1
|
Zhang LY, Zhang K, Zhao X, Tao HP, Jia GX, Fang YG, Hou YP, Yang QE. Fetal hypoxia exposure induces Hif1a activation and autophagy in adult ovarian granulosa cells†. Biol Reprod 2024; 111:1220-1234. [PMID: 39361887 DOI: 10.1093/biolre/ioae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/15/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024] Open
Abstract
Environmental hypoxia adversely impacts the reproduction of humans and animals. Previously, we showed that fetal hypoxia exposure led to granulosa cell (GC) autophagic cell death via the Foxo1/Pi3k/Akt pathway. However, the upstream regulatory mechanisms underlying GC dysfunction remain largely unexplored. Here, we tested the hypothesis that fetal hypoxia exposure altered gene expression programs in adult GCs and impaired ovarian function. We established a fetal hypoxia model in which pregnant mice were maintained in a high-plateau hypoxic environment from gestation day (E) 0-16.5 to study the impact of hypoxia exposure on the ovarian development and subsequent fertility of offspring. Compared with the unexposed control, fetal hypoxia impaired fertility by disordering ovarian function. Specifically, fetal hypoxia caused mitochondrial dysfunction, oxidant stress, and autophagy in GCs in the adult ovary. RNA sequencing analysis revealed that 437 genes were differentially expressed in the adult GCs of exposed animals. Western blotting results also revealed that fetal exposure induced high levels of hypoxia-inducible factor 1-alpha (Hif1a) expression in adult GCs. We then treated granulosa cells isolated from exposed mice with PX-478, a specific pharmacological inhibitor of Hif1a, and found that autophagy and apoptosis were effectively alleviated. Finally, by using a human ovarian granulosa-like tumor cell line (KGN) to simulate hypoxia in vitro, we showed that Hif1a regulated autophagic cell death in GCs through the Pi3k/Akt pathway. Together, these findings suggest that fetal hypoxia exposure induced persistent Hif1a expression, which impaired mitochondrial function and led to autophagic cell death in the GCs of the adult ovary.
Collapse
Affiliation(s)
- Lu-Yao Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, China
| | - Ke Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, China
| | - Xi Zhao
- Department of Animal Science, College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Hai-Ping Tao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gong-Xue Jia
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - You-Gui Fang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, China
| | - Yun-Peng Hou
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qi-En Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| |
Collapse
|
2
|
Zhang Z, Wang D, Xu R, Li X, Wang Z, Zhang Y. The Physiological Functions and Therapeutic Potential of Hypoxia-Inducible Factor-1α in Vascular Calcification. Biomolecules 2024; 14:1592. [PMID: 39766299 PMCID: PMC11674127 DOI: 10.3390/biom14121592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
HIF-1α plays a crucial regulatory role in vascular calcification (VC), primarily influencing the osteogenic differentiation of VSMCs through oxygen-sensing mechanisms. Under hypoxic conditions, the stability of HIF-1α increases, avoiding PHD and VHL protein-mediated degradation, which promotes its accumulation in cells and then activates gene expressions related to calcification. Additionally, HIF-1α modulates the metabolic state of VSMCs by regulating the pathways that govern the switch between glycolysis and oxidative phosphorylation, thereby further advancing the calcification process. The interaction between HIF-1α and other signaling pathways, such as nuclear factor-κB, Notch, and Wnt/β-catenin, creates a complex regulatory network that serves as a critical driving force in VC. Therefore, a deeper understanding of the role and regulatory mechanism of the HIF-1α signaling during the development and progression of VC is of great significance, as it is not only a key molecular marker for understanding the pathological mechanisms of VC but also represents a promising target for future anti-calcification therapies.
Collapse
Affiliation(s)
- Zhenghong Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (R.X.)
| | - Defan Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen 361102, China;
| | - Renfeng Xu
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (R.X.)
| | - Xiang Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (R.X.)
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| |
Collapse
|
3
|
Szymanska M, Basavaraja R, Meidan R. A tale of two endothelins: the rise and fall of the corpus luteum. Reprod Fertil Dev 2024; 37:RD24158. [PMID: 39680472 DOI: 10.1071/rd24158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Endothelins are small 21 amino acid peptides that interact with G-protein-coupled receptors. They are highly conserved across species and play important roles in vascular biology as well as in disease development and progression. Endothelins, mainly endothelin-1 and endothelin-2, are intricately involved in ovarian function and metabolism. These two peptides differ only in two amino acids but are encoded by different genes, which suggests an independent regulation and a cell-specific mode of expression. This review aims to comprehensively discuss the distinct regulation and roles of endothelin-1 and endothelin-2 regarding corpus luteum function throughout its life span.
Collapse
Affiliation(s)
- Magdalena Szymanska
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; and Present address: Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
| | - Raghavendra Basavaraja
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; and Present address: Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rina Meidan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
4
|
Wang D, Zhu Z, Fu Y, Zhang Q, Zhang Y, Wang T, Weng Y, Wen Y, Cao W, Tao G, Wang Y. Bromodomain-containing protein 4 activates androgen receptor transcription and promotes ovarian fibrosis in PCOS. Cell Rep 2023; 42:113090. [PMID: 37669164 DOI: 10.1016/j.celrep.2023.113090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/26/2023] [Accepted: 08/18/2023] [Indexed: 09/07/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine disorder and the main cause of anovulatory infertility, in which persistent activation of androgen receptor (AR) due to aberrant acetylation modifications of transcription is a potential trigger; however, the precise mechanisms of AR activation are poorly understood. In this study, AR activation in dehydroepiandrosterone- and letrozole-induced rat PCOS ovaries coincided with a marked increase of a chromatin acetylation "reader" BRD4. Further bioinformatic analysis showed that the AR promoter contained highly conserved binding motifs of BRD4 and HIF-1α. BRD4 and HIF-1α inducibly bound to the histone 3/4 acetylation-modified AR promoter, while administration of a BRD4-selective inhibitor JQ1 reduced the binding and AR transcription and improved the adverse expression of the core fibrotic mediators in PCOS ovaries and DHT-treated granulosa cells. Our data indicate that BRD4 upregulation and the resultant AR transcriptional activation constitute an important regulatory pathway that promotes ovarian fibrosis in PCOS.
Collapse
Affiliation(s)
- Daojuan Wang
- The Affiliated Nanjing Drum Tower Hospital, and State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China; Department of Pain Management, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zhengquan Zhu
- The Affiliated Nanjing Drum Tower Hospital, and State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Yu Fu
- The Affiliated Nanjing Drum Tower Hospital, and State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Qiong Zhang
- Department of Obstetrics and Gynecology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Yi Zhang
- The Affiliated Nanjing Drum Tower Hospital, and State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Tingyu Wang
- Department of Pain Management, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yajing Weng
- The Affiliated Nanjing Drum Tower Hospital, and State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Yanting Wen
- The Affiliated Nanjing Drum Tower Hospital, and State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Wangsen Cao
- The Affiliated Nanjing Drum Tower Hospital, and State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China; Department of Nephrology, Yangzhou Precision Research Institute of Kidney Disease, Northern Jiangsu People's Hospital, Teaching Hospital of Nanjing University Medical School, Yangzhou 225009, China.
| | - Gaojian Tao
- Department of Pain Management, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Yong Wang
- The Affiliated Nanjing Drum Tower Hospital, and State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China.
| |
Collapse
|
5
|
Xie Q, Hong W, Li Y, Ling S, Zhou Z, Dai Y, Wu W, Weng R, Zhong Z, Tan J, Zheng Y. Chitosan oligosaccharide improves ovarian granulosa cells inflammation and oxidative stress in patients with polycystic ovary syndrome. Front Immunol 2023; 14:1086232. [PMID: 36936973 PMCID: PMC10016348 DOI: 10.3389/fimmu.2023.1086232] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Introduction Polycystic Ovary Syndrome (PCOS) is the most common reproductive endocrine disorder among women of reproductive age, which is one of the main causes of anovulatory infertility. Even though the rapidly developed assisted reproductive technology (ART) could effectively solve fertility problems, some PCOS patients still have not obtained satisfactory clinical outcomes. The poor quality of oocytes caused by the abnormal follicular development of PCOS may directly contribute to the failure of ART treatment. Ovarian granulosa cells (GCs) are the most closely related cells to oocytes, and changes in their functional status have a direct impact on oocyte formation. Previous studies have shown that changes in the ovarian microenvironment, like oxidative stress and inflammation, may cause PCOS-related aberrant follicular development by impairing the physiological state of the GCs. Therefore, optimizing the ovarian microenvironment is a feasible method for enhancing the development potential of PCOS oocytes. Methods In this study, we first detected the expression of inflammatory-related factors (TGF-β1, IL-10, TNFα, IL-6) and oxidative stress-related factors (HIF-1α and VEGFA), as well as the proliferation ability and apoptosis level of GCs, which were collected from control patients (non-PCOS) and PCOS patients, respectively. Subsequently, human ovarian granulosa cell line (KGN) cells were used to verify the anti-inflammatory and anti-oxidative stress effects of chitosan oligosaccharide (COS) on GCs, as well as to investigate the optimal culture time and concentration of COS. The optimal culture conditions were then used to culture GCs from PCOS patients and control patients. Results The results showed that GCs from PCOS patients exhibited obvious inflammation and oxidative stress and significantly reduced proliferation and increased apoptosis. Furthermore, COS can increase the expression of anti-inflammatory factors (TGF-β1 and IL-10) and decrease the expression of pro-inflammatory factors (TNFα and IL-6), as well as promote the proliferation of GCs. Moreover, we found that COS can reduce the level of reactive oxygen species in GCs under oxidative stress by inhibiting the expression of HIF-1α and VEGFA and by suppressing the apoptosis of GCs induced by oxidative stress. Conclusion We find that inflammation and oxidative stress exist in the GCs of PCOS patients, and COS can reduce these factors, thereby improving the function of GCs.
Collapse
Affiliation(s)
- Qi Xie
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, China
- Reproductive Medicine Center, Xinyu Maternal and Child Health Care Hospital, Xinyu, China
| | - Wenli Hong
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Yuan Li
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| | - Shuyi Ling
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| | - Ziqiong Zhou
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| | - Yuqing Dai
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| | - Wenbo Wu
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| | - Ruoxin Weng
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| | - Zhisheng Zhong
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
- *Correspondence: Zhisheng Zhong, ; Jun Tan, ; Yuehui Zheng,
| | - Jun Tan
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- *Correspondence: Zhisheng Zhong, ; Jun Tan, ; Yuehui Zheng,
| | - Yuehui Zheng
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
- *Correspondence: Zhisheng Zhong, ; Jun Tan, ; Yuehui Zheng,
| |
Collapse
|
6
|
Szymanska M, Shrestha K, Girsh E, Harlev A, Eisenberg I, Imbar T, Meidan R. Reduced Endothelin-2 and Hypoxic Signaling Pathways in Granulosa-Lutein Cells of PCOS Women. Int J Mol Sci 2021; 22:ijms22158216. [PMID: 34360981 PMCID: PMC8347025 DOI: 10.3390/ijms22158216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Granulosa-lutein cells (GLCs) from PCOS women display reduced HIF-1α and EDN2 levels, suggesting their role in PCOS etiology. Here, we investigated the mechanisms involved in aberrant EDN2 expression in PCOS, and its association with HIF-1α. Various HIF-1α-dependent factors were studied in GLCs from PCOS and compared to normally ovulating women. MicroRNA-210 (miR-210), its target genes (SDHD and GPD1L), and HIF-1α-responsive genes (EDN2 and VEGFA) differed in GLCs from PCOS, compared with those of healthy women. Levels of miR-210—designated hypoxiamiR—and EDN2 were reduced in the PCOS GLCs; concomitantly, GPD1L and SDHD levels were elevated. Cultured GLCs retained low EDN2 expression and had low HIF-1α levels, providing evidence for a disrupted hypoxic response in the PCOS GLCs. However, VEGFA expression was elevated in these cells. Next, miR-210 levels were manipulated. miR-210-mimic stimulated EDN2 twice as much as the miR-NC-transfected cells, whereas miR-210-inhibitor diminished EDN2, emphasizing the importance of hypoxiamiR for EDN2 induction. Intriguingly, VEGFA transcripts were reduced by both miR-210-mimic and -inhibitor, demonstrating that EDN2 and VEGFA are distinctly regulated. Disrupted hypoxic response in the GLCs of periovulatory follicles in PCOS women may play a role in ovulation failure, and in the reduced fertility prevalent in this syndrome.
Collapse
Affiliation(s)
- Magdalena Szymanska
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (M.S.); (K.S.)
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Ketan Shrestha
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (M.S.); (K.S.)
- UK Medical Center, Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY 40536, USA
| | - Eliezer Girsh
- Fertility and IVF Unit, Barzilai University Medical Center, Ashkelon 7830604, Israel; (E.G.); (A.H.)
| | - Avi Harlev
- Fertility and IVF Unit, Barzilai University Medical Center, Ashkelon 7830604, Israel; (E.G.); (A.H.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Iris Eisenberg
- The Magda and Richard Hoffman Center for Human Placenta Research, Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem 91240, Israel;
| | - Tal Imbar
- The Magda and Richard Hoffman Center for Human Placenta Research, Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem 91240, Israel;
- Hadassah Ein Kerem Medical Center, Fertility Preservation Unit, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Correspondence: (T.I.); (R.M.)
| | - Rina Meidan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (M.S.); (K.S.)
- Correspondence: (T.I.); (R.M.)
| |
Collapse
|
7
|
Allais A, Albert O, Lefèvre PLC, Wade MG, Hales BF, Robaire B. In Utero and Lactational Exposure to Flame Retardants Disrupts Rat Ovarian Follicular Development and Advances Puberty. Toxicol Sci 2021; 175:197-209. [PMID: 32207525 DOI: 10.1093/toxsci/kfaa044] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Brominated flame retardants (BFRs), including polybrominated diphenyl ethers and hexabromocyclododecane, leach out from consumer products into the environment. Exposure to BFRs has been associated with effects on endocrine homeostasis. To test the hypothesis that in utero and lactational exposure to BFRs may affect the reproductive system of female offspring, adult female Sprague Dawley rats were fed diets formulated to deliver nominal doses (0, 0.06, 20, or 60 mg/kg/day) of a BFR dietary mixture mimicking the relative congener levels in house dust from prior to mating until weaning. Vaginal opening and the day of first estrus occurred at a significantly earlier age among offspring from the 20 mg/kg/day BFR group, indicating that the onset of puberty was advanced. Histological analysis of ovaries from postnatal day 46 offspring revealed an increase in the incidence of abnormal follicles. A toxicogenomic analysis of ovarian gene expression identified upstream regulators, including HIF1A, CREB1, EGF, the β-estradiol, and PPARA pathways, predicted to be downregulated in the 20 or 60 mg/kg/day group and to contribute to the gene expression patterns observed. Thus, perinatal exposure to BFRs dysregulated ovarian folliculogenesis and signaling pathways that are fundamental for ovarian function in the adult.
Collapse
Affiliation(s)
- Adélaïde Allais
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G1Y6, Canada
| | - Océane Albert
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G1Y6, Canada
| | - Pavine L C Lefèvre
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G1Y6, Canada
| | - Michael G Wade
- Environmental Health Sciences and Research Bureau, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Barbara F Hales
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G1Y6, Canada
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G1Y6, Canada.,Department of Obstetrics & Gynecology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Tang Z, Xu R, Zhang Z, Shi C, Zhang Y, Yang H, Lin Q, Liu Y, Lin F, Geng B, Wang Z. HIF-1α Protects Granulosa Cells From Hypoxia-Induced Apoptosis During Follicular Development by Inducing Autophagy. Front Cell Dev Biol 2021; 9:631016. [PMID: 33553188 PMCID: PMC7862574 DOI: 10.3389/fcell.2021.631016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
Owing to the avascular structure of the ovarian follicle, proliferation of granulosa cells (GCs) and development of follicles occur under hypoxia, which is obviously different from the cell survival requirements of most mammalian cells. We hypothesized that autophagy may exert an inhibitory effect on GC apoptosis. To decipher the underlying mechanism, we constructed a rat follicular development model using pregnant mare serum gonadotropin and a cell culture experiment in hypoxic conditions (3% O2). The present results showed that the autophagy level was obviously increased and was accompanied by the concomitant elevation of hypoxia inducible factor (HIF)-1α and BNIP3 (Bcl-2/adenovirus E1B 19kDa-interacting protein 3) in GCs during follicular development. The levels of Bax (Bcl2-associated X) and Bcl-2 (B-cell lymphoma-2) were increased, while the activation of caspase-3 exhibited no obvious changes during follicular development. However, inhibition of HIF-1α attenuated the increase in Bcl-2 and promoted the increase in Bax and cleaved caspase-3. Furthermore, we observed the downregulation of BNIP3 and the decrease in autophagy after treatment with a specific HIF-1α activity inhibitor (echinomycin), indicating that HIF-1α/BNIP3 was involved in autophagy regulation in GCs in vivo. In an in vitro study, we also found that hypoxia did not obviously promote GC apoptosis, while it significantly enhanced the activation of HIF-1α/BNIP3 and the induction of autophagy. Expectedly, this effect could be reversed by 3-methyladenine (3-MA) treatment. Taken together, these findings demonstrated that hypoxia drives the activation of HIF-1α/BNIP3 signaling, which induces an increase in autophagy, protecting GC from apoptosis during follicular development.
Collapse
Affiliation(s)
- Zonghao Tang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Provincial University Key Laboratory of Sport and Health Science, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China.,Key Laboratory of Medical Electrophysiology of Ministry of Education and Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
| | - Renfeng Xu
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Provincial University Key Laboratory of Sport and Health Science, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Zhenghong Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Provincial University Key Laboratory of Sport and Health Science, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Congjian Shi
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Provincial University Key Laboratory of Sport and Health Science, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yan Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Provincial University Key Laboratory of Sport and Health Science, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Hongqin Yang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Provincial University Key Laboratory of Sport and Health Science, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Qingqiang Lin
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Provincial University Key Laboratory of Sport and Health Science, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yiping Liu
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Provincial University Key Laboratory of Sport and Health Science, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Fengping Lin
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Provincial University Key Laboratory of Sport and Health Science, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Baorong Geng
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Provincial University Key Laboratory of Sport and Health Science, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Provincial University Key Laboratory of Sport and Health Science, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
9
|
Szymanska M, Manthe S, Shrestha K, Girsh E, Harlev A, Kisliouk T, Meidan R. Sirtuin-1 inhibits endothelin-2 expression in human granulosa-lutein cells via hypoxia inducible factor 1 alpha and epigenetic modifications†. Biol Reprod 2020; 104:387-398. [PMID: 33112382 DOI: 10.1093/biolre/ioaa199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/26/2020] [Accepted: 10/22/2020] [Indexed: 01/17/2023] Open
Abstract
Endothelin-2 (EDN2) expression in granulosa cells was previously shown to be highly dependent on the hypoxic mediator, hypoxia inducible factor 1 alpha (HIF1A). Here, we investigated whether sirtuin-1 (SIRT1), by deacetylating HIF1A and class III histones, modulates EDN2 in human granulosa-lutein cells (hGLCs). We found that HIF1A was markedly suppressed in the presence of resveratrol or a specific SIRT1 activator, SRT2104. In turn, hypoxia reduced SIRT1 levels, implying a mutually inhibitory interaction between hypoxia (HIF1A) and SIRT1. Consistent with reduced HIF1A transcriptional activity, SIRT1 activators, resveratrol, SRT2104, and metformin, each acting via different mechanisms, significantly inhibited EDN2. In support, knockdown of SIRT1 with siRNA markedly elevated EDN2, whereas adding SRT2104 to SIRT1-silenced cells abolished the stimulatory effect of siSIRT1 on EDN2 levels further demonstrating that EDN2 is negatively correlated with SIRT1. Next, we investigated whether SIRT1 can also mediate the repression of the EDN2 promoter via histone modification. Chromatin immunoprecipitation (ChIP) analysis revealed that SIRT1 is indeed bound to the EDN2 promoter and that elevated SIRT1 induced a 40% decrease in the acetylation of histone H3, suggesting that SIRT1 inhibits EDN2 promoter activity by inducing a repressive histone configuration. Importantly, SIRT1 activation, using SRT2104 or resveratrol, decreased the viable numbers of hGLC, and silencing SIRT1 enhanced hGLC viability. This effect may be mediated by reducing HIF1A and EDN2 levels, shown to promote cell survival. Taken together, these findings propose novel, physiologically relevant roles for SIRT1 in downregulating EDN2 and survival of hGLCs.
Collapse
Affiliation(s)
- Magdalena Szymanska
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Sarah Manthe
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ketan Shrestha
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Eliezer Girsh
- Fertility and IVF Unit, Department of Obstetrics and Gynecology, Barzilai University Medical Center, Ashkelon, Israel
| | - Avi Harlev
- Fertility and IVF Unit, Department of Obstetrics and Gynecology, Barzilai University Medical Center, Ashkelon, Israel.,Faculty of Health Sciences, Department of Obstetrics and Gynecology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tatiana Kisliouk
- Agricultural Research Organization, Volcani Center, Department of Poultry and Aquaculture Science, Rishon LeZiyyon, Israel
| | - Rina Meidan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
10
|
Fan J, Yu Y, Han X, He H, Luo Y, Yu S, Cui Y, Xu G, Wang L, Pan Y. The expression of hypoxia-inducible factor-1 alpha in primary reproductive organs of the female yak (Bos grunniens) at different reproductive stages. Reprod Domest Anim 2020; 55:1371-1382. [PMID: 32706432 DOI: 10.1111/rda.13783] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022]
Abstract
The yak (Bos grunniens) is the most important livestock animal in high-altitude regions owing to its prominent adaptability to cold conditions, nutritional deficiencies and hypoxia. The reproductive organs exhibit different histological appearances and physiological processes at different reproductive stages. Hypoxia-inducible factor-1 alpha (HIF-1α) is the regulatory subunit of HIF-1 that crucially regulates the response to hypoxia in mammalian organisms. The goal of our study was to investigate the expression and distribution of HIF-1α in the primary yak reproductive organs at different reproductive stages. Samples of the ovary, oviduct and uterus of 15 adult female yaks were collected and used in the experiment. The expression and localization of HIF-1α proteins and mRNA were investigated using quantitative real-time polymerase chain reaction (qRT-PCR), Western blot (WB) and immunohistochemistry (IHC). The results indicated that the expression of HIF-1α protein in the ovary was higher during the luteal phase than during the follicular phase and gestation period (p < .05). In the oviduct, HIF-1α protein was also more highly expressed during the luteal phase than during the follicular phase and gestation period (p < .01). However, in the uterus, the HIF-1α protein had stronger expression during the gestation period than during the follicular phase (p < .01) and luteal phase (p < .05). The expression of HIF-1α mRNA was similar to that of its protein. Immunohistochemical analysis revealed intense immunostaining of HIF-1α proteins in the follicular granulosa cells, granular luteal cells, villous epithelial cells of the oviduct, endometrial glandular epithelium and luminal epithelium, foetal villous trophoblast, and epithelia of caruncular crypts. This study showed that the expression of HIF-1α in the ovary, oviduct and uterus varies according to the stage of the reproductive cycle. This implies that HIF-1α plays an important role in regulating the stage-specific physiological function of yak reproductive organs under hypoxic environments.
Collapse
Affiliation(s)
- Jiangfeng Fan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yiteng Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xiaohong Han
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Honghong He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yuzhu Luo
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Sijiu Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan Cui
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, China
| | - Gengquan Xu
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, China
| | - Libin Wang
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, China
| | - Yangyang Pan
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, China
| |
Collapse
|
11
|
Lu E, Li C, Wang J, Zhang C. Inflammation and angiogenesis in the corpus luteum. J Obstet Gynaecol Res 2019; 45:1967-1974. [PMID: 31373134 DOI: 10.1111/jog.14076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022]
Abstract
Angiogenesis is a very important process that helps establish and maintain the normal structure and function of the corpus luteum (CL). Early luteal development can be considered a kind of physiological injury with an inflammatory response; therefore, the inflammatory response may play an important role in the luteal angiogenesis. The inflammatory response is companied by activated leukocytes and their mediators. For luteal tissue, numerous activated leukocytes such as macrophages, neutrophils and eosinophils are present in the early luteal phase and are widely involved in neovascularization. The objective of this review is to describe the role of the inflammatory factors in the angiogenesis and to discuss their mechanism. Knowledge of action and mechanism of these inflammatory factors on angiogenic activity will be beneficial for the understanding of luteal function.
Collapse
Affiliation(s)
- Enhang Lu
- Joint Programme of Nanchang University and Queen Mary University of London, School of Medicine, Nanchang University, Nanchang, China
| | - Chunjie Li
- Forth Clinical College, School of Medicine, Nanchang University, Nanchang, China
| | - Jing Wang
- Department of Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Chunping Zhang
- Department of Cell Biology, School of Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Zhang Z, Huang Y, Zhang J, Liu Z, Lin Q, Wang Z. Activation of NF-κB signaling pathway during HCG-induced VEGF expression in luteal cells. Cell Biol Int 2019; 43:344-349. [PMID: 30597662 DOI: 10.1002/cbin.11090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/21/2018] [Indexed: 12/25/2022]
Abstract
Vascular endothelial growth factor (VEGF) plays an essential role in luteal angiogenesis, the present study therefore utilized luteal cells cultured in vitro to further investigate the activation and contribution of nuclear factor (NF)-κB to VEGF expression induced by human chorionic gonadotrophin (HCG). The present results showed HCG induced VEGF expression as well as hypoxia-inducible factor (HIF)-1α mRNA and protein expressions, which was blocked by NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC). Further analysis found that these increases of VEGF and HIF-1α mRNA induced by HCG were also blocked by NF-κB siRNA transfection, which was consistent with PDTC treatment. However, HIF-1α siRNA treatment significantly decreased HCG induced-VEGF expression with no effect on NF-κB mRNA expression. Furthermore, combination of HIF-1α siRNA and PDTC treatment did not further decrease VEGF mRNA expression, and the result of chromatin immunoprecipitation indicated NF-κB may regulate HIF-1α transcription through binding with its promoter. Taken together, the present results clearly demonstrated that NF-κB was activated to regulate VEGF expression by increasing HIF-1α transcription in luteal cells treated with HCG. Therefore, the present study provided a new and important mechanism of luteal angiogenesis during the formation of corpus luteum in mammals.
Collapse
Affiliation(s)
- Zhenghong Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, No. 8, Shangsan Road, Fuzhou 350007, P. R. China
| | - Yuxiu Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, P. R. China
| | - Jingwei Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, No. 8, Shangsan Road, Fuzhou 350007, P. R. China
| | - Zhaoyuan Liu
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, No. 8, Shangsan Road, Fuzhou 350007, P. R. China
| | - Qingqiang Lin
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, No. 8, Shangsan Road, Fuzhou 350007, P. R. China
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, No. 8, Shangsan Road, Fuzhou 350007, P. R. China
| |
Collapse
|
13
|
Li N, Liu T, Guo K, Zhu J, Yu G, Wang S, Ye L. Effect of mono-(2-ethylhexyl) phthalate (MEHP) on proliferation of and steroid hormone synthesis in rat ovarian granulosa cells in vitro. J Cell Physiol 2018; 233:3629-3637. [PMID: 29034469 DOI: 10.1002/jcp.26224] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/09/2017] [Indexed: 11/06/2022]
Abstract
This study aimed to examine the proliferation of and secretion by rat ovarian granulosa cells (GCs) treated with mono-(2-ethylhexyl) phthalate (MEHP). Ovarian GCs were incubated with MEHP at concentration of 0, 25, 50, 100, and 200 µM for 24 hr. Cell viability was determined using the MTT Cell Proliferation Assay. Progesterone and estradiol production was evaluated by radioimmunoassay (RIA) and the expression of FSHR, PR, and ER was measured by immunocytochemistry. StAR, P450scc, 3β-HSD, 17β-HSD, and P450 arom mRNA levels were determined by RT-PCR. MEHP markedly attenuated proliferation of GCs, increased expression of sex hormone receptors and key enzymes in progesterone production, and stimulated steroid hormone secretion. The result of these analyses demonstrates that MEHP exposure of GCs may have effects on rat ovarian functions.
Collapse
Affiliation(s)
- Na Li
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, Jilin, China
- Department of Disciplines and Research Management, The Second Hospital Affiliated to Dalian Medical University, Dalian, Liaoning, China
| | - Te Liu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Kun Guo
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Jian Zhu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Guangyan Yu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Shuyue Wang
- Department of Emergency, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Lin Ye
- Department of Disciplines and Research Management, The Second Hospital Affiliated to Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
14
|
Zhou J, Li C, Yao W, Alsiddig MC, Huo L, Liu H, Miao YL. Hypoxia-inducible factor-1α-dependent autophagy plays a role in glycolysis switch in mouse granulosa cells†. Biol Reprod 2018; 99:308-318. [DOI: 10.1093/biolre/ioy061] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/09/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Jilong Zhou
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Chengyu Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wang Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - M C Alsiddig
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lijun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
15
|
Shrestha K, Onasanya AE, Eisenberg I, Wigoda N, Yagel S, Yalu R, Meidan R, Imbar T. miR-210 and GPD1L regulate EDN2 in primary and immortalized human granulosa-lutein cells. Reproduction 2018; 155:197-205. [PMID: 29301980 DOI: 10.1530/rep-17-0574] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/22/2017] [Accepted: 12/04/2017] [Indexed: 11/08/2022]
Abstract
Endothelin-2 (EDN2), expressed at a narrow window during the periovulatory period, critically affects ovulation and corpus luteum (CL) formation. LH (acting mainly via cAMP) and hypoxia are implicated in CL formation; therefore, we aimed to elucidate how these signals regulate EDN2 using human primary (hGLCs) and immortalized (SVOG) granulosa-lutein cells. The hypoxiamiR, microRNA-210 (miR-210) was identified as a new essential player in EDN2 expression. Hypoxia (either mimetic compound-CoCl2, or low O2) elevated hypoxia-inducible factor 1A (HIF1A), miR-210 and EDN2 Hypoxia-induced miR-210 was suppressed in HIF1A-silenced SVOG cells, suggesting that miR-210 is HIF1A dependent. Elevated miR-210 levels in hypoxia or by miR-210 overexpression, increased EDN2 Conversely, miR-210 inhibition reduced EDN2 levels, even in the presence of CoCl2, indicating the importance of miR-210 in the hypoxic induction of EDN2 A molecule that destabilizes HIF1A protein, glycerol-3-phosphate dehydrogenase 1-like gene-GPD1L, was established as a miR-210 target in both cell types. It was decreased by miR-210-mimic and was increased by miR-inhibitor. Furthermore, reducing GPD1L by endogenously elevated miR-210 (in hypoxia), miR-210-mimic or by GPD1L siRNA resulted in elevated HIF1A protein and EDN2 levels, implying a vital role for GPD1L in the hypoxic induction of EDN2 Under normoxic conditions, forskolin (adenylyl cyclase activator) triggered changes typical of hypoxia. It elevated HIF1A, EDN2 and miR-210 while inhibiting GPD1L Furthermore, HIF1A silencing greatly reduced forskolin's ability to elevate EDN2 and miR-210. This study highlights the novel regulatory roles of miR-210 and its gene target, GPD1L, in hypoxia and cAMP-induced EDN2 by human granulosa-lutein cells.
Collapse
Affiliation(s)
- Ketan Shrestha
- Department of Animal SciencesThe Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Adepeju Esther Onasanya
- Department of Animal SciencesThe Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Iris Eisenberg
- The Magda and Richard Hoffman Center for Human Placenta ResearchHadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Noa Wigoda
- Department of Animal SciencesThe Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Simcha Yagel
- The Magda and Richard Hoffman Center for Human Placenta ResearchHadassah Hebrew University Medical Center, Jerusalem, Israel.,Department of Obstetrics and GynecologyHadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Ronit Yalu
- Department of Animal SciencesThe Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Rina Meidan
- Department of Animal SciencesThe Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tal Imbar
- The Magda and Richard Hoffman Center for Human Placenta ResearchHadassah Hebrew University Medical Center, Jerusalem, Israel.,Department of Obstetrics and GynecologyHadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
16
|
Chen X, Liu Y, Shan Y, Jin X, Shi Q, Jia C. Oxidized low-density lipoprotein suppresses mouse granulosa cell differentiation through disruption of the hypoxia-inducible factor 1 pathway. Mol Reprod Dev 2017; 84:1306-1313. [PMID: 29155477 DOI: 10.1002/mrd.22933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 11/06/2017] [Indexed: 12/22/2022]
Abstract
Obesity predisposes women to reproductive disorders. One symptom of obesity in women is higher levels of oxidized Low-density lipoprotein (oxLDL) in serum and preovulatory follicles. The present study was designed to test the hypothesis that oxLDL might impair follicle differentiation and luteinization. Given that Hypoxia-inducible factor 1 (HIF1) plays crucial roles in supporting follicle differentiation and luteinization in mammals, we focused on oxLDL-mediated events that may affect the HIF1 pathway. We report that exposure to oxLDL diminished the expression of HIF1α and its target genes and suppressed the differentiation of mouse luteinized granulosa cells following induction by human Chorionic gonadotophin (hCG) under hypoxic conditions (1% oxygen). Significantly, the proteasome inhibitor MG-132 prevented this oxLDL-attenuation differentiation phenotype by blocking HIF1α degradation. Together, these findings suggest that suppression of granulosa cell differentiation by oxLDL, via HIF1α down-regulation, may contribute the negative effects of obesity on female fertility.
Collapse
Affiliation(s)
- Xiaoliang Chen
- Departmentof Urology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yanhong Liu
- Centre for Reproductive Medicine, Centre for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Yanhong Shan
- Department of Obstetrics, First Hospital, Jilin University, Changchun, China
| | - Xingyi Jin
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Qingyang Shi
- Centre for Reproductive Medicine, Centre for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Chunshu Jia
- Centre for Reproductive Medicine, Centre for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| |
Collapse
|
17
|
In-vitro study of gonadotrophin signaling pathways in human granulosa cells in relation to progesterone receptor expression. Reprod Biomed Online 2017; 35:363-371. [DOI: 10.1016/j.rbmo.2017.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 11/17/2022]
|
18
|
Ervin JM, Schütz LF, Spicer LJ. Current status of the role of endothelins in regulating ovarian follicular function: A review. Anim Reprod Sci 2017; 186:1-10. [PMID: 28967452 DOI: 10.1016/j.anireprosci.2017.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/15/2017] [Accepted: 09/21/2017] [Indexed: 12/18/2022]
Abstract
Endothelins (EDN) are a group of vasoactive 21 amino acid peptides reported to play roles in steroidogenesis, folliculogenesis, and ovulation. EDN1, EDN2 and EDN3 have all been shown to affect granulosa cell (GC) function in a variety of mammalians species. Herewithin, the role of EDN in regulating steroidogenesis and ovarian follicular development is reviewed, focusing on the localization and function of EDN and their receptors in ovarian follicular function emphasizing species differences. For example, in single ovulating species such as humans and cattle, in the presence of trophic hormones such as FSH and IGF1, EDN1 and EDN2 significantly inhibited GC estradiol production in 2 of 4 studies, while no effect was observed for GC progesterone production in 2 of 4 studies. In contrast, EDN1 exhibited inhibitory effects on progesterone production by GC in 3 of 3 studies in pigs and 3 of 4 studies in rats. Also, EDN1 inhibited GC estradiol production in 4 of 5 studies in rats. Altogether, these results indicate that EDN are produced by ovarian follicles and are involved in the regulation of steroidogenesis of GC of several mammalian species including humans, cattle, pigs and rats, but that these effects may vary with species and culture condition.
Collapse
Affiliation(s)
- J M Ervin
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, United States
| | - L F Schütz
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, United States
| | - L J Spicer
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, United States.
| |
Collapse
|
19
|
Torres-Ortiz MC, Gutiérrez-Ospina G, Gómez-Chavarín M, Murcia C, Alonso-Morales RA, Perera-Marín G. The presence of VEGF and Notch2 during preantral-antral follicular transition in infantile rats: Anatomical evidence and its implications. Gen Comp Endocrinol 2017; 249:82-92. [PMID: 28495268 DOI: 10.1016/j.ygcen.2017.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/25/2017] [Accepted: 05/06/2017] [Indexed: 12/25/2022]
Abstract
Folliculogenesis is a process that depends on angiogenesis, in which VEGF and Notch signaling pathway members are involved. Although this pathway is present in preantral and antral follicular structures during the second stage of folliculogenesis, this association has not been described. Therefore, this study aimed to identify VEGF and Notch2 in ovary structures of infantile rats after induction of follicular development with a gonadotropin stimulus. In order to explore this possibility we analyzed rat ovary morphology from days 10-25 after birth; subsequently, the transition from preantral follicle to an antral stage was analyzed by the induction of follicular development with equine chorionic gonadotropin (eCG) and VEGF and Notch were identified in the rat ovary by fluorescence. The histological analysis revealed that the ovary of a 10-day-old rat has the highest percentage of preantral follicles and based on this a 10IU eCG dose promoted an increase in the number of antral follicles, as well as a decrease in the number of preantral follicles, related to which there was an increase in ovary weight and size. In addition, a higher concentration of circulating estradiol was observed, proliferation of granulosa cells in both follicle groups was stimulated, and the accumulation of VEGF in granulosa and theca cells and in the antral follicle oocyte was increased (p<0.05), whereas the presence of Notch2 was limited to mural granulosa cells, in granulosa cells that formed the cumulus oophorus and in the oocyte of both groups of follicles. The multiple correspondence analysis allowed us to support an association between VEGF and Notch2 during the transition from preantral to antral follicles in the ovary of an infantile rat.
Collapse
Affiliation(s)
- Minerva Carolina Torres-Ortiz
- Departamento de Reproducción, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico; Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - Gabriel Gutiérrez-Ospina
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico; Coordinación de Psicobiología y Neurociencias, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - Margarita Gómez-Chavarín
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico; Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - Clara Murcia
- Departamento de Reproducción, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico
| | - Rogelio A Alonso-Morales
- Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico
| | - Gerardo Perera-Marín
- Departamento de Reproducción, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico; Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
20
|
Fadhillah, Yoshioka S, Nishimura R, Yamamoto Y, Kimura K, Okuda K. Hypoxia-inducible factor 1 mediates hypoxia-enhanced synthesis of progesterone during luteinization of granulosa cells. J Reprod Dev 2016; 63:75-85. [PMID: 27840375 PMCID: PMC5320433 DOI: 10.1262/jrd.2016-068] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Hypoxia has been suggested to enhance progesterone (P4) synthesis in luteinizing granulosa cells (GCs), but the mechanism is unclear. The present study was designed to test the hypothesis that the hypoxia-induced increase in P4 synthesis during luteinization in bovine GCs is mediated by hypoxia-inducible factor 1 (HIF-1). GCs obtained from small antral follicles were cultured with 2 µg/ml insulin in combination with 10 µM forskolin for 24 h as a model of luteinizing GCs. To examine the influence of HIF-1 on P4 synthesis, we determined the effect of changes in protein expression of the α-subunit of HIF-1 (HIF1A) on P4 production and on the expression levels of StAR, P450scc, and 3β-HSD. CoCl2 (100 µM), a hypoxia-mimicking chemical, increased HIF-1α protein expression in luteinizing GCs. After the upregulation of HIF-1α, we observed an increase in P4 production and in the gene and protein expression levels of StAR in CoCl2-treated luteinizing GCs. In contrast, CoCl2 did not affect the expression of either P450scc or 3β-HSD. Echinomycin, a small-molecule inhibitor of HIF-1's DNA-binding activity, attenuated the effects of CoCl2 and of low oxygen tension (10% O2) on P4 production and StAR expression in luteinizing GCs. Overall, these findings suggest that HIF-1 is one of the factors that upregulate P4 in GCs during luteinization.
Collapse
Affiliation(s)
- Fadhillah
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Sciences, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Berisha B, Schams D, Rodler D, Sinowatz F, Pfaffl MW. Expression pattern of HIF1alpha and vasohibins during follicle maturation and corpus luteum function in the bovine ovary. Reprod Domest Anim 2016; 52:130-139. [PMID: 27862406 DOI: 10.1111/rda.12867] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/10/2016] [Indexed: 10/20/2022]
Abstract
The aim of this study was to characterize expression patterns of hypoxia-inducible factor-1alpha (HIF1A) and vasohibin family members (VASH1 and VASH2) during different stages of ovarian function in cow. Experiment 1: Antral follicle classification occurred by follicle size and estradiol-17beta (E2) concentration in the follicular fluid into 5 groups (<0.5, 0.5-5, 5-40, 40-180 and >180 E2 ng/ml). Experiment 2: Corpora lutea (CL) were assigned to the following stages: days 1-2, 3-4, 5-7, 8-12, 13-16 and >18 (after regression) of oestrous cycle and of pregnancy (months 1-2, 3-4, 6-7, >8). Experiment 3: Cows on days 8-12 were injected with a prostaglandin F2alpha (PGF) analogue and CL were collected before and 0.5, 2, 4, 12, 24, 48 and 64 hr after PGF injection. Expression of mRNA was measured by qPCR, steroid hormone concentration by EIA and localization by immunohistochemistry. HIF1A mRNA expression in our study increases significantly in follicles during final maturation. The highest HIF1A mRNA expression was detected during the early luteal phase, followed by a significant decrease afterwards. In contrast, the mRNA of vasohibins in small follicle was high, followed by a continuous and significant downregulation in preovulatory follicles. The obtained results show a remarkable inverse expression and localization pattern of HIF1A and vasohibins during different stages of ovarian function in cow. These results lead to the assumption that the examined factors are involved in the local mechanisms regulating angiogenesis and that the interactions between proangiogenic (HIF1A) and antiangiogenic (vasohibins) factors impact all stages of bovine ovary function.
Collapse
Affiliation(s)
- B Berisha
- Faculty of Agriculture and Veterinary, University of Prishtina, Prishtinë, Kosovo.,Institute of Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Freising, Germany
| | - D Schams
- Institute of Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Freising, Germany
| | - D Rodler
- Department of Veterinary Sciences, Institute of Anatomy, Histology and Embryology, Ludwig Maximilian University of Munich, Munich, Germany
| | - F Sinowatz
- Department of Veterinary Sciences, Institute of Anatomy, Histology and Embryology, Ludwig Maximilian University of Munich, Munich, Germany
| | - M W Pfaffl
- Institute of Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
22
|
Yalu R, Oyesiji AE, Eisenberg I, Imbar T, Meidan R. HIF1A-dependent increase in endothelin 2 levels in granulosa cells: role of hypoxia, LH/cAMP, and reactive oxygen species. Reproduction 2015; 149:11-20. [PMID: 25433027 DOI: 10.1530/rep-14-0409] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hypoxia-inducible factor 1 alpha (HIF1A) and endothelin 2 (EDN2) are transiently expressed during the same time window in the developing corpus luteum (CL). In this study, we sought to investigate the involvement of LH/cAMP, reactive oxygen species (ROS), and a hypoxia-mimetic compound (CoCl2) on HIF1A expression and how it affected EDN2 levels, using transformed human granulosa cells (thGCs) and primary bovine granulosa cells (GCs). CoCl2 elevated HIF1A protein levels in thGCs in a dose-dependent manner. Forskolin alone had no significant effect; however, forskolin and CoCl2 together further induced HIF1A protein and EDN2 mRNA expression in thGCs. Similarly, in primary GCs, LH with CoCl2 synergistically augmented HIF1A protein levels, which resulted in higher expression of EDN2 and another well-known hypoxia-inducible gene, VEGF (VEGFA). Importantly, LH alone elevated HIF1A mRNA but not its protein. The successful knockdown of HIF1A in thGCs using siRNA abolished hypoxia-induced EDN2 and also the additive effect of forskolin and CoCl2. We then examined the roles of ROS in thGCs: hydrogen peroxide (20 and 50 μM) elevated HIF1A protein as well as the expression of EDN2, implying that induction of HIF1A protein levels is sufficient to stimulate the expression of EDN2 (and VEGF) in normoxia. A broad-range ROS scavenger, butylated hydroxyanisole, inhibited CoCl2-induced HIF1A protein with a concomitant reduction in the mRNA expression of EDN2 and VEGF in thGCs. The results obtained in this study suggest that HIF1A, induced by various stimuli, is an essential mediator of EDN2 mRNA expression. The results may also explain the rise in the levels of HIF1A-dependent genes (EDN2 and VEGF) in the developing CL.
Collapse
Affiliation(s)
- Ronit Yalu
- Department of Animal SciencesThe Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Herzl Street, Rehovot 76100, IsraelIVF UnitDepartment of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Mount Scopus, Jerusalem, Israel
| | - Adepeju Esther Oyesiji
- Department of Animal SciencesThe Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Herzl Street, Rehovot 76100, IsraelIVF UnitDepartment of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Mount Scopus, Jerusalem, Israel
| | - Iris Eisenberg
- Department of Animal SciencesThe Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Herzl Street, Rehovot 76100, IsraelIVF UnitDepartment of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Mount Scopus, Jerusalem, Israel
| | - Tal Imbar
- Department of Animal SciencesThe Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Herzl Street, Rehovot 76100, IsraelIVF UnitDepartment of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Mount Scopus, Jerusalem, Israel
| | - Rina Meidan
- Department of Animal SciencesThe Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Herzl Street, Rehovot 76100, IsraelIVF UnitDepartment of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Mount Scopus, Jerusalem, Israel
| |
Collapse
|
23
|
Zhang Z, Pang X, Tang Z, Yin D, Wang Z. Overexpression of hypoxia-inducible factor prolyl hydoxylase-2 attenuates hypoxia-induced vascular endothelial growth factor expression in luteal cells. Mol Med Rep 2015; 12:3809-3814. [PMID: 25975603 DOI: 10.3892/mmr.2015.3788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 04/15/2015] [Indexed: 11/06/2022] Open
Abstract
Vascular endothelial growth factor (VEGF)-dependent angiogenesis has a crucial role in the corpus luteum formation and their functional maintenances in mammalian ovaries. A previous study by our group reported that activation of hypoxia‑inducible factor (HIF)‑1α signaling contributes to the regulation of VEGF expression in the luteal cells (LCs) in response to hypoxia and human chorionic gonadotropin. The present study was designed to test the hypothesis that HIF prolyl‑hydroxylases (PHDs) are expressed in LCs and overexpression of PHD2 attenuates the expression of VEGF induced by hypoxia in LCs. PHD2-overexpressing plasmid was transfected into LC2 cells, and successful plasmid transfection and expression was confirmed by reverse transcription quantitative polymerase chain reaction and western blot analysis. In addition, the present study investigated changes of HIF‑1α and VEGF expression after incubation under hypoxic conditions and PHD2 transfection. PHD2 expression was significantly higher expressed than the other two PHD isoforms, indicating its major role in LCs. Moreover, a significant increase of VEGF mRNA expression was identified after incubation under hypoxic conditions, which was, however, attenuated by PHD2 overexpression in LCs. Further analysis also indicated that this hypoxia‑induced increase in the mRNA expression of VEGF was consistent with increases in the protein levels of HIF‑1α, which is regulated by PHD-mediated degradation. In conclusion, the results of the present study indicated that PHD2 is the main PHD expressed in LCs and hypoxia‑induced VEGF expression can be attenuated by PHD2 overexpression through HIF‑1α‑mediated mechanisms in LCs. This PHD2-mediated transcriptional activation may be one of the mechanisms regulating VEGF expression in LCs during mammalian corpus luteum development.
Collapse
Affiliation(s)
- Zhenghong Zhang
- Provincial Key Laboratory for Developmental Biology and Neurobiology, College of Life Science, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Xunsheng Pang
- Provincial Key Laboratory for Developmental Biology and Neurobiology, College of Life Science, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Zonghao Tang
- Provincial Key Laboratory for Developmental Biology and Neurobiology, College of Life Science, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Dingzhong Yin
- Provincial Key Laboratory for Developmental Biology and Neurobiology, College of Life Science, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurobiology, College of Life Science, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| |
Collapse
|
24
|
Expression and clinical significance of the HIF-1a/ET-2 signaling pathway during the development and treatment of polycystic ovary syndrome. J Mol Histol 2015; 46:173-81. [PMID: 25613530 DOI: 10.1007/s10735-015-9609-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 01/16/2015] [Indexed: 02/04/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a major health problem in reproductive-aged women worldwide, but the precise pathogenesis of PCOS remains unclear. Our previous study revealed that hypoxia-inducible factor (HIF)-1a mediated endothelin (ET)-2 signaling plays an important role in ovulation in rats. Therefore, the present study used a PCOS rat model to test the hypotheses that HIF-1a signaling is expressed and inhibited in ovaries during PCOS formation and that the HIF-1a/ET-2 signaling pathway is a target of dimethyldiguanide (DMBG) in the clinical treatment of PCOS. First, the development of a PCOS model and the effect of DMBG treatment were examined through ovarian histology and serum hormone levels, which were consistent with previous reports. Second, HIF-1a and ET-2 expression were detected by immunohistochemistry and western blot. The results showed decreased HIF-1a/ET-2 expression in the ovaries of PCOS rats, whereas DMBG treatment reversed the protein decreases and improved the PCOS symptoms. Third, to understand the molecular mechanism, HIF-1a/ET-2 mRNA expression was also examined. Interestingly, HIF-1a mRNA increased in the ovaries of PCOS rats, while ET-2 mRNA decreased, indicating that HIF-1a protein degradation may be involved in POCS development and treatment. Finally, HIF prolyl hydroxylase (PHD) activity was examined to further clarify the contribution of HIF-1a signaling to the development and treatment of PCOS. The results suggested that the inhibition of HIF-1a/ET-2 signaling may be caused by increased PHD activity in PCOS. DMBG-treated PCOS may further activate HIF-1a signaling at least partly through inhibiting PHD activity. Taken together, these results indicate that HIF-1a signaling is inhibited in a PCOS rat model through increasing PHD activity. DMBG treatment improved PCOS by rescuing this pathway, suggesting that HIF-1a signaling plays an important role in the development and treatment of PCOS. This HIF-1a-mediated ET-2 signaling pathway may be an important mechanism regulating PCOS formation and treatment in mammalian ovaries in vivo and should be a new clinical target for PCOS prevention and treatment in the future.
Collapse
|
25
|
Rico C, Dodelet-Devillers A, Paquet M, Tsoi M, Lapointe E, Carmeliet P, Boerboom D. HIF1 activity in granulosa cells is required for FSH-regulated Vegfa expression and follicle survival in mice. Biol Reprod 2014; 90:135. [PMID: 24855100 DOI: 10.1095/biolreprod.113.115634] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Recent evidence has suggested that vascular endothelial growth factor A (VEGFA) is an important regulator of ovarian follicle development and survival. Both LH and FSH regulate Vegfa expression in granulosa cells and signal via the transcription factor hypoxia inducible factor 1 (HIF1). To further study the mechanism of action of HIF1 in the regulation of Vegfa, we studied Vegfa(delta/delta) mice, which lack a hypoxia response element in the Vegfa promoter. Granulosa cells from Vegfa(delta/delta) mice failed to respond to FSH or LH with an increase in Vegfa mRNA expression in vitro, and granulosa cells isolated from eCG-treated immature Vegfa(delta/delta) mice had significantly lower Vegfa mRNA levels compared to controls. However, normal Vegfa mRNA levels were detected in the granulosa cells from immature Vegfa(delta/delta) mice following hCG treatment. Vegfa(delta/delta) females produced infrequent litters, and their pups died shortly after birth. Ovaries from Vegfa(delta/delta) mice were much smaller than controls and contained few antral follicles and corpora lutea. Antral follicles numbers were decreased by nearly 50% in ovaries from Vegfa(delta/delta) mice relative to controls, and 74% of antral follicles in Vegfa(delta/delta) ovaries were atretic. Serum progesterone levels in adult Vegfa(delta/delta) females were significantly lower, apparently reflecting reduced numbers of corpora lutea. This study demonstrates for the first time the requirement of HIF1 for FSH-regulated Vegfa expression in vivo and that HIF1 acts via a single hypoxia response element in the Vegfa promoter to exert its regulatory functions. Our findings also further define the physiological role of VEGFA in follicle development.
Collapse
Affiliation(s)
- Charlène Rico
- Centre de Recherche en Reproduction Animale, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Aurore Dodelet-Devillers
- Centre de Recherche en Reproduction Animale, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Marilène Paquet
- Centre de Recherche en Reproduction Animale, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Mayra Tsoi
- Centre de Recherche en Reproduction Animale, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Evelyne Lapointe
- Centre de Recherche en Reproduction Animale, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Leuven, Belgium Laboratory of Angiogenesis and Neurovascular Link, Department of Oncology, KU Leuven, Belgium
| | - Derek Boerboom
- Centre de Recherche en Reproduction Animale, Université de Montréal, St-Hyacinthe, Québec, Canada
| |
Collapse
|
26
|
Cacioppo JA, Oh SW, Kim HY, Cho J, Lin PCP, Yanagisawa M, Ko C. Loss of function of endothelin-2 leads to reduced ovulation and CL formation. PLoS One 2014; 9:e96115. [PMID: 24763822 PMCID: PMC3999112 DOI: 10.1371/journal.pone.0096115] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 04/03/2014] [Indexed: 12/17/2022] Open
Abstract
Endothelin-2 (EDN2), a potent vasoconstrictive peptide, is transiently produced by periovulatory follicles at the time of ovulation when corpus luteum (CL) formation begins. EDN2 induces contraction of ovarian smooth muscles ex vivo via an endothelin receptor A-mediated pathway. In this study, we aimed to determine if EDN2 is required for normal ovulation and subsequent CL formation in?vivo. In the ovaries of a mouse model that globally lacks the Edn2 gene (Edn2 knockout mouse; Edn2KO), histology showed that post-pubertal Edn2KO mice possess follicles of all developmental stages, but no corpora lutea. When exogenous gonadotropins were injected to induce super-ovulation, Edn2KO mice exhibited significantly impaired ovulation and CL formation compared to control littermates. Edn2KO ovaries that did ovulate in response to gonadotropins did not contain histologically and functionally identifiable CL. Intra-ovarian injection of EDN2 peptide results suggest partial induction of ovulation in Edn2KO mice. Endothelin receptor antagonism in wild type mice similarly disrupted ovulation, CL formation, and progesterone secretion. Overall, this study suggests that EDN2 is necessary for normal ovulation and CL formation.
Collapse
Affiliation(s)
- Joseph A. Cacioppo
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - Sang Wook Oh
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, Illinois, United States of America
- Department of Biology Education, Institute of Fusion Science, Chonbuk National University, Jeonju, South Korea
| | - Hey-young Kim
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - Jongki Cho
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, Illinois, United States of America
- College of Veterinary Medicine, Research Institute of Veterinary Medicine, Chungnam National University, Daejon, South Korea
| | - Po-Ching Patrick Lin
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - Masashi Yanagisawa
- Howard Hughes Medical Institute and Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - CheMyong Ko
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, Illinois, United States of America
- * E-mail:
| |
Collapse
|
27
|
Elia EM, Quintana R, Carrere C, Bazzano MV, Rey-Valzacchi G, Paz DA, Pustovrh MC. Metformin decreases the incidence of ovarian hyperstimulation syndrome: an experimental study. J Ovarian Res 2013; 6:62. [PMID: 24011132 PMCID: PMC3851870 DOI: 10.1186/1757-2215-6-62] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 08/31/2013] [Indexed: 11/22/2022] Open
Abstract
Background In assisted reproduction cycles, gonadotropins are administered to obtain a greater number of oocytes. A majority of patients do not have an adverse response; however, approximately 3-6% develop ovarian hyperstimulation syndrome (OHSS). Metformin reduces the risk of OHSS but little is known about the possible effects and mechanisms of action involved. Objective To evaluate whether metformin attenuates some of the ovarian adverse effects caused by OHSS and to study the mechanisms involved. Material and methods A rat OHSS model was used to investigate the effects of metformin administration. Ovarian histology and follicle counting were performed in ovarian sections stained with Masson trichrome. Vascular permeability was measured by the release of intravenously injected Evans Blue dye (EB). VEGF levels were measured by commercially immunosorbent assay kit. COX-2 protein expression was evaluated by western blot and NOS levels were analyses by immunohistochemistry. Results Animals of the OHSS group showed similar physiopathology characteristics to the human syndrome: increased body weight, elevated progesterone and estradiol levels (P<0.001), increased number of corpora lutea (P<0.001), higher ovarian VEGF levels and vascular permeability (P<0.001 and P<0.01); and treatment with metformin prevented this effect (OHSS+M group; P<0.05). The vasoactive factors: COX-2 and NOS were increased in the ovaries of the OHSS group (P<0.05 and P<0.01) and metformin normalized their expression (P<0.05); suggesting that metformin has a role preventing the increased in vascular permeability caused by the syndrome. Conclusion Metformin has a beneficial effect preventing OHSS by reducing the increase in: body weight, circulating progesterone and estradiol and vascular permeability. These effects of metformin are mediated by inhibiting the increased of the vasoactive molecules: VEGF, COX-2 and partially NOS. Molecules that are increased in OHSS and are responsible for a variety of the symptoms related to OHSS.
Collapse
Affiliation(s)
- Evelin M Elia
- Laboratorio de Biología del Desarrollo, Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET-UBA), Pabellón 2, 4 C1428EHA Cdad Universitaria, Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
28
|
Mao S, Huang S. The signaling pathway of hypoxia inducible factor and its role in renal diseases. J Recept Signal Transduct Res 2013; 33:344-8. [PMID: 23971630 DOI: 10.3109/10799893.2013.830130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
It is well-documented that hypoxia inducible factor (HIF) is a key mediator of tissue and cellular adaptation to hypoxia. HIF-target genes are also involved in cellular apoptosis and profibrotic mechanisms. The role of HIF in diseases is not consistent. It is a risk factor for tumor progression, whereas it plays a protective role against ischemic hypofusion. For renal diseases, it is not always a risk or protective factor. Many factors are involved in the pathogenesis of renal diseases. It is reported that HIF not only increases hypoxia tolerance, but also regulates a lot of signaling pathways. In the past decades, a number of studies were also conducted to explore the association between HIF and the risk of renal diseases. However, the role of HIF in the development of renal diseases was not entirely clear. In this study, the signal transduction pathways of HIF and its role in the pathogenesis of renal diseases were reviewed.
Collapse
Affiliation(s)
- Song Mao
- Department of Nephrology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University , Nanjing, Jiangsu , China
| | | |
Collapse
|