1
|
Xiao H, Ma W, Zha L, Xiao Y, Li H. Curcumin alleviates LPS-induced WI-38 cell inflammation injury by regulating PTGS2 expression. Hereditas 2025; 162:81. [PMID: 40380246 DOI: 10.1186/s41065-025-00441-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/28/2025] [Indexed: 05/19/2025] Open
Abstract
BACKGROUND Infantile pneumonia is a common infectious disease affecting infants and young children, which can lead to severe complications such as heart failure, significantly increasing morbidity and mortality rates among affected populations. Curcumin (CUR), a prominent natural polyphenol found in turmeric and other species of Curcuma, exhibits anti-inflammatory, antioxidant, and anticancer properties. Consequently, CUR has been hoped to be a therapeutic or preventive agent for several main human diseases. This study aims to explore the effects of CUR on lipopolysaccharide (LPS)-treated Wistsar Institute (WI)-38 cells. METHODS The cell vitality, proliferation, and apoptosis were assessed by cell counting kit-8 (CCK8) assay, 5-ethynyl-2'-deoxyuridine (EdU), and flow cytometry assays. Inflammation and oxidative stress were examined by measuring interleukins (IL)-6, IL-1β, tumor necrosis factor α (TNF-α), malondialdehyde (MDA), and superoxide dismutase (SOD) levels using the corresponding enzyme-linked immunosorbent assay (ELISA) test kits. The network pharmacology and molecule docking were carried out to predict the critical targets and potential therapeutic mechanisms of CUR in infantile pneumonia. The key target genes were predicted using PPI in the CUR protected-infantile pneumonia effect. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were employed to exhibit the biological function. The results of prediction were confirmed in vitro experiments. RESULTS LPS inhibited the vitality, proliferation, and SOD levels of WI-38 cells and facilitated the cell apoptosis, IL-6, IL-1β, TNF-α, and MDA levels. CUR abolished LPS-induced regulation WI-38 cell biological functions. Besides, the 16 hub genes from potential target genes of CUR and infantile pneumonia were screened. Moreover, six hub genes (enhanced green fluorescent protein (EGFP), v-akt murine thymoma viral oncogene homolog 1 (AKT1), prostaglandin endoperoxide synthase (PTGS2), signal transducer and activator of transcription 3 (STAT3), matrix metalloproteinase 9 (MMP9), and tumor necrosis factor (TNF)) in the CUR-protected-infantile pneumonia effect were identified by PPI analysis. The therapeutic effects of CUR on infantile pneumonia might relate to anti-viral and anti-inflammatory effects predicted by GO and KEGG enrichment analysis. Interestingly, CUR repressed LPS-stimulated facilitation of PTGS2 expression. The molecular docking demonstrated that PTGS2 could directly bind to CUR. The PTGS2 levels were inhibited by CUR treatment and negatively related to the time after WI-38 cells were treated with cycloheximide (CHX). PTGS2 knockdown could promote LPS-induced injury in WI-38 cells. CUR expedited cell vitality and proliferation and suppressed cell apoptosis, inflammation, and oxidative stress in LPS-induced WI-38 cells via down-regulating PTGS2. CONCLUSION CUR attenuates LPS-induced WI-38 cell injury by downregulating PTGS2. CUR may be the potential drug for alleviating LPS-induced WI-38 cell inflammation damage via regulating PTGS2 expression.
Collapse
Affiliation(s)
- Hongli Xiao
- Department of Pediatrics, Puren Hospital, Wuhan University of Science and Technology, No.1 Benxi Street, Heping Avenue, Qingshan District, Wuhan City, 430081, Hubei, China
| | - Wangsheng Ma
- Department of Pediatrics, Puren Hospital, Wuhan University of Science and Technology, No.1 Benxi Street, Heping Avenue, Qingshan District, Wuhan City, 430081, Hubei, China
| | - Lin Zha
- Department of Pediatrics, Puren Hospital, Wuhan University of Science and Technology, No.1 Benxi Street, Heping Avenue, Qingshan District, Wuhan City, 430081, Hubei, China
| | - Yanmin Xiao
- Department of Pediatrics, Puren Hospital, Wuhan University of Science and Technology, No.1 Benxi Street, Heping Avenue, Qingshan District, Wuhan City, 430081, Hubei, China
| | - Hui Li
- Department of Pediatrics, Puren Hospital, Wuhan University of Science and Technology, No.1 Benxi Street, Heping Avenue, Qingshan District, Wuhan City, 430081, Hubei, China.
| |
Collapse
|
2
|
Zhang N, Zhang H, Yu L, Fu Q. Advances in anti-inflammatory treatment of sepsis-associated acute respiratory distress syndrome. Inflamm Res 2025; 74:74. [PMID: 40298991 DOI: 10.1007/s00011-025-02043-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/07/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025] Open
Abstract
Sepsis is characterized by a dysregulated host response to infection, leading to organ dysfunction and associated with significant morbidity and mortality, posing a critical challenge to global public health. Among its complications, sepsis frequently causes acute respiratory distress syndrome (ARDS), which has a high incidence and mortality rate, particularly in intensive care units (ICUs). Currently, the management of sepsis-induced ARDS is largely limited to supportive care, as no specific pharmacological treatments are available. The progression of sepsis to ARDS is driven by severe inflammation and cytokine storms, highlighting the importance of anti-inflammatory therapies as a primary treatment focus. We summarize conventional drugs and emerging treatments targeting excessive inflammatory responses in sepsis-associated ARDS, reviewing progress in basic research and clinical trials. Additionally, we discuss current research challenges to propose future directions for anti-inflammatory treatments, aiming to develop highly effective drugs with better clinical translation potential.
Collapse
Affiliation(s)
- Nana Zhang
- The Fourth Central Clinical School, Tianjin Medical University, 300140, Tianjin, China
| | - Hewei Zhang
- Department of Critical Care Medicine, Tianjin Fourth Central Hospital, 300140, Tianjin, China
| | - Li Yu
- Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Qiang Fu
- The Fourth Central Clinical School, Tianjin Medical University, 300140, Tianjin, China.
| |
Collapse
|
3
|
Memarzia A, Amin F, Mokhtari-Zaer A, Arab Z, Saadat S, Heydari M, Ghasemi Z, Naghdi F, Hosseini M, Boskabady MH. Systemic and Lung Inflammation and Oxidative Stress Associated With Behavioral Changes Induced by Inhaled Paraquat Are Ameliorated by Carvacrol. PPAR Res 2024; 2024:4049448. [PMID: 39221092 PMCID: PMC11366052 DOI: 10.1155/2024/4049448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/27/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024] Open
Abstract
Paraquat (PQ) is an herbicide toxin that induces injury in different organs. The anti-inflammatory and antioxidant effects of carvacrol were reported previously. The effects of carvacrol and pioglitazone (Pio) alone and their combination on inhaled PQ-induced systemic and lung oxidative stress and inflammation as well as behavioral changes were examined in rats. In this study, animals were exposed to saline (control [Ctrl]) or PQ (PQ groups) aerosols. PQ-exposed animals were treated with 0.03 mg/kg/day dexamethasone (Dexa), 20 and 80 mg/kg/day carvacrol (C-L and C-H), 5 mg/kg/day Pio, and Pio+C-L for 16 days. Inhaled PQ markedly enhanced total and differential white blood cell (WBC) counts, nitric oxide (NO), and malondialdehyde (MDA) levels but decreased catalase (CAT) and superoxide dismutase (SOD) activities and thiol levels both in the bronchoalveolar lavage fluid (BALF) and blood and increased interferon-gamma (INF-γ) and interleukin-10 (IL-10) levels in the BALF (p < 0.001 for all cases) except lymphocyte count in blood which was not significantly changed. The escape latency and traveled distance were increased in the PQ group. However, the time spent in the target quadrant in the Morris water maze (MWM) test and the duration of time latency in the dark room in the shuttle box test were reduced after receiving an electrical shock (p < 0.05-p < 0.001). Inhaled PQ-induced changes were significantly improved in carvacrol, Pio, Dexa, and especially in the combination of the Pio+C-L treated groups (p < 0.05-p < 0.001). Carvacrol and Pio improved PQ-induced changes similar to Dexa, but ameliorative effects produced by combination treatments of Pio+C-L were more prominent than Pio and C-L alone, suggesting a potentiating effect for the combination of the two agents.
Collapse
Affiliation(s)
- Arghavan Memarzia
- Applied Biomedical Research CenterMashhad University of Medical Sciences, Mashhad, Iran 9177948564
| | - Fatemeh Amin
- Physiology–Pharmacology Research CenterResearch Institute of Basic Medical SciencesRafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and PharmacologySchool of MedicineRafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Amin Mokhtari-Zaer
- Student Research CommitteeTorbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
- Department of Basic Medical SciencesMashhad University of Medical Sciences, Mashhad, Iran
| | - Zohre Arab
- Department of PhysiologyFaculty of MedicineMashhad University of Medical Sciences, Mashhad, Iran 9177948564
| | - Saeideh Saadat
- Department of PhysiologySchool of MedicineZahedan University of Medical Sciences, Zahedan, Iran 9816743175
| | - Mahrokh Heydari
- Department of PhysiologyFaculty of MedicineMashhad University of Medical Sciences, Mashhad, Iran 9177948564
| | - Zahra Ghasemi
- Cutaneous Leishmaniasis Research CenterImam Reza HospitalMashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Naghdi
- Department of PhysiologyFaculty of MedicineMashhad University of Medical Sciences, Mashhad, Iran 9177948564
| | - Mahmoud Hosseini
- Department of PhysiologyFaculty of MedicineMashhad University of Medical Sciences, Mashhad, Iran 9177948564
| | | |
Collapse
|
4
|
Niri P, Saha A, Polopalli S, Kumar M, Das S, Chattopadhyay P. Role of biomarkers and molecular signaling pathways in acute lung injury. Fundam Clin Pharmacol 2024; 38:640-657. [PMID: 38279523 DOI: 10.1111/fcp.12987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 12/07/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Acute lung injury (ALI) is caused by bacterial, fungal, and viral infections. When pathogens invade the lungs, the immune system responds by producing cytokines, chemokines, and interferons to promote the infiltration of phagocytic cells, which are essential for pathogen clearance. Their excess production causes an overactive immune response and a pathological hyper-inflammatory state, which leads to ALI. Until now, there is no particular pharmaceutical treatment available for ALI despite known inflammatory mediators like neutrophil extracellular traps (NETs) and reactive oxygen species (ROS). OBJECTIVES Therefore, the primary objective of this review is to provide the clear overview on the mechanisms controlling NETs, ROS formation, and other relevant processes during the pathogenesis of ALI. In addition, we have discussed the significance of epithelial and endothelial damage indicators and several molecular signaling pathways associated with ALI. METHODS The literature review was done from Web of Science, Scopus, PubMed, and Google Scholar for ALI, NETs, ROS, inflammation, biomarkers, Toll- and nucleotide-binding oligomerization domain (NOD)-like receptors, alveolar damage, pro-inflammatory cytokines, and epithelial/endothelial damage alone or in combination. RESULTS This review summarized the main clinical signs of ALI, including the regulation and distinct function of epithelial and endothelial biomarkers, NETs, ROS, and pattern recognition receptors (PRRs). CONCLUSION However, no particular drugs including vaccine for ALI has been established. Furthermore, there is a lack of validated diagnostic tools and a poor predictive rationality of current therapeutic biomarkers. Hence, extensive and precise research is required to speed up the process of drug testing and development by the application of artificial intelligence technologies, structure-based drug design, in-silico approaches, and drug repurposing.
Collapse
Affiliation(s)
- Pakter Niri
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Subramanyam Polopalli
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Mohit Kumar
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, India
| | - Sanghita Das
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Pronobesh Chattopadhyay
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
| |
Collapse
|
5
|
Enayati A, Ghojoghnejad M, Roufogalis BD, Maollem SA, Sahebkar A. Impact of Phytochemicals on PPAR Receptors: Implications for Disease Treatments. PPAR Res 2022; 2022:4714914. [PMID: 36092543 PMCID: PMC9453090 DOI: 10.1155/2022/4714914] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/10/2022] [Indexed: 11/17/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the ligand-dependent nuclear receptor family. PPARs have attracted wide attention as pharmacologic mediators to manage multiple diseases and their underlying signaling targets. They mediate a broad range of specific biological activities and multiple organ toxicity, including cellular differentiation, metabolic syndrome, cancer, atherosclerosis, neurodegeneration, cardiovascular diseases, and inflammation related to their up/downstream signaling pathways. Consequently, several types of selective PPAR ligands, such as fibrates and thiazolidinediones (TZDs), have been approved as their pharmacological agonists. Despite these advances, the use of PPAR agonists is known to cause adverse effects in various systems. Conversely, some naturally occurring PPAR agonists, including polyunsaturated fatty acids and natural endogenous PPAR agonists curcumin and resveratrol, have been introduced as safe agonists as a result of their clinical evidence or preclinical experiments. This review focuses on research on plant-derived active ingredients (natural phytochemicals) as potential safe and promising PPAR agonists. Moreover, it provides a comprehensive review and critique of the role of phytochemicals in PPARs-related diseases and provides an understanding of phytochemical-mediated PPAR-dependent and -independent cascades. The findings of this research will help to define the functions of phytochemicals as potent PPAR pharmacological agonists in underlying disease mechanisms and their related complications.
Collapse
Affiliation(s)
- Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mobina Ghojoghnejad
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Basil D. Roufogalis
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Seyed Adel Maollem
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Devaux CA, Raoult D. The impact of COVID-19 on populations living at high altitude: Role of hypoxia-inducible factors (HIFs) signaling pathway in SARS-CoV-2 infection and replication. Front Physiol 2022; 13:960308. [PMID: 36091390 PMCID: PMC9454615 DOI: 10.3389/fphys.2022.960308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Cases of coronavirus disease 2019 (COVID-19) have been reported worldwide. However, one epidemiological report has claimed a lower incidence of the disease in people living at high altitude (>2,500 m), proposing the hypothesis that adaptation to hypoxia may prove to be advantageous with respect to SARS-CoV-2 infection. This publication was initially greeted with skepticism, because social, genetic, or environmental parametric variables could underlie a difference in susceptibility to the virus for people living in chronic hypobaric hypoxia atmospheres. Moreover, in some patients positive for SARS-CoV-2, early post-infection ‘happy hypoxia” requires immediate ventilation, since it is associated with poor clinical outcome. If, however, we accept to consider the hypothesis according to which the adaptation to hypoxia may prove to be advantageous with respect to SARS-CoV-2 infection, identification of the molecular rational behind it is needed. Among several possibilities, HIF-1 regulation appears to be a molecular hub from which different signaling pathways linking hypoxia and COVID-19 are controlled. Interestingly, HIF-1α was reported to inhibit the infection of lung cells by SARS-CoV-2 by reducing ACE2 viral receptor expression. Moreover, an association of the rs11549465 variant of HIF-1α with COVID-19 susceptibility was recently discovered. Here, we review the evidence for a link between HIF-1α, ACE2 and AT1R expression, and the incidence/severity of COVID-19. We highlight the central role played by the HIF-1α signaling pathway in the pathophysiology of COVID-19.
Collapse
Affiliation(s)
- Christian Albert Devaux
- Aix-Marseille University, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique, Marseille, France
- *Correspondence: Christian Albert Devaux,
| | - Didier Raoult
- Aix-Marseille University, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
7
|
Nimer RM, Khabour OF, Swedan SF, Kofahi HM. Effect of natural products use prior to infection with COVID-19 on disease severity and hospitalization: A self-reported cross-sectional survey study. F1000Res 2022; 11:639. [PMID: 35919098 PMCID: PMC9294495 DOI: 10.12688/f1000research.121933.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Managing coronavirus disease 2019 (COVID-19) using available resources is essential to reduce the health burden of disease. The severity of COVID-19 is affected by nutritional status. In this study the effect of natural product use prior to infection with COVID-19 on disease severity and hospitalization was explored. Methods: This was a cross-sectional study. Between March and July 2021, a self-administered survey was conducted in Jordan. Individuals who recovered from COVID-19 and were ≥18 years old were the study population. Study measures included the use of natural products, COVID-19 severity, and hospitalization status. A multivariate regression model was used for statistical analysis. Results:
The mean age (mean ± SD) of the study sample (n=2,148) was 40.25 ± 15.58 years old. Multivariate logistic regression showed that the regular intake of carnation (OR [0.56], CI [0.37–0.85]), onion (OR [0.69], CI [0.52–0.92]), lemon (OR [0.68], CI [0.51–0.90]), and citrus fruits (OR [0.66], CI [0.50–0.89]) before infection were associated with a substantial reduction in COVID-19 severity (P<0.01). Also, the consumption of carnation (OR [0.55], CI [0.34–0.88]), lemon (OR [0.57], CI [0.42–0.78]), and citrus fruits (OR [0.61], CI [0.44–0.84]) were associated with a significant decrease in the frequency of COVID-19-induced hospitalization (P<0.01). Conclusions: Regular consumption of carnation, lemon, and citrus fruits before infection was associated with better outcomes for COVID-19. Studies on other populations are required to confirm these findings.
Collapse
Affiliation(s)
- Refat M. Nimer
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Omar F. Khabour
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Samer F. Swedan
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Hassan M. Kofahi
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
8
|
Rossi RE, Chen J, Caplin ME. The Role of Diet and Supplements in the Prevention and Progression of COVID-19: Current Knowledge and Open Issues. Prev Nutr Food Sci 2022; 27:137-149. [PMID: 35919576 PMCID: PMC9309075 DOI: 10.3746/pnf.2022.27.2.137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/22/2022] [Accepted: 03/22/2022] [Indexed: 01/08/2023] Open
Abstract
A healthy diet and dietary supplements have gained attention as potential co-adjuvants in managing and preventing coronavirus disease 2019 (COVID-19). This paper critically reviews the current evidence regarding the impact of diet and supplements on the prevention and progression of COVID-19. According to available data, a healthy diet and normal weight are considered protective factors. Regarding dietary supplementation, the most robust results from human studies are for vitamin C, which appears to decrease inflammatory markers and suppress cytokine storm. A small, randomized trial showed that a high dose of vitamin D significantly reduced the need for intensive care unit treatment of patients requiring hospitalization for COVID-19. According to retrospective human studies, there is limited evidence for vitamin E and selenium supplements. Animal studies have investigated the effects of green tea and curcumin. Xanthohumol and probiotics, interesting for their antiviral, anti-inflammatory, and immunoregulatory properties, need formal clinical study. In summary, there is promising evidence supporting the role of diet and supplements as co-adjuvants in the treatment of COVID-19. Further studies and properly designed clinical trials are necessary to draw more robust conclusions; however, it is not unreasonable to take a pragmatic approach and promote the use of appropriate diet and supplements to counter the effects of COVID-19, ideally with a mechanism to assess outcomes.
Collapse
Affiliation(s)
- Roberta Elisa Rossi
- Hepatology and Hepato-Pancreatic-Biliary Surgery and Liver Transplantation, Fondazione IRCCS, Istituto Nazionale Tumori, Milan, MI 20133, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, MI 20122, Italy
| | - Jie Chen
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510275, China
| | - Martyn Evan Caplin
- Centre for Gastroenterology, Royal Free Hospital, London NW3 2QG, UK
- Division of Medicine, Faculty of Medical Sciences, University College London, London WC1E 6BT, UK
| |
Collapse
|
9
|
Alesci A, Aragona M, Cicero N, Lauriano ER. Can nutraceuticals assist treatment and improve covid-19 symptoms? Nat Prod Res 2022; 36:2672-2691. [PMID: 33949266 DOI: 10.1080/14786419.2021.1914032] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Viral diseases have always played an important role in public and individual health. Since December 2019, the world is facing a pandemic of SARS-CoV-2, a coronavirus that results in a syndrome known as COVID-19. Several studies were conducted to implement antiviral drug therapy, until the arrival of SARS-CoV-2 vaccines. Numerous scientific investigations have considered some nutraceuticals as an additional treatment of COVID-19 patients to improve their clinical picture. In this review, we would like to emphasize the studies conducted to date about this issue and try to understand whether the use of nutraceuticals as a supplementary therapy to COVID-19 may be a valid and viable avenue. Based on the results obtained so far, quercetin, astaxanthin, luteolin, glycyrrhizin, lactoferrin, hesperidin and curcumin have shown encouraging data suggesting their use to prevent and counteract the symptoms of this pandemic infection.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marialuisa Aragona
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Nicola Cicero
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
10
|
Memarzia A, Saadat S, Behrouz S, Boskabady MH. Curcuma longa and curcumin affect respiratory and allergic disorders, experimental and clinical evidence: A comprehensive and updated review. Biofactors 2022; 48:521-551. [PMID: 34932258 DOI: 10.1002/biof.1818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/05/2021] [Indexed: 01/23/2023]
Abstract
Curcuma longa and its constituents, mainly curcumin, showed various of pharmacological effects in previous studies. This review article provides updated and comprehensive experimental and clinical evidence regarding the effects of C. longa and curcumin on respiratory, allergic, and immunologic disorders. Using appropriate keywords, databases including PubMed, Science Direct, and Scopus were searched until the end of October 2021. C. longa extracts and its constituent, curcumin, showed the relaxant effect on tracheal smooth muscle, which indicates their bronchodilatory effect in obstructive pulmonary diseases. The preventive effects of extracts of C. longa and curcumin were shown in experimental animal models of different respiratory diseases through antioxidant, immunomodulatory, and anti-inflammatory mechanisms. C. longa and curcumin also showed preventive effects on some lung disorders in the clinical studies. It was shown that the effects of C. longa on pulmonary diseases were mainly due to its constituent, curcumin. Pharmacological effects of C. longa extracts and curcumin on respiratory, allergic, and immunologic disorders indicate the possible therapeutic effect of the plant and curcumin on these diseases.
Collapse
Affiliation(s)
- Arghavan Memarzia
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeideh Saadat
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sepideh Behrouz
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Piao C, Zhuang C, Kang M, Oh J, Lee M. Pulmonary delivery of curcumin-loaded glycyrrhizic acid nanoparticles for anti-inflammatory therapy. Biomater Sci 2022; 10:6698-6706. [DOI: 10.1039/d2bm00756h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Curcumin was loaded into the glycyrrhizic acid nanoparticles and delivered into the lungs for the treatment of acute lung injury.
Collapse
Affiliation(s)
- Chunxian Piao
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Chuanyu Zhuang
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Minji Kang
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jihun Oh
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Minhyung Lee
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| |
Collapse
|
12
|
Liu Y, Zhou S, Xiang D, Ju L, Shen D, Wang X, Wang Y. Friend or Foe? The Roles of Antioxidants in Acute Lung Injury. Antioxidants (Basel) 2021; 10:1956. [PMID: 34943059 PMCID: PMC8750496 DOI: 10.3390/antiox10121956] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022] Open
Abstract
Acute lung injury (ALI) is an acute hypoxic respiratory insufficiency caused by various intra- and extra-pulmonary injury factors. The oxidative stress caused by excessive reactive oxygen species (ROS) produced in the lungs plays an important role in the pathogenesis of ALI. ROS is a "double-edged sword", which is widely involved in signal transduction and the life process of cells at a physiological concentration. However, excessive ROS can cause mitochondrial oxidative stress, leading to the occurrence of various diseases. It is well-known that antioxidants can alleviate ALI by scavenging ROS. Nevertheless, more and more studies found that antioxidants have no significant effect on severe organ injury, and may even aggravate organ injury and reduce the survival rate of patients. Our study introduces the application of antioxidants in ALI, and explore the mechanisms of antioxidants failure in various diseases including it.
Collapse
Affiliation(s)
- Yang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Y.L.); (D.S.)
| | - Shujun Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China; (S.Z.); (D.X.)
| | - Du Xiang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China; (S.Z.); (D.X.)
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan 430071, China;
- Human Genetics Resource Preservation Center of Hubei Province, Wuhan 430071, China
| | - Dexin Shen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Y.L.); (D.S.)
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Y.L.); (D.S.)
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China; (S.Z.); (D.X.)
| |
Collapse
|
13
|
Wang Y, Wang X, Zhang H, Han B, Ye Y, Zhang M, Wang Y, Xue J, Wang C. Transforming Growth Factor-β1 Promotes M1 Alveolar Macrophage Polarization in Acute Lung Injury by Up-Regulating DNMT1 to Mediate the microRNA-124/PELI1/IRF5 Axis. Front Cell Infect Microbiol 2021; 11:693981. [PMID: 34504806 PMCID: PMC8421846 DOI: 10.3389/fcimb.2021.693981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Objective Macrophages function as key orchestrators in the pathogenesis of acute lung injury (ALI). The current study sets out to investigate the molecular mechanism of transforming growth factor-β (TGFβ1) in the regulation of M1 alveolar macrophage polarization in ALI by modulating DNA methyltransferase 1 (DNMT1), along with the microRNA (miR)-124/Pellino 1 (PELI1)/interferon regulatory factor 5 (IRF5) axis. Methods First, ALI mouse models were established, and the proportion of M1 and M2 macrophages in mouse lung tissues was detected using flow cytometry. The targeting relationship between miR-124 and PELI1 was verified with the help of a dual luciferase gene reporter assay. Following TGFβ1 knockdown, RT-qPCR and Western blot assay were performed to analyze the expression patterns of TGFβ1, DNMT1, miR-124, and PELI1 and M1/M2 polarization markers in the lung tissues of ALI mice. Immunofluorescence was further employed to detect nuclear translocation of IRF5 in macrophages. Results The polarization of M1 macrophages was found to be positively correlated with the severity of lung injury. TGFβ1, DNMT1, PELI1 were highly expressed, while miR-124 was down-regulated in ALI mice, and IRF5 was primarily distributed in the nucleus. TGFβ1 promoted the polarization of M1 alveolar macrophages by up-regulating DNMT1. Furthermore, DNMT1 down-regulated the expression of miR-124, which led to enhancement of M1 alveolar macrophage polarization. Meanwhile, over-expression of miR-124 inhibited the nuclear translocation of IRF5 and suppressed M1 alveolar macrophage polarization. On the other hand, over-expression of PELI1 reversed the above trends. Conclusion Collectively, our findings indicated that TGFβ1 can promote the expression of DNMT1, which down-regulates miR-124 to activate PELI1 and nuclear translocation of IRF5, thereby aggravating ALI in mice.
Collapse
Affiliation(s)
- Yongqi Wang
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaoqing Wang
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Hong Zhang
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Biao Han
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuanmei Ye
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Mengjie Zhang
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yingbin Wang
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jianjun Xue
- Department of Anesthesiology, Gansu Provincial Hospital of TCM, Lanzhou, China
| | - Chun'ai Wang
- Department of Anesthesiology, Gansu Provincial Hospital of TCM, Lanzhou, China
| |
Collapse
|
14
|
Lin Y, Yang P. Phillygenin inhibits the inflammation and apoptosis of pulmonary epithelial cells by activating PPARγ signaling via downregulation of MMP8. Mol Med Rep 2021; 24:775. [PMID: 34490481 PMCID: PMC8441984 DOI: 10.3892/mmr.2021.12415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/10/2021] [Indexed: 01/01/2023] Open
Abstract
Acute lung injury (ALI) is often responsible for the high morbidity of critically ill patients. The present study aimed to investigate whether phillygenin (PHI) can inhibit inflammation and apoptosis of pulmonary epithelial cells by activating peroxisome proliferator-activated receptor γ (PPARγ) signaling. The in vitro model of ALI was established using lipopolysaccharide (LPS) and PHI was used to treat the LPS-induced cells. Cell viability was assessed using the MTT assay and the concentration levels of the inflammatory factors were detected by ELISA. Western blotting and reverse transcription-quantitative PCR were conducted to measure the expression levels of the inflammation- and apoptosis-associated proteins. The MMP8-overexpression plasmid was transfected into LPS-induced cells, which were treated with PHI treatment and the expression levels of PPARγ were detected via western blotting. PHI treatment suppressed the induction of inflammation and apoptosis of LPS-induced BEAS-2B cells. Furthermore, the expression levels of MMP8 in BEAS-2B cells induced by LPS were decreased following PHI treatment. Following transfection of the MMP8 overexpression plasmid into the LPS-induced BEAS-2B cells and subsequent treatment of these cells with PHI, the expression levels of PPARγ were decreased. In conclusion, it was shown that PHI inhibited the inflammation and apoptosis of pulmonary epithelial cells by activating PPARγ signaling via downregulating MMP8. These data may provide valuable information for future studies exploring the therapeutic effects of PHI for ALI.
Collapse
Affiliation(s)
- Yufeng Lin
- Department of Pediatrics, Gaolangang Hospital of Zhuhai People's Hospital, Zhuhai, Guangdong 519050, P.R. China
| | - Peng Yang
- Department of PICU, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong 271000, P.R. China
| |
Collapse
|
15
|
Kaneko S, Takasawa K, Asada K, Shinkai N, Bolatkan A, Yamada M, Takahashi S, Machino H, Kobayashi K, Komatsu M, Hamamoto R. Epigenetic Mechanisms Underlying COVID-19 Pathogenesis. Biomedicines 2021; 9:1142. [PMID: 34572329 PMCID: PMC8466119 DOI: 10.3390/biomedicines9091142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
In 2019, a novel severe acute respiratory syndrome called coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was reported and was declared a pandemic by the World Health Organization (WHO) in March 2020. With the advancing development of COVID-19 vaccines and their administration globally, it is expected that COVID-19 will converge in the future; however, the situation remains unpredictable because of a series of reports regarding SARS-CoV-2 variants. Currently, there are still few specific effective treatments for COVID-19, as many unanswered questions remain regarding the pathogenic mechanism of COVID-19. Continued elucidation of COVID-19 pathogenic mechanisms is a matter of global importance. In this regard, recent reports have suggested that epigenetics plays an important role; for instance, the expression of angiotensin I converting enzyme 2 (ACE2) receptor, an important factor in human infection with SARS-CoV-2, is epigenetically regulated; further, DNA methylation status is reported to be unique to patients with COVID-19. In this review, we focus on epigenetic mechanisms to provide a new molecular framework for elucidating the pathogenesis of SARS-CoV-2 infection in humans and of COVID-19, along with the possibility of new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Syuzo Kaneko
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Ken Takasawa
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Ken Asada
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Norio Shinkai
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Amina Bolatkan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Masayoshi Yamada
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- National Cancer Center Hospital, Department of Endoscopy, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Satoshi Takahashi
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Hidenori Machino
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Kazuma Kobayashi
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Masaaki Komatsu
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
16
|
Development of mode of action networks related to the potential role of PPARγ in respiratory diseases. Pharmacol Res 2021; 172:105821. [PMID: 34403731 DOI: 10.1016/j.phrs.2021.105821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/30/2022]
Abstract
The peroxisome proliferator-activated receptor γ (PPARγ) is a key transcription factor, operating at the intercept of metabolic control and immunomodulation. It is ubiquitously expressed in multiple tissues and organs, including lungs. There is a growing body of information supporting the role of PPARγ signalling in respiratory diseases. The aim of the present study was to develop mode of action (MoA) networks reflecting the relationships between PPARγ signalling and the progression/alleviation of a spectrum of lung pathologies. Data mining was performed using the resources of the NIH PubMed and PubChem information systems. By linking available data on pathological/therapeutic effects of PPARγ modulation, knowledge-based MoA networking at different levels of biological organization (molecular, cellular, tissue, organ, and system) was performed. Multiple MoA networks were developed to relate PPARγ modulation to the progress or the alleviation of pulmonary disorders, triggered by diverse pathogenic, genetic, chemical, or mechanical factors. Pharmacological targeting of PPARγ signalling was discussed with regard to ligand- and cell type-specific effects in the context of distinct disease inductor- and disease stage-dependent patterns. The proposed MoA networking analysis allows for a better understanding of the potential role of PPARγ modulation in lung pathologies. It presents a mechanistically justified basis for further computational, experimental, and clinical monitoring studies on the dynamic control of PPARγ signalling in respiratory diseases.
Collapse
|
17
|
Liang D, Wen Z, Han W, Li W, Pan L, Zhang R. Curcumin protects against inflammation and lung injury in rats with acute pulmonary embolism with the involvement of microRNA-21/PTEN/NF-κB axis. Mol Cell Biochem 2021; 476:2823-2835. [PMID: 33730297 DOI: 10.1007/s11010-021-04127-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 03/04/2021] [Indexed: 02/08/2023]
Abstract
This study was intended to investigate the effect of Curcumin on acute pulmonary embolism (APE) via microRNA-21 (miR-21)/PTEN/NF-κB axis. APE model was induced on rats and administrated with Curcumin. Western blot analysis and RT-qPCR manifested the downregulation of Sp1, miR-21 and NF-κB, but the upregulation of PTEN in Curcumin-treated APE rats. Blood gas analysis, ELISA, and weighing of wet weight/dry weight (W/D) ratio indicated that Curcumin diminished mPAP and RVSP levels, W/D ratio, thrombus volume, and inflammatory factors in the lungs of APE rats. Further mechanical analysis was conducted by dual-luciferase reporter assays and ChIP assay, which showed that Sp1 increased miR-21 expression by binding to the miR-21 promoter, and that PTEN was targeted by miR-21. The APE rats were injected with adenovirus to evaluate the effect of Sp1, miR-21, or PTEN on lung injury and inflammation. It was observed that downregulation of miR-21 or Sp1, or upregulation of PTEN diminished mPAP and RVSP levels, W/D ratio, thrombus volume, and inflammatory factors in the lungs of APE rats. In summary, Curcumin decreased miR-21 expression by downregulating Sp1 to upregulate PTEN and to impair the NF-κB signaling pathway, thus suppressing lung injury and inflammation in APE rats.
Collapse
Affiliation(s)
- Dean Liang
- Department of Vascular Surgery, Luoyang Central Hospital Affiliated To Zhengzhou University, Luoyang, 471009, Henan, People's Republic of China
| | - Zhiguo Wen
- Department of Vascular Surgery, Luoyang Central Hospital Affiliated To Zhengzhou University, Luoyang, 471009, Henan, People's Republic of China
| | - Wanli Han
- Department of Vascular Surgery, Luoyang Central Hospital Affiliated To Zhengzhou University, Luoyang, 471009, Henan, People's Republic of China
| | - Wenming Li
- Department of Vascular Surgery, Luoyang Central Hospital Affiliated To Zhengzhou University, Luoyang, 471009, Henan, People's Republic of China
| | - Longfei Pan
- Department of Emergency Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Ruipeng Zhang
- Department of Vascular Surgery, Shaanxi Provincial People's Hospital, No. 256, Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, People's Republic of China.
| |
Collapse
|
18
|
Rattis BAC, Ramos SG, Celes MRN. Curcumin as a Potential Treatment for COVID-19. Front Pharmacol 2021; 12:675287. [PMID: 34025433 PMCID: PMC8138567 DOI: 10.3389/fphar.2021.675287] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/21/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease that rapidly spread throughout the world leading to high mortality rates. Despite the knowledge of previous diseases caused by viruses of the same family, such as MERS and SARS-CoV, management and treatment of patients with COVID-19 is a challenge. One of the best strategies around the world to help combat the COVID-19 has been directed to drug repositioning; however, these drugs are not specific to this new virus. Additionally, the pathophysiology of COVID-19 is highly heterogeneous, and the way of SARS-CoV-2 modulates the different systems in the host remains unidentified, despite recent discoveries. This complex and multifactorial response requires a comprehensive therapeutic approach, enabling the integration and refinement of therapeutic responses of a given single compound that has several action potentials. In this context, natural compounds, such as Curcumin, have shown beneficial effects on the progression of inflammatory diseases due to its numerous action mechanisms: antiviral, anti-inflammatory, anticoagulant, antiplatelet, and cytoprotective. These and many other effects of curcumin make it a promising target in the adjuvant treatment of COVID-19. Hence, the purpose of this review is to specifically point out how curcumin could interfere at different times/points during the infection caused by SARS-CoV-2, providing a substantial contribution of curcumin as a new adjuvant therapy for the treatment of COVID-19.
Collapse
Affiliation(s)
- Bruna A. C. Rattis
- Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, Brazil
| | - Simone G. Ramos
- Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Mara R. N. Celes
- Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, Brazil
| |
Collapse
|
19
|
Thimmulappa RK, Mudnakudu-Nagaraju KK, Shivamallu C, Subramaniam K, Radhakrishnan A, Bhojraj S, Kuppusamy G. Antiviral and immunomodulatory activity of curcumin: A case for prophylactic therapy for COVID-19. Heliyon 2021; 7:e06350. [PMID: 33655086 PMCID: PMC7899028 DOI: 10.1016/j.heliyon.2021.e06350] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/02/2020] [Accepted: 02/19/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease-19 (COVID-19), a devastating respiratory illness caused by SARS-associated coronavirus-2 (SARS-CoV-2), has already affected over 64 million people and caused 1.48 million deaths, just 12 months from the first diagnosis. COVID-19 patients develop serious complications, including severe pneumonia, acute respiratory distress syndrome (ARDS), and or multiorgan failure due to exaggerated host immune response following infection. Currently, drugs that were effective against SARS-CoV are being repurposed for SARS-CoV-2. During this public health emergency, food nutraceuticals could be promising prophylactic therapeutics for COVID-19. Curcumin, a bioactive compound in turmeric, exerts diverse pharmacological activities and is widely used in foods and traditional medicines. This review presents several lines of evidence, which suggest curcumin as a promising prophylactic, therapeutic candidate for COVID-19. First, curcumin exerts antiviral activity against many types of enveloped viruses, including SARS-CoV-2, by multiple mechanisms: direct interaction with viral membrane proteins; disruption of the viral envelope; inhibition of viral proteases; induce host antiviral responses. Second, curcumin protects from lethal pneumonia and ARDS via targeting NF-κB, inflammasome, IL-6 trans signal, and HMGB1 pathways. Third, curcumin is safe and well-tolerated in both healthy and diseased human subjects. In conclusion, accumulated evidence indicates that curcumin may be a potential prophylactic therapeutic for COVID-19 in the clinic and public health settings.
Collapse
Affiliation(s)
- Rajesh K. Thimmulappa
- Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysore, India
| | - Kiran Kumar Mudnakudu-Nagaraju
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, JSS Academy of Higher Education & Research, Mysore, India
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, JSS Academy of Higher Education & Research, Mysore, India
| | - K.J.Thirumalai Subramaniam
- Centre of Excellence in Nanoscience & Technology, Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Arun Radhakrishnan
- Centre of Excellence in Nanoscience & Technology, Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | | | - Gowthamarajan Kuppusamy
- Centre of Excellence in Nanoscience & Technology, Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| |
Collapse
|
20
|
He YQ, Zhou CC, Yu LY, Wang L, Deng JL, Tao YL, Zhang F, Chen WS. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms. Pharmacol Res 2021; 163:105224. [PMID: 33007416 PMCID: PMC7522693 DOI: 10.1016/j.phrs.2020.105224] [Citation(s) in RCA: 249] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS) as common life-threatening lung diseases with high mortality rates are mostly associated with acute and severe inflammation in lungs. With increasing in-depth studies of ALI/ARDS, significant breakthroughs have been made, however, there are still no effective pharmacological therapies for treatment of ALI/ARDS. Especially, the novel coronavirus pneumonia (COVID-19) is ravaging the globe, and causes severe respiratory distress syndrome. Therefore, developing new drugs for therapy of ALI/ARDS is in great demand, which might also be helpful for treatment of COVID-19. Natural compounds have always inspired drug development, and numerous natural products have shown potential therapeutic effects on ALI/ARDS. Therefore, this review focuses on the potential therapeutic effects of natural compounds on ALI and the underlying mechanisms. Overall, the review discusses 159 compounds and summarizes more than 400 references to present the protective effects of natural compounds against ALI and the underlying mechanism.
Collapse
Affiliation(s)
- Yu-Qiong He
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Can-Can Zhou
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lu-Yao Yu
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liang Wang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiu-Ling Deng
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu-Long Tao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Feng Zhang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| | - Wan-Sheng Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|
21
|
Yang G, Zhao Y. MicroRNA-490-3p inhibits inflammatory responses in LPS-induced acute lung injury of neonatal rats by suppressing the IRAK1/TRAF6 pathway. Exp Ther Med 2020; 21:152. [PMID: 33456519 PMCID: PMC7792502 DOI: 10.3892/etm.2020.9584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Acute lung injury (ALI) is a main reason for neonatal death. Studying the molecular mechanism behind neonatal ALI is critical for the development of therapeutic strategies. The present study explored microRNA (miR)-490-3p-mediated regulatory effects on lipopolysaccharide (LPS)-induced neonatal ALI. Initially, LPS (10 mg/kg body weight) was injected to 3-8 day old neonatal SD rats to induce ALI, and LPS (100 ng/ml) was used to treat lung epithelial cells to construct an ALI model in vitro. Next, miR-490-3p, pro-inflammatory factors (that included IL-1β, IL-6 and TNFα), interleukin 1 receptor associated kinase 1 (IRAK1) and TNF receptor associated factor 6 (TRAF6) mRNA expression levels in lung tissues and epithelial cells were assessed via reverse transcription-quantitative PCR. In addition, miR-490-3p mimics were adopted to construct its overexpressed cell model, and Cell Counting Kit-8 and BrdU assays were conducted to assess cell viability. Furthermore, the miR-490-3p target, IRAK was predicted by bioinformatics analysis and verified via Dual-luciferase reporter gene assay. The results revealed that miR-490-3p was markedly downregulated in an LPS-induced rat ALI model, while IL-1β, IL-6, TNFα, IRAK1 and TRAF6 were all upregulated and negatively correlated with miR-490-3p expression. Moreover, overexpressed miR-490-3p significantly inhibited LPS-induced lung epithelial cell injury and inflammatory response. Mechanistically, miR-490-3p targeted and attenuated IRAK1 expression, which thus inactivated the LPS-mediated TRAF6/NF-κB pathway. Overall, the present study indicated that miR-490-3p overexpression significantly inhibited LPS-induced ALI and inflammatory responses by restricting the IRAK1/TRAF6 pathway.
Collapse
Affiliation(s)
- Guang Yang
- Department of Pediatrics, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yuan Zhao
- Department of Neonatal Internal Medicine, Shanxi Children's Hospital, Taiyuan, Shanxi 030013, P.R. China
| |
Collapse
|
22
|
Babaei F, Nassiri‐Asl M, Hosseinzadeh H. Curcumin (a constituent of turmeric): New treatment option against COVID-19. Food Sci Nutr 2020; 8:5215-5227. [PMID: 33133525 PMCID: PMC7590269 DOI: 10.1002/fsn3.1858] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
In late December 2019, the outbreak of respiratory illness emerged in Wuhan, China, and spreads worldwide. World Health Organization (WHO) named this disease severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused by a new member of beta coronaviruses. Several medications are prescribed to patients, and some clinical trials are underway. Scientists are trying to find a specific drug against this virus. In this review, we summarize the pathogenesis, clinical features, and current treatments of coronavirus disease 2019 (COVID-19). Then, we describe the possible therapeutic effects of curcumin and its molecular mechanism against coronavirus-19. Curcumin, as an active constituent of Curcuma longa (turmeric), has been studied in several experimental and clinical trial studies. Curcumin has some useful clinical effects such as antiviral, antinociceptive, anti-inflammatory, antipyretic, and antifatigue effects that could be effective to manage the symptoms of the infected patient with COVID-19. It has several molecular mechanisms including antioxidant, antiapoptotic, and antifibrotic properties with inhibitory effects on Toll-like receptors, NF-κB, inflammatory cytokines and chemokines, and bradykinin. Scientific evidence suggests that curcumin could have a potential role to treat COVID-19. Thus, the use of curcumin in the clinical trial, as a new treatment option, should be considered.
Collapse
Affiliation(s)
- Fatemeh Babaei
- Department of Clinical BiochemistrySchool of Medicine, Student Research CommitteeShahid Beheshti University of Medical SciencesTehranIran
| | - Marjan Nassiri‐Asl
- Department of Pharmacology and Neurobiology Research CenterSchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and ToxicologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
23
|
Oo TT, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. Potential Roles of Myeloid Differentiation Factor 2 on Neuroinflammation and Its Possible Interventions. Mol Neurobiol 2020; 57:4825-4844. [PMID: 32803490 DOI: 10.1007/s12035-020-02066-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
Neuroinflammation is the primary response by immune cells in the nervous system to protect against infection. Chronic and uncontrolled neuroinflammation triggers neuronal injury and neuronal death resulting in a variety of neurodegenerative disorders. Therefore, fine tuning of the immune response in the nervous system is now extensively considered as a potential therapeutic intervention for those diseases. The immune cells of the nervous system express Toll-like receptor 4 (TLR4) together with myeloid differentiation factor 2 (MD-2) to protect against the pathogens. Over the last 10 years, antagonists targeting the functional domains of MD-2 have become attractive pharmacological intervention strategies in pre-clinical studies into neuroinflammation and its associated brain pathologies. This review aims to summarize and discuss the roles of TLR4-MD-2 signaling pathway activation in various models of neuroinflammation. This review article also highlights the studies reporting the effect of MD-2 antagonists on neuroinflammation in in vitro and in vivo studies.
Collapse
Affiliation(s)
- Thura Tun Oo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand. .,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
24
|
Wu Y, Jiang W, Lu Z, Su W, Liu N, Guo F. miR-138-5p targets sirtuin1 to regulate acute lung injury by regulation of the NF-κB signaling pathway. Can J Physiol Pharmacol 2020; 98:522-530. [PMID: 32729719 DOI: 10.1139/cjpp-2019-0559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acute lung injury (ALI), a disease with a high mortality rate, is a noncardiogenic pulmonary inflammatory response and characterized by damage to the pulmonary system. In this study, we explored the mechanism of the occurrence and development of ALI. It was firstly found that miR-138-5p could inhibit the expression of sirtuin1 (SIRT1), and we further demonstrated that miR-138-5p targets directly SIRT1 through the luciferase assay, while the latter negatively regulated the expression of NF-κB. A549 cells were treated with lipopolysaccharide in vitro to simulate ALI cells and induce ALI in the model mice. The results showed that inhibiting the expression of miR-138-5p could effectively increase the viability of damaged cells, promote cell proliferation, reduce apoptosis, inhibit the inflammatory response, reduce oxidative stress, and then relieve ALI symptoms. Collectively, our results suggested that miR-138-5p can inhibit SIRT1 expression and indirectly activate the NF-κB signaling pathway, thus regulating the development of ALI.
Collapse
Affiliation(s)
- Yinshan Wu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Weiliang Jiang
- Department of critical care, Xiasha Hospital Hangzhou, Hanzhou 310018, China
| | - Zhuhua Lu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Wei Su
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Nan Liu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Feng Guo
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| |
Collapse
|
25
|
Liu Z, Ying Y. The Inhibitory Effect of Curcumin on Virus-Induced Cytokine Storm and Its Potential Use in the Associated Severe Pneumonia. Front Cell Dev Biol 2020; 8:479. [PMID: 32596244 PMCID: PMC7303286 DOI: 10.3389/fcell.2020.00479] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 05/22/2020] [Indexed: 12/18/2022] Open
Abstract
Coronavirus infection, including SARS-CoV, MERS-CoV, and SARS-CoV2, causes daunting diseases that can be fatal because of lung failure and systemic cytokine storm. The development of coronavirus-evoked pneumonia is associated with excessive inflammatory responses in the lung, known as "cytokine storms," which results in pulmonary edema, atelectasis, and acute lung injury (ALI) or fatal acute respiratory distress syndrome (ARDS). No drugs are available to suppress overly immune response-mediated lung injury effectively. In light of the low toxicity and its antioxidant, anti-inflammatory, and antiviral activity, it is plausible to speculate that curcumin could be used as a therapeutic drug for viral pneumonia and ALI/ARDS. Therefore, in this review, we summarize the mounting evidence obtained from preclinical studies using animal models of lethal pneumonia where curcumin exerts protective effects by regulating the expression of both pro- and anti-inflammatory factors such as IL-6, IL-8, IL-10, and COX-2, promoting the apoptosis of PMN cells, and scavenging the reactive oxygen species (ROS), which exacerbates the inflammatory response. These studies provide a rationale that curcumin can be used as a therapeutic agent against pneumonia and ALI/ARDS in humans resulting from coronaviral infection.
Collapse
Affiliation(s)
- Ziteng Liu
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, School of Basic Medical Sciences, Nanchang University, Nanchang, China.,Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang, China
| | - Ying Ying
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, School of Basic Medical Sciences, Nanchang University, Nanchang, China.,Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
26
|
Lei J, Shen Y, Xv G, Di Z, Li Y, Li G. Aloin suppresses lipopolysaccharide-induced acute lung injury by inhibiting NLRP3/NF-κB via activation of SIRT1 in mice. Immunopharmacol Immunotoxicol 2020; 42:306-313. [PMID: 32419528 DOI: 10.1080/08923973.2020.1765373] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The purpose of this study was to explore the protective effects and potential mechanisms of aloin on lipopolysaccharide (LPS)-induced acute lung injury (ALI). METHODS Mice were pretreatment with aloin 1 h before LPS administration. The number of inflammatory cells and the levels of TNF-α and IL-1β was detected. The lung histopathological changes, wet/dry ratio, MPO activity, GSH, MDA, SOD, and the expression of NF-κB and NLRP3 inflammasome were measured. RESULTS The results showed that aloin significantly inhibited the number of total cells, neutrophils, and macrophages, as well as the levels of TNF-α and IL-1β in BALF induced by LPS. In addition, pretreatment with aloin also inhibited LPS-induced lung histopathological injuries, lung wet/dry ratio, MPO activity, and MDA content. The levels of GSH and SOD were decreased by LPS and treatment of aloin could increase the levels of GSH and SOD. To study the protective mechanisms of alion on LPS-induced ALI, the expression of SIRT1, NF-κB and NLRP3 inflammasome were tested. We found that aloin significantly inhibited the activation of NF-κB and NLRP3 inflammasome in ALI induced by LPS. Meanwhile, aloin was found to increase the expression of SIRT1 and inhibition of SIRT1 by EX-527 reversed the protective effects of aloin. CONCLUSIONS These results suggest that aloin exerts its protective effects on LPS-induced ALI by activation SIRT1, which subsequently results in the suppression of NF-κB and NLRP3 inflammasome.
Collapse
Affiliation(s)
- Jiaji Lei
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongbin Shen
- Department of Vascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangquan Xv
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhixin Di
- Department of ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongchao Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guanghua Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
27
|
Chai YS, Chen YQ, Lin SH, Xie K, Wang CJ, Yang YZ, Xu F. Curcumin regulates the differentiation of naïve CD4+T cells and activates IL-10 immune modulation against acute lung injury in mice. Biomed Pharmacother 2020; 125:109946. [DOI: 10.1016/j.biopha.2020.109946] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022] Open
|
28
|
Wang M, Gauthier A, Daley L, Dial K, Wu J, Woo J, Lin M, Ashby C, Mantell LL. The Role of HMGB1, a Nuclear Damage-Associated Molecular Pattern Molecule, in the Pathogenesis of Lung Diseases. Antioxid Redox Signal 2019; 31:954-993. [PMID: 31184204 PMCID: PMC6765066 DOI: 10.1089/ars.2019.7818] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 12/11/2022]
Abstract
Significance: High-mobility group protein box 1 (HMGB1), a ubiquitous nuclear protein, regulates chromatin structure and modulates the expression of many genes involved in the pathogenesis of lung cancer and many other lung diseases, including those that regulate cell cycle control, cell death, and DNA replication and repair. Extracellular HMGB1, whether passively released or actively secreted, is a danger signal that elicits proinflammatory responses, impairs macrophage phagocytosis and efferocytosis, and alters vascular remodeling. This can result in excessive pulmonary inflammation and compromised host defense against lung infections, causing a deleterious feedback cycle. Recent Advances: HMGB1 has been identified as a biomarker and mediator of the pathogenesis of numerous lung disorders. In addition, post-translational modifications of HMGB1, including acetylation, phosphorylation, and oxidation, have been postulated to affect its localization and physiological and pathophysiological effects, such as the initiation and progression of lung diseases. Critical Issues: The molecular mechanisms underlying how HMGB1 drives the pathogenesis of different lung diseases and novel therapeutic approaches targeting HMGB1 remain to be elucidated. Future Directions: Additional research is needed to identify the roles and functions of modified HMGB1 produced by different post-translational modifications and their significance in the pathogenesis of lung diseases. Such studies will provide information for novel approaches targeting HMGB1 as a treatment for lung diseases.
Collapse
Affiliation(s)
- Mao Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Alex Gauthier
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - LeeAnne Daley
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Katelyn Dial
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Jiaqi Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Joanna Woo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Mosi Lin
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Charles Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Lin L. Mantell
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
- Center for Inflammation and Immunology, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York
| |
Collapse
|
29
|
Yu X, Li C. Protective effects of propofol on experimental neonatal acute lung injury. Mol Med Rep 2019; 19:4507-4513. [PMID: 30942421 DOI: 10.3892/mmr.2019.10113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 12/17/2018] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate the effects of propofol on neonatal acute lung injury (ALI) in a rat model and to examine the molecular mechanisms underlying propofol function. A rat model of ALI was established by intraperitoneal injection of lipopolysaccharides (LPS). The neonatal rats were treated with various concentrations of propofol and a lung injury score was assessed. The protein expression levels of pro‑inflammatory cytokines was detected using ELISA. In the present study, oxidative stress was determined by measuring the level of malondialdehyde (MDA) and the activity of superoxide dismutase (SOD) in lung tissues. Reverse transcription quantitative‑polymerase chain reaction and western blot analysis were used to examine the mRNA and protein expression levels of the factors downstream to LPS signaling pathway. Treatment with propofol significantly alleviated LPS‑induced lung injury in neonatal rats as suggested by the decreased lung injury score, increased partial pressure of oxygen and decreased lung wet‑dry weight ratio. LPS promoted the upregulation of tumor necrosis factor α (TNF‑α), interleukin (IL)‑6 and IL‑1β in lung tissues and bronchoalveolar lavage fluid from neonatal rats exhibiting ALI. Notably, treatment with propofol decreased the expression levels of these factors. Additionally, LPS caused an increase in the levels of MDA, and a decrease in SOD activity, and treatment with propofol suppressed these effects in a dose‑dependent manner. Furthermore, LPS induced the upregulation of phosphorylated (p‑)p38, nuclear factor κ‑light‑chain‑enhancer of activated B cells (NF‑κB), p‑p65, NLR family pyrin domain containing 3 (NLRP3), apoptosis‑associated speck‑like protein containing CARD and caspase‑1 in lung tissues of neonatal rats, and treatment with propofol was able to downregulate these factors in a dose‑dependent manner. Propofol alleviated lung injury in neonatal rats with LPS‑induced ALI by preventing inflammation and oxidative stress via the regulation of the activity of the p38 mitogen‑activated protein kinase/NF‑κB signaling pathway and the expression levels of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Xiongwu Yu
- Department of Pediatric Surgery, Maternal and Child Health Care Hospital of Qujing, Qujing, Yunnan 655000, P.R. China
| | - Chuanfeng Li
- Department of Pediatric Surgery, Maternal and Child Health Care Hospital of Qujing, Qujing, Yunnan 655000, P.R. China
| |
Collapse
|
30
|
Lin Y, Yang Y. MiR-24 inhibits inflammatory responses in LPS-induced acute lung injury of neonatal rats through targeting NLRP3. Pathol Res Pract 2018; 215:683-688. [PMID: 30600184 DOI: 10.1016/j.prp.2018.12.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/03/2018] [Accepted: 12/25/2018] [Indexed: 12/20/2022]
Abstract
Inflammation plays an important role in the development of acute lung injury (ALI) in preterm infants. Despite the critical role of microRNA in inflammatory response, little is known about its function in ALI. In this study, we investigate the role of MicroRNA-24 (miR-24) in lipopolysaccharide (LPS) induced neonatal rats ALI and its potential mechanism. LPS was used to induce ALI neonatal animal model. miR-24 expression in the lung tissues of LPS-challenged neonatal rats was detected by qPCR. Proinflammatory factors, including tumor necrosis factor-alpha (TNF-α), IL-1β, IL-18 in the bronchoalveolar lavage fluid and lung tissues of LPS-challenged neonatal rats were measured by qRT-PCR and western blot, respectively. The mRNA levels of surfactant protein A (SP-A) and D (SP-D) was measured by qRT-PCR. Direct binding of miR-24 and pyrin domain-containing 3(NLRP3) were determined by dual luciferase assay. The levels of NLRP3, apoptosis-associated speck-like protein containing a C‑terminal caspase recruitment domain (ASC) and caspase-1 protein expression were detected by immunohistochemistry (IHC) staining and western blot, respectively. Our data indicated that LPS-induced lung injury in neonatal rats and resulted in significant downregulated of miR-24 expression. Overexpression of miR-24 significantly reduced LPS-induced lung damage and decreased the release of proinflammatory cytokine TNF-α, IL-6, IL-1β and SP-A, SP-D expression induced by LPS. In addition, miR-24 inhibited the expression of NLRP3 by directly targeting to the CDS region of NLRP3 mRNA. Furthermore, miR-24 overexpression attenuated lung inflammation and deactivated the NLRP3/caspase-1/IL-1β pathway in LPS-challenged neonatal rats. These data show that miR-24 alleviated inflammatory responses in LPS-induced ALI via targeting NLRP3.
Collapse
Affiliation(s)
- Yanfeng Lin
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Yang Yang
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| |
Collapse
|
31
|
朱 涛, 施 婵, 李 鹤, 何 婧, 杨 艳, 王 勤, 邓 欣, 吴 砚, 王 静, 赵 燕, 邓 火. [Curcumin suppresses cigarette smoke extract-induced oxidative stress through PPARγ/ NF-κB pathway in human bronchial epithelial cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1209-1214. [PMID: 30377131 PMCID: PMC6744059 DOI: 10.3969/j.issn.1673-4254.2018.10.09] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To investigate the effect of curcumin against cigarette smoke extract (CSE)- induced oxidative stress in human bronchial epithelial cells and explore the underlying mechanism. METHODS Human bronchial epithelial cell line 16HBE was treated for 24 h with curcumin, CSE, CSE + curcumin, and CSE + curcumin with transfection by a short hairpin RNA targeting PPARγ (shPPARγ). MTT assay was used to observe the changes in the cell viability after the treatments. Quantitative real-time PCR was performed to detect the mRNA expressions of tumor necrosis factor-α (TNF-α), iNOS and PPARγ in the cells, and the protein expressions of iNOS, PPARγ and the phosphorylation of NF-κB p65 were detected using Western blotting. RESULTS The treatments did not cause significant changes in the cell viability. Exposure to CSE for 24 h significantly lowered PPARγ expression and increased TNF-α and iNOS expressions and phosphorylation of NF-κB p65 in the cells. The effects of CSE were significantly suppressed by curcumin, but transfection of the cells with shRNA-PPARγ obviously abrogated the suppressive effects of curcumin. CONCLUSIONS Curcumin suppresses CSE-induced oxidative stress and inflammation via the PPARγ/NF-κB signaling pathway in 16HBE cells, suggesting the potential of curcumin in the treatment of chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- 涛 朱
- 重庆医科大学附属第二医院呼吸内科,重庆 400010Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - 婵妹 施
- 南方医科大学珠江医院呼吸内科,广东 广州 510280Department of Respiratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - 鹤 李
- 重庆医科大学附属第二医院呼吸内科,重庆 400010Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - 婧 何
- 重庆医科大学附属第二医院呼吸内科,重庆 400010Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - 艳丽 杨
- 重庆医科大学附属第二医院呼吸内科,重庆 400010Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - 勤 王
- 重庆医科大学附属第二医院呼吸内科,重庆 400010Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - 欣雨 邓
- 重庆医科大学附属第二医院呼吸内科,重庆 400010Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - 砚樵 吴
- 重庆医科大学附属第二医院呼吸内科,重庆 400010Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - 静 王
- 重庆医科大学附属第二医院呼吸内科,重庆 400010Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - 燕 赵
- 重庆医科大学附属第二医院呼吸内科,重庆 400010Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - 火金 邓
- 南方医科大学珠江医院呼吸内科,广东 广州 510280Department of Respiratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|