1
|
Nawata K, Kadoya A, Suzuki S. Persistence of Marine Bacterial Plasmid in the House Fly (Musca domestica): Marine-Derived Antimicrobial Resistance Genes Have a Chance of Invading the Human Environment. MICROBIAL ECOLOGY 2024; 87:30. [PMID: 38191744 PMCID: PMC10774151 DOI: 10.1007/s00248-023-02341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/31/2023] [Indexed: 01/10/2024]
Abstract
The house fly is known to be a vector of antibiotic-resistant bacteria (ARB) in animal farms. It is also possible that the house fly contributes to the spread of ARB and antibiotic resistance genes (ARGs) among various environments. We hypothesized that ARB and ARGs present in marine fish and fishery food may gain access to humans via the house fly. We show herein that pAQU1, a marine bacterial ARG-bearing plasmid, persists in the house fly intestine for 5 days after fly ingestion of marine bacteria. In the case of Escherichia coli bearing the same plasmid, the persistence period exceeded 7 days. This interval is sufficient for transmission to human environments, meaning that the house fly is capable of serving as a vector of marine-derived ARGs. Time course monitoring of the house fly intestinal microflora showed that the initial microflora was occupied abundantly with Enterobacteriaceae. Experimentally ingested bacteria dominated the intestinal environment immediately following ingestion; however, after 72 h, the intestinal microflora recovered to resemble that observed at baseline, when diverse genera of Enterobacteriaceae were seen. Given that pAQU1 in marine bacteria and E. coli were detected in fly excrement (defined here as any combination of feces and regurgitated material) at 7 days post-bacterial ingestion, we hypothesize that the house fly may serve as a vector for transmission of ARGs from marine items and fish to humans via contamination with fly excrement.
Collapse
Affiliation(s)
- Kanoko Nawata
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime, Japan
| | - Aya Kadoya
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime, Japan
| | - Satoru Suzuki
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime, Japan.
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan.
| |
Collapse
|
2
|
Okoye CO, Nyaruaba R, Ita RE, Okon SU, Addey CI, Ebido CC, Opabunmi AO, Okeke ES, Chukwudozie KI. Antibiotic resistance in the aquatic environment: Analytical techniques and interactive impact of emerging contaminants. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:103995. [PMID: 36210048 DOI: 10.1016/j.etap.2022.103995] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/19/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic pollution is becoming an increasingly severe threat globally. Antibiotics have emerged as a new class of environmental pollutants due to their expanding usage and indiscriminate application in animal husbandry as growth boosters. Contamination of aquatic ecosystems by antibiotics can have a variety of negative impacts on the microbial flora of these water bodies, as well as lead to the development and spread of antibiotic-resistant genes. Various strategies for removing antibiotics from aqueous systems and environments have been developed. Many of these approaches, however, are constrained by their high operating costs and the generation of secondary pollutants. This review aims to summarize research on the distribution and effects of antibiotics in aquatic environments, their interaction with other emerging contaminants, and their remediation strategy. The ecological risks associated with antibiotics in aquatic ecosystems and the need for more effective monitoring and detection system are also highlighted.
Collapse
Affiliation(s)
- Charles Obinwanne Okoye
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Department of Zoology & Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria; Organization of African Academic Doctor, Nairobi, Kenya
| | - Raphael Nyaruaba
- Center for Biosafety Megascience, Wuhan Institute of Virology, CAS, Wuhan, PR China; Organization of African Academic Doctor, Nairobi, Kenya
| | - Richard Ekeng Ita
- Department of Biological Sciences Ritman University, Ikot Ekpene, Akwa Ibom State, Nigeria; Organization of African Academic Doctor, Nairobi, Kenya
| | - Samuel Ukpong Okon
- Department of Marine Science, Akwa Ibom State University, Mkpat Enin, P.M.B. 1167, Nigeria; Department of Ocean Engineering, Ocean College, Zhejiang University, Zhoushan 316021, PR China; Organization of African Academic Doctor, Nairobi, Kenya
| | - Charles Izuma Addey
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, PR China; Organization of African Academic Doctor, Nairobi, Kenya
| | - Chike C Ebido
- Department of Zoology & Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria; Organization of African Academic Doctor, Nairobi, Kenya
| | | | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China; Organization of African Academic Doctor, Nairobi, Kenya.
| | - Kingsley Ikechukwu Chukwudozie
- Department of Microbiology, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Organization of African Academic Doctor, Nairobi, Kenya; Department of Clinical Medicine, School of Medicine, Jiangsu University 212013, PR China.
| |
Collapse
|
3
|
Macrolide resistance genes and mobile genetic elements in waterways from pig farms to the sea in Taiwan. J Glob Antimicrob Resist 2022; 29:360-370. [DOI: 10.1016/j.jgar.2022.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/20/2022] Open
|
4
|
Microbial Community Structure and Bacterial Lineages Associated with Sulfonamides Resistance in Anthropogenic Impacted Larut River. WATER 2022. [DOI: 10.3390/w14071018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Anthropogenic activities often contribute to antibiotic resistance in aquatic environments. Larut River Malaysia is polluted with both organic and inorganic pollutants from domestic and industrial wastewater that are probably treated inadequately. The river is characterized by high biochemical oxygen demand, chemical oxygen demand, total suspended solids, ammonia, and heavy metals. In our previous study, sulfonamides (SAs) and sulfonamide resistance genes (sul) were detected in the Larut River. Hence, in this study, we further examined the microbial community structure, diversity of sulfonamide-resistant bacteria (SARB), and their resistance genes. The study also aimed at identifying cultivable bacteria potential carriers of sul genes in the aquatic environment. Proteobacteria (22.4–66.0%), Firmicutes (0.8–41.6%), Bacteroidetes (2.0–29.4%), and Actinobacteria (5.5–27.9%) were the most dominant phyla in both the effluents and river waters. SARB isolated consisted only 4.7% of the total genera identified, with SAR Klebsiella as the most dominant (38.0–61.3%) followed by SAR Escherichia (0–22.2%) and Acinetobacter (3.2–16.0%). The majority of the SAR Klebsiella isolated from the effluents and middle downstream were positive for sul genes. Sul genes-negative SAR Escherichia and Acinetobacter were low (<20%). Canonical-correlation analysis (CCA) showed that SAs residues and inorganic nutrients exerted significant impacts on microbial community and total sul genes. Network analysis identified 11 SARB as potential sul genes bacterial carriers. These findings indicated that anthropogenic activities exerted impacts on the microbial community structure and SAs resistance in the Larut River.
Collapse
|
5
|
Fukuda A, Nakamura H, Umeda K, Yamamoto K, Hirai Y, Usui M, Ogasawara J. OUP accepted manuscript. JAC Antimicrob Resist 2022; 4:dlac031. [PMID: 35350135 PMCID: PMC8952253 DOI: 10.1093/jacamr/dlac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Hiromi Nakamura
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Kaoru Umeda
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Kaori Yamamoto
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Yuji Hirai
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Masaru Usui
- Food Microbiology and Food Safety Unit, Division of Preventive Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Jun Ogasawara
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| |
Collapse
|
6
|
Suzuki S, Ogo M, Takada H, Seki K, Mizukawa K, Kadoya A, Yokokawa T, Sugimoto Y, Sato-Takabe Y, Boonla C, Anomasiri W, Sukpanyatham N. Contamination of antibiotics and sul and tet(M) genes in veterinary wastewater, river, and coastal sea in Thailand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148423. [PMID: 34412390 DOI: 10.1016/j.scitotenv.2021.148423] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Water systems in Southeast Asia accumulate antibiotics and antibiotic resistance genes (ARGs) from multiple origins, notably including human clinics and animal farms. To ascertain the fate of antibiotics and ARGs in natural water environments, we monitored the concentrations of these items in Thailand. Here, we show high concentrations of tetracyclines (72,156.9 ng/L) and lincomycin (23,968.0 ng/L) in pig farms, followed by nalidixic acid in city canals. The city canals and rivers contained diverse distributions of antibiotics and ARGs. Assessments of targeted ARGs, including sul1, sul2, sul3, and tet(M), showed that freshwater (pig farm wastewater, rivers, and canals) consistently contained these ARGs, but these genes were less abundant in seawater. Although sulfonamides were low concentrations (<170 ng/mL), sul1 and sul2 genes were abundant in freshwater (minimum 4.4 × 10-3-maximum 1.0 × 100 copies/16S), suggesting that sul genes have disseminated over a long period, despite cessation of use of this class of antibiotics. Ubiquitous distribution of sul genes in freshwater appeared to be independent of selection pressure. In contrast, water of the coastal sea in the monitored area was not contaminated by these antibiotics or ARGs. The density of Enterobacteriales was lower in seawater than in freshwater, suggesting that the number of ARG-possessing Enterobacteriales falls after entering seawater. From the pig farms, through rivers/canals, to the coastal sea, the occurrence of tetracyclines and tet(M) exhibited some correlation, although not a strong one. However, no correlations were found between concentrations of total antibiotics and ARGs, nor between sulfonamides and sul genes. This is the first comprehensive study showing Thai features of antibiotics and ARGs contaminations. The pig farm is hot spot of antibiotics and ARGs, and sul genes ubiquitously distribute in freshwater environments, which become less abundant in seawater.
Collapse
Affiliation(s)
- Satoru Suzuki
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime 790-8577, Japan.
| | - Mitsuko Ogo
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Hideshige Takada
- Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Kanako Seki
- Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Kaoruko Mizukawa
- Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Aya Kadoya
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Taichi Yokokawa
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Yuta Sugimoto
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Yuki Sato-Takabe
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Chanchai Boonla
- Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | - Wilai Anomasiri
- Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
7
|
Shindoh S, Obayashi Y, Suzuki S. Induction of Extracellular Aminopeptidase Production by Peptides in Some Marine Bacterial Species. Microbes Environ 2021; 36:ME20150. [PMID: 33716237 PMCID: PMC7966946 DOI: 10.1264/jsme2.me20150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/16/2021] [Indexed: 11/26/2022] Open
Abstract
Bacterial extracellular aminopeptidases are key enzymes in protein processing in oligotrophic seawater. To the best of our knowledge, the regulation of aminopeptidase production in microbes inhabiting seawater has not yet been reported. The present study attempted to experimentally clarify which organic materials affect bacterial extracellular aminopeptidase production by nutrient-rich and starved cells growing in artificial seawater using Photobacterium, Alteromonas, Ruegeria, and Sulfitobacter. In all four species, we found that peptides induced bacterial extracellular aminopeptidase production. Amino acids led to cell growth with markedly lower aminopeptidase production by Photobacterium and Sulfitobacter, but not by Alteromonas and Ruegeria. These results suggest that the extracellular aminopeptidases of marine bacteria are primarily produced on demand in response to the presence of relevant substrates (peptides) in seawater. Peptidyl substances may be regulatory nutrients for marine bacterial growth in aquatic environments.
Collapse
Affiliation(s)
- Suzune Shindoh
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime 790–8577 Japan
| | - Yumiko Obayashi
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime 790–8577 Japan
| | - Satoru Suzuki
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime 790–8577 Japan
| |
Collapse
|
8
|
Abe K, Nomura N, Suzuki S. Biofilms: hot spots of horizontal gene transfer (HGT) in aquatic environments, with a focus on a new HGT mechanism. FEMS Microbiol Ecol 2020; 96:5766226. [PMID: 32109282 PMCID: PMC7189800 DOI: 10.1093/femsec/fiaa031] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/27/2020] [Indexed: 12/21/2022] Open
Abstract
Biofilms in water environments are thought to be hot spots for horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs). ARGs can be spread via HGT, though mechanisms are known and have been shown to depend on the environment, bacterial communities and mobile genetic elements. Classically, HGT mechanisms include conjugation, transformation and transduction; more recently, membrane vesicles (MVs) have been reported as DNA reservoirs implicated in interspecies HGT. Here, we review the current knowledge on the HGT mechanisms with a focus on the role of MVs and the methodological innovations in the HGT research.
Collapse
Affiliation(s)
- Kimihiro Abe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8577 Japan
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8577 Japan.,Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, 305-8577 Japan
| | - Satoru Suzuki
- Center for Marine Environmental Studies, Ehime University, Matsuyama, 790-8577 Japan
| |
Collapse
|
9
|
Das A, Dhar PK, Dutta A, Jalal MS, Ghosh P, Das T, Barua H, Biswas PK. Circulation of oxytetracycline- and ciprofloxacin-resistant commensal Escherichia coli strains in broiler chickens and farm environments, Bangladesh. Vet World 2020; 13:2395-2400. [PMID: 33363332 PMCID: PMC7750236 DOI: 10.14202/vetworld.2020.2395-2400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/24/2020] [Indexed: 01/08/2023] Open
Abstract
Background and Aim: The emergence of antimicrobial resistance (AMR) in commensal organism, such as Escherichia coli of food animals, is an alarming issue for global health. It increases the possibility of transmitting AMR determinant(s) to human bacterial pathogens by transferable genetic materials, particularly by plasmids. Hence, it is important to know which resistant genes are being carried by commensal organisms in food chain in a country and their level of temporal loads. As a result, pre-emptive measures can be advocated with an aim to reduce their risks in their primary source of circulation which consequently would benefit the public health. Materials and Methods: Commensal E. coli strains from broiler chickens on randomly selected 30 farms and the farm environments were examined for the frequencies of isolation of resistant strains to oxytetracycline and ciprofloxacin. Five birds were randomly selected from each farm to collect cloacal swab samples (total of 150 samples). Furthermore, a total of 150 environmental samples comprising one each from feed, water, soil, litter, and litter damping site of each farm were screened for the isolation of commensal E. coli strains. Strains thus obtained were initially tested for their resistance to oxytetracycline and ciprofloxacin by Kirby–Bauer disk diffusion method. Oxytetracycline-resistant strains were further screened for the presence of resistance determining genes, namely, tetA, tetB, and tetC by uniplex polymerase chain reactions. Risks associated with the isolation frequency of oxytetracycline- and ciprofloxacin-resistant E. coli were also assessed by univariable logistic regression analysis. Results: The results revealed that all E. coli isolates, regardless of the source of origin, were resistant to oxytetracycline, while 78.4% (95% confidence interval [CI] 69.1-85.5%) showed resistance to ciprofloxacin. All the randomly selected (20) oxytetracycline-resistant strains harbored the tetA gene, whereas tetB and tetC were reported in three and two isolates, respectively. After univariable analysis, only one variable, that is, strain 1 of broiler chickens compared to two other strains was found to be positively associated with the isolation of ciprofloxacin-resistant E. coli (odds ratio 12.75 [95% CI 1.0-157.1], p=0.047). Conclusion: Resistance emerged against oxytetracycline and ciprofloxacin in commensal E. coli strains circulating in live poultry and farm environments in Bangladesh seems to be very high. Thus, human infection with drug-resistant E. coli strains through food chain will critically compromise the therapeutic measures currently available.
Collapse
Affiliation(s)
- Avijit Das
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram, Bangladesh
| | - Pangkaj Kumar Dhar
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram, Bangladesh
| | - Avijit Dutta
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram, Bangladesh
| | - Mohammad Shah Jalal
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram, Bangladesh
| | - Priya Ghosh
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram, Bangladesh
| | - Tridip Das
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram, Bangladesh
| | - Himel Barua
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram, Bangladesh
| | - Paritosh Kumar Biswas
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram, Bangladesh
| |
Collapse
|
10
|
Vences A, Abushattal S, Matanza XM, Dubert J, Uzun E, Ogut H, Osorio CR. Highly Transferable pAQU-Related Plasmids Encoding Multidrug Resistance Are Widespread in the Human and Fish Pathogen Photobacterium damselae subsp. damselae in Aquaculture Areas in the Black Sea. MICROBIAL ECOLOGY 2020; 80:507-518. [PMID: 32385615 DOI: 10.1007/s00248-020-01519-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
The marine bacterium Photobacterium damselae subsp. damselae is a pathogen that causes disease in diverse marine animals, and is also a serious opportunistic human pathogen that can cause fatal infections. Strains of this pathogen isolated from diseased European sea bass in aquaculture facilities in the Turkish coast of the Black Sea were found to exhibit reduced sensitivity to multiple antimicrobials. Selected representative strains were subjected to complete genome sequencing and plasmid characterization. It was found that multidrug resistant (MDR) isolates harboured large conjugative plasmids sharing part of their sequence backbone with pAQU-group plasmids, hitherto reported exclusively in China and Japan. Four new pAQU-group versions of plasmids were identified in the present study, containing distinct combinations of the resistance determinants tetB, floR, sul2, qnrVC, dfrA and strAB. Conjugative transfer of pPHDD2-OG2, a representative plasmid of 170,998 bp, occurred at high frequencies (2.2 × 10-2 transconjugants per donor cell), to E. coli and to pathogenic P. damselae subsp. damselae and subsp. piscicida strains. Upon transfer, pPHDD2-OG2 conferred reduced susceptibility to a number of antimicrobials to the recipient strains. Comparative genomics analysis of host strains suggested that these MDR plasmids of the pAQU-group were acquired by different genetic lineages of Pdd. This study provides evidence that P. damselae subsp. damselae isolated from diseased fish constitute a reservoir for conjugative MDR pAQU-group plasmids in the Mediterranean basin, and have the potential to spread to diverse bacterial species.
Collapse
Affiliation(s)
- Ana Vences
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Galicia, Spain
| | - Saqr Abushattal
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Galicia, Spain
| | - Xosé M Matanza
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Galicia, Spain
| | - Javier Dubert
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Galicia, Spain
| | - Ecren Uzun
- Surmene Faculty of Marine Sciences, Department of Fisheries Technology Engineering, Karadeniz Technical University, Trabzon, Turkey
| | - Hamdi Ogut
- Faculty of Natural Sciences, Architecture and Engineering, Department of Bioengineering, Bursa Technical University, Bursa, Turkey
| | - Carlos R Osorio
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Galicia, Spain.
| |
Collapse
|
11
|
Obayashi Y, Kadoya A, Kataoka N, Kanda K, Bak SM, Iwata H, Suzuki S. Tetracycline Resistance Gene Profiles in Red Seabream ( Pagrus major) Intestine and Rearing Water After Oxytetracycline Administration. Front Microbiol 2020; 11:1764. [PMID: 32849389 PMCID: PMC7417432 DOI: 10.3389/fmicb.2020.01764] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/06/2020] [Indexed: 11/30/2022] Open
Abstract
Marine aquaculture fish and the environment are possible hot spots for the maintenance and spread of antibiotic resistance genes (ARGs). We here show the time courses of changes of six tetracycline resistance genes (tet) in fish rearing seawater and fish intestine in tank experiments. Experimental tanks were prepared as oxytetracycline (OTC) administration tanks and those without OTC. It was found that tet(B), tet(M), and tet(W) were dominant in seawater among the six tet genes. tet(B) and tet(M) abundances increased immediately after OTC administration, indicating that OTC served as a selective pressure to increase the proportion of tet-possessing bacteria. In contrast, the abundance of tet genes in the fish intestine did not differ between the with- and without-OTC administration groups, and clearly was not altered by OTC administration. Profile changing of tet in seawater and fish intestine did not synchronize. These observations suggested that the dynamics of intestinal tet-possessing bacteria do not directly reflect the environment, but reflect selection within the intestine.
Collapse
Affiliation(s)
- Yumiko Obayashi
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | - Aya Kadoya
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | - Naoto Kataoka
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | - Kazuki Kanda
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | - Su-Min Bak
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | - Satoru Suzuki
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| |
Collapse
|
12
|
Kohyama Y, Suzuki S. Conjugative Gene Transfer between Nourished and Starved Cells of Photobacterium damselae ssp. damselae and Escherichia coli. Microbes Environ 2019; 34:388-392. [PMID: 31631079 PMCID: PMC6934395 DOI: 10.1264/jsme2.me19099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Horizontal gene transfer (HGT) between bacteria with different habitats and nutritional requirements is important for the spread of antibiotic resistance genes (ARG). The objective of the present study was to clarify the effects of organic matter on HGT between nourished and starved bacteria. We demonstrated that conjugation ability is affected by the nutritional conditions of the cell and environment. A filter mating HGT experiment was performed using Photobacterium damselae ssp. damselae, strain 04Ya311, a marine-origin bacterium possessing the multidrug-resistance plasmid pAQU1, as the donor, and Escherichia coli as the recipient. The donor and recipient were both prepared as nutrient-rich cultured and starved cells. Filter mating was performed on agar plates with and without organic nutrients. The transcription of the plasmid-borne genes tet(M) and traI was quantitated under eutrophic and oligotrophic conditions. The donor P. damselae transferred the plasmid to E. coli at a transfer rate of 10−4 under oligotrophic and eutrophic conditions. However, when the donor was starved, HGT was not detected under oligotrophic conditions. The addition of organic matter to starved cells restored conjugative HGT even after 6 d of starvation. The transcription of traI was not detected in starved cells, but was restored upon the addition of organic matter. The HGT rate appears to be affected by the transcription of plasmid-associated genes. The present results suggest that the HGT rate is low in starved donors under oligotrophic conditions, but is restored by the addition of organic matter.
Collapse
Affiliation(s)
| | - Satoru Suzuki
- Center for Marine Environmental Studies, Ehime University
| |
Collapse
|
13
|
Suzuki S, Makihara N, Kadoya A. Tetracycline resistance gene tet(M) of a marine bacterial strain is not accumulated in bivalves from seawater in clam tank experiment and mussel monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:181-187. [PMID: 29627540 DOI: 10.1016/j.scitotenv.2018.03.305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/20/2018] [Accepted: 03/24/2018] [Indexed: 06/08/2023]
Abstract
Antibiotic resistance genes (ARGs) are found in marine as well as terrestrial bacteria. Bivalves are known to accumulate chemical pollutants and pathogenic microbes, however, the fate of ARGs in bivalves after the intake of ARG-possessing bacteria is not known. Here we show that the copy number of oxytetracycline resistance gene tet(M) increased rapidly in the clam digestive tract by filtering water, then remained constant over 96h in a tank experiment even with the addition of tet(M)-possessing bacteria every 24h. >99.9% of the added tet(M) was decomposed, reaching a balanced state. Environmental sampling of mussel digestive tract and seawater supported the hypothesis that tet(M) was decomposed in bivalves as tet(M) was present in seawater from April to October at a concentration of 10-5 to 10-6 copies/16S, whereas tet(M) in mussels was mostly below the detection limit. Two (April) and three (July and October) individual mussels were positive for tet(M) with a concentration equivalent to that of seawater. We therefore conclude that bivalves do not accumulate tet(M) from seawater.
Collapse
Affiliation(s)
- Satoru Suzuki
- Centre for Marine Environmental Studies, Ehime University, Matsuyama 790-8577, Japan.
| | - Naoki Makihara
- Centre for Marine Environmental Studies, Ehime University, Matsuyama 790-8577, Japan
| | - Aya Kadoya
- Centre for Marine Environmental Studies, Ehime University, Matsuyama 790-8577, Japan
| |
Collapse
|
14
|
Sugimoto Y, Suzuki S, Nonaka L, Boonla C, Sukpanyatham N, Chou HY, Wu JH. The novel mef (C)– mph (G) macrolide resistance genes are conveyed in the environment on various vectors. J Glob Antimicrob Resist 2017; 10:47-53. [DOI: 10.1016/j.jgar.2017.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 03/22/2017] [Accepted: 03/22/2017] [Indexed: 11/29/2022] Open
|
15
|
Bien TLT, Thao NV, Kitamura SI, Obayashi Y, Suzuki S. Release and Constancy of an Antibiotic Resistance Gene in Seawater under Grazing Stress by Ciliates and Heterotrophic Nanoflagellates. Microbes Environ 2017; 32:174-179. [PMID: 28592722 PMCID: PMC5478541 DOI: 10.1264/jsme2.me17042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Extracellular DNA (exDNA) is released from bacterial cells through various processes. The antibiotic resistance genes (ARGs) coded on exDNA may be horizontally transferred among bacterial communities by natural transformation. We quantitated the released/leaked tetracycline resistance gene, tet(M) over time under grazing stress by ciliates and heterotrophic nanoflagellates (HNFs), and found that extracellular tet(M) (ex-tetM) increased with bacterial grazing. Separate microcosms containing tet(M)-possessing bacteria with ciliates or HNFs were prepared. The copy number of ex-tetM in seawater in the ciliate microcosm rapidly increased until 3 d after the incubation, whereas that in the HNF microcosm showed a slower increase until 20 d. The copy number of ex-tetM was stable in both cases throughout the incubation period, suggesting that extracellular ARGs are preserved in the environment, even in the presence of grazers. Additionally, ARGs in bacterial cells were constant in the presence of grazers. These results suggest that ARGs are not rapidly extinguished in a marine environment under grazing stress.
Collapse
Affiliation(s)
- Thi Lan Thanh Bien
- Center for Marine Environmental Studies, Ehime University.,The United Graduate School of Agricultural Sciences, Ehime University.,Department of Biotechnology, Nong Lam University
| | - Ngo Vy Thao
- Center for Marine Environmental Studies, Ehime University.,Faculty of Environment and Resources, Nong Lam University
| | | | | | - Satoru Suzuki
- Center for Marine Environmental Studies, Ehime University
| |
Collapse
|
16
|
Suzuki S, Pruden A, Virta M, Zhang T. Editorial: Antibiotic Resistance in Aquatic Systems. Front Microbiol 2017; 8:14. [PMID: 28179896 PMCID: PMC5263135 DOI: 10.3389/fmicb.2017.00014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/04/2017] [Indexed: 01/08/2023] Open
Affiliation(s)
- Satoru Suzuki
- Center for Marine Environmental Studies, Ehime University Matsuyama, Japan
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech Blacksburg, VA, USA
| | - Marko Virta
- Department of Food and Environmental Sciences, University of Helsinki Helsinki, Finland
| | - Tong Zhang
- Department of Civil Engineering, The University of Hong Kong Hong Kong, Hong Kong
| |
Collapse
|
17
|
A polyamidoamne dendrimer functionalized graphene oxide for DOX and MMP-9 shRNA plasmid co-delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:572-585. [DOI: 10.1016/j.msec.2016.09.035] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/12/2016] [Accepted: 09/17/2016] [Indexed: 12/12/2022]
|
18
|
Usui M, Tagaki C, Fukuda A, Okubo T, Boonla C, Suzuki S, Seki K, Takada H, Tamura Y. Use of Aeromonas spp. as General Indicators of Antimicrobial Susceptibility among Bacteria in Aquatic Environments in Thailand. Front Microbiol 2016; 7:710. [PMID: 27433156 PMCID: PMC4922218 DOI: 10.3389/fmicb.2016.00710] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/28/2016] [Indexed: 12/14/2022] Open
Abstract
Antimicrobials are widely used, not only for treating human infections, but also for treatment of livestock and in fish farms. Human habitats in Southeastern Asian countries are located in close proximity to aquatic environments. As such, the human populations within these regions are at risk of exposure to antimicrobial resistant bacteria, and thereby disseminating antimicrobial resistance genes (ARGs). In this study, we collected water samples from 15 sites (5 sites in Chao Phraya River, 2 sites at the mouth of Chao Phraya River, 3 sites in Ta Chin River, and 5 sites at city canals) and 12 sites (6 sites at city canals; 2 sites at chicken farms; 2 sites at pig farms; and 2 samples from sites at pig farms, which were subsequently treated at a biogas plant) in Thailand in 2013 and 2014, respectively. In total, 117 Aeromonas spp. were isolated from the water samples, and these organisms exhibited various antimicrobial susceptibility profiles. Notably, there was a significant correlation between the environmental concentration of tetracyclines and the rates of tetracycline resistance in the isolated Aeromonas spp.; however, both the concentration and rates of tetracycline resistance in samples derived from pig farms were higher than those of samples harvested from other aquatic environments. These findings suggest that the high concentrations of antimicrobials observed in these aquatic environments likely select for ARGs. Furthermore, they indicate that Aeromonas spp. comprise an effective marker for monitoring antimicrobial resistance in aquatic environments.
Collapse
Affiliation(s)
- Masaru Usui
- School of Veterinary Medicine, Rakuno Gakuen University Ebetsu, Japan
| | - Chie Tagaki
- School of Veterinary Medicine, Rakuno Gakuen University Ebetsu, Japan
| | - Akira Fukuda
- School of Veterinary Medicine, Rakuno Gakuen University Ebetsu, Japan
| | - Torahiko Okubo
- School of Veterinary Medicine, Rakuno Gakuen University Ebetsu, Japan
| | - Chanchai Boonla
- Departments of Biochemistry, Chulalongkorn University Bangkok, Thailand
| | - Satoru Suzuki
- Center for Marine Environmental Studies, Ehime University Matsuyama, Japan
| | - Kanako Seki
- Laboratory of Organic Geochemistry, Tokyo University of Agriculture and Technology Fuchu, Japan
| | - Hideshige Takada
- Laboratory of Organic Geochemistry, Tokyo University of Agriculture and Technology Fuchu, Japan
| | - Yutaka Tamura
- School of Veterinary Medicine, Rakuno Gakuen University Ebetsu, Japan
| |
Collapse
|