1
|
Rasmussen KL, Thieringer PH, Nevadomski S, Martinez AM, Dawson KS, Corsetti FA, Zheng XY, Lv Y, Chen X, Celestian AJ, Berelson WM, Rollins NE, Spear JR. Living to Lithified: Construction and Preservation of Silicified Biomarkers. GEOBIOLOGY 2024; 22:1-30. [PMID: 39319483 DOI: 10.1111/gbi.12620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/21/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024]
Abstract
Whole microorganisms are rarely preserved in the fossil record but actively silicifying environments like hot springs provide an opportunity for microbial preservation, making silicifying environments critical for the study of microbial life through time on Earth and possibly other planetary bodies. Yet, the changes that biosignatures may undergo through lithification and burial remain unconstrained. At Steep Cone Geyser in Yellowstone National Park, we collected microbial material from (1) the living system across the active outflows, (2) the silicified areas adjacent to flows, and (3) lithified and buried material to assess the preservation of biosignatures and their changes across the lithification transect. Five biofabrics, built predominantly by Cyanobacteria Geitlerinema, Pseudanabaenaceae, and Leptolyngbya with some filamentous anoxygenic phototrophs contributions, were identified and tracked from the living system through the process of silicification/lithification. In the living systems, δ30Si values decrease from +0.13‰ in surficial waters to -2‰ in biomat samples, indicating a kinetic isotope effect potentially induced by increased association with actively growing biofabrics. The fatty acids C16:1 and iso-C14:0 and the hydrocarbon C17:0 were disentangled from confounding signals and determined to be reliable lipid biosignatures for living biofabric builders and tenant microorganisms. Builder and tenant microbial biosignatures were linked to specific Cyanobacteria, anoxygenic phototrophs, and heterotrophs, which are prominent members of the living communities. Upon lithification and burial, silicon isotopes of silicified biomass began to re-equilibrate, increasing from δ30Si -2‰ in living biomats to -0.55‰ in lithified samples. Active endolithic microbial communities were identified in lithified samples and were dominated by Cyanobacteria, heterotrophic bacteria, and fungi. Results indicate that distinct microbial communities build and inhabit silicified biofabrics through time and that microbial biosignatures shift over the course of lithification. These findings improve our understanding of how microbial communities silicify, the biomarkers they retain, and transitionary impacts that may occur through lithification and burial.
Collapse
Affiliation(s)
- Kalen L Rasmussen
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Patrick H Thieringer
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Sophia Nevadomski
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Aaron M Martinez
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Katherine S Dawson
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Frank A Corsetti
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - Xin-Yuan Zheng
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yiwen Lv
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xinyang Chen
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Aaron J Celestian
- Natural History Museum of Los Angeles County, Los Angeles, California, USA
| | - William M Berelson
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - Nick E Rollins
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - John R Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
- Quantitative Biosciences and Engineering Programs, Colorado School of Mines, Golden, Colorado, USA
| |
Collapse
|
2
|
Teece BL, Havig JR, George SC, Hamilton TL, Baumgartner RJ, Hartz J, Van Kranendonk MJ. Biogeochemistry of Recently Fossilized Siliceous Hot Spring Sinters from Yellowstone, USA. ASTROBIOLOGY 2023; 23:155-171. [PMID: 36413376 DOI: 10.1089/ast.2022.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Active hot springs are dynamic geobiologically active environments. Heat- and element-enriched fluids form hot spring sinter deposits that are inhabited by microbial and macroscopic eukaryotic communities, but it is unclear how variable heat, fluid circulation, and mineralization within hot spring systems affect the preservation of organic matter in sinters. We present geological, petrographic, and organic geochemical data from fossilized hot spring sinters (<13 Ka) from three distinct hot spring fields of Yellowstone National Park. The aims of this study were to examine the preservation of hydrocarbons and discern whether the hydrocarbons in these samples were derived from in situ communities or transported by hydrothermal fluids. Organic geochemistry reveals the presence of n-alkanes, methylalkanes, hopanes, and other terpanes, and the distribution of methylheptadecanes is compared to published observations of community composition in extant hot springs with similar geochemistry. Unexpectedly, hopanes have a thermally mature signal, and Raman spectroscopy confirms that the kerogen in some samples has nearly reached the oil window, despite never having been buried. Our results suggest that organic matter maturation occurred through below-surface processes in the hotter, deeper parts of the hydrothermal system and that this exogenous material was then transported and emplaced within the sinter.
Collapse
Affiliation(s)
- Bronwyn L Teece
- Australian Centre for Astrobiology (ACA), School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney, Sydney, Australia
- Earth and Sustainability Science Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney, Sydney, Australia
| | - Jeff R Havig
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Simon C George
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Trinity L Hamilton
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| | - Raphael J Baumgartner
- Australian Centre for Astrobiology (ACA), School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney, Sydney, Australia
- Earth and Sustainability Science Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney, Sydney, Australia
- CSIRO Mineral Resources, Kensington, Australia
| | - Julie Hartz
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Martin J Van Kranendonk
- Australian Centre for Astrobiology (ACA), School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney, Sydney, Australia
- Earth and Sustainability Science Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney, Sydney, Australia
| |
Collapse
|
3
|
Rasmussen KL, Stamps BW, Vanzin GF, Ulrich SM, Spear JR. Spatial and temporal dynamics at an actively silicifying hydrothermal system. Front Microbiol 2023; 14:1172798. [PMID: 37206339 PMCID: PMC10188993 DOI: 10.3389/fmicb.2023.1172798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Steep Cone Geyser is a unique geothermal feature in Yellowstone National Park (YNP), Wyoming, actively gushing silicon-rich fluids along outflow channels possessing living and actively silicifying microbial biomats. To assess the geomicrobial dynamics occurring temporally and spatially at Steep Cone, samples were collected at discrete locations along one of Steep Cone's outflow channels for both microbial community composition and aqueous geochemistry analysis during field campaigns in 2010, 2018, 2019, and 2020. Geochemical analysis characterized Steep Cone as an oligotrophic, surface boiling, silicious, alkaline-chloride thermal feature with consistent dissolved inorganic carbon and total sulfur concentrations down the outflow channel ranging from 4.59 ± 0.11 to 4.26 ± 0.07 mM and 189.7 ± 7.2 to 204.7 ± 3.55 μM, respectively. Furthermore, geochemistry remained relatively stable temporally with consistently detectable analytes displaying a relative standard deviation <32%. A thermal gradient decrease of ~55°C was observed from the sampled hydrothermal source to the end of the sampled outflow transect (90.34°C ± 3.38 to 35.06°C ± 7.24). The thermal gradient led to temperature-driven divergence and stratification of the microbial community along the outflow channel. The hyperthermophile Thermocrinis dominates the hydrothermal source biofilm community, and the thermophiles Meiothermus and Leptococcus dominate along the outflow before finally giving way to more diverse and even microbial communities at the end of the transect. Beyond the hydrothermal source, phototrophic taxa such as Leptococcus, Chloroflexus, and Chloracidobacterium act as primary producers for the system, supporting heterotrophic growth of taxa such as Raineya, Tepidimonas, and Meiothermus. Community dynamics illustrate large changes yearly driven by abundance shifts of the dominant taxa in the system. Results indicate Steep Cone possesses dynamic outflow microbial communities despite stable geochemistry. These findings improve our understanding of thermal geomicrobiological dynamics and inform how we can interpret the silicified rock record.
Collapse
Affiliation(s)
- Kalen L. Rasmussen
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Blake W. Stamps
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, OH, United States
| | - Gary F. Vanzin
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | | | - John R. Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
- *Correspondence: John R. Spear,
| |
Collapse
|
4
|
Sun VZ, Milliken RE. Characterizing the Mineral Assemblages of Hot Spring Environments and Applications to Mars Orbital Data. ASTROBIOLOGY 2020; 20:453-474. [PMID: 31545076 DOI: 10.1089/ast.2018.2003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Certain martian hydrated silica deposits have been hypothesized to represent ancient hot spring environments, but many environments can produce hydrated silica on Earth. This study compares the mineral assemblages produced in terrestrial hot springs to those observed in silica-producing volcanic fumarolic environments to determine which diagnostic features of hot springs could be remotely sensed on Mars. We find that hot spring environments are more likely to produce geochemically mature silica (i.e., opal-CT and microcrystalline quartz) in addition to opal-A, whereas volcanic fumarolic environments tend to produce only opal-A, potentially reflecting differences in water-to-rock ratios. Neutral/alkaline hot springs contain few accessory minerals (typically calcite and Fe/Mg clays), while acidic hot springs commonly contain accessory kaolinite. By comparison, mineral assemblages at volcanic fumaroles contain protolith igneous minerals and a diversity of alteration minerals indicative of acidic conditions. Based on these terrestrial observations, the presence of opal-CT and/or microcrystalline quartz could be more diagnostic of a hot spring origin rather than a fumarolic origin, and accessory mineralogy could provide information on formation pH. On Mars, we observe that most orbital opal detections in outcrop are opal-A, sometimes accompanied by Fe/Mg clays, suggestive of neutral/alkaline conditions. However, these observations do not uniquely distinguish between hot springs and fumarolic environments, as opal-A can occur in both environments. Many martian silica detections occur in regionally extensive units, and sometimes in association with fluvial landforms suggesting a detrital or lower temperature authigenic origin. Thus, only a few martian opal detections may be mineralogically, spatially, and morphologically consistent with a hot spring origin. However, although it is difficult to unambiguously identify martian hot spring environments from orbital data sets, the orbital data are still valuable for identifying siliceous sites that are consistent with higher biosignature preservation potential, that is, sites with opal-A (not opal-CT), for future in situ investigations.
Collapse
Affiliation(s)
- Vivian Z Sun
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, Rhode Island
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Ralph E Milliken
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, Rhode Island
| |
Collapse
|
5
|
Callac N, Rouxel O, Lesongeur F, Liorzou C, Bollinger C, Pignet P, Chéron S, Fouquet Y, Rommevaux-Jestin C, Godfroy A. Biogeochemical insights into microbe-mineral-fluid interactions in hydrothermal chimneys using enrichment culture. Extremophiles 2015; 19:597-617. [PMID: 25778451 DOI: 10.1007/s00792-015-0742-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/01/2015] [Indexed: 10/23/2022]
Abstract
Active hydrothermal chimneys host diverse microbial communities exhibiting various metabolisms including those involved in various biogeochemical cycles. To investigate microbe-mineral-fluid interactions in hydrothermal chimney and the driver of microbial diversity, a cultural approach using a gas-lift bioreactor was chosen. An enrichment culture was performed using crushed active chimney sample as inoculum and diluted hydrothermal fluid from the same vent as culture medium. Daily sampling provided time-series access to active microbial diversity and medium composition. Active archaeal and bacterial communities consisted mainly of sulfur, sulfate and iron reducers and hydrogen oxidizers with the detection of Thermococcus, Archaeoglobus, Geoglobus, Sulfurimonas and Thermotoga sequences. The simultaneous presence of active Geoglobus sp. and Archaeoglobus sp. argues against competition for available carbon sources and electron donors between sulfate and iron reducers at high temperature. This approach allowed the cultivation of microbial populations that were under-represented in the initial environmental sample. The microbial communities are heterogeneously distributed within the gas-lift bioreactor; it is unlikely that bulk mineralogy or fluid chemistry is the drivers of microbial community structure. Instead, we propose that micro-environmental niche characteristics, created by the interaction between the mineral grains and the fluid chemistry, are the main drivers of microbial diversity in natural systems.
Collapse
Affiliation(s)
- Nolwenn Callac
- Laboratoire de Microbiologie des Environnements Extrêmes, Université de Bretagne Occidentale, UEB, IUEM, UMR 6197, Place Nicolas Copernic, 29280, Plouzané, France,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Silica deposition induced by isolated aluminum ions bound on chelate resin as a model compound of the surface of microbes. Colloids Surf B Biointerfaces 2012; 95:208-13. [DOI: 10.1016/j.colsurfb.2012.02.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/28/2012] [Accepted: 02/28/2012] [Indexed: 11/19/2022]
|
7
|
Character, Analysis, and Preservation of Biogenicity in Terrestrial Siliceous Stromatolites from Geothermal Settings. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2011. [DOI: 10.1007/978-94-007-0397-1_16] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Iwai S, Doi K, Fujino Y, Nakazono T, Fukuda K, Motomura Y, Ogata S. Silica deposition and phenotypic changes to Thermus thermophilus cultivated in the presence of supersaturated silicia. ISME JOURNAL 2010; 4:809-16. [DOI: 10.1038/ismej.2010.12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Stimulation of expression of a silica-induced protein (Sip) in Thermus thermophilus by supersaturated silicic acid. Appl Environ Microbiol 2009; 75:2406-13. [PMID: 19233950 DOI: 10.1128/aem.02387-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of silicic acid on the growth of Thermus thermophilus TMY, an extreme thermophile isolated from a siliceous deposit formed from geothermal water at a geothermal power plant in Japan, were examined at 75 degrees C. At concentrations higher than the solubility of amorphous silica (400 to 700 ppm SiO(2)), a silica-induced protein (Sip) was isolated from the cell envelope fraction of log-phase TMY cells grown in the presence of supersaturated silicic acid. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the molecular mass and pI of Sip to be about 35 kDa and 9.5, respectively. Induction of Sip expression occurred within 1 h after the addition of a supersaturating concentration of silicic acid to TM broth. Expression of Sip-like proteins was also observed in other thermophiles, including T. thermophilus HB8 and Thermus aquaticus YT-1. The amino acid sequence of Sip was similar to that of the predicted solute-binding protein of the Fe(3+) ABC transporter in T. thermophilus HB8 (locus tag, TTHA1628; GenBank accession no. NC_006461; GeneID, 3169376). The sip gene (987-bp) product showed 87% identity with the TTHA1628 product and the presumed Fe(3+)-binding protein of T. thermophilus HB27 (locus tag TTC1264; GenBank accession no. NC_005835; GeneID, 2774619). Within the genome, sip is situated as a component of the Fbp-type ABC transporter operon, which contains a palindromic structure immediately downstream of sip. This structure is conserved in other T. thermophilus genomes and may function as a terminator that causes definitive Sip expression in response to silica stress.
Collapse
|
10
|
Wang H, Zheng M, Huang X. Cesium accumulation by bacterium Thermus sp. TibetanG7: hints for biomineralization of cesium-bearing geyserite in hot springs in Tibet, China. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s11434-007-0353-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|