Republic
| | - Didier Salmon
- Institute of Medical Biochemistry Leopoldo de Meis; Centro de Ciências e da Saude; Federal University of Rio de Janeiro; Brazil
| | - Julius Lukeš
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) Czech Republic
- Faculty of Sciences; University of South Bohemia; České Budějovice (Budweis) Czech Republic
- Canadian Institute for Advanced Research; Toronto Ontario Canada
| |
Collapse
|
29
|
Shaw PLR, McAdams NM, Hast MA, Ammerman ML, Read LK, Schumacher MA. Structures of the T. brucei kRNA editing factor MRB1590 reveal unique RNA-binding pore motif contained within an ABC-ATPase fold. Nucleic Acids Res 2015; 43:7096-109. [PMID: 26117548 PMCID: PMC4538832 DOI: 10.1093/nar/gkv647] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/10/2015] [Indexed: 12/20/2022] Open
Abstract
Kinetoplastid RNA (kRNA) editing is a process that creates translatable mitochondrial mRNA transcripts from cryptogene encoded RNAs and is unique for kinetoplastids, such as Trypanosoma brucei. In addition to the catalytic 20S editosome, multiple accessory proteins are required for this conversion. Recently, the multiprotein mitochondrial RNA binding complex 1 (MRB1) has emerged as a key player in this process. MRB1 consists of six core proteins but makes dynamic interactions with additional accessory proteins. Here we describe the characterization of one such factor, the 72 kDa MRB1590 protein. In vivo experiments indicate a role for MRB1590 in editing mitochondrial mRNA transcripts, in particular the transcript encoding the ATP synthase subunit 6 (A6). Structural studies show that MRB1590 is dimeric and contains a central ABC-ATPase fold embedded between novel N- and C-terminal regions. The N-terminal domains combine to create a basic pore and biochemical studies indicate residues in this region participate in RNA binding. Structures capturing distinct MRB1590 conformations reveal that the RNA binding pore adopts closed and open states, with the latter able to accommodate RNA. Based on these findings, implications for MRB1590 function are discussed.
Collapse
Affiliation(s)
- Porsha L R Shaw
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Natalie M McAdams
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY, USA
| | - Michael A Hast
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michelle L Ammerman
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY, USA
| | - Laurie K Read
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY, USA
| | - Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
30
|
Sample PJ, Kořený L, Paris Z, Gaston KW, Rubio MAT, Fleming IMC, Hinger S, Horáková E, Limbach PA, Lukeš J, Alfonzo JD. A common tRNA modification at an unusual location: the discovery of wyosine biosynthesis in mitochondria. Nucleic Acids Res 2015; 43:4262-73. [PMID: 25845597 PMCID: PMC4417183 DOI: 10.1093/nar/gkv286] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 03/24/2015] [Indexed: 01/14/2023] Open
Abstract
Establishment of the early genetic code likely required strategies to ensure translational accuracy and inevitably involved tRNA post-transcriptional modifications. One such modification, wybutosine/wyosine is crucial for translational fidelity in Archaea and Eukarya; yet it does not occur in Bacteria and has never been described in mitochondria. Here, we present genetic, molecular and mass spectromery data demonstrating the first example of wyosine in mitochondria, a situation thus far unique to kinetoplastids. We also show that these modifications are important for mitochondrial function, underscoring their biological significance. This work focuses on TyW1, the enzyme required for the most critical step of wyosine biosynthesis. Based on molecular phylogeny, we suggest that the kinetoplastids pathways evolved via gene duplication and acquisition of an FMN-binding domain now prevalent in TyW1 of most eukaryotes. These findings are discussed in the context of the extensive U-insertion RNA editing in trypanosome mitochondria, which may have provided selective pressure for maintenance of mitochondrial wyosine in this lineage.
Collapse
Affiliation(s)
- Paul J Sample
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Luděk Kořený
- Institute of Parasitology, Biology Centre and Faculty of Sciences, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Zdeněk Paris
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Kirk W Gaston
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Mary Anne T Rubio
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Ian M C Fleming
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Scott Hinger
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Eva Horáková
- Institute of Parasitology, Biology Centre and Faculty of Sciences, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre and Faculty of Sciences, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic Canadian Institute For Advanced Research, Toronto, ON M5G 1Z8, Canada
| | - Juan D Alfonzo
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
31
|
Verner Z, Basu S, Benz C, Dixit S, Dobáková E, Faktorová D, Hashimi H, Horáková E, Huang Z, Paris Z, Peña-Diaz P, Ridlon L, Týč J, Wildridge D, Zíková A, Lukeš J. Malleable mitochondrion of Trypanosoma brucei. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:73-151. [PMID: 25708462 DOI: 10.1016/bs.ircmb.2014.11.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The importance of mitochondria for a typical aerobic eukaryotic cell is undeniable, as the list of necessary mitochondrial processes is steadily growing. Here, we summarize the current knowledge of mitochondrial biology of an early-branching parasitic protist, Trypanosoma brucei, a causative agent of serious human and cattle diseases. We present a comprehensive survey of its mitochondrial pathways including kinetoplast DNA replication and maintenance, gene expression, protein and metabolite import, major metabolic pathways, Fe-S cluster synthesis, ion homeostasis, organellar dynamics, and other processes. As we describe in this chapter, the single mitochondrion of T. brucei is everything but simple and as such rivals mitochondria of multicellular organisms.
Collapse
Affiliation(s)
- Zdeněk Verner
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Present address: Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; Present address: Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Somsuvro Basu
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic; Present address: Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Germany
| | - Corinna Benz
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Sameer Dixit
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Eva Dobáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Present address: Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Hassan Hashimi
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Eva Horáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Zhenqiu Huang
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Priscila Peña-Diaz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Lucie Ridlon
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic; Present address: Salk Institute, La Jolla, San Diego, USA
| | - Jiří Týč
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - David Wildridge
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
32
|
Carnes J, Lerch M, Kurtz I, Stuart K. Bloodstream form Trypanosoma brucei do not require mRPN1 for gRNA processing. RNA (NEW YORK, N.Y.) 2015; 21:28-35. [PMID: 25404564 PMCID: PMC4274635 DOI: 10.1261/rna.045708.114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 10/06/2014] [Indexed: 06/04/2023]
Abstract
Mitochondrial RNA processing in the kinetoplastid parasite Trypanosoma brucei involves numerous specialized catalytic activities that are incompletely understood. The mitochondrial genome consists of maxicircles that primarily encode rRNAs and mRNAs, and minicircles that encode a diverse array of guide RNAs (gRNAs). RNA editing uses these gRNAs as templates to recode mRNAs by insertion and deletion of uridine (U) residues. While the multiprotein complex that catalyzes RNA editing has been extensively studied, other players involved in mitochondrial RNA processing have remained enigmatic. The proteins required for processing mitochondrial polycistronic transcripts into mature species was essentially unknown until an RNase III endonuclease, called mRPN1, was reported to be involved in gRNA processing in procyclic form parasites. In this work, we examine the role of mRPN1 in gRNA processing in bloodstream form parasites, and show that complete elimination of mRPN1 by gene knockout does not alter gRNA maturation. These results indicate that another enzyme must be involved in gRNA processing.
Collapse
Affiliation(s)
- Jason Carnes
- Seattle Biomedical Research Institute, Seattle, Washington 98109, USA
| | - Melissa Lerch
- Seattle Biomedical Research Institute, Seattle, Washington 98109, USA
| | - Irina Kurtz
- Seattle Biomedical Research Institute, Seattle, Washington 98109, USA
| | - Ken Stuart
- Seattle Biomedical Research Institute, Seattle, Washington 98109, USA
| |
Collapse
|
33
|
An arginine-glycine-rich RNA binding protein impacts the abundance of specific mRNAs in the mitochondria of Trypanosoma brucei. EUKARYOTIC CELL 2014; 14:149-57. [PMID: 25480938 DOI: 10.1128/ec.00232-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In kinetoplastid parasites, regulation of mitochondrial gene expression occurs posttranscriptionally via RNA stability and RNA editing. In addition to the 20S editosome that contains the enzymes required for RNA editing, a dynamic complex called the mitochondrial RNA binding 1 (MRB1) complex is also essential for editing. Trypanosoma brucei RGG3 (TbRGG3) was originally identified through its interaction with the guide RNA-associated proteins 1 and 2 (GAP1/2), components of the MRB1 complex. Both the arginine-glycine-rich character of TbRGG3, which suggests a function in RNA binding, and its interaction with MRB1 implicate TbRGG3 in mitochondrial gene regulation. Here, we report an in vitro and in vivo characterization of TbRGG3 function in T. brucei mitochondria. We show that in vitro TbRGG3 binds RNA with broad sequence specificity and has the capacity to modulate RNA-RNA interactions. In vivo, inducible RNA interference (RNAi) studies demonstrate that TbRGG3 is essential for proliferation of insect vector stage T. brucei. TbRGG3 ablation does not cause a defect in RNA editing but, rather, specifically affects the abundance of two preedited transcripts as well as their edited counterparts. Protein-protein interaction studies show that TbRGG3 associates with GAP1/2 apart from the remainder of the MRB1 complex, as well as with several non-MRB1 proteins that are required for mitochondrial RNA editing and/or stability. Together, these studies demonstrate that TbRGG3 is an essential mitochondrial gene regulatory factor that impacts the stabilities of specific RNAs.
Collapse
|
34
|
Aphasizheva I, Zhang L, Wang X, Kaake RM, Huang L, Monti S, Aphasizhev R. RNA binding and core complexes constitute the U-insertion/deletion editosome. Mol Cell Biol 2014; 34:4329-42. [PMID: 25225332 PMCID: PMC4248751 DOI: 10.1128/mcb.01075-14] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 09/02/2014] [Accepted: 09/11/2014] [Indexed: 12/19/2022] Open
Abstract
Enzymes embedded into the RNA editing core complex (RECC) catalyze the U-insertion/deletion editing cascade to generate open reading frames in trypanosomal mitochondrial mRNAs. The sequential reactions of mRNA cleavage, U-addition or removal, and ligation are directed by guide RNAs (gRNAs). We combined proteomic, genetic, and functional studies with sequencing of total and complex-bound RNAs to define a protein particle responsible for the recognition of gRNAs and pre-mRNA substrates, editing intermediates, and products. This approximately 23-polypeptide tripartite assembly, termed the RNA editing substrate binding complex (RESC), also functions as the interface between mRNA editing, polyadenylation, and translation. Furthermore, we found that gRNAs represent only a subset of small mitochondrial RNAs, and yet an inexplicably high fraction of them possess 3' U-tails, which correlates with gRNA's enrichment in the RESC. Although both gRNAs and mRNAs are associated with the RESC, their metabolic fates are distinct: gRNAs are degraded in an editing-dependent process, whereas edited mRNAs undergo 3' adenylation/uridylation prior to translation. Our results demonstrate that the well-characterized editing core complex (RECC) and the RNA binding particle defined in this study (RESC) typify enzymatic and substrate binding macromolecular constituents, respectively, of the ∼40S RNA editing holoenzyme, the editosome.
Collapse
MESH Headings
- Base Sequence
- Mitochondria/genetics
- Open Reading Frames/genetics
- Peptide Chain Elongation, Translational/genetics
- Polyadenylation/genetics
- Protozoan Proteins/metabolism
- RNA/genetics
- RNA Editing/genetics
- RNA Interference
- RNA, Catalytic/genetics
- RNA, Guide, Kinetoplastida/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Mitochondrial
- RNA, Protozoan/genetics
- RNA, Small Interfering
- RNA-Binding Proteins/genetics
- Sequence Analysis, RNA
- Trypanosoma brucei brucei/genetics
Collapse
Affiliation(s)
- Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, USA
| | - Liye Zhang
- Section of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Xiaorong Wang
- Department of Physiology & Biophysics, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Robyn M Kaake
- Department of Physiology & Biophysics, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Lan Huang
- Department of Physiology & Biophysics, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Stefano Monti
- Section of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, USA Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Moshiri H, Mehta V, Salavati R. RNA catalyst as a reporter for screening drugs against RNA editing in trypanosomes. J Vis Exp 2014. [PMID: 25079143 DOI: 10.3791/51712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Substantial progress has been made in determining the mechanism of mitochondrial RNA editing in trypanosomes. Similarly, considerable progress has been made in identifying the components of the editosome complex that catalyze RNA editing. However, it is still not clear how those proteins work together. Chemical compounds obtained from a high-throughput screen against the editosome may block or affect one or more steps in the editing cycle. Therefore, the identification of new chemical compounds will generate valuable molecular probes for dissecting the editosome function and assembly. In previous studies, in vitro editing assays were carried out using radio-labeled RNA. These assays are time consuming, inefficient and unsuitable for high-throughput purposes. Here, a homogenous fluorescence-based "mix and measure" hammerhead ribozyme in vitro reporter assay to monitor RNA editing, is presented. Only as a consequence of RNA editing of the hammerhead ribozyme a fluorescence resonance energy transfer (FRET) oligoribonucleotide substrate undergoes cleavage. This in turn results in separation of the fluorophore from the quencher thereby producing a signal. In contrast, when the editosome function is inhibited, the fluorescence signal will be quenched. This is a highly sensitive and simple assay that should be generally applicable to monitor in vitro RNA editing or high throughput screening of chemicals that can inhibit the editosome function.
Collapse
Affiliation(s)
- Houtan Moshiri
- Department of Biochemistry, McGill University; Institute of Parasitology, McGill University
| | - Vaibhav Mehta
- Department of Biochemistry, McGill University; Institute of Parasitology, McGill University
| | - Reza Salavati
- Department of Biochemistry, McGill University; Institute of Parasitology, McGill University; McGill Centre for Bioinformatics, McGill University;
| |
Collapse
|
36
|
Aphasizhev R, Aphasizheva I. Mitochondrial RNA editing in trypanosomes: small RNAs in control. Biochimie 2014; 100:125-31. [PMID: 24440637 PMCID: PMC4737708 DOI: 10.1016/j.biochi.2014.01.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/06/2014] [Indexed: 12/29/2022]
Abstract
Mitochondrial mRNA editing in trypanosomes is a posttranscriptional processing pathway thereby uridine residues (Us) are inserted into, or deleted from, messenger RNA precursors. By correcting frameshifts, introducing start and stop codons, and often adding most of the coding sequence, editing restores open reading frames for mitochondrially-encoded mRNAs. There can be hundreds of editing events in a single pre-mRNA, typically spaced by few nucleotides, with U-insertions outnumbering U-deletions by approximately 10-fold. The mitochondrial genome is composed of ∼50 maxicircles and thousands of minicircles. Catenated maxi- and minicircles are packed into a dense structure called the kinetoplast; maxicircles yield rRNA and mRNA precursors while guide RNAs (gRNAs) are produced predominantly from minicircles, although varying numbers of maxicircle-encoded gRNAs have been identified in kinetoplastids species. Guide RNAs specify positions and the numbers of inserted or deleted Us by hybridizing to pre-mRNA and forming series of mismatches. These 50-60 nucleotide (nt) molecules are 3' uridylated by RET1 TUTase and stabilized via association with the gRNA binding complex (GRBC). Editing reactions of mRNA cleavage, U-insertion or deletion, and ligation are catalyzed by the RNA editing core complex (RECC). To function in mitochondrial translation, pre-mRNAs must further undergo post-editing 3' modification by polyadenylation/uridylation. Recent studies revealed a highly compound nature of mRNA editing and polyadenylation complexes and their interactions with the translational machinery. Here we focus on mechanisms of RNA editing and its functional coupling with pre- and post-editing 3' mRNA modification and gRNA maturation pathways.
Collapse
Affiliation(s)
- Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, 72 East Concord Street, Evans 4th Floor, E426, Boston, MA 02118, USA.
| | - Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, 72 East Concord Street, Evans 4th Floor, E426, Boston, MA 02118, USA
| |
Collapse
|
37
|
Ammerman ML, Tomasello DL, Faktorová D, Kafková L, Hashimi H, Lukeš J, Read LK. A core MRB1 complex component is indispensable for RNA editing in insect and human infective stages of Trypanosoma brucei. PLoS One 2013; 8:e78015. [PMID: 24250748 PMCID: PMC3820961 DOI: 10.1371/journal.pone.0078015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/11/2013] [Indexed: 11/18/2022] Open
Abstract
Uridine insertion/deletion RNA editing is a unique and vital process in kinetoplastids, required for creation of translatable open reading frames in most mitochondrially-encoded RNAs. Emerging as a key player in this process is the mitochondrial RNA binding 1 (MRB1) complex. MRB1 comprises an RNA-independent core complex of at least six proteins, including the GAP1/2 guide RNA (gRNA) binding proteins. The core interacts in an RNA-enhanced or -dependent manner with imprecisely defined TbRGG2 subcomplexes, Armadillo protein MRB10130, and additional factors that comprise the dynamic MRB1 complex. Towards understanding MRB1 complex function in RNA editing, we present here functional characterization of the pentein domain-containing MRB1 core protein, MRB11870. Inducible RNAi studies demonstrate that MRB11870 is essential for proliferation of both insect vector and human infective stage T. brucei. MRB11870 ablation causes a massive defect in RNA editing, affecting both pan-edited and minimally edited mRNAs, but does not substantially affect mitochondrial RNA stability or processing of precursor transcripts. The editing defect in MRB1-depleted cells occurs at the initiation stage of editing, as pre-edited mRNAs accumulate. However, the gRNAs that direct editing remain abundant in the knockdown cells. To examine the contribution of MRB11870 to MRB1 macromolecular interactions, we tagged core complexes and analyzed their composition and associated proteins in the presence and absence of MRB11870. These studies demonstrated that MRB11870 is essential for association of GAP1/2 with the core, as well as for interaction of the core with other proteins and subcomplexes. Together, these data support a model in which the MRB1 core mediates functional interaction of gRNAs with the editing machinery, having GAP1/2 as its gRNA binding constituents. MRB11870 is a critical component of the core, essential for its structure and function.
Collapse
Affiliation(s)
- Michelle L. Ammerman
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| | - Danielle L. Tomasello
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Center, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Lucie Kafková
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| | - Hassan Hashimi
- Institute of Parasitology, Biology Center, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Center, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Laurie K. Read
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
38
|
Sakyiama J, Zimmer SL, Ciganda M, Williams N, Read LK. Ribosome biogenesis requires a highly diverged XRN family 5'->3' exoribonuclease for rRNA processing in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2013; 19:1419-1431. [PMID: 23974437 PMCID: PMC3854532 DOI: 10.1261/rna.038547.113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 07/10/2013] [Indexed: 05/30/2023]
Abstract
Although biogenesis of ribosomes is a crucial process in all organisms and is thus well conserved, Trypanosoma brucei ribosome biogenesis, of which maturation of rRNAs is an early step, has multiple points of divergence. Our aim was to determine whether in the processing of the pre-rRNA precursor molecule, 5'→3' exoribonuclease activity in addition to endonucleolytic cleavage is necessary in T. brucei as in other organisms. Our approach initiated with the bioinformatic identification of a putative 5'→3' exoribonuclease, XRNE, which is highly diverged from the XRN2/Rat1 enzyme responsible for rRNA processing in other organisms. Tagging this protein in vivo allowed us to classify XRNE as nucleolar by indirect immunofluorescence and identify by copurification interacting proteins, many of which were ribosomal proteins, ribosome biogenesis proteins, and/or RNA processing proteins. To determine whether XRNE plays a role in ribosome biogenesis in procyclic form cells, we inducibly depleted the protein by RNA interference. This resulted in the generation of aberrant preprocessed 18S rRNA and 5' extended 5.8S rRNA, implicating XRNE in rRNA processing. Polysome profiles of XRNE-depleted cells demonstrated abnormal features including an increase in ribosome small subunit abundance, a decrease in large subunit abundance, and defects in polysome assembly. Furthermore, the 5' extended 5.8S rRNA in XRNE-depleted cells was observed in the large subunit, monosomes, and polysomes in this gradient. Therefore, the function of XRNE in rRNA processing, presumably due to exonucleolytic activity very early in ribosome biogenesis, has consequences that persist throughout all biogenesis stages.
Collapse
MESH Headings
- Amino Acid Sequence
- Blotting, Northern
- Blotting, Western
- Cell Nucleolus
- Cells, Cultured
- Exoribonucleases/genetics
- Exoribonucleases/metabolism
- Immunoprecipitation
- Molecular Sequence Data
- Organelle Biogenesis
- Polyribosomes/genetics
- Polyribosomes/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Messenger/genetics
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosomes/metabolism
- Sequence Homology, Amino Acid
- Tandem Mass Spectrometry
- Trypanosoma brucei brucei/enzymology
- Trypanosoma brucei brucei/genetics
- Trypanosoma brucei brucei/growth & development
Collapse
Affiliation(s)
- Joseph Sakyiama
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, USA
| | - Sara L. Zimmer
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, USA
| | - Martin Ciganda
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, USA
| | - Noreen Williams
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, USA
| | - Laurie K. Read
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, USA
| |
Collapse
|
39
|
Changmai P, Horáková E, Long S, Černotíková-Stříbrná E, McDonald LM, Bontempi EJ, Lukeš J. Both human ferredoxins equally efficiently rescue ferredoxin deficiency in Trypanosoma brucei. Mol Microbiol 2013; 89:135-51. [PMID: 23675735 DOI: 10.1111/mmi.12264] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2013] [Indexed: 11/29/2022]
Abstract
Ferredoxins are highly conserved proteins that function universally as electron transporters. They not only require Fe-S clusters for their own activity, but are also involved in Fe-S formation itself. We identified two homologues of ferredoxin in the genome of the parasitic protist Trypanosoma brucei and named them TbFdxA and TbFdxB. TbFdxA protein, which is homologous to other eukaryotic mitochondrial ferredoxins, is essential in both the procyclic (= insect-transmitted) and bloodstream (mammalian) stage, but is more abundant in the active mitochondrion of the former stage. Depletion of TbFdxA caused disruption of Fe-S cluster biogenesis and lowered the level of intracellular haem. However, TbFdxB, which is present exclusively within kinetoplastid flagellates, was non-essential for the procyclic stage, and double knock-down with TbFdxA showed this was not due to functional redundancy between the two homologues. Heterologous expressions of human orthologues HsFdx1 and HsFdx2 fully rescued the growth and Fe-S-dependent enzymatic activities of TbFdxA knock-down. In both cases, the genuine human import signals allowed efficient import into the T. brucei mitochondrion. Given the huge evolutionary distance between trypanosomes and humans, ferredoxins clearly have ancestral and highly conserved function in eukaryotes and both human orthologues have retained the capacity to participate in Fe-S cluster assembly.
Collapse
Affiliation(s)
- Piya Changmai
- Institute of Parasitology, Biology Centre, University of South Bohemia, Branišovská 31, 37005, České Budějovice (Budweis), Czech Republic
| | | | | | | | | | | | | |
Collapse
|
40
|
Kruse E, Voigt C, Leeder WM, Göringer HU. RNA helicases involved in U-insertion/deletion-type RNA editing. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:835-41. [PMID: 23587716 DOI: 10.1016/j.bbagrm.2013.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 12/20/2022]
Abstract
Mitochondrial pre-messenger RNAs in kinetoplastid protozoa such as the disease-causing African trypanosomes are substrates of a unique RNA editing reaction. The process is characterized by the site-specific insertion and deletion of exclusively U nucleotides and converts nonfunctional pre-mRNAs into translatable transcripts. Similar to other RNA-based metabolic pathways, RNA editing is catalyzed by a macromolecular protein complex, the editosome. Editosomes provide a reactive surface for the individual steps of the catalytic cycle and involve as key players a specific class of small, non-coding RNAs termed guide (g)RNAs. gRNAs basepair proximal to an editing site and act as quasi templates in the U-insertion/deletion reaction. Next to the editosome several accessory proteins and complexes have been identified, which contribute to different steps of the reaction. This includes matchmaking-type RNA/RNA annealing factors as well as RNA helicases of the archetypical DEAD- and DExH/D-box families. Here we summarize the current structural, genetic and biochemical knowledge of the two characterized "editing RNA helicases" and provide an outlook onto dynamic processes within the editing reaction cycle. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.
Collapse
|
41
|
Hashimi H, Zimmer SL, Ammerman ML, Read LK, Lukeš J. Dual core processing: MRB1 is an emerging kinetoplast RNA editing complex. Trends Parasitol 2013; 29:91-9. [PMID: 23305619 PMCID: PMC3558622 DOI: 10.1016/j.pt.2012.11.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/28/2012] [Accepted: 11/28/2012] [Indexed: 12/17/2022]
Abstract
Our understanding of kinetoplastid RNA (kRNA) editing has centered on this paradigm: guide RNAs (gRNAs) provide a blueprint for uridine insertion/deletion into mitochondrial mRNAs by the RNA editing core complex (RECC). The characterization of constituent subunits of the mitochondrial RNA-binding complex 1 (MRB1) implies that it too is vital to the editing process. The recently elucidated MRB1 architecture will be instrumental in putting functional data from individual subunits into context. Our model depicts two functions for MRB1: mediating multi-round kRNA editing by coordinating the exchange of multiple gRNAs required by RECC to edit lengthy regions of mRNAs, and then linking kRNA editing with other RNA processing events.
Collapse
Affiliation(s)
- Hassan Hashimi
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, and Faculty of Science, University of South Bohemia, České Budějovice (Budweis) 370 05, Czech Republic
| | - Sara L. Zimmer
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, NY 14214, USA
| | - Michelle L. Ammerman
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, NY 14214, USA
| | - Laurie K. Read
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, NY 14214, USA
| | - Julius Lukeš
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, and Faculty of Science, University of South Bohemia, České Budějovice (Budweis) 370 05, Czech Republic
| |
Collapse
|
42
|
Abstract
RNA editing describes a chemically diverse set of biomolecular reactions in which the nucleotide sequence of RNA molecules is altered. Editing reactions have been identified in many organisms and frequently contribute to the maturation of organellar transcripts. A special editing reaction has evolved within the mitochondria of the kinetoplastid protozoa. The process is characterized by the insertion and deletion of uridine nucleotides into otherwise nontranslatable messenger RNAs. Kinetoplastid RNA editing involves an exclusive class of small, noncoding RNAs known as guide RNAs. Furthermore, a unique molecular machinery, the editosome, catalyzes the process. Editosomes are megadalton multienzyme assemblies that provide a catalytic surface for the individual steps of the reaction cycle. Here I review the current mechanistic understanding and molecular inventory of kinetoplastid RNA editing and the editosome machinery. Special emphasis is placed on the molecular morphology of the editing complex in order to correlate structural features with functional characteristics.
Collapse
Affiliation(s)
- H Ulrich Göringer
- Department of Genetics, Darmstadt University of Technology, Germany.
| |
Collapse
|
43
|
Fisk JC, Li J, Wang H, Aletta JM, Qu J, Read LK. Proteomic analysis reveals diverse classes of arginine methylproteins in mitochondria of trypanosomes. Mol Cell Proteomics 2012; 12:302-11. [PMID: 23152538 DOI: 10.1074/mcp.m112.022533] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arginine (arg) methylation is a widespread posttranslational modification of proteins that impacts numerous cellular processes such as chromatin remodeling, RNA processing, DNA repair, and cell signaling. Known arg methylproteins arise mostly from yeast and mammals, and are almost exclusively nuclear and cytoplasmic. Trypanosoma brucei is an early branching eukaryote whose genome encodes five putative protein arg methyltransferases, and thus likely contains a plethora of arg methylproteins. Additionally, trypanosomes and related organisms possess a unique mitochondrion that undergoes dramatic developmental regulation and uses novel RNA editing and mitochondrial DNA replication mechanisms. Here, we performed a global mass spectrometric analysis of the T. brucei mitochondrion to identify new arg methylproteins in this medically relevant parasite. Enabling factors of this work are use of a combination digestion with two orthogonal enzymes, an efficient offline two dimensional chromatography separation, and high-resolution mass spectrometry analysis with two complementary activations. This approach led to the comprehensive, sensitive and confident identification and localization of methylarg at a proteome level. We identified 167 arg methylproteins with wide-ranging functions including metabolism, transport, chaperoning, RNA processing, translation, and DNA replication. Our data suggest that arg methylproteins in trypanosome mitochondria possess both trypanosome-specific and evolutionarily conserved modifications, depending on the protein targeted. This study is the first comprehensive analysis of mitochondrial arg methylation in any organism, and represents a significant advance in our knowledge of the range of arg methylproteins and their sites of modification. Moreover, these studies establish T. brucei as a model organism for the study of posttranslational modifications.
Collapse
Affiliation(s)
- John C Fisk
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14124, USA
| | | | | | | | | | | |
Collapse
|
44
|
Alternative NADH dehydrogenase (NDH2): intermembrane-space-facing counterpart of mitochondrial complex I in the procyclic Trypanosoma brucei. Parasitology 2012; 140:328-37. [PMID: 23111000 DOI: 10.1017/s003118201200162x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The respiratory chain of the procyclic stage of Trypanosoma brucei contains the standard complexes I through IV, as well as several alternative enzymes contributing to electron flow. In this work, we studied the function of an alternative NADH : ubiquinone oxidoreductase (NDH2). Depletion of target mRNA was achieved using RNA interference (RNAi). In the non-induced and RNAi-induced cell growth, membrane potential change, alteration in production of reactive oxygen species, overall respiration, enzymatic activities of complexes I, III and/or IV and distribution of NADH : ubiquinone oxidoreductase activities in glycerol gradient fractions were measured. Finally, respiration using different substrates was tested on digitonin-permeabilized cells. The induced RNAi cell line exhibited slower growth, decreased mitochondrial membrane potential and lower sensitivity of respiration to inhibitors. Mitochondrial glycerol-3-phosphate dehydrogenase was the only enzymatic activity that has significantly changed in the interfered cells. This elevation as well as a decrease of respiration using NADH was confirmed on digitonin-permeabilized cells. The data presented here together with previously published findings on complex I led us to propose that NDH2 is the major NADH : ubiquinone oxidoreductase responsible for cytosolic and not for mitochondrial NAD+ regeneration in the mitochondrion of procyclic T. brucei.
Collapse
|
45
|
Kala S, Moshiri H, Mehta V, Yip CW, Salavati R. The oligonucleotide binding (OB)-fold domain of KREPA4 is essential for stable incorporation into editosomes. PLoS One 2012; 7:e46864. [PMID: 23056494 PMCID: PMC3464273 DOI: 10.1371/journal.pone.0046864] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 09/06/2012] [Indexed: 12/28/2022] Open
Abstract
Most mitochondrial mRNAs in trypanosomatid parasites require uridine insertion/deletion RNA editing, a process mediated by guide RNA (gRNA) and catalyzed by multi-protein complexes called editosomes. The six oligonucleotide/oligosaccharide binding (OB)-fold proteins (KREPA1-A6), are a part of the common core of editosomes. They form a network of interactions among themselves as well as with the insertion and deletion sub-complexes and are essential for the stability of the editosomes. KREPA4 and KREPA6 proteins bind gRNA in vitro and are known to interact directly in yeast two-hybrid analysis. In this study, using several approaches we show a minimal interaction surface of the KREPA4 protein that is required for this interaction. By screening a series of N- and C-terminally truncated KREPA4 fragments, we show that a predicted α-helix of KREPA4 OB-fold is required for its interaction with KREPA6. An antibody against the KREPA4 α-helix or mutations of this region can eliminate association with KREPA6; while a peptide fragment corresponding to the α-helix can independently interact with KREPA6, thereby supporting the identification of KREPA4-KREPA6 interface. We also show that the predicted OB-fold of KREPA4; independent of its interaction with gRNA, is responsible for the stable integration of KREPA4 in the editosomes, and editing complexes co-purified with the tagged OB-fold can catalyze RNA editing. Therefore, we conclude that while KREPA4 interacts with KREPA6 through the α-helix region of its OB-fold, the entire OB-fold is required for its integration in the functional editosome, through additional protein-protein interactions.
Collapse
Affiliation(s)
- Smriti Kala
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Houtan Moshiri
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Vaibhav Mehta
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Chun Wai Yip
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Reza Salavati
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
46
|
Kafková L, Ammerman ML, Faktorová D, Fisk JC, Zimmer SL, Sobotka R, Read LK, Lukeš J, Hashimi H. Functional characterization of two paralogs that are novel RNA binding proteins influencing mitochondrial transcripts of Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2012; 18:1846-61. [PMID: 22898985 PMCID: PMC3446708 DOI: 10.1261/rna.033852.112] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 07/11/2012] [Indexed: 05/20/2023]
Abstract
A majority of Trypanosoma brucei proteins have unknown functions, a consequence of its independent evolutionary history within the order Kinetoplastida that allowed for the emergence of several unique biological properties. Among these is RNA editing, needed for expression of mitochondrial-encoded genes. The recently discovered mitochondrial RNA binding complex 1 (MRB1) is composed of proteins with several functions in processing organellar RNA. We characterize two MRB1 subunits, referred to herein as MRB8170 and MRB4160, which are paralogs arisen from a large chromosome duplication occurring only in T. brucei. As with many other MRB1 proteins, both have no recognizable domains, motifs, or orthologs outside the order. We show that they are both novel RNA binding proteins, possibly representing a new class of these proteins. They associate with a similar subset of MRB1 subunits but not directly with each other. We generated cell lines that either individually or simultaneously target the mRNAs encoding both proteins using RNAi. Their dual silencing results in a differential effect on moderately and pan-edited RNAs, suggesting a possible functional separation of the two proteins. Cell growth persists upon RNAi silencing of each protein individually in contrast to the dual knockdown. Yet, their apparent redundancy in terms of cell viability is at odds with the finding that only one of these knockdowns results in the general degradation of pan-edited RNAs. While MRB8170 and MRB4160 share a considerable degree of conservation, our results suggest that their recent sequence divergence has led to them influencing mitochondrial mRNAs to differing degrees.
Collapse
Affiliation(s)
- Lucie Kafková
- Biology Center, Institute of Parasitology, Czech Academy of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
| | - Michelle L. Ammerman
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Drahomíra Faktorová
- Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
| | - John C. Fisk
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Sara L. Zimmer
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Roman Sobotka
- Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
- Institute of Microbiology, Czech Academy of Sciences, 379 81 Třeboň, Czech Republic
| | - Laurie K. Read
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Julius Lukeš
- Biology Center, Institute of Parasitology, Czech Academy of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
| | - Hassan Hashimi
- Biology Center, Institute of Parasitology, Czech Academy of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
- Corresponding authorE-mail
| |
Collapse
|
47
|
Multifunctional G-rich and RRM-containing domains of TbRGG2 perform separate yet essential functions in trypanosome RNA editing. EUKARYOTIC CELL 2012; 11:1119-31. [PMID: 22798390 DOI: 10.1128/ec.00175-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Efficient editing of Trypanosoma brucei mitochondrial RNAs involves the actions of multiple accessory factors. T. brucei RGG2 (TbRGG2) is an essential protein crucial for initiation and 3'-to-5' progression of editing. TbRGG2 comprises an N-terminal G-rich region containing GWG and RG repeats and a C-terminal RNA recognition motif (RRM)-containing domain. Here, we perform in vitro and in vivo separation-of-function studies to interrogate the mechanism of TbRGG2 action in RNA editing. TbRGG2 preferentially binds preedited mRNA in vitro with high affinity attributable to its G-rich region. RNA-annealing and -melting activities are separable, carried out primarily by the G-rich and RRM domains, respectively. In vivo, the G-rich domain partially complements TbRGG2 knockdown, but the RRM domain is also required. Notably, TbRGG2's RNA-melting activity is dispensable for RNA editing in vivo. Interactions between TbRGG2 and MRB1 complex proteins are mediated by both G-rich and RRM-containing domains, depending on the binding partner. Overall, our results are consistent with a model in which the high-affinity RNA binding and RNA-annealing activities of the G-rich domain are essential for RNA editing in vivo. The RRM domain may have key functions involving interactions with the MRB1 complex and/or regulation of the activities of the G-rich domain.
Collapse
|
48
|
Ammerman ML, Downey KM, Hashimi H, Fisk JC, Tomasello DL, Faktorová D, Kafková L, King T, Lukeš J, Read LK. Architecture of the trypanosome RNA editing accessory complex, MRB1. Nucleic Acids Res 2012; 40:5637-50. [PMID: 22396527 PMCID: PMC3384329 DOI: 10.1093/nar/gks211] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 02/01/2012] [Accepted: 02/16/2012] [Indexed: 12/23/2022] Open
Abstract
Trypanosoma brucei undergoes an essential process of mitochondrial uridine insertion and deletion RNA editing catalyzed by a 20S editosome. The multiprotein mitochondrial RNA-binding complex 1 (MRB1) is emerging as an equally essential component of the trypanosome RNA editing machinery, with additional functions in gRNA and mRNA stabilization. The distinct and overlapping protein compositions of reported MRB1 complexes and diverse MRB1 functions suggest that the complex is composed of subcomplexes with RNA-dependent and independent interactions. To determine the architecture of the MRB1 complex, we performed a comprehensive yeast two-hybrid analysis of 31 reported MRB1 proteins. We also used in vivo analyses of tagged MRB1 components to confirm direct and RNA-mediated interactions. Here, we show that MRB1 contains a core complex comprised of six proteins and maintained by numerous direct interactions. The MRB1 core associates with multiple subcomplexes and proteins through RNA-enhanced or RNA-dependent interactions. These findings provide a framework for interpretation of previous functional studies and suggest that MRB1 is a dynamic complex that coordinates various aspects of mitochondrial gene regulation.
Collapse
Affiliation(s)
- Michelle L. Ammerman
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA, Biology Centre, Institute of Parasitology and Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Kurtis M. Downey
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA, Biology Centre, Institute of Parasitology and Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Hassan Hashimi
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA, Biology Centre, Institute of Parasitology and Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - John C. Fisk
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA, Biology Centre, Institute of Parasitology and Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Danielle L. Tomasello
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA, Biology Centre, Institute of Parasitology and Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Drahomíra Faktorová
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA, Biology Centre, Institute of Parasitology and Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Lucie Kafková
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA, Biology Centre, Institute of Parasitology and Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Tony King
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA, Biology Centre, Institute of Parasitology and Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA, Biology Centre, Institute of Parasitology and Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Laurie K. Read
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA, Biology Centre, Institute of Parasitology and Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| |
Collapse
|
49
|
Additive and transcript-specific effects of KPAP1 and TbRND activities on 3' non-encoded tail characteristics and mRNA stability in Trypanosoma brucei. PLoS One 2012; 7:e37639. [PMID: 22629436 PMCID: PMC3357391 DOI: 10.1371/journal.pone.0037639] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 04/26/2012] [Indexed: 01/09/2023] Open
Abstract
Short, non-encoded oligo(A), oligo(U), or A/U tails can impact mRNA stability in kinetoplastid mitochondria. However, a comprehensive picture of the relative effects of these modifications in RNA stability is lacking. Furthermore, while the U-preferring exoribonuclease TbRND acts on U-tailed gRNAs, its role in decay of uridylated mRNAs has only been cursorily investigated. Here, we analyzed the roles of mRNA 3′ tail composition and TbRND in RNA decay using cells harbouring single or double knockdown of TbRND and the KPAP1 poly(A) polymerase. Analysis of mRNA abundance and tail composition reveals dramatic and transcript-specific effects of adenylation and uridylation on mitochondrial RNAs. Oligo(A) and A-rich tails can stabilize a proportion of edited and never-edited RNAs. However, non-tailed RNAs are not inherently unstable, implicating additional stability determinants and/or spatial segregation of sub-populations of a given RNA in regulation of RNA decay. Oligo(U) tails, which have been shown to contribute to decay of some never-edited RNAs, are not universally destabilizing. We also show that RNAs display very different susceptibility to uridylation in the absence of KPAP1, a factor that may contribute to regulation of decay. Finally, 3′ tail composition apparently impacts the ability of an RNA to be edited.
Collapse
|
50
|
Editosome accessory factors KREPB9 and KREPB10 in Trypanosoma brucei. EUKARYOTIC CELL 2012; 11:832-43. [PMID: 22562468 DOI: 10.1128/ec.00046-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Multiprotein complexes, called editosomes, catalyze the uridine insertion and deletion RNA editing that forms translatable mitochondrial mRNAs in kinetoplastid parasites. We have identified here two new U1-like zinc finger proteins that associate with editosomes and have shown that they are related to KREPB6, KREPB7, and KREPB8, and thus we have named them Kinetoplastid RNA Editing Proteins, KREPB9 and KREPB10. They are conserved and syntenic in trypanosomatids although KREPB10 is absent in Trypanosoma vivax and both are absent in Leishmania. Tandem affinity purification (TAP)-tagged KREPB9 and KREPB10 incorporate into ~20S editosomes and/or subcomplexes thereof and preferentially associate with deletion subcomplexes, as do KREPB6, KREPB7, and KREPB8. KREPB10 also associates with editosomes that are isolated via a chimeric endonuclease, KREN1 in KREPB8 RNA interference (RNAi) cells, or MEAT1. The purified complexes have precleaved editing activities and endonuclease cleavage activity that appears to leave a 5' OH on the 3' product. RNAi knockdowns did not affect growth but resulted in relative reductions of both edited and unedited mitochondrial mRNAs. The similarity of KREPB9 and KREPB10 to KREPB6, KREPB7, and KREPB8 suggests they may be accessory factors that affect editing endonuclease activity and as a consequence may affect mitochondrial mRNA stability. KREPB9 and KREPB10, along with KREPB6, KREPB7, and KREPB8, may enable the endonucleases to discriminate among and accurately cleave hundreds of different editing sites and may be involved in the control of differential editing during the life cycle of T. brucei.
Collapse
|