1
|
Li Y, Ding B, Wei M, Yang X, Fu R, Liu Y, Zhu L, Ding Y, Zhang W, Zhang G, Zhang S, Bu Y, He J, Deng J, Bao X, Hao J, Ma L. The prognostic and immune significance of Rab11A in pan-cancer and its function and mechanism underlying estrogen receptor targeting in breast cancer. Asia Pac J Clin Oncol 2025; 21:12-30. [PMID: 39395024 DOI: 10.1111/ajco.14130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/22/2024] [Accepted: 09/29/2024] [Indexed: 10/14/2024]
Abstract
OBJECTIVE Rab11A is an important molecule for recycling endosomes and is closely related to the proliferation, invasion, and metastasis of tumors. This study investigated the prognostic and immune significance of Rab11A and validated its potential function and mechanism in breast cancer (BRCA). METHODS RNA sequencing data for 33 tumors were downloaded from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression databases. Correlation analysis was used to evaluate the relationship between Rab11A expression and immune characteristics. Potential pathways were identified using the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analysis. Immunohistochemical analysis, colony formation assay, bromodeoxyuridine incorporation assay, immunofluorescence, and Western blot were used to explore potential function and mechanism. RESULTS Analysis of the TCGA database showed significant upregulation of Rab11A expression in a variety of cancers. Rab11A was up-regulated in 82.4% of BRCA. High Rab11A expression is associated with poor survival in cancer patients and is a predictor of poor prognosis. CIBERSORT analysis showed that Rab11A was negatively associated with almost all immune cycle activity scores pan-cancer. The results of the TCGA-BRCA cohort were further confirmed by using pathological samples from clinical BRCA patients. The results showed that Rab11A expression was correlated with estrogen receptor (ER) and progesterone receptor expression in BRCA (p < 0.05). Knockdown and overexpression of Rab11A affected the proliferation of BRCA cells. Further mechanistic studies revealed that down-regulation of ER alpha (ERα) and up-regulation of ER beta (ERβ) mediated Rab11A-induced inhibition of BRCA cell proliferation. CONCLUSION Rab11A expression in pan-cancer is associated with poor prognosis and immune profile. In particular, in BRCA, Rab11A expression regulates cell proliferation by targeting ERα and ERβ. High Rab11A expression is tightly associated with immune characteristics, tumor microenvironment, and genetic mutations. These results provide a reference for exploring the role of Rab11A in pan-cancer and provide a new perspective for revealing potential therapeutic targets in BRCA.
Collapse
Affiliation(s)
- Yilun Li
- Department of Breast Disease Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Baifang Ding
- Department of Breast Surgery, Panjin central hospital, Panjin, China
| | - Mengyu Wei
- Department of Breast Disease Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaolu Yang
- Department of Breast Disease Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ruihuan Fu
- Department of Breast Disease Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yinfeng Liu
- Department of Breast Disease Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lin Zhu
- Department of Electromyogram, the Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Ding
- Department of Pathology, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenjin Zhang
- Department of Breast Disease Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Geng Zhang
- Department of Breast Disease Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuo Zhang
- Department of Breast Disease Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuhui Bu
- Department of Breast Disease Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianchao He
- Department of Breast Disease Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianye Deng
- Department of Breast Disease Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaohuan Bao
- Department of Breast Disease Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Li Ma
- Department of Breast Disease Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
2
|
Kondracki B, Kłoda M, Jusiak-Kłoda A, Kondracka A, Waciński J, Waciński P. MicroRNA Expression in Patients with Coronary Artery Disease and Hypertension-A Systematic Review. Int J Mol Sci 2024; 25:6430. [PMID: 38928136 PMCID: PMC11204345 DOI: 10.3390/ijms25126430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Coronary artery disease (CAD) and hypertension significantly contribute to cardiovascular morbidity and mortality. MicroRNAs (miRNAs) have recently emerged as promising biomarkers and therapeutic targets for these conditions. This systematic review conducts a thorough analysis of the literature, with a specific focus on investigating miRNA expression patterns in patients with CAD and hypertension. This review encompasses an unspecified number of eligible studies that employed a variety of patient demographics and research methodologies, resulting in diverse miRNA expression profiles. This review highlights the complex involvement of miRNAs in CAD and hypertension and the potential for advances in diagnostic and therapeutic strategies. Future research endeavors are imperative to validate these findings and elucidate the precise roles of miRNAs in disease progression, offering promising avenues for innovative diagnostic tools and targeted interventions.
Collapse
Affiliation(s)
- Bartosz Kondracki
- Department of Cardiology, Medical University of Lublin, 20-059 Lublin, Poland; (B.K.); (M.K.); (A.J.-K.); (P.W.)
| | - Mateusz Kłoda
- Department of Cardiology, Medical University of Lublin, 20-059 Lublin, Poland; (B.K.); (M.K.); (A.J.-K.); (P.W.)
| | - Anna Jusiak-Kłoda
- Department of Cardiology, Medical University of Lublin, 20-059 Lublin, Poland; (B.K.); (M.K.); (A.J.-K.); (P.W.)
| | - Adrianna Kondracka
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-059 Lublin, Poland
| | - Jakub Waciński
- Department of Clinical Genetics, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Piotr Waciński
- Department of Cardiology, Medical University of Lublin, 20-059 Lublin, Poland; (B.K.); (M.K.); (A.J.-K.); (P.W.)
| |
Collapse
|
3
|
Guo RJ, Cao YF, Li EM, Xu LY. Multiple functions and dual characteristics of RAB11A in cancers. Biochim Biophys Acta Rev Cancer 2023; 1878:188966. [PMID: 37657681 DOI: 10.1016/j.bbcan.2023.188966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/05/2023] [Accepted: 08/05/2023] [Indexed: 09/03/2023]
Abstract
Vesicle trafficking is an unceasing and elaborate cellular process that functions in material transport and information delivery. Recent studies have identified the small GTPase, Ras-related protein in brain 11A (RAB11A), as a key regulator in this process. Aberrant RAB11A expression has been reported in several types of cancers, suggesting the important functions and characteristics of RAB11A in cancer. These discoveries are of great significance because therapeutic strategies based on the physiological and pathological status of RAB11A might make cancer treatment more effective, as the molecular mechanisms of cancer development have not been completely revealed. However, these studies on RAB11A have not been reviewed and discussed specifically. Therefore, we summarize and discuss the recent findings of RAB11A involvement in different biological processes, including endocytic recycling regulation, receptors and adhesion molecules recycling, exosome secretion, phagophore formation and cytokinesis, as well as regulatory mechanisms in several tumor types. Moreover, contradictory effects of RAB11A have also been observed in different types of cancers, implying the dual characteristics of RAB11A in cancer, which are either oncogenic or tumor-suppressive. This review on the functions and characteristics of RAB11A highlights the value of RAB11A in inducing multiple important phenotypes based on vesicle trafficking and therefore will offer insights for future studies to reveal the molecular mechanisms, clinical significance, and therapeutic targeting of RAB11A in different cancers.
Collapse
Affiliation(s)
- Rui-Jian Guo
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Yu-Fei Cao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| |
Collapse
|
4
|
Ginsenoside Rh2 suppresses colon cancer growth by targeting the miR-150-3p/SRCIN1/Wnt axis. Acta Biochim Biophys Sin (Shanghai) 2023; 55:633-648. [PMID: 36916297 DOI: 10.3724/abbs.2023032] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Ginsenoside Rh2, which is extracted from ginseng, exerts antitumor activity. Recent studies suggest that Rh2 may suppress the growth of colon cancer (CC) in vitro. However, the underlying mechanism remains unclear. In this study, we identified the relative levels of miR-150-3p in CC tissues and cells by a comprehensive strategy of data mining, computational biology, and real-time reverse transcription PCR (qRT-PCR) experiments. The regulatory effects of miR-150-3p/SRCIN1 on the proliferative and invasive abilities of CC cells are evaluated by CCK-8, EdU, wound healing, and transwell assays. Cell cycle- and apoptosis-related protein levels are assessed by western blot analysis. An in vivo tumor formation assay was conducted to explore the effects of miR-150-3p on tumor growth. Furthermore, bioinformatics and dual luciferase reporter assays are applied to determine the functional binding of miRNA to mRNA of the target gene. Finally, the relationship between Rh2 and miR-150-3p was further verified in SW620 and HCT-116 cells. miR-150-3p is downregulated in CC tissues and cell lines. Functional assays indicate that the upregulation of miR-150-3p inhibits tumor growth both in vivo and in vitro. In addition, SRCIN1 is upregulated in CC and predicts a poor prognosis, and it is the direct target for miR-150-3p. Moreover, the miR-150-3p mimic decreases Topflash/Fopflash-dependent luciferase activity, resulting in the inhibition of Wnt pathway activity. Rh2 can suppress the growth of CC by increasing miR-150-3p expression. Rh2 alleviates the accelerating effect on Wnt pathway activity, cell proliferation/migration, and colony formation caused by miR-150-3p inhibition. Rh2 inhibits the miR-150-3p/SRCIN1/Wnt axis to suppress colon cancer growth.
Collapse
|
5
|
Ma P, Han J. Overexpression of miR-100-5p inhibits papillary thyroid cancer progression via targeting FZD8. Open Med (Wars) 2022; 17:1172-1182. [PMID: 35859793 PMCID: PMC9263890 DOI: 10.1515/med-2022-0490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/13/2022] [Accepted: 04/25/2022] [Indexed: 12/16/2022] Open
Abstract
Papillary thyroid cancer (PTC) is the most prevalent type of TC worldwide; however, its pathological process remains unclear at the molecular level. In the current study, we analyzed the microarray data of PTC tissues and non-neoplastic thyroid tissues, and confirmed miR-100-5p as a downregulated miRNA in PTC. Via bioinformatic approach, western blotting, and TOP/FOP-flash assay, miR-100-5p was observed to be involved in the inactivation of Wnt/β-catenin signaling in TPC-1 and KTC-1. Frizzled Class Receptor 8 (FZD8), the coupled receptor for canonical Wnt/β-catenin signaling, was verified to be targeted and inhibited by miR-100-5p in TPC-1 and KTC-1. In the function assay, miR-100-5p mimic repressed PTC cell proliferation and induced cell apoptosis of TPC-1 and KTC-1; meanwhile, transfection of full-length FZD8 attenuated the effect of miR-100-5p mimic. Moreover, in the collected samples, miR-100-5p was lowly expressed in PTC tissues compared with normal tissues, especially in those of advanced stage (Stage III/IV vs Stage I/II), while FZD8 was highly expressed in PTC tissues, which in PTC tissues was inversely correlated to miR-100-5p. Thus, we suggest that overexpression of miR-100-5p inhibits the development of PTC by targeting FZD8.
Collapse
Affiliation(s)
- Peng Ma
- Department of Thyroid Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, Shanxi Province, P.R. China
| | - Jianli Han
- Department of Thyroid Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, No. 99 Longcheng Street, Taiyuan 030032, Shanxi Province, P.R. China
| |
Collapse
|
6
|
Zhang Y, Li Y. Long non-coding RNA NORAD contributes to the proliferation, invasion and EMT progression of prostate cancer via the miR-30a-5p/RAB11A/WNT/β-catenin pathway. Cancer Cell Int 2020; 20:571. [PMID: 33292272 PMCID: PMC7694907 DOI: 10.1186/s12935-020-01665-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
Background Prostate cancer (PC) is common male cancer with high mortality worldwide. Emerging evidence demonstrated that long noncoding RNAs (lncRNAs) play critical roles in various type of cancers including PC by serving as competing endogenous RNAs (ceRNAs) to modulate microRNAs (miRNAs). LncRNA activated by DNA damage (NORAD) was found to be upregulated in PC cells, while the detailed function and regulatory mechanism of NORAD in PC progression remains largely unclear. Methods Expression of NORAD in PC tissues and cell lines were detected by real-time quantitative PCR (qRT-PCR). NORAD was respectively overexpressed and knocked down by transfection with pcDNA-NORAD and NORAD siRNA into PC-3 and LNCap cells. Cell proliferation, invasion and apoptosis were determined by using CCK-8, Transwell and Flow cytometry assays, respectively. The target correlations between miR-30-5p and NORAD or RAB11A were confirmed by using dual luciferase reporter assay. Moreover, expression levels of RAB11A, the epithelial-mesenchymal transition (EMT) marker proteins and the Wnt pathway related proteins were measured by Western blotting. Tumor xenograft assay was used to study the effect of NORAD on tumor growth in vivo. Results NORAD was upregulated in PC tissues and cells. Overexpression of NORAD promoted cell proliferation, invasion, EMT, and inhibited cell apoptosis; while knockdown of NORAD had the opposite effect. NORAD was found to be functioned as a ceRNA to bind and downregulated miR-30a-5p that was downregulated in PC tumor tissues. Rescue experiments revealed that miR-30a-5p could weaken the NORAD-mediated promoting effects on cell proliferation, invasion and EMT. Furthermore, RAB11A that belongs to a member of RAS oncogene family was verified as a target of miR-30a-5p, and reintroduction of RAB11A attenuated the effects of miR-30a-5p overexpression on cell proliferation, invasion, EMT and apoptosis of PC cells. More importantly, silencing RAB11A partially reversed the promoting effects of NORAD overexpression on cell proliferation, invasion and EMT of PC cells via the WNT/β-catenin pathway. Lastly, tumorigenicity assay in vivo demonstrated that NORAD increased tumor volume and weight via miR-30a-5p /RAB11A pathway. Conclusion Our results indicated a significant role of NORAD in mechanisms associated with PC progression. NORAD promoted cell proliferation, invasion and EMT via the miR-30a-5p/RAB11A/WNT/β-catenin pathway, thus inducing PC tumor growth.
Collapse
Affiliation(s)
- Yunxia Zhang
- Department of Nursing, Huaihe Hospital of Henan University, Kaifeng, 475000, People's Republic of China.
| | - Yang Li
- The Second Ward, Department of Urinary Surgery, Huaihe Hospital of Henan University, Kaifeng, 475000, People's Republic of China
| |
Collapse
|
7
|
Mao D, Jie Y, Lv Y. LncRNA SNHG6 Induces Epithelial-Mesenchymal Transition of Pituitary Adenoma Via Suppressing MiR-944. Cancer Biother Radiopharm 2020; 37:246-255. [PMID: 32935999 PMCID: PMC9127839 DOI: 10.1089/cbr.2020.3587] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Pituitary adenoma (PA) is a common primary brain tumor with invasive properties. Despite that long noncoding RNA (lncRNA) small nucleolar RNA host gene 6 (SNHG6) exerts oncogenic function in cancer cells and that miR-944 inhibits epithelial–mesenchymal transition (EMT) of cancer cells are well documented, few studies have explored the function and mechanism of SNHG6 and miR-944 in invasive pituitary adenoma (IPA). Materials and Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expressions of SNHG6 and miR-944 in PA samples. Human PA cell line HP75 was used as a cell model. The biological effects of SNHG6 and miR-944 on HP75 cells were investigated with cell counting kit-8 (CCK-8) assay, Transwell assay, and scratch healing assay in vitro, respectively. Markers of EMT, including E-cadherin and vimentin, were detected by Western blot. Interactions between SNHG6 and miR-944, miR-944 and RAB11A were determined by bioinformatics analysis, qRT-PCR, and dual luciferase reporter assay. Results: SNHG6 was significantly upregulated in IPA samples, whereas miR-944 was downregulated. SNHG6 markedly promoted viability, migration, invasion, and EMT of PA cells, whereas miR-944 transfection had the opposite effects. SNHG6 could downregulate miR-944, and there was a negative correlation between SNHG6 expression and miR-944 expression in IPA samples. Besides, it was confirmed that miR-944 could pair with the 3′-untranslated region of RAB11A and repress its expression. Conclusions: This study authenticates that the SNHG6/miR-994/RAB11A axis plays a crucial role in regulating proliferation, migration, invasion, and EMT of IPA cells. SNHG6 and miR-994 can serve as novel valuable therapeutic targets for IPA.
Collapse
Affiliation(s)
- Dandan Mao
- Department of Neurosurgery, Quzhou People's Hospital, Quzhou, China
| | - Yuanqing Jie
- Department of Neurosurgery, Quzhou People's Hospital, Quzhou, China
| | - Yao Lv
- Department of Neurosurgery, Quzhou People's Hospital, Quzhou, China
| |
Collapse
|
8
|
Xu Z, Zhou X, Wu J, Cui X, Wang M, Wang X, Gao Z. Mesenchymal stem cell-derived exosomes carrying microRNA-150 suppresses the proliferation and migration of osteosarcoma cells via targeting IGF2BP1. Transl Cancer Res 2020; 9:5323-5335. [PMID: 35117898 PMCID: PMC8798822 DOI: 10.21037/tcr-20-83] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 07/08/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND MicroRNA-150 (miR-150) plays a critical role in varied types of human cancers. In this study, we explored the effect and mechanism of mesenchymal stem cell (MSC)-derived exosomes (exo) carrying miR-150 (MSC-Exo-150) on the proliferation, migration, invasion, and apoptosis of osteosarcoma (OS) cells. METHODS MiR-150 expression in OS cell lines was assessed by quantitative reverse-transcription PCR (qRT-PCR). MSCs were transfected with cell-miR-67 or has-miR-150, and grouped as MSC-67 or MSC-150. Exosomes were isolated from each group, and separately named MSC-Exo-67, MSC-Exo-150 and MSC-Exo. MTT or flow cytometry assay was used to analyze the proliferation or apoptosis of U2SO and HOS cells, respectively. Wound healing or transwell assay was utilized to examine the migration or invasion of U2SO and HOS cells, respectively. The target relationship of miR-150 and insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) was established using StarBase2.0 and verified by dual-luciferase reporter gene analysis. Xenografted tumor model was established in rats to confirm the inhibitory effect of MSC-Exo-150 on the growth of xenografted tumor in vivo. RESULTS The expression of miR-150 was downregulated in OS cell lines, and significantly higher in MSC-150 cells than that in MSCs. MiR-150 was overexpressed in MSC-Exo-150 group compared with MSC-Exo group. After transfection of MSC-Exo-150 into U2SO and HOS cells, cell viability, mobility and invasion rate were decreased, and the cell apoptosis was increased. MiR-150 targeted IGF2BP1 and IGF2BP1 expression was negatively modulated by miR-150. Overexpression of IGF2BP1 reversed the anti-tumor effect of MSC-Exo-150 on HOS cells. CONCLUSIONS MSC-Exo-150 inhibited proliferation, migration, invasion, and induced apoptosis of OS cells by targeting IGF2BP1.
Collapse
Affiliation(s)
- Zhengfeng Xu
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xiaoxiao Zhou
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jiajun Wu
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xu Cui
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Minghui Wang
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xiuhui Wang
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Zhenchao Gao
- Department of Orthopedics, Shanghai Public Health Clinical Center, Shanghai, China
| |
Collapse
|
9
|
Qiao P, Yan H, Wang J. EGb761 Protects Brain Microvascular Endothelial Cells Against Oxygen–Glucose Deprivation-Induced Injury Through lncRNA Rmst/miR-150 Axis. Neurochem Res 2020; 45:2398-2408. [DOI: 10.1007/s11064-020-03099-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/22/2020] [Accepted: 07/14/2020] [Indexed: 12/20/2022]
|
10
|
The role of microRNAs in the pathogenesis of thyroid cancer. Noncoding RNA Res 2020; 5:88-98. [PMID: 32637757 PMCID: PMC7327754 DOI: 10.1016/j.ncrna.2020.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Thyroid cancer is the most frequent type of cancers originating from the endocrine system. Early diagnosis leads to good clinical outcome in differentiated types of thyroid cancer. Yet, there are few treatment options for patients with medullary or anaplastic thyroid cancer. Thus, identification of molecular markers that explain the pathologic process during evolution of this cancer has practical significance. MicroRNAs (miRNAs) have been shown to influence the activity of thyroid cancer-related signaling pathways such as MAPK pathway and RET gene. These small transcripts not only can differentiate malignant tissues from non-malignant tissues, but also have differential expression in different stages of thyroid cancer. Assessment of serum levels of miRNAs is a practical noninvasive method for follow-up of patients after thyroidectomy. Moreover, the therapeutic effects of a number of miRNAs have been verified in xenograft models of thyroid cancer. In the current review, we summarize the data regarding the role of miRNAs in thyroid cancer.
Collapse
|
11
|
Liu Y, Li X, Zhang H, Huang Y. MIAT inhibits proliferation of cervical cancer cells through regulating miR-150-5p. Cancer Cell Int 2020; 20:242. [PMID: 32549789 PMCID: PMC7296772 DOI: 10.1186/s12935-020-01338-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/09/2020] [Indexed: 12/27/2022] Open
Abstract
Background To characterize the MIAT expression in cervical cancer and elucidate its mechanistic involvement in the tumor biology of this disease. Methods The relative expression of MIAT and miR-150 was determined by real-time PCR. Cell proliferation was measured by the CCK-8 and clonogenic assay. The anchorage-independent growth was evaluated by soft agar assay. The in vivo tumor progression was assayed with xenograft mice model. The regulatory effect of miR-150 on MIAT was interrogated by luciferase reporter assay. The endogenous CNKD1B protein was detected by western blotting. Results The low expression of MIAT was characterized in cervical cancer, which associated with relatively poor prognosis. Ectopic expression of MIAT inhibited malignant growth of cervical cancer both in vitro and in vivo. Mechanistically, MIAT regulated CDKN1B expression via competition with miR-150, and miR-150-inhibition directly suppressed cervical cancer cell growth. Conclusions Our study characterized the anti-tumor property of MIAT in cervical cancer and elucidated its competitively regulation of CDKN1B with miR-150. Our data highlighted the critical role of MIAT-miR-150-CDKN1B signaling axis in cervical cancer.
Collapse
Affiliation(s)
- Yanbin Liu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong Province China
| | - Xingzhi Li
- Department of Urological Surgery, Longgang District People's Hospital of Shenzhen, Shenzhen, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong Province China
| | - Yali Huang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Zhang ZY, Lu M, Liu ZK, Li H, Yong YL, Zhang RY, Chen ZN, Bian H. Rab11a regulates MMP2 expression by activating the PI3K/AKT pathway in human hepatocellular carcinoma cells. Pathol Res Pract 2020; 216:153046. [PMID: 32825931 DOI: 10.1016/j.prp.2020.153046] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/17/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023]
Abstract
As a member of the Rab GTPase family, Rab11a plays an important role in vesicle transport and tumor progression. However, it is not clear whether it can also be used as an oncoprotein in hepatocellular carcinoma (HCC). In this study, database and immunohistochemical analyses showed that Rab11a was highly expressed in HCC tissues, and associated with poor clinical prognosis. Rab11a overexpression promoted the proliferation, migration, invasion, and anti-apoptosis of human HCC cell lines, MHCC-97H and HCC-LM3, whereas the downregulation of Rab11a inhibited these biological tumor activities. Nude mice xenograft demonstrated that Rab11a had a positive effect on the growth of hepatocellular carcinoma cells in vivo. Further studies found that the PI3K/AKT pathway and matrix metalloproteinase 2 (MMP2) upregulation can be activated by over-expression of Rab11a. However, MMP2 upregulation induced by Rab11a can be inhibited by the PI3K/AKT pathway inhibitor, LY294002. Altogether, our study established for the first time that Rab11a can play a pro-cancer role in HCC, as a novel oncoprotein, by activating the PI3K/AKT pathway to regulate MMP2 expression.
Collapse
Affiliation(s)
- Zhi-Yun Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Meng Lu
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ze-Kun Liu
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Hao Li
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Le Yong
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ren-Yu Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhi-Nan Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Huijie Bian
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
13
|
Xu J, Zheng J, Wang J, Shao J. miR-876-5p suppresses breast cancer progression through targeting TFAP2A. Exp Ther Med 2019; 18:1458-1464. [PMID: 31316633 DOI: 10.3892/etm.2019.7689] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 05/09/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are widely expressed in human cells and closely associated with various types of cancer, including breast cancer. miR-876-5p has been indicated to participate in the tumorigenesis of certain types of cancer, such as hepatocellular carcinoma. Nevertheless, the roles of miR-876-5p in breast cancer remain unclear. In the present study, it was revealed that miR-876-5p expression levels were decreased in breast cancer cells compared with a normal cell line. miR-876-5p ectopic expression suppressed breast cancer cell proliferation and arrested progression of the cell cycle. In addition, miR-876-5p suppressed breast cancer cell migration and invasion. miR-876-5p was demonstrated to directly target transcription factor AP-2-α (TFAP2A) in breast cancer cells, and restoration of TFAP2A rescinded the suppressive role of miR-876-5p. In summary, the results from the present study provide evidence that miR-876-5p suppresses breast cancer progression by regulating cell proliferation, migration and invasion in a TFAP2A-dependent manner.
Collapse
Affiliation(s)
- Jie Xu
- Department of Breast Surgery, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Jie Zheng
- Department of Breast Surgery, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Jian Wang
- Department of Breast Surgery, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Jianping Shao
- Department of Breast Surgery, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| |
Collapse
|
14
|
Delayed-Type Hypersensitivity Underlying Casein Allergy Is Suppressed by Extracellular Vesicles Carrying miRNA-150. Nutrients 2019; 11:nu11040907. [PMID: 31018604 PMCID: PMC6521277 DOI: 10.3390/nu11040907] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/12/2019] [Accepted: 04/18/2019] [Indexed: 12/11/2022] Open
Abstract
In patients with non-IgE-mediated milk allergy, a cellular mechanism of delayed-type hypersensitivity (DTH) is considered. Recent findings prove that cell-mediated reactions can be antigen-specifically inhibited by extracellular vesicles (EVs) carrying miRNA-150. We sought to establish a new mouse model of DTH to casein and test the possibility of antigen-specific suppression of the inflammatory reaction. To produce soluble antigenic peptides, casein was subjected to alkaline hydrolysis. DTH reaction to casein was induced in CBA, C57BL/6, and BALB/c mice by intradermal (id) injection of the antigen. Cells collected from spleens and lymph nodes were positively or negatively selected and transferred to naive recipients intravenously (iv). CBA mice were tolerized by iv injection of mouse erythrocytes conjugated with casein antigen and following id immunization with the same antigen. Suppressive EVs were harvested from cell cultures and serum of tolerized donors by means of ultrafiltration and ultracentrifugation for further therapeutic utilization. The newly established mouse model of DTH to casein was mediated by CD4+ Th1 cells and macrophages, while EVs produced by casein-tolerized animals effectively suppressed effector cell response, in an miRNA-150-dependent manner. Altogether, our observations contribute to the current understanding of non-IgE-mediated allergy to casein and of the possibilities to downregulate this reaction.
Collapse
|
15
|
Chen LL, Gao GX, Shen FX, Chen X, Gong XH, Wu WJ. SDC4 Gene Silencing Favors Human Papillary Thyroid Carcinoma Cell Apoptosis and Inhibits Epithelial Mesenchymal Transition via Wnt/β-Catenin Pathway. Mol Cells 2018; 41:853-867. [PMID: 30165731 PMCID: PMC6182223 DOI: 10.14348/molcells.2018.0103] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/10/2018] [Accepted: 07/29/2018] [Indexed: 01/06/2023] Open
Abstract
As the most common type of endocrine malignancy, papillary thyroid cancer (PTC) accounts for 85-90% of all thyroid cancers. In this study, we presented the hypothesis that SDC4 gene silencing could effectively attenuate epithelial mesenchymal transition (EMT), and promote cell apoptosis via the Wnt/β-catenin signaling pathway in human PTC cells. Bioinformatics methods were employed to screen the determined differential expression levels of SDC4 in PTC and adjacent normal samples. PTC tissues and adjacent normal tissues were prepared and their respective levels of SDC4 protein positive expression, in addition to the mRNA and protein levels of SDC4, Wnt/β-catenin signaling pathway, EMT and apoptosis related genes were all detected accordingly. Flow cytometry was applied in order to detect cell cycle entry and apoptosis. Finally, analyses of PTC migration and invasion abilities were assessed by using a Transwell assay and scratch test. In PTC tissues, activated Wnt/β-catenin signaling pathway, increased EMT and repressed cell apoptosis were determined. Moreover, the PTC K1 and TPC-1 cell lines exhibiting the highest SDC4 expression were selected for further experiments. In vitro experiments revealed that SDC4 gene silencing could suppress cell migration, invasion and EMT, while acting to promote the apoptosis of PTC cells by inhibiting the activation of the Wnt/β-catenin signaling pathway. Besides, si-β-catenin was observed to inhibit the promotion of PTC cell migration and invasion caused by SDC4 overexpression. Our study revealed that SDC4 gene silencing represses EMT, and enhances cell apoptosis by suppressing the activation of the Wnt/β-catenin signaling pathway in human PTC.
Collapse
Affiliation(s)
- Liang-Liang Chen
- Department of Surgical Oncology, Ningbo No.2 Hospital, Ningbo 315010,
P.R. China
| | - Ge-Xin Gao
- School of Nursing, Wenzhou Medical University, Wenzhou 325000,
P.R. China
| | - Fei-Xia Shen
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015,
P.R. China
| | - Xiong Chen
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015,
P.R. China
| | - Xiao-Hua Gong
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015,
P.R. China
| | - Wen-Jun Wu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015,
P.R. China
| |
Collapse
|
16
|
Wen DY, Pan DH, Lin P, Mo QY, Wei YP, Luo YH, Chen G, He Y, Chen JQ, Yang H. Downregulation of miR‑486‑5p in papillary thyroid carcinoma tissue: A study based on microarray and miRNA sequencing. Mol Med Rep 2018; 18:2631-2642. [PMID: 30015845 PMCID: PMC6102695 DOI: 10.3892/mmr.2018.9247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/17/2018] [Indexed: 12/22/2022] Open
Abstract
Abnormal expression of microRNA (miR) is associated with the occurrence and progression of various types of cancers, including papillary thyroid carcinoma (PTC). In the present study, the aim was to explore miR‑486‑5p expression and its role in PTC, as well as to investigate the biological function of its potential target genes. The expression levels of miR‑486‑5p and its clinicopathological significance were examined in 507 PTC and 59 normal thyroid samples via The Cancer Genome Atlas (TCGA). Subsequently, the results were validated using data from Gene Expression Omnibus (GEO) and ArrayExpress. Receiver operating characteristic and summary receiver operating characteristic curves were used to assess the ability of miR‑486‑5p in distinguishing PTC from normal tissue. Furthermore, potential miR‑486‑5p mRNA targets were identified using 12 prediction tools and enrichment analysis was performed on the encoding genes using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. The expression levels of miR‑486‑5p were consistently downregulated in PTC compared with in normal tissue across datasets from TCGA, GEO (GSE40807, GSE62054 and GSE73182) and ArrayExpress (E‑MTAB‑736). The results also demonstrated that miR‑486‑5p expression was associated with cancer stage (P=0.003), pathologic lymph node (P=0.047), metastasis (P=0.042), neoplasm (P=0.012) and recurrence (P=0.016) in patients with PTC. In addition, low expression of miR‑486‑5p in patients with PTC was associated with a worse overall survival. A total of 80 miR‑486‑5p‑related genes were observed from at least 9 of 12 prediction platforms, and these were involved in 'hsa05200: Pathways in cancer' and 'hsa05206: MicroRNAs in cancer'. Finally, three hub genes, CRK like proto‑oncogene, phosphatase and tensin homolog and tropomyosin 3, were identified as important candidates in tumorigenesis and progression of PTC. In conclusion, it may be hypothesized that miR‑486‑5p contributes towards PTC onset and progression, and may act as a clinical target. However, in vitro and in vivo experiments are required to validate the findings of the present study.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/chemistry
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Area Under Curve
- Carcinoma, Papillary/metabolism
- Carcinoma, Papillary/mortality
- Carcinoma, Papillary/pathology
- Down-Regulation
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Kaplan-Meier Estimate
- Lymphatic Metastasis
- Male
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Neoplasm Recurrence, Local
- Neoplasm Staging
- Nuclear Proteins/chemistry
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- PTEN Phosphohydrolase/chemistry
- PTEN Phosphohydrolase/genetics
- PTEN Phosphohydrolase/metabolism
- ROC Curve
- Sequence Analysis, RNA
- Thyroid Cancer, Papillary
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/mortality
- Thyroid Neoplasms/pathology
- Tropomyosin/chemistry
- Tropomyosin/genetics
- Tropomyosin/metabolism
Collapse
Affiliation(s)
- Dong-Yue Wen
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Deng-Hua Pan
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Peng Lin
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Qiu-Yan Mo
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yun-Peng Wei
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yi-Huan Luo
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yun He
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jun-Qiang Chen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hong Yang
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|