1
|
Moyo PK, Mehlana G, Makhubela BCE, Tshuma P, Chikukwa ES. Closing the Loop in the Carbon Cycle: Enzymatic Reactions Housed in Metal-Organic Frameworks for CO 2 Conversion to Methanol. Appl Biochem Biotechnol 2025; 197:1345-1392. [PMID: 39589703 DOI: 10.1007/s12010-024-05111-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 11/27/2024]
Abstract
The preparation of value-added chemicals from carbon dioxide (CO2) can act as a way of reducing the greenhouse gas from the atmosphere. Industrially significant C1 chemicals like methanol (CH3OH), formic acid (HCOOH), and formaldehyde (HCHO) can be formed from CO2. One sustainable way of achieving this is by connecting the reactions catalyzed by the enzymes formate dehydrogenase (FDH), formaldehyde dehydrogenase (FALDH), and alcohol dehydrogenase (ADH) into a single cascade reaction where CO2 is hydrogenated to CH3OH. For this to be adaptable for industrial use, the enzymes should be immobilized in materials that are extraordinarily protective of the enzymes, inexpensive, stable, and of ultra-large surface area. Metal-organic frameworks (MOFs) meet these criteria and are expected to usher in the much-awaited dispensation of industrial biocatalysis. Unfortunately, little is known about the molecular behaviour of MOF-immobilized FDH, FALDH, and ADH. It is also yet not known which MOFs are most promising for industrial enzyme-immobilization since the field of reticular chemistry is growing exponentially with millions of hypothetical and synthesized MOF structures reported at present. This review initially discusses the properties of the key enzymes required for CO2 hydrogenation to methanol including available cofactor regeneration strategies. Later, the characterization techniques of enzyme-MOF composites and the successes or lack thereof of enzyme-MOF-mediated CO2 conversion to CH3OH and intermediate products are discussed. We also discuss reported multi-enzyme-MOF systems for CO2 conversion cognizant of the fact that at present, these systems are the only chance of housing cascade-type biochemical reactions where strict substrate channelling and operational conditions are required. Finally, we delve into future perspectives.
Collapse
Affiliation(s)
- Praise K Moyo
- Department of Chemical Sciences, Midlands State University, P. Bag 9055, Senga Road, Gweru, Zimbabwe
- Department of Applied Biosciences and Biotechnology, Midlands State University, P. Bag 9055, Senga Road, Gweru, Zimbabwe
| | - Gift Mehlana
- Department of Chemical Sciences, Midlands State University, P. Bag 9055, Senga Road, Gweru, Zimbabwe
| | - Banothile C E Makhubela
- Department of Chemical Sciences, Centre for Synthesis and Catalysis, University of Johannesburg Kingsway Campus, C2 Lab 340 Auckland Park, Johannesburg, South Africa
| | - Piwai Tshuma
- Department of Chemical Sciences, Midlands State University, P. Bag 9055, Senga Road, Gweru, Zimbabwe.
| | - Evernice S Chikukwa
- Department of Chemical Sciences, Midlands State University, P. Bag 9055, Senga Road, Gweru, Zimbabwe
| |
Collapse
|
2
|
Danso Ofori A, Su W, Zheng T, Datsomor O, Titriku JK, Xiang X, Kandhro AG, Ahmed MI, Mawuli EW, Awuah RT, Zheng A. Roles of Phyllosphere Microbes in Rice Health and Productivity. PLANTS (BASEL, SWITZERLAND) 2024; 13:3268. [PMID: 39683062 DOI: 10.3390/plants13233268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
The phyllosphere, comprising the aerial portions of plants, is a vibrant ecosystem teeming with diverse microorganisms crucial for plant health and productivity. This review examines the functional roles of phyllosphere microorganisms in rice (Oryza sativa), focusing on their importance in nutrient uptake, disease resistance, and growth promotion. The molecular mechanisms underlying these interactions are explored along with their potential applications in enhancing sustainable rice production. The symbiotic relationships between rice plants and their associated microorganisms are highlighted, offering insights into improved agricultural practices. Furthermore, this review addresses the challenges and future developments in translating laboratory findings into practical applications. By synthesizing current research, this comprehensive analysis serves as a valuable resource for leveraging phyllosphere microbes in rice farming and related fields.
Collapse
Affiliation(s)
- Andrews Danso Ofori
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Su
- Renshou County Agricultural and Rural Bureau, Meishan 620500, China
| | - Tengda Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Osmond Datsomor
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - John Kwame Titriku
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Xing Xiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Abdul Ghani Kandhro
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Muhammad Irfan Ahmed
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Edzesi Wisdom Mawuli
- Plant Improvement and Productivity Division, Biotechnology Unit, Council for Scientific and Industrial Research, Fumesua, Kumasi P.O. Box UP 63, Ghana
| | - Richard Tuyee Awuah
- Crop and Soil Science Department, Faculty of Agriculture, Kwame Nkrumah University of Science and Technology (KNUST), PMB KNUST, Kumasi P.O. Box UP 1279, Ghana
| | - Aiping Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
3
|
Duan X, Zhou R, Cao L. Endosphere mycobiome in mature rice roots originate from both seedlings and soils. Braz J Microbiol 2024; 55:2805-2814. [PMID: 38802686 PMCID: PMC11405580 DOI: 10.1007/s42770-024-01384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Plant-fungus symbioses have functional relevance during plant growth and development. However, it is still unknown whether the endosphere fungi in mature plants originated from soils or seeds. To elucidate the origination of endosphere fungi in mature rice roots, the fungal communities in surface sterilized roots and shoots of mature rice plants germinated in soils, rhizosphere soils and seedlings germinated under sterile conditions were analyzed by Illumina-based sequencing and compared. Total 62 fungal OTUs shared in the seedlings, shoots and roots, 126 OTUs shared in the rhizosphere soils, shoots and roots. Fungal OTUs coexisted in the four types of samples belonged to genera of Rhizophagus, Trichoderma, Fusarium, Atractiella, Myrmecridium, Sporothrix, Microdochium, Massariosphaeria, and Phialemonium. The principle component analysis (PCA) and NMDS plot suggested that the fungal community structure in rhizosphere soils was different from that in seedlings significantly. Rhizosphere soil, shoot and root contained more similar fungal community. The fungal community in seedling was similar to that in shoot and root of mature plants. The results suggested that endophytic fungal communities in mature rice plants originated from both seedlings and rhizosphere soils, and more fungal taxa originated from rhizosphere soils. Mature rice plants contain mycobiome transmitted vertically from seeds, which suggests that inoculation of endophytic fungi isolated from seedlings might be an effective way to introduce beneficial fungal inoculants into rice plants successfully.
Collapse
Affiliation(s)
- Xianli Duan
- School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Ruihong Zhou
- School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Lixiang Cao
- School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China.
| |
Collapse
|
4
|
Aoki W, Kogawa M, Matsuda S, Matsubara K, Hirata S, Nishikawa Y, Hosokawa M, Takeyama H, Matoh T, Ueda M. Massively parallel single-cell genomics of microbiomes in rice paddies. Front Microbiol 2022; 13:1024640. [PMID: 36406415 PMCID: PMC9669790 DOI: 10.3389/fmicb.2022.1024640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Plant growth-promoting microbes (PGPMs) have attracted increasing attention because they may be useful in increasing crop yield in a low-input and sustainable manner to ensure food security. Previous studies have attempted to understand the principles underlying the rhizosphere ecology and interactions between plants and PGPMs using ribosomal RNA sequencing, metagenomic sequencing, and genome-resolved metagenomics; however, these approaches do not provide comprehensive genomic information for individual species and do not facilitate detailed analyses of plant-microbe interactions. In the present study, we developed a pipeline to analyze the genomic diversity of the rice rhizosphere microbiome at single-cell resolution. We isolated microbial cells from paddy soil and determined their genomic sequences by using massively parallel whole-genome amplification in microfluidic-generated gel capsules. We successfully obtained 3,237 single-amplified genomes in a single experiment, and these genomic sequences provided insights into microbial functions in the paddy ecosystem. Our approach offers a promising platform for gaining novel insights into the roles of microbes in the rice rhizomicrobiome and to develop microbial technologies for improved and sustainable rice production.
Collapse
Affiliation(s)
- Wataru Aoki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masato Kogawa
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| | | | | | | | - Yohei Nishikawa
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Masahito Hosokawa
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Tokyo, Japan
| | - Haruko Takeyama
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Tokyo, Japan
| | - Toru Matoh
- Kyoto Agriculture Research Institute KARI, Kyoto, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Yeo FKS, Cheok YH, Wan Ismail WN, Kueh-Tai FF, Lam TTY, Chong YL. Genotype and organ effect on the occupancy of phyllosphere prokaryotes in different rice landraces. Arch Microbiol 2022; 204:600. [PMID: 36056990 DOI: 10.1007/s00203-022-03209-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/26/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022]
Abstract
Bacteria community provides essential ecological services to rice plants. The bacterial diversity of rice varies across host plant genotype and organs. This study employed 16S rDNA amplicon sequencing to characterise the bacterial community associated with three rice landraces using leaf blade and stem samples. The prokaryotic community found in these rice landraces comprised of two kingdoms, 12 phyla, 25 classes, 40 orders, 80 families, and 118 genera. Proteobacteria (53.9%) was the most abundant phylum. The most abundant genus was an undefined genus under Cyanobacteria (33.0%). Homogeneity of prokaryotic community was observed across the three rice landraces, which may suggest a high similarity in biological and genetical properties of the rice landraces. The difference in prokaryotic composition between leaf blade and stem was depicted based on principal coordinate analysis. This study observed that the prokaryotic inhabitants in rice plants is predominantly determined by rice plant organs.
Collapse
Affiliation(s)
- Freddy Kuok San Yeo
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Yin Hui Cheok
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Wan Nurainie Wan Ismail
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Felicia Fui Kueh-Tai
- Agriculture Research Centre, Semongok, 12th Mile, Kuching-Serian Road, P.O. Box 977, 93720, Kuching, Sarawak, Malaysia
| | - Tommy Tsan-Yuk Lam
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, Li Ka Shing, Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Yee Ling Chong
- Department of Science and Environmental Studies, Faculty of Liberal Arts and Social Sciences, The Education University of Hong Kong, 10 Lo Ping Road, Ting Kok, Hong Kong SAR, China
| |
Collapse
|
6
|
Torres-Guzman JC, Padilla-Guerrero IE, Cervantes-Quintero KY, Martinez-Vazquez A, Ibarra-Guzman M, Gonzalez-Hernandez GA. Peculiarities of nitronate monooxygenases and perspectives for in vivo and in vitro applications. Appl Microbiol Biotechnol 2021; 105:8019-8032. [PMID: 34655320 DOI: 10.1007/s00253-021-11623-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/14/2022]
Abstract
Nitroalkanes such as nitromethane, nitroethane, 1-nitropropane (1NP), and 2-nitropropane (2NP), derived from anthropogenic activities, are hazardous environmental pollutants due to their toxicity and carcinogenic activity. In nature, 3-nitropropionate (3NPA) and its derivatives are produced as a defense mechanism by many groups of organisms, including bacteria, fungi, insects, and plants. 3NPA is highly toxic as its conjugate base, propionate-3-nitronate (P3N), is a potent inhibitor of mitochondrial succinate dehydrogenase, essential to the tricarboxylic acid cycle, and can inhibit isocitrate lyase, a critical enzyme of the glyoxylate cycle. In response to these toxic compounds, several organisms on the phylogenetic scale express genes that code for enzymes involved in the catabolism of nitroalkanes: nitroalkane oxidases (NAOs) and nitronate monooxygenases (NMOs) (previously classified as nitropropane dioxygenases, NPDs). Two types of NMOs have been identified: class I and class II, which differ in structure, catalytic efficiency, and preferred substrates. This review focuses on the biochemical properties, structure, classification, and physiological functions of NMOs, and offers perspectives for their in vivo and in vitro applications. KEY POINTS: • Nitronate monooxygenases (NMOs) are key enzymes in nitroalkane catabolism. • NMO enzymes are involved in defense mechanisms in different organisms. • NMO applications include organic synthesis, biocatalysts, and bioremediation.
Collapse
Affiliation(s)
- Juan Carlos Torres-Guzman
- Biology Department, Division of Natural and Exact Sciences, University of Guanajuato, CP. 36000, Guanajuato, Mexico
| | | | | | - Azul Martinez-Vazquez
- Biology Department, Division of Natural and Exact Sciences, University of Guanajuato, CP. 36000, Guanajuato, Mexico
| | - Marcos Ibarra-Guzman
- Biology Department, Division of Natural and Exact Sciences, University of Guanajuato, CP. 36000, Guanajuato, Mexico
| | | |
Collapse
|
7
|
Okazaki K, Tsurumaru H, Hashimoto M, Takahashi H, Okubo T, Ohwada T, Minamisawa K, Ikeda S. Community Analysis-based Screening of Plant Growth-promoting Bacteria for Sugar Beet. Microbes Environ 2021; 36. [PMID: 33907063 PMCID: PMC8209457 DOI: 10.1264/jsme2.me20137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Clone libraries of bacterial 16S rRNA genes (a total of 1,980 clones) were constructed from the leaf blades, petioles, taproots, and lateral roots of sugar beet (Beta vulgaris L.) grown under different fertilization conditions. A principal coordinate analysis revealed that the structures of bacterial communities in above- and underground tissues were largely separated by PC1 (44.5%). The bacterial communities of above-ground tissues (leaf blades and petioles) were more tightly clustered regardless of differences in the tissue types and fertilization conditions than those of below-ground tissues (taproots and lateral roots). The bacterial communities of below-ground tissues were largely separated by PC2 (26.0%). To survey plant growth-promoting bacteria (PGPBs), isolate collections (a total of 665 isolates) were constructed from the lateral roots. As candidate PGPBs, 44 isolates were selected via clustering analyses with the combined 16S rRNA gene sequence data of clone libraries and isolate collections. The results of inoculation tests using sugar beet seedlings showed that eight isolates exhibited growth-promoting effects on the seedlings. Among them, seven isolates belonging to seven genera (Asticcacaulis, Mesorhizobium, Nocardioides, Sphingobium, Sphingomonas, Sphingopyxis, and Polaromonas) were newly identified as PGPBs for sugar beet at the genus level, and two isolates belonging to two genera (Asticcacaulis and Polaromonas) were revealed to exert growth-promoting effects on the plant at the genus level for the first time. These results suggest that a community analysis-based selection strategy will facilitate the isolation of novel PGPBs and extend the potential for the development of novel biofertilizers.
Collapse
Affiliation(s)
- Kazuyuki Okazaki
- Memuro Research Station, Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization
| | | | | | - Hiroyuki Takahashi
- Memuro Research Station, Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization
| | | | - Takuji Ohwada
- Department of Agricultural and Life Sciences, Obihiro University of Agriculture and Veterinary Medicine
| | | | - Seishi Ikeda
- Memuro Research Station, Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization
| |
Collapse
|
8
|
Okamoto T, Shinjo R, Nishihara A, Uesaka K, Tanaka A, Sugiura D, Kondo M. Genotypic Variation of Endophytic Nitrogen-Fixing Activity and Bacterial Flora in Rice Stem Based on Sugar Content. FRONTIERS IN PLANT SCIENCE 2021; 12:719259. [PMID: 34447404 PMCID: PMC8383490 DOI: 10.3389/fpls.2021.719259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/09/2021] [Indexed: 05/14/2023]
Abstract
Enhancement of the nitrogen-fixing ability of endophytic bacteria in rice is expected to result in improved nitrogen use under low-nitrogen conditions. Endophytic nitrogen-fixing bacteria require a large amount of energy to fix atmospheric nitrogen. However, it is unknown which carbon source and bacteria would affect nitrogen-fixing activity in rice. Therefore, this study examined genotypic variations in the nitrogen-fixing ability of rice plant stem as affected by non-structural carbohydrates and endophytic bacterial flora in field-grown rice. In the field experiments, six varieties and 10 genotypes of rice were grown in 2017 and 2018 to compare the acetylene reduction activity (nitrogen-fixing activity) and non-structural carbohydrates (glucose, sucrose, and starch) concentration in their stems at the heading stage. For the bacterial flora analysis, two genes were amplified using a primer set of 16S rRNA and nitrogenase (NifH) gene-specific primers. Next, acetylene reduction activity was correlated with sugar concentration among genotypes in both years, suggesting that the levels of soluble sugars influenced stem nitrogen-fixing activity. Bacterial flora analysis also suggested the presence of common and genotype-specific bacterial flora in both 16S rRNA and nifH genes. Similarly, bacteria classified as rhizobia, such as Bradyrhizobium sp. (Alphaproteobacteria) and Paraburkholderia sp. (Betaproteobacteria), were highly abundant in all rice genotypes, suggesting that these bacteria make major contributions to the nitrogen fixation process in rice stems. Gammaproteobacteria were more abundant in CG14 as well, which showed the highest acetylene reduction activity and sugar concentration among genotypes and is also proposed to contribute to the higher amount of nitrogen-fixing activity.
Collapse
Affiliation(s)
- Takanori Okamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- *Correspondence: Takanori Okamoto
| | - Rina Shinjo
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Arisa Nishihara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Kazuma Uesaka
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Aiko Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Daisuke Sugiura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Motohiko Kondo
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Motohiko Kondo
| |
Collapse
|
9
|
Roman-Reyna V, Pinili D, Borja FN, Quibod IL, Groen SC, Alexandrov N, Mauleon R, Oliva R. Characterization of the Leaf Microbiome from Whole-Genome Sequencing Data of the 3000 Rice Genomes Project. RICE (NEW YORK, N.Y.) 2020; 13:72. [PMID: 33034758 PMCID: PMC7547056 DOI: 10.1186/s12284-020-00432-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/01/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND The crop microbial communities are shaped by interactions between the host, microbes and the environment, however, their relative contribution is beginning to be understood. Here, we explore these interactions in the leaf bacterial community across 3024 rice accessions. FINDINGS By using unmapped DNA sequencing reads as microbial reads, we characterized the structure of the rice bacterial microbiome. We identified central bacteria taxa that emerge as microbial "hubs" and may have an influence on the network of host-microbe interactions. We found regions in the rice genome that might control the assembly of these microbial hubs. To our knowledge this is one of the first studies that uses raw data from plant genome sequencing projects to characterize the leaf bacterial communities. CONCLUSION We showed, that the structure of the rice leaf microbiome is modulated by multiple interactions among host, microbes, and environment. Our data provide insight into the factors influencing microbial assemblage in the rice leaf and also opens the door for future initiatives to modulate rice consortia for crop improvement efforts.
Collapse
Affiliation(s)
- Veronica Roman-Reyna
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines.
- Present Address: Department of Plant Pathology, The Ohio State University, Columbus, OH, USA.
| | - Dale Pinili
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Frances N Borja
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Ian L Quibod
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Simon C Groen
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - Nickolai Alexandrov
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Ramil Mauleon
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Ricardo Oliva
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines.
| |
Collapse
|
10
|
Marian M, Ohno T, Suzuki H, Kitamura H, Kuroda K, Shimizu M. A novel strain of endophytic Streptomyces for the biocontrol of strawberry anthracnose caused by Glomerella cingulata. Microbiol Res 2020; 234:126428. [PMID: 32086186 DOI: 10.1016/j.micres.2020.126428] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 01/16/2023]
Abstract
Anthracnose caused by Glomerella cingulata is one of the most devastating diseases of strawberry in Japan, particularly during its nursery period in the summer. In this study, we aimed to isolate and screen endophytic actinobacteria, to identify potential biocontrol agents capable of suppressing strawberry anthracnose. A total of 226 actinobacteria were successfully isolated from surface-sterilized strawberry tissues. In the first screening, 217 out of 226 actinobacteria isolates were studied for their suppression effect on strawberry anthracnose using a detached leaflet assay. It was discovered that isolates MBFA-172 and MBFA-227 markedly suppressed the development of anthracnose lesions. The efficacy of both isolates was then tested on two-month-old strawberry plug seedlings in a controlled environmental chamber. It was found that isolate MBFA-172 provided consistent disease suppression and was thus selected as a final candidate for further evaluation in a glasshouse experiment. Results showed that the severity as well as incidence rate of strawberry anthracnose was significantly reduced by treatment with isolate MBFA-172 compared with that of untreated control. Accordingly, the disease control efficacy provided by MBFA-172 was statistically comparable to the chemical fungicide propineb. A re-isolation experiment using a spontaneous thiostrepton-resistant mutated strain of isolate MBFA-172 revealed that it efficiently colonized the above-ground tissues of strawberry plants for at least three weeks after spray treatment. Using cultural, morphological, and physiological tests combined with 16S rRNA-based molecular analysis, MBFA-172 was identified as a moderately thermophilic Streptomyces thermocarboxydus-related species. Upon review, our results strongly indicated that MBFA-172 is a promising biocontrol agent for strawberry anthracnose.
Collapse
Affiliation(s)
- Malek Marian
- Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Teppei Ohno
- Faculty of Bioresources, Mie University, Mie 514-8507, Japan
| | - Hirofumi Suzuki
- Mie Prefecture Agricultural Research Institute, Matsusaka, Mie 515-2316, Japan
| | - Hatsuyoshi Kitamura
- Mie Prefecture Agricultural Research Institute, Matsusaka, Mie 515-2316, Japan
| | - Katsutoshi Kuroda
- Mie Prefecture Agricultural Research Institute, Matsusaka, Mie 515-2316, Japan
| | - Masafumi Shimizu
- Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan.
| |
Collapse
|
11
|
Mosquito S, Bertani I, Licastro D, Compant S, Myers MP, Hinarejos E, Levy A, Venturi V. In Planta Colonization and Role of T6SS in Two Rice Kosakonia Endophytes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:349-363. [PMID: 31609645 DOI: 10.1094/mpmi-09-19-0256-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Endophytes live inside plants and are often beneficial. Kosakonia is a novel bacterial genus that includes many diazotrophic plant-associated isolates. Plant-bacteria studies on two rice endophytic Kosakonia beneficial strains were performed, including comparative genomics, secretome profiling, in planta tests, and a field release trial. The strains are efficient rhizoplane and root endosphere colonizers and localized in the root cortex. Secretomics revealed 144 putative secreted proteins, including type VI secretory system (T6SS) proteins. A Kosakonia T6SS genomic knock-out mutant showed a significant decrease in rhizoplane and endosphere colonization ability. A field trial using rice seed inoculated with Kosakonia spp. showed no effect on plant growth promotion upon nitrogen stress and microbiome studies revealed that Kosakonia spp. were significantly more present in the inoculated rice. Comparative genomics indicated that several protein domains were enriched in plant-associated Kosakonia spp. This study highlights that Kosakonia is an important, recently classified genus involved in plant-bacteria interaction.
Collapse
Affiliation(s)
- Susan Mosquito
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Iris Bertani
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Danilo Licastro
- CBM S.c.r.l., Area Science Park-Basovizza, 34149 Trieste, Italy
| | - Stéphane Compant
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, 3430 Tulln, Vienna, Austria
| | - Michael P Myers
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | | | - Asaf Levy
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| |
Collapse
|
12
|
Salwan R, Sharma V. Molecular and biotechnological aspects of secondary metabolites in actinobacteria. Microbiol Res 2020; 231:126374. [DOI: 10.1016/j.micres.2019.126374] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/21/2022]
|
13
|
Vishwakarma P, Dubey SK. Diversity of endophytic bacterial community inhabiting in tropical aerobic rice under aerobic and flooded condition. Arch Microbiol 2019; 202:17-29. [DOI: 10.1007/s00203-019-01715-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/03/2019] [Accepted: 08/13/2019] [Indexed: 11/29/2022]
|
14
|
Wasai S, Minamisawa K. Plant-Associated Microbes: From Rhizobia To Plant Microbiomes. Microbes Environ 2019; 33:1-3. [PMID: 29593170 PMCID: PMC5877334 DOI: 10.1264/jsme2.me3301rh] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Sawa Wasai
- Graduate School of Life Sciences, Tohoku University
| | | |
Collapse
|
15
|
Wang W, Zhai Y, Cao L, Tan H, Zhang R. Improvement of rice seedling growth and nitrogen use efficiency by seed inoculation with endophytic denitrifiers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:14477-14483. [PMID: 28444566 DOI: 10.1007/s11356-017-9064-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 04/18/2017] [Indexed: 06/07/2023]
Abstract
The aim of the present study is to investigate the effect of seed inoculation with endophytic denitrifiers on rice seedling growth and nitrogen use efficiency under low- and high-urea conditions. Pseudomonas sp. B2, Streptomyces sp. A9, and Fusarium sp. F3 were isolated from rice plant tissues. Rice seeds inoculated with the denitrifiers were sown in soil fertilized with 100 and 300 mg/kg urea concentrations, respectively. The denitrifiers increased soil ammonia concentrations or kept high ammonia concentration for a longer time in soils. However, soil nitrate concentrations with the denitrifier treatments were lower than that of the control. All the denitrifier treatments increased the chlorophyll content by more than 200% under the low urea condition. Compared to the control, the denitrifier inoculation treatments significantly increased shoot length, fresh weight, and dry weight of rice seedlings under the low- and high-urea conditions (P < 0.05). The chlorophyll concentrations, shoot length, wet weight, and dry weight of all the denitrifier treatments under the low urea fertilization were significantly higher than those of the control under the high-urea fertilization (P < 0.05). The nitrogen use efficiency of rice seedlings might be attributable to nitrate reductases of the denitrifiers, acting as the rice nitrate reductase. The treatment of endophytic denitrifiers significantly improved rice seedling growth and nitrogen use efficiency under both low- and high-urea conditions.
Collapse
Affiliation(s)
- Wenfeng Wang
- Department of Laboratory, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Yanyan Zhai
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lixiang Cao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Hongming Tan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Renduo Zhang
- School of Environmental Science and Engineering, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
16
|
Minami T, Anda M, Mitsui H, Sugawara M, Kaneko T, Sato S, Ikeda S, Okubo T, Tsurumaru H, Minamisawa K. Metagenomic Analysis Revealed Methylamine and Ureide Utilization of Soybean-Associated Methylobacterium. Microbes Environ 2016; 31:268-78. [PMID: 27431374 PMCID: PMC5017803 DOI: 10.1264/jsme2.me16035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/16/2016] [Indexed: 01/29/2023] Open
Abstract
Methylobacterium inhabits the phyllosphere of a large number of plants. We herein report the results of comparative metagenome analyses on methylobacterial communities of soybean plants grown in an experimental field in Tohoku University (Kashimadai, Miyagi, Japan). Methylobacterium was identified as the most dominant genus (33%) among bacteria inhabiting soybean stems. We classified plant-derived Methylobacterium species into Groups I, II, and III based on 16S rRNA gene sequences, and found that Group I members (phylogenetically close to M. extorquens) were dominant in soybean-associated Methylobacterium. By comparing 29 genomes, we found that all Group I members possessed a complete set of genes for the N-methylglutamate pathway for methylamine utilization, and genes for urea degradation (urea carboxylase, urea amidolyase, and conventional urease). Only Group I members and soybean methylobacterial isolates grew in a culture supplemented with methylamine as the sole carbon source. They utilized urea or allantoin (a urea-related compound in legumes) as the sole nitrogen source; however, group III also utilized these compounds. The utilization of allantoin may be crucial in soybean-bacterial interactions because allantoin is a transported form of fixed nitrogen in legume plants. Soybean-derived Group I strain AMS5 colonized the model legume Lotus japonicus well. A comparison among the 29 genomes of plant-derived and other strains suggested that several candidate genes are involved in plant colonization such as csgG (curli fimbriae). Genes for the N-methylglutamate pathway and curli fimbriae were more abundant in soybean microbiomes than in rice microbiomes in the field. Based on these results, we discuss the lifestyle of Methylobacterium in the legume phyllosphere.
Collapse
Affiliation(s)
- Tomoyuki Minami
- Graduate School of Life Sciences, Tohoku University2–1–1 Katahira, Aoba-ku, Sendai 980–85577Japan
| | - Misue Anda
- Graduate School of Life Sciences, Tohoku University2–1–1 Katahira, Aoba-ku, Sendai 980–85577Japan
| | - Hisayuki Mitsui
- Graduate School of Life Sciences, Tohoku University2–1–1 Katahira, Aoba-ku, Sendai 980–85577Japan
| | - Masayuki Sugawara
- Graduate School of Life Sciences, Tohoku University2–1–1 Katahira, Aoba-ku, Sendai 980–85577Japan
| | - Takakazu Kaneko
- Kazusa DNA Research Institute2–6–7 Kazusa-kamatari, Kisarazu, Chiba 292–0818Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University2–1–1 Katahira, Aoba-ku, Sendai 980–85577Japan
- Kazusa DNA Research Institute2–6–7 Kazusa-kamatari, Kisarazu, Chiba 292–0818Japan
| | - Seishi Ikeda
- Graduate School of Life Sciences, Tohoku University2–1–1 Katahira, Aoba-ku, Sendai 980–85577Japan
| | - Takashi Okubo
- Graduate School of Life Sciences, Tohoku University2–1–1 Katahira, Aoba-ku, Sendai 980–85577Japan
| | - Hirohito Tsurumaru
- Graduate School of Life Sciences, Tohoku University2–1–1 Katahira, Aoba-ku, Sendai 980–85577Japan
| | - Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku University2–1–1 Katahira, Aoba-ku, Sendai 980–85577Japan
| |
Collapse
|
17
|
Mendes-Soares H, Mundy M, Soares LM, Chia N. MMinte: an application for predicting metabolic interactions among the microbial species in a community. BMC Bioinformatics 2016; 17:343. [PMID: 27590448 PMCID: PMC5009493 DOI: 10.1186/s12859-016-1230-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/26/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The explosive growth of microbiome research has yielded great quantities of data. These data provide us with many answers, but raise just as many questions. 16S rDNA-the backbone of microbiome analyses-allows us to assess α-diversity, β-diversity, and microbe-microbe associations, which characterize the overall properties of an ecosystem. However, we are still unable to use 16S rDNA data to directly assess the microbe-microbe and microbe-environment interactions that determine the broader ecology of that system. Thus, properties such as competition, cooperation, and nutrient conditions remain insufficiently analyzed. Here, we apply predictive community metabolic models of microbes identified with 16S rDNA data to probe the ecology of microbial communities. RESULTS We developed a methodology for the large-scale assessment of microbial metabolic interactions (MMinte) from 16S rDNA data. MMinte assesses the relative growth rates of interacting pairs of organisms within a community metabolic network and whether that interaction has a positive or negative effect. Moreover, MMinte's simulations take into account the nutritional environment, which plays a strong role in determining the metabolism of individual microbes. We present two case studies that demonstrate the utility of this software. In the first, we show how diet influences the nature of the microbe-microbe interactions. In the second, we use MMinte's modular feature set to better understand how the growth of Desulfovibrio piger is affected by, and affects the growth of, other members in a simplified gut community under metabolic conditions suggested to be determinant for their dynamics. CONCLUSION By applying metabolic models to commonly available sequence data, MMinte grants the user insight into the metabolic relationships between microbes, highlighting important features that may relate to ecological stability, susceptibility, and cross-feeding. These relationships are at the foundation of a wide range of ecological questions that impact our ability to understand problems such as microbially-derived toxicity in colon cancer.
Collapse
Affiliation(s)
- Helena Mendes-Soares
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, 200 First St. SW, Rochester, 55905 MN USA
- Department of Surgery, Mayo Clinic, Rochester, MN USA
| | - Michael Mundy
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, 200 First St. SW, Rochester, 55905 MN USA
| | | | - Nicholas Chia
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, 200 First St. SW, Rochester, 55905 MN USA
- Department of Surgery, Mayo Clinic, Rochester, MN USA
- Department of Physiology and Biomedical Engineering, Mayo College, Rochester, MN USA
| |
Collapse
|
18
|
Nitrogen removal from synthetic wastewater using single and mixed culture systems of denitrifying fungi, bacteria, and actinobacteria. Appl Microbiol Biotechnol 2016; 100:9699-9707. [PMID: 27562469 DOI: 10.1007/s00253-016-7800-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
Abstract
The aim of this study was to investigate the effects of single and mixed culture of denitrifying fungi, bacteria, and actinobacteria on nitrogen removal and N2O emission in treatment of wastewater. Denitrifying endophytes of Pseudomonas sp. B2, Streptomyces sp. A9, and Fusarium sp. F3 isolated from rice plants were utilized for treatment of synthetic wastewater containing nitrate and nitrite. Experiments were conducted under shaking and static conditions. Results showed that under the static condition, more than 97 % of nitrate removal efficiencies were reached in all the treatments containing B2. The nitrate removal rates within the first 12 h in the treatments of B2, B2+A9, B2+F3, and B2+A9+F3 were 7.3, 9.8, 11, and 11 mg L-1 h-1, respectively. Under the shaking condition, 100 % of nitrite was removed in all the treatments containing B2. The presence of A9 and F3 with B2 increased the nitrite removal rates under both the shaking and static conditions. Compared to the B2 system, the mixed systems of B2+A9, B2+F3, and B2+A9+F3 reduced N2O emission (78.4 vs. 19.4, 1.80, and 0.03 μM in 4 weeks, respectively). Our results suggested that B2 is an important strain that enhances nitrogen removal from wastewater. Mixed cultures of B2 with A9 and F3 can remove more nitrate and nitrite from wastewater and reduce nitrite accumulation and N2O emission in the denitrification process.
Collapse
|
19
|
Venkatachalam S, Ranjan K, Prasanna R, Ramakrishnan B, Thapa S, Kanchan A. Diversity and functional traits of culturable microbiome members, including cyanobacteria in the rice phyllosphere. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:627-37. [PMID: 26849835 DOI: 10.1111/plb.12441] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/01/2016] [Indexed: 05/13/2023]
Abstract
The diversity and abundance of culturable microbiome members of the rice phyllosphere was investigated using cv. Pusa Punjab Basmati 1509. Both diversity and species richness of bacteria were significantly higher in plants in pots in a semi-controlled environment than those in fields. Application of fertilisers reduced both diversity and species richness in field-grown plants under a conventional flooded system of rice intensification (SRI) and in dry-seeded rice (DSR) modes. Sequence analyses of 16S rDNA of culturable bacteria, those selected after amplified ribosomal DNA restriction analysis (ARDRA), showed the dominance of α-proteobacteria (35%) and actinobacteria (38%); Pantoea, Exiguobacterium and Bacillus were common among the culturable phyllospheric bacteria. About 34% of 83 culturable bacterial isolates had higher potential (>2 μg·ml(-1) ) for indole acetic acid production in the absence of tryptophan. Interestingly, the phyllosphere bacterial isolates from the pot experiment had significantly higher potential for nitrogen fixation than isolates from the field experiment. Enrichment for cyanobacteria showed both unicellular forms and non-heterocystous filaments under aerobic as well as anaerobic conditions. PCR-DGGE analysis of these showed that aerobic and anaerobic conditions as well as the three modes of cultivation of rice in the field strongly influenced the number and abundance of phylotypes. The adaptability and functional traits of these culturable microbiome members suggest enormous diversity in the phyllosphere, including potential for plant growth promotion, which was also significantly influenced by the different methods of growing rice.
Collapse
Affiliation(s)
- S Venkatachalam
- Division of Microbiology, ICAR - Indian Agricultural Research Institute (IARI), New Delhi, India
| | - K Ranjan
- Division of Microbiology, ICAR - Indian Agricultural Research Institute (IARI), New Delhi, India
| | - R Prasanna
- Division of Microbiology, ICAR - Indian Agricultural Research Institute (IARI), New Delhi, India
| | - B Ramakrishnan
- Division of Microbiology, ICAR - Indian Agricultural Research Institute (IARI), New Delhi, India
| | - S Thapa
- Division of Microbiology, ICAR - Indian Agricultural Research Institute (IARI), New Delhi, India
| | - A Kanchan
- Division of Microbiology, ICAR - Indian Agricultural Research Institute (IARI), New Delhi, India
| |
Collapse
|
20
|
Wang W, Zhai Y, Cao L, Tan H, Zhang R. Illumina-based analysis of core actinobacteriome in roots, stems, and grains of rice. Microbiol Res 2016; 190:12-8. [PMID: 27393994 DOI: 10.1016/j.micres.2016.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/02/2016] [Accepted: 05/06/2016] [Indexed: 11/18/2022]
Abstract
Seed-borne microbiota can transmit vertically from generation to generation and be a favour mutualism between the endosymbionts and hosts. The aim of this study was to investigate the rice-associated actinobacterial taxa in roots, stems, and grains and explore vertically transmitted core actinobacteriome of rice plants. Illumina sequencing analyses of samples of rice grains, stems, and roots showed that the roots contained the most diverse actinobacteria among the tissues. The grains contained 78 actinobacterial operational taxonomic units (OTUs), among which 44 were shared with those in the stems, 30 shared with those in the roots. The coexisted OTUs in the three types of samples mainly belong to genera of Pseudonocardia, Dietzia, Nocardioides, Streptomyces, Mycobacterium, Corynebacterium, Citricoccus, Salinibacterium, and Agrococcus, and other unclassified taxa. The dominant actinobacterial genera Pseudonocardia and Dietzia in the stems and roots were still detected in relatively high abundance in the grains. The Streptomyces isolated from surface sterilized grains could improve nitrogen use efficiency of rice seedlings and the resistance to rice blast fungus. The results suggested that the rice grains contained diverse actinobacterial taxa deriving from stems and roots and showed intimate correlation with the host plants.
Collapse
Affiliation(s)
- Wenfeng Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yanyan Zhai
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lixiang Cao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Hongming Tan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Renduo Zhang
- School of Environmental Science and Engineering, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
21
|
Endophytic bacterial and fungal microbiota in sprouts, roots and stems of rice (Oryza sativa L.). Microbiol Res 2016; 188-189:1-8. [PMID: 27296957 DOI: 10.1016/j.micres.2016.04.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 10/21/2022]
Abstract
The objective of this study was to elucidate the endophytic microbiota in rice sprouts, roots, and stems, and their transmission in the plant development. Prior to DNA extraction, roots and stems were treated with 36% formaldehyde and 0.1M NaOH solutions to remove epiphytic bacterial whole 16S rRNA genes. Bacterial and fungal taxa in the sprout, root, and stem samples were analyzed using Illumina-based sequencing of the V3-V4 hyper variable regions of bacterial 16S rRNA genes and the ITS2 regions of fungal rRNA genes, respectively. Results showed that more diverse bacterial OTUs were detected in roots than in stems, while more diverse fungal OTUs were detected in stems than in roots. Compared with the endophytic microbiota in sprouts, the bacterial OTUs increased in roots but decreased in stems, whereas the fungal OTUs in both stems and roots decreased. Sprout-borne bacterial genera Sphingomonas and Pseudomonus, and fungal genera Fusarium, Pestalotiopsis, and Penicillium were detected in stems and roots. The coexistence of these indigenous bacterial and fungal taxa in sprouts, roots, and stems indicated their transmission during the development from sprouts to mature plants. The results from this study should be useful to better understand the plant-microbe interactions and to select suitable microbial taxa for rice production.
Collapse
|
22
|
Trujillo ME, Riesco R, Benito P, Carro L. Endophytic Actinobacteria and the Interaction of Micromonospora and Nitrogen Fixing Plants. Front Microbiol 2015; 6:1341. [PMID: 26648923 PMCID: PMC4664631 DOI: 10.3389/fmicb.2015.01341] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/16/2015] [Indexed: 01/07/2023] Open
Abstract
For a long time, it was believed that a healthy plant did not harbor any microorganisms within its tissues, as these were often considered detrimental for the plant. In the last three decades, the numbers of studies on plant microbe-interactions has led to a change in our view and we now know that many of these invisible partners are essential for the overall welfare of the plant. The application of Next Generation Sequencing techniques is a powerful tool that has permitted the detection and identification of microbial communities in healthy plants. Among the new plant microbe interactions recently reported several actinobacteria such as Micromonospora are included. Micromonospora is a Gram-positive bacterium with a wide geographical distribution; it can be found in the soil, mangrove sediments, and freshwater and marine ecosistems. In the last years our group has focused on the isolation of Micromonospora strains from nitrogen fixing nodules of both leguminous and actinorhizal plants and reported for the first time its wide distribution in nitrogen fixing nodules of both types of plants. These studies have shown how this microoganism had been largely overlooked in this niche due to its slow growth. Surprisingly, the genetic diversity of Micromonospora strains isolated from nodules is very high and several new species have been described. The current data indicate that Micromonospora saelicesensis is the most frequently isolated species from the nodular tissues of both leguminous and actinorhizal plants. Further studies have also been carried out to confirm the presence of Micromonospora inside the nodule tissues, mainly by specific in situ hybridization. The information derived from the genome of the model strain, Micromonospora lupini, Lupac 08, has provided useful information as to how this bacterium may relate with its host plant. Several strategies potentially necessary for Micromonospora to thrive in the soil, a highly competitive, and rough environment, and as an endophytic bacterium with the capacity to colonize the internal plant tissues which are protected from the invasion of other soil microbes were identified. The genome data also revealed the potential of M. lupini Lupac 08 as a plant growth promoting bacterium. Several loci involved in plant growth promotion features such as the production of siderophores, phytohormones, and the degradation of chitin (biocontrol) were also located on the genome and the functionality of these genes was confirmed in the laboratory. In addition, when several host plants species were inoculated with Micromonospora strains, the plant growth enhancing effect was evident under greenhouse conditions. Unexpectedly, a high number of plant-cell wall degrading enzymes were also detected, a trait usually found only in pathogenic bacteria. Thus, Micromonospora can be added to the list of new plant-microbe interactions. The current data indicate that this microorganism may have an important application in agriculture and other biotechnological processes. The available information is promising but limited, much research is still needed to determine which is the ecological function of Micromonospora in interaction with nitrogen fixing plants.
Collapse
Affiliation(s)
- Martha E Trujillo
- Departamento de Microbiología y Genética, Universidad de Salamanca Salamanca, Spain
| | - Raúl Riesco
- Departamento de Microbiología y Genética, Universidad de Salamanca Salamanca, Spain
| | - Patricia Benito
- Departamento de Microbiología y Genética, Universidad de Salamanca Salamanca, Spain
| | - Lorena Carro
- Departamento de Microbiología y Genética, Universidad de Salamanca Salamanca, Spain
| |
Collapse
|
23
|
Okubo T, Liu D, Tsurumaru H, Ikeda S, Asakawa S, Tokida T, Tago K, Hayatsu M, Aoki N, Ishimaru K, Ujiie K, Usui Y, Nakamura H, Sakai H, Hayashi K, Hasegawa T, Minamisawa K. Elevated atmospheric CO2 levels affect community structure of rice root-associated bacteria. Front Microbiol 2015; 6:136. [PMID: 25750640 PMCID: PMC4335179 DOI: 10.3389/fmicb.2015.00136] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 02/05/2015] [Indexed: 11/13/2022] Open
Abstract
A number of studies have shown that elevated atmospheric CO2 ([CO2]) affects rice yields and grain quality. However, the responses of root-associated bacteria to [CO2] elevation have not been characterized in a large-scale field study. We conducted a free-air CO2 enrichment (FACE) experiment (ambient + 200 μmol.mol(-1)) using three rice cultivars (Akita 63, Takanari, and Koshihikari) and two experimental lines of Koshihikari [chromosome segment substitution and near-isogenic lines (NILs)] to determine the effects of [CO2] elevation on the community structure of rice root-associated bacteria. Microbial DNA was extracted from rice roots at the panicle formation stage and analyzed by pyrosequencing the bacterial 16S rRNA gene to characterize the members of the bacterial community. Principal coordinate analysis of a weighted UniFrac distance matrix revealed that the community structure was clearly affected by elevated [CO2]. The predominant community members at class level were Alpha-, Beta-, and Gamma-proteobacteria in the control (ambient) and FACE plots. The relative abundance of Methylocystaceae, the major methane-oxidizing bacteria in rice roots, tended to decrease with increasing [CO2] levels. Quantitative PCR revealed a decreased copy number of the methane monooxygenase (pmoA) gene and increased methyl coenzyme M reductase (mcrA) in elevated [CO2]. These results suggest elevated [CO2] suppresses methane oxidation and promotes methanogenesis in rice roots; this process affects the carbon cycle in rice paddy fields.
Collapse
Affiliation(s)
- Takashi Okubo
- Environmental Biofunction Division, National Institute for Agro-Environmental SciencesTsukuba, Japan
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku UniversitySendai, Japan
| | - Dongyan Liu
- Division of Bioresource Functions, Graduate School of Bioagricultural Sciences, Nagoya UniversityNagoya, Japan
| | - Hirohito Tsurumaru
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku UniversitySendai, Japan
| | - Seishi Ikeda
- Large-scale Farming Research Division, Hokkaido Agricultural Research Center, National Agriculture and Food Research OrganizationHokkaido, Japan
| | - Susumu Asakawa
- Division of Bioresource Functions, Graduate School of Bioagricultural Sciences, Nagoya UniversityNagoya, Japan
| | - Takeshi Tokida
- Carbon and Nutrient Cycles Division, National Institute for Agro-Environmental SciencesTsukuba, Japan
| | - Kanako Tago
- Environmental Biofunction Division, National Institute for Agro-Environmental SciencesTsukuba, Japan
| | - Masahito Hayatsu
- Environmental Biofunction Division, National Institute for Agro-Environmental SciencesTsukuba, Japan
| | - Naohiro Aoki
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
| | - Ken Ishimaru
- Division of Plant Sciences, National Institute of Agrobiological SciencesTsukuba, Japan
| | - Kazuhiro Ujiie
- Division of Plant Sciences, National Institute of Agrobiological SciencesTsukuba, Japan
| | - Yasuhiro Usui
- Agro-Meteorology Division, National Institute for Agro-Environmental SciencesTsukuba, Japan
| | | | - Hidemitsu Sakai
- Agro-Meteorology Division, National Institute for Agro-Environmental SciencesTsukuba, Japan
| | - Kentaro Hayashi
- Carbon and Nutrient Cycles Division, National Institute for Agro-Environmental SciencesTsukuba, Japan
| | - Toshihiro Hasegawa
- Agro-Meteorology Division, National Institute for Agro-Environmental SciencesTsukuba, Japan
| | - Kiwamu Minamisawa
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku UniversitySendai, Japan
| |
Collapse
|