1
|
Zhao YT, Jiang YH, Zhang X, Xin WG, Chen XY, Song JJ, Wang C, Suo HY. Impact of maternal Lactiplantibacillus plantarum S58 supplementation on offspring rat immunity and gut health. Food Funct 2025; 16:3355-3368. [PMID: 40237066 DOI: 10.1039/d4fo04702h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Pregnancy and lactation provide several opportunities for maternal dietary interventions to confer health benefits to newborns. However, the effects of maternal probiotic supplementation during pregnancy and lactation on offspring immunity and intestinal health remain largely unknown. This study aimed to investigate the effects of supplementation with the probiotic Lactiplantibacillus plantarum S58 (LP.S58) during pregnancy and lactation on the intestinal health and immunity of rat offspring. The results demonstrated that LP.S58 was effectively transmitted to the gastrointestinal tissues of offspring rats following maternal supplementation during pregnancy, lactation, or both, without affecting the normal development of individual organs. Furthermore, maternal LP.S58 supplementation significantly increased the serum levels of IL-4, IL-10, SOD, and T-AOC, while reducing those of TNF-α, IL-1β, IL-6, LPS, and NOS in the offspring. Additionally, it upregulated the mRNA expression of tight junction proteins and downregulated pro-inflammatory factors in the offspring rats, thereby improving intestinal health. More importantly, LP.S58 supplementation significantly increased the levels of beneficial gut bacteria, including Akkermansia and Lactobacillus, in the offspring rats. In conclusion, these findings indicate that maternal supplementation with specific probiotics during pregnancy and lactation may positively influence the immune function and intestinal development of offspring.
Collapse
Affiliation(s)
- Yu-Ting Zhao
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Yu-Hang Jiang
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Xi Zhang
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Wei-Gang Xin
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Xiao-Yong Chen
- College of Food Science, Southwest University, Chongqing 400715, China.
- Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing 400715, China
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, China
| | - Jia-Jia Song
- College of Food Science, Southwest University, Chongqing 400715, China.
- Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing 400715, China
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China.
- Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing 400715, China
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, China
| | - Hua-Yi Suo
- College of Food Science, Southwest University, Chongqing 400715, China.
- Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing 400715, China
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Mougiou D, Gioula G, Skoura L, Anastassopoulou C, Kachrimanidou M. Insights into the Interaction Between Clostridioides difficile and the Gut Microbiome. J Pers Med 2025; 15:94. [PMID: 40137411 PMCID: PMC11943401 DOI: 10.3390/jpm15030094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Clostridioides difficile (C. difficile) is a significant healthcare-associated pathogen that is predominantly caused by antibiotic-induced microbiota disturbance. Antibiotics decrease microbial diversity, resulting in C. difficile colonization and infection. Clostridium difficile infection (CDI) manifests through toxins A and B, causing diarrhea and colitis. Antibiotic usage, old age, and hospitalization are significant risk factors. A healthy gut microbiota, which is dominated by Firmicutes and Bacteroidetes, provides colonization resistance to C. difficile due to competition for nutrients, creating inhibitory substances and stimulating the immune response. Antibiotic-induced dysbiosis decreases resistance, allowing C. difficile spores to transform into vegetative forms. Patients with CDI have decreased gut microbiota diversity, with a decrease in beneficial bacteria, including Bacteroidetes, Prevotella, and Bifidobacterium, and a rise in harmful bacteria like Clostridioides and Lactobacillus. This disparity worsens the infection's symptoms and complicates therapy. Fecal Microbiota Transplantation (FMT) has emerged as a potential therapy for recurrent CDI by restoring gut microbiota diversity and function. Comprehending the connection between gut microbiota and CDI pathogenesis is critical for establishing effective preventive and treatment plans. Maintaining a healthy gut microbiota through careful antibiotic use and therapeutic options such as FMT can help in the management and prevention of CDI.
Collapse
Affiliation(s)
- Dimitra Mougiou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.M.); (G.G.)
| | - Georgia Gioula
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.M.); (G.G.)
| | - Lemonia Skoura
- Department of Microbiology, AHEPA University Hospital, 54124 Thessaloniki, Greece;
| | - Cleo Anastassopoulou
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Melania Kachrimanidou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.M.); (G.G.)
| |
Collapse
|
3
|
Lubwama M, Holte SE, Zhang Y, Mubiru KR, Katende G, Orem J, Kateete DP, Bwanga F, Phipps W. Etiology, Risk Factors, and Outcomes of Bacteremia in Patients With Hematologic Malignancies and Febrile Neutropenia in Uganda. Open Forum Infect Dis 2024; 11:ofae682. [PMID: 39660025 PMCID: PMC11630766 DOI: 10.1093/ofid/ofae682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
Background We determined the etiology, risk factors, and outcomes associated with bacteremia in patients with hematologic malignancies and febrile neutropenia (FN) at the Uganda Cancer Institute (UCI). Methods UCI adult and pediatric inpatients with hematologic malignancies and FN were prospectively enrolled and followed up to determine 30-day mortality. Blood drawn from participants with FN was cultured in the BACTEC 9120 blood culture system. Antimicrobial susceptibility testing was performed with the disk diffusion method on identified bacteria. Logistic regression and Cox proportional hazards regression were applied to estimate associations between participant characteristics and FN, bacteremia, and mortality. Results Of 495 participants, the majority (n = 306 [62%]) were male. Median age was 23 years (interquartile range, 11-42 years). Of the 132 participants who experienced FN, 43 (33%) had bacteremia. Participants with younger age (odds ratio [OR], 0.98; P = .05), severe neutropenia (OR, 2.9; P = .01), hypotension (OR, 2.46; P = .04), mucositis (OR, 2.77; P = .01), and receipt of chemotherapy (OR, 2.25; P = .03) were more likely to have bacteremia. Fifty (78%) bacteria isolated were gram negative. Escherichia coli (n = 25 [50%]) was predominant. Thirty-seven of 43 (86%) episodes were caused by multidrug-resistant (MDR) bacteria. Thirty-day overall survival for participants with bacteremia was significantly lower than that for participants with no bacteremia (P = .05). MDR bacteremia (hazard ratio, 1.84; P = .05) was associated with increased risk of death. Conclusions Bacteremia was frequent in patients with hematologic cancer and FN and was associated with poor survival. MDR bacteria were the main cause of bacteremia and mortality. There is a need for robust infection control and antimicrobial stewardship programs in cancer centers in sub-Saharan Africa.
Collapse
Affiliation(s)
- Margaret Lubwama
- Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Sarah E Holte
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Yuzheng Zhang
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Kelvin R Mubiru
- Hutchinson Centre Research Institute of Uganda, Kampala, Uganda
| | - George Katende
- Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - David P Kateete
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Freddie Bwanga
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Warren Phipps
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Allergy and Infectious Diseases Division, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Liu D, Mei Y, Ji N, Zhang B, Feng X. Causal effect of gut microbiota on the risk of prostatitis: a two-sample Mendelian randomization study. Int Urol Nephrol 2024; 56:2839-2850. [PMID: 38573543 PMCID: PMC11322328 DOI: 10.1007/s11255-024-04020-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Recent studies demonstrated that chronic prostatitis (CP) is closely related to the gut microbiota (GM). Nevertheless, the causal relationship between GM and CP has not been fully elucidated. Therefore, the two-sample Mendelian randomization (MR) analysis was employed to investigate this association. METHODS The summary data of gut microbiota derived from a genome-wide association study (GWAS) involving 18,340 individuals in the MiBioGen study served as the exposure, and the corresponding summary statistics for CP risk, representing the outcome, were obtained from the FinnGen databases (R9). The causal effects between GM and CP were estimated using the inverse-variance weighted (IVW) method supplemented with MR-Egger, weighted median, weighted mode, and simple mode methods. Additionally, the false discovery rate (FDR) correction was performed to adjust results. The detection and quantification of heterogeneity and pleiotropy were accomplished through the MR pleiotropy residual sum and outlier method, Cochran's Q statistics, and MR-Egger regression. RESULTS The IVW estimates indicated that a total of 11 GM taxa were related to the risk of CP. Seven of them was correlated with an increased risk of CP, while the remained linked with a decreased risk of CP. However, only Methanobacteria (OR 0.86; 95% CI 0.74-0.99), Methanobacteriales (OR 0.86; 95% CI 0.74-0.99), NB1n (OR 1.16; 95% CI 1.16-1.34), Methanobacteriaceae (OR 0.86; 95% CI 0.74-0.99), Odoribactergenus Odoribacter (OR 1.43; 95% CI 1.05-1.94), and Sutterellagenus Sutterella (OR 1.33; 95% CI 1.01-1.76) still maintain significant association with CP after FDR correction. Consistent directional effects for all analyses were observed in the supplementary methods. Subsequently, sensitivity analyses indicated the absence of heterogeneity, directional pleiotropy, or outliers concerning the causal effect of specific gut microbiota on CP (p > 0.05). CONCLUSION Our study demonstrated a gut microbiota-prostate axis, offering crucial data supporting the promising use of the GM as a candidate target for CP prevention, diagnosis, and treatment. There is a necessity for randomized controlled trials to validate the protective effect of the linked GM against the risk of CP, and to further investigate the underlying mechanisms involved.
Collapse
Affiliation(s)
- Dalu Liu
- Department of General Surgery, The Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou, Anhui, China
| | - Yangyang Mei
- Department of Urology, Jiangyin People's Hospital of Jiangsu Province, Jiangyin, Jiangsu, China
| | - Nuo Ji
- Department of Urology, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Bo Zhang
- Department of Urology, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xingliang Feng
- Department of Urology, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China.
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| |
Collapse
|
5
|
Sharma DK, Rajpurohit YS. Multitasking functions of bacterial extracellular DNA in biofilms. J Bacteriol 2024; 206:e0000624. [PMID: 38445859 PMCID: PMC11025335 DOI: 10.1128/jb.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Bacterial biofilms are intricate ecosystems of microbial communities that adhere to various surfaces and are enveloped by an extracellular matrix composed of polymeric substances. Within the context of bacterial biofilms, extracellular DNA (eDNA) originates from cell lysis or is actively secreted, where it exerts a significant influence on the formation, stability, and resistance of biofilms to environmental stressors. The exploration of eDNA within bacterial biofilms holds paramount importance in research, with far-reaching implications for both human health and the environment. An enhanced understanding of the functions of eDNA in biofilm formation and antibiotic resistance could inspire the development of strategies to combat biofilm-related infections and improve the management of antibiotic resistance. This comprehensive review encapsulates the latest discoveries concerning eDNA, encompassing its origins, functions within bacterial biofilms, and significance in bacterial pathogenesis.
Collapse
Affiliation(s)
- Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Schools of Life Sciences, Homi Bhabha National Institute (DAE—Deemed University), Mumbai, India
| | - Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Schools of Life Sciences, Homi Bhabha National Institute (DAE—Deemed University), Mumbai, India
| |
Collapse
|
6
|
Patel N, Dinesh S, Sharma S. From Gut to Glucose: A Comprehensive Review on Functional Foods and Dietary Interventions for Diabetes Management. Curr Diabetes Rev 2024; 20:e111023222081. [PMID: 37861021 DOI: 10.2174/0115733998266653231005072450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/17/2023] [Accepted: 08/25/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND In the realm of diabetes research, considerable attention has been directed toward elucidating the intricate interplay between the gastrointestinal tract and glucose regulation. The gastrointestinal tract, once exclusively considered for its role in digestion and nutrient assimilation, is presently acknowledged as a multifaceted ecosystem with regulatory supremacy over metabolic homeostasis and glucose metabolism. Recent studies indicate that alterations in the composition and functionality of the gut microbiota could potentially influence the regulation of glucose levels and glucose homeostasis in the body. Dysbiosis, characterized by perturbations in the equilibrium of gut microbial constituents, has been irrevocably linked to an augmented risk of diabetes mellitus (DM). Moreover, research has revealed the potential influence of the gut microbiota on important factors, like inflammation and insulin sensitivity, which are key contributors to the onset and progression of diabetes. The key protagonists implicated in the regulation of glucose encompass the gut bacteria, gut barrier integrity, and the gut-brain axis. A viable approach to enhance glycemic control while concurrently mitigating the burden of comorbidities associated with diabetes resides in the strategic manipulation of the gut environment through adapted dietary practices. OBJECTIVE This review aimed to provide a deep understanding of the complex relationship between gut health, glucose metabolism, and diabetes treatment. CONCLUSION This study has presented an exhaustive overview of dietary therapies and functional foods that have undergone extensive research to explore their potential advantages in the management of diabetes. It looks into the role of gut health in glucose regulation, discusses the impact of different dietary elements on the course of diabetes, and evaluates how well functional foods can help with glycemic control. Furthermore, it investigates the mechanistic aspects of these therapies, including their influence on insulin sensitivity, β-cell activity, and inflammation. It deliberates on the limitations and potential prospects associated with integrating functional foods into personalized approaches to diabetes care.
Collapse
Affiliation(s)
- Nirali Patel
- Department of Bioinformatics, BioNome, Bengaluru 560043, India
| | - Susha Dinesh
- Department of Bioinformatics, BioNome, Bengaluru 560043, India
| | - Sameer Sharma
- Department of Bioinformatics, BioNome, Bengaluru 560043, India
| |
Collapse
|
7
|
Xie Q, Cui D, Zhu Q, Qin X, Ren D, Xu X. Supplementing maternal diet with milk oligosaccharides and probiotics helps develop the immune system and intestinal flora of offsprings. Food Sci Nutr 2023; 11:6868-6877. [PMID: 37970377 PMCID: PMC10630837 DOI: 10.1002/fsn3.3579] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 11/17/2023] Open
Abstract
Intestinal flora is very important for improving the development of the immune system in newborns. Maternal diet during pregnancy and lactation is one of the key factors affecting the growth and development of offspring. The objective of the present study was to examine whether supplementation of maternal diet with milk oligosaccharides and Bifidobacterium could influence the development of the intestinal flora and immune system of neonatal mice. In total, 30 pregnant Institute of Cancer Research (ICR) mice were randomly divided into six groups: a control group (basal diet) and five intervention groups (basal diet supplemented with different doses of 2'-fucosyllactose [2'-FL] and Bifidobacterium Bb12) during the pregnancy period. All female mice were monitored for physical health during gavage. After delivery, the number of mice in each litter, any deformity, and the development of the offspring were recorded. The spleen, blood, and fecal samples of six groups of 10-12 day-old offspring were collected. The results demonstrated that maternal milk oligosaccharides and probiotics conferred protective effects against lipopolysaccharide (LPS)-induced immunosuppression in mice offspring by significantly enhancing the immune organ indexes, splenocyte proliferation, immunoglobulin (immunoglobulin G, A, M) production as well as improving the macrophage phagocytosis (p < .05). The abundance of Lactobacilli and Bifidobacteria in the feces of offspring mice in the intervention groups was significantly higher than that of the offspring mice in the control group (p < .05). These findings suggest that the combination of 2'-FL and Bifidobacterium Bb12 displayed synergistic interactions between the two components that could promote the development of the immune system of the offsprings and improve their microbiota through maternal ingestion.
Collapse
Affiliation(s)
- Qinggang Xie
- College of Food ScienceNortheast Agricultural UniversityHarbinChina
| | | | - Qinchao Zhu
- Institute of Dairy Science, College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Xuewen Qin
- Institute of Dairy Science, College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Daxi Ren
- Institute of Dairy Science, College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Xiaoxi Xu
- College of Food ScienceNortheast Agricultural UniversityHarbinChina
| |
Collapse
|
8
|
Choi V, Rohn JL, Stoodley P, Carugo D, Stride E. Drug delivery strategies for antibiofilm therapy. Nat Rev Microbiol 2023; 21:555-572. [PMID: 37258686 DOI: 10.1038/s41579-023-00905-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/02/2023]
Abstract
Although new antibiofilm agents have been developed to prevent and eliminate pathogenic biofilms, their widespread clinical use is hindered by poor biocompatibility and bioavailability, unspecific interactions and insufficient local concentrations. The development of innovative drug delivery strategies can facilitate penetration of antimicrobials through biofilms, promote drug dispersal and synergistic bactericidal effects, and provide novel paradigms for clinical application. In this Review, we discuss the potential benefits of such emerging techniques for improving the clinical efficacy of antibiofilm agents, as well as highlighting the existing limitations and future prospects for these therapies in the clinic.
Collapse
Affiliation(s)
- Victor Choi
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Jennifer L Rohn
- Department of Renal Medicine, Centre for Urological Biology, Division of Medicine, University College London, London, UK
| | - Paul Stoodley
- Departments of Microbial Infection and Immunity, Microbiology and Orthopaedics, The Ohio State University, Columbus, OH, USA
- Department of Mechanical Engineering, National Centre for Advanced Tribology at Southampton (nCATS) and National Biofilm Innovation Centre (NBIC), University of Southampton, Southampton, UK
| | - Dario Carugo
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Eleanor Stride
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK.
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Zhou YD, Liang FX, Tian HR, Luo D, Wang YY, Yang SR. Mechanisms of gut microbiota-immune-host interaction on glucose regulation in type 2 diabetes. Front Microbiol 2023; 14:1121695. [PMID: 36891383 PMCID: PMC9986296 DOI: 10.3389/fmicb.2023.1121695] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Intestinal absorption of food is one of the sources of glucose. Insulin resistance and impaired glucose tolerance caused by lifestyle and diet are the precursors of type 2 diabetes. Patients with type 2 diabetes have trouble controlling their blood sugar levels. For long-term health, strict glycemic management is necessary. Although it is thought to be well correlated with metabolic diseases like obesity, insulin resistance, and diabetes, its molecular mechanism is still not completely understood. Disturbed microbiota triggers the gut immune response to reshape the gut homeostasis. This interaction not only maintains the dynamic changes of intestinal flora, but also preserves the integrity of the intestinal barrier. Meanwhile, the microbiota establishes a systemic multiorgan dialog on the gut-brain and gut-liver axes, intestinal absorption of a high-fat diet affects the host's feeding preference and systemic metabolism. Intervention in the gut microbiota can combat the decreased glucose tolerance and insulin sensitivity linked to metabolic diseases both centrally and peripherally. Moreover, the pharmacokinetics of oral hypoglycemic medications are also influenced by gut microbiota. The accumulation of drugs in the gut microbiota not only affects the drug efficacy, but also changes the composition and function of them, thus may help to explain individual therapeutic variances in pharmacological efficacy. Regulating gut microbiota through healthy dietary patterns or supplementing pro/prebiotics can provide guidance for lifestyle interventions in people with poor glycemic control. Traditional Chinese medicine can also be used as complementary medicine to effectively regulate intestinal homeostasis. Intestinal microbiota is becoming a new target against metabolic diseases, so more evidence is needed to elucidate the intricate microbiota-immune-host relationship, and explore the therapeutic potential of targeting intestinal microbiota.
Collapse
Affiliation(s)
- Yu-Dian Zhou
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hebei, China
| | - Feng-Xia Liang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hebei, China
| | - Hao-Ran Tian
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hebei, China
| | - Dan Luo
- Department of Respiratory Wuhan No.1 Hospital, Wuhan, Hebei, China
| | - Ya-Yuan Wang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hebei, China
| | - Shu-Rui Yang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hebei, China
| |
Collapse
|
10
|
Wei W, Wang S, Xu C, Zhou X, Lian X, He L, Li K. Gut microbiota, pathogenic proteins and neurodegenerative diseases. Front Microbiol 2022; 13:959856. [PMID: 36466655 PMCID: PMC9715766 DOI: 10.3389/fmicb.2022.959856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/07/2022] [Indexed: 12/20/2023] Open
Abstract
As the world's population ages, neurodegenerative diseases (NDs) have brought a great burden to the world. However, effective treatment measures have not been found to alleviate the occurrence and development of NDs. Abnormal accumulation of pathogenic proteins is an important cause of NDs. Therefore, effective inhibition of the accumulation of pathogenic proteins has become a priority. As the second brain of human, the gut plays an important role in regulate emotion and cognition functions. Recent studies have reported that the disturbance of gut microbiota (GM) is closely related to accumulation of pathogenic proteins in NDs. On the one hand, pathogenic proteins directly produced by GM are transmitted from the gut to the central center via vagus nerve. On the other hand, The harmful substances produced by GM enter the peripheral circulation through intestinal barrier and cause inflammation, or cross the blood-brain barrier into the central center to cause inflammation, and cytokines produced by the central center cause the production of pathogenic proteins. These pathogenic proteins can produced by the above two aspects can cause the activation of central microglia and further lead to NDs development. In addition, certain GM and metabolites have been shown to have neuroprotective effects. Therefore, modulating GM may be a potential clinical therapeutic approach for NDs. In this review, we summarized the possible mechanism of NDs caused by abnormal accumulation of pathogenic proteins mediated by GM to induce the activation of central microglia, cause central inflammation and explore the therapeutic potential of dietary therapy and fecal microbiota transplantation (FMT) in NDs.
Collapse
Affiliation(s)
- Wei Wei
- The Mental Hospital of Yunnan Province, Mental Health Center Affiliated to Kunming Medical University, Kunming, China
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Shixu Wang
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Chongchong Xu
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Xuemei Zhou
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Xinqing Lian
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Lin He
- The Mental Hospital of Yunnan Province, Mental Health Center Affiliated to Kunming Medical University, Kunming, China
| | - Kuan Li
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| |
Collapse
|
11
|
Zhu D, Xie T, Du R, Guo L. Characterizing the Gut Microbiota of Eurasian Otter ( Lutra lutra chinensis) and Snub-Nosed Monkey ( Rhinopithecus roxellana) to Enhance Conservation Practices in the Foping National Nature Reserve of China. Animals (Basel) 2022; 12:ani12223097. [PMID: 36428325 PMCID: PMC9686598 DOI: 10.3390/ani12223097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Understanding the interaction between the microbial composition in the habitat and the gut of wildlife will contribute to conservation efforts since changes in the gut microbiome have been proven to influence the healthy and nutritional status of the host. This study analyzed the relationship between soil microbes and the microbial diversity and structure of the distal gut of the terrestrial golden snub-nosed monkey and Eurasian otter in the Foping National Nature Reserve (FNNR). A total of 15 otter fecal samples and 18 monkey fecal samples were collected from which 5 and 6 samples, respectively, were randomly selected for microbiome analysis. The remaining samples were used for fecal short-chain fatty acids (SCFAs) analysis. Soil samples from the otter and monkey habitats at each sampling point (eight in total) were also collected for microbiome analysis. The microbial phyla with the greatest relative abundance in soil or animal samples were Proteobacteria (41.2, 32.7, and 73.3% for soil, otters, and monkeys, respectively), Firmicutes (0.4% soil, 30.1% otters, and 14.4% monkeys), Bacteroidota (5.6% soil, 17.0% otters, and 8.3% monkeys), and Acidobacteriota (24.6% soil, 1.7% otters, and 0.1% monkeys). The estimation of alpha diversity indices revealed that the feature, Chao1, and Shannon indices of the soil microbiome were the greatest (p < 0.01) among the three groups, followed by those of the otter microbiome and those of the monkey microbiome (p < 0.01). Beta diversity analyses confirmed differences in the microbiota of the three types of samples. The determination of SCFA concentration in feces revealed that total volatile fatty acids, acetic acid, and isovaleric acid were greater (p < 0.05) in otters than in monkeys, while propionic acid followed the opposite pattern (p < 0.05). Correlation analysis of the microbiome and SCFA contents showed that propionic acid was positively correlated with significantly different bacterial groups, while acetic and butyric acid and total volatile acids were negatively correlated. This study confirmed that the fecal microbes of Eurasian otters and golden snub-nosed monkeys in the reserve are related to the soil microbial communities of their habitats, but they have different bacterial community structures and compositions, and there are different SCFA metabolic patterns in the gut of the two animals. The present study will help to improve wildlife protection in the FNNR.
Collapse
Affiliation(s)
- Dapeng Zhu
- State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
- Foping National Nature Reserve, Hanzhong 723000, China
| | - Tongtong Xie
- State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Ruifang Du
- State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Long Guo
- State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
- Correspondence:
| |
Collapse
|
12
|
Qiao B, Liu J, Xiao N, Tan Z, Peng M. Effects of sweeteners on host physiology by intestinal mucosal microbiota: Example-addition sweeteners in Qiweibaizhu Powder on intestinal mucosal microbiota of mice with antibiotic-associated diarrhea. Front Nutr 2022; 9:1038364. [PMID: 36337643 PMCID: PMC9631320 DOI: 10.3389/fnut.2022.1038364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, sweeteners have gained massive popularity under the trend of limiting sugar intake. Our previous study found that Qiweibaizhu Powder (QWBZP) could improve gut microbiota dysbiosis and has good efficacy in treating antibiotic-associated diarrhea (AAD). In this study, we investigated the effects of sucrose, sorbitol, xylitol, and saccharin on the intestinal mucosal microbiota of AAD mice treated with QWBZP. When the AAD model was constructed by being gavaged mixed antibiotic solution, Kunming mice were randomly assigned to seven groups: the control (mn) group, the ADD (mm) group, the QWBZP (mq) group, the saccharin + QWBZP (mc) group, the sucrose + QWBZP (ms) group, the xylito + QWBZP (mx) group, and the sorbitol + QWBZP (msl) group. Subsequently, 16S rRNA gene amplicon sequencing was used to analyze the intestinal mucosal microbiota composition and abundance. The results showed that feces from AAD mice were diluted and wet and improved diarrhea symptoms with QWBZP and sorbitol. In contrast, the addition of sucrose, saccharin, and xylitol delayed the healing of diarrhea. The relative abundance of intestinal mucosal microbiota showed Glutamicibacter, Robinsoniella, and Blautia were characteristic bacteria of the mx group, Candidatus Arthromitus, and Bacteroidales_S24-7_group as the typical bacteria of the mn group, Clostridium_innocuum_group as the distinct bacteria of the mm group. Mycoplasma and Bifidobacterium as the characteristic bacteria of the ms group. Correlation analysis of typical bacterial genera with metabolic functions shows that Blautia negatively correlates with D-Glutamine and D-glutamate metabolism. Bacteroidales_S24-7_group has a significant negative correlation with the Synthesis and degradation of ketone bodies. The study confirmed that sucrose, sorbitol, xylitol, and saccharin might further influence metabolic function by altering the intestinal mucosal microbiota. Compared to the other sweetener, adding sorbitol to QWBZP was the best therapeutic effect for AAD and increased the biosynthesis and degradation activities. It provides the experimental basis for applying artificial sweeteners in traditional Chinese medicine (TCM) as a reference for further rational development and safe use of artificial sweeteners.
Collapse
Affiliation(s)
- Bo Qiao
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jing Liu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Nenqun Xiao
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Maijiao Peng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
13
|
Zheng T, Wu Y, Peng MJ, Xiao NQ, Tan ZJ, Yang T. Hypertension of liver-yang hyperactivity syndrome induced by a high salt diet by altering components of the gut microbiota associated with the glutamate/GABA-glutamine cycle. Front Nutr 2022; 9:964273. [PMID: 36017217 PMCID: PMC9395663 DOI: 10.3389/fnut.2022.964273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022] Open
Abstract
The gut microbiota and metabolites are closely related to hypertension; however, the changes in the composition of the gut microbiome and metabolites linking a high salt diet to elevated blood pressure are not established. In this study, traditional Chinese medicine (TCM) syndrome of hypertension caused by high salt had been diagnosed and the pathogenesis of hypertension was explored from the perspective of intestinal microecology. Rats in a high salt diet-induced hypertension group (CG) and normal group (CZ) were compared by 16S rRNA gene full-length sequencing and liquid chromatography and mass spectrometry to identify differences in the bacterial community structure, metabolites, and metabolic pathways. Hypertension induced by a high salt diet belongs to liver-Yang hyperactivity syndrome. Alpha and beta diversity as well as the composition of microbiota from the phylum to species levels differed substantially between the CG and CZ groups. In an analysis of differential metabolites in the intestines, a high salt diet mainly affected the metabolism of amino acids and their derivatives; in particular, γ-aminobutyric acid (GABA) was down-regulated and glutamic acid and its derivatives were up-regulated under a high salt diet. Based on a KEGG analysis, high salt intake mainly altered pathways related to GABA and the glutamate/glutamine metabolism, such as the GABAergic synapse pathway and glutamatergic synapse pathway. The correlation analysis of differential gut microbes and differential metabolites suggested that a high salt diet promoted hypertension via the inhibition of Clostridiaceae_1 growth and alterations in the GABA metabolic pathway, leading to increased blood pressure. These findings suggest that a high salt diet induces hypertension of liver-Yang hyperactivity syndrome by mediating the microbiota associated with the glutamate/GABA-glutamine metabolic cycle via the gut-brain axis.
Collapse
Affiliation(s)
- Tao Zheng
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yi Wu
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Mai-jiao Peng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Nen-qun Xiao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhou-jin Tan
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Tao Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
14
|
Suissa R, Oved R, Jankelowitz G, Turjeman S, Koren O, Kolodkin-Gal I. Molecular genetics for probiotic engineering: dissecting lactic acid bacteria. Trends Microbiol 2022; 30:293-306. [PMID: 34446338 DOI: 10.1016/j.tim.2021.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/08/2023]
Abstract
The composition of the gut microbiome is greatly influenced by nutrition and dietary alterations which can also induce large temporary microbial shifts. However, the molecular mechanisms that promote these changes remain to be determined. Species of the family Lactobacillaceae and Bacillus species are genetically manipulatable bacteria that are naturally found in the human gastrointestinal (GI) tract and are often considered models of beneficial microbiota. Here, we identify specific conserved molecular pathways that play a key role in host colonization by beneficial members of the microbiota. In particular, we highlight three pathways important to the success of lactic acid bacteria (LAB) in the GI tract: glycolysis and fermentation, microbial communication via membrane vesicles, and condition-dependent antibiotic production. We elaborate on how the understanding of these circuits can lead to the development of novel therapeutic approaches to combat GI tract infections.
Collapse
Affiliation(s)
- Ronit Suissa
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rela Oved
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar-Ilan University, Zefad, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Zefad, Israel.
| | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
15
|
Meza-Torres J, Auria E, Dupuy B, Tremblay YDN. Wolf in Sheep's Clothing: Clostridioides difficile Biofilm as a Reservoir for Recurrent Infections. Microorganisms 2021; 9:1922. [PMID: 34576818 PMCID: PMC8470499 DOI: 10.3390/microorganisms9091922] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/21/2022] Open
Abstract
The microbiota inhabiting the intestinal tract provide several critical functions to its host. Microorganisms found at the mucosal layer form organized three-dimensional structures which are considered to be biofilms. Their development and functions are influenced by host factors, host-microbe interactions, and microbe-microbe interactions. These structures can dictate the health of their host by strengthening the natural defenses of the gut epithelium or cause disease by exacerbating underlying conditions. Biofilm communities can also block the establishment of pathogens and prevent infectious diseases. Although these biofilms are important for colonization resistance, new data provide evidence that gut biofilms can act as a reservoir for pathogens such as Clostridioides difficile. In this review, we will look at the biofilms of the intestinal tract, their contribution to health and disease, and the factors influencing their formation. We will then focus on the factors contributing to biofilm formation in C. difficile, how these biofilms are formed, and their properties. In the last section, we will look at how the gut microbiota and the gut biofilm influence C. difficile biofilm formation, persistence, and transmission.
Collapse
Affiliation(s)
- Jazmin Meza-Torres
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, UMR-CNRS 2001, Université de Paris, 25 rue du Docteur Roux, 75724 Paris, France; (J.M.-T.); (E.A.)
| | - Emile Auria
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, UMR-CNRS 2001, Université de Paris, 25 rue du Docteur Roux, 75724 Paris, France; (J.M.-T.); (E.A.)
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, UMR-CNRS 2001, Université de Paris, 25 rue du Docteur Roux, 75724 Paris, France; (J.M.-T.); (E.A.)
| | - Yannick D. N. Tremblay
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, UMR-CNRS 2001, Université de Paris, 25 rue du Docteur Roux, 75724 Paris, France; (J.M.-T.); (E.A.)
- Health Sciences Building, Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|