1
|
Stagno J, Deme J, Dwivedi V, Lee YT, Lee HK, Yu P, Chen SY, Fan L, Degenhardt MS, Chari R, Young H, Lea S, Wang YX. Structural investigation of an RNA device that regulates PD-1 expression in mammalian cells. Nucleic Acids Res 2025; 53:gkaf156. [PMID: 40071935 PMCID: PMC11897892 DOI: 10.1093/nar/gkaf156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 03/15/2025] Open
Abstract
Synthetic RNA devices are engineered to control gene expression and offer great potential in both biotechnology and clinical applications. Here, we present multidisciplinary structural and biochemical data for a tetracycline (Tc)-responsive RNA device (D43) in both ligand-free and bound states, providing a structure-dynamical basis for signal transmission. Activation of self-cleavage is achieved via ligand-induced conformational and dynamical changes that stabilize the elongated bridging helix harboring the communication module, which drives proper coordination of the catalytic residues. We then show the utility of CRISPR-integrated D43 in EL4 lymphocytes to regulate programmed cell death protein 1 (PD-1), a key receptor of immune checkpoints. Treatment of these cells with Tc showed a dose-dependent reduction in PD-1 by immunostaining and a decrease in messenger RNA levels by quantitative PCR as compared with wild type. PD-1 expression was recoverable upon removal of Tc. These results provide mechanistic insight into RNA devices with potential for cancer immunotherapy or other applications.
Collapse
Affiliation(s)
- Jason R Stagno
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Justin C Deme
- Molecular Basis of Disease Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Vibha Dwivedi
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Yun-Tzai Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Hyun Kyung Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Ping Yu
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Szu-Yun Chen
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, SAXS Core Facility of the National Cancer Institute, Frederick, MD, 21702, United States
| | - Maximilia F S Degenhardt
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Raj Chari
- Genome Modification Core, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Howard A Young
- Cellular and Molecular Immunology Section, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Susan M Lea
- Molecular Basis of Disease Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| |
Collapse
|
2
|
Tong LW, Hu YS, Yu SJ, Li CL, Shao JW. Current application and future perspective of CRISPR/cas9 gene editing system mediated immune checkpoint for liver cancer treatment. NANOTECHNOLOGY 2024; 35:402002. [PMID: 38964289 DOI: 10.1088/1361-6528/ad5f33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Liver cancer, which is well-known to us as one of human most prevalent malignancies across the globe, poses a significant risk to live condition and life safety of individuals in every region of the planet. It has been shown that immune checkpoint treatment may enhance survival benefits and make a significant contribution to patient prognosis, which makes it a promising and popular therapeutic option for treating liver cancer at the current time. However, there are only a very few numbers of patients who can benefit from the treatment and there also exist adverse events such as toxic effects and so on, which is still required further research and discussion. Fortunately, the clustered regularly interspaced short palindromic repeat/CRISPR-associated nuclease 9 (CRISPR/Cas9) provides a potential strategy for immunotherapy and immune checkpoint therapy of liver cancer. In this review, we focus on elucidating the fundamentals of the recently developed CRISPR/Cas9 technology as well as the present-day landscape of immune checkpoint treatment which pertains to liver cancer. What's more, we aim to explore the molecular mechanism of immune checkpoint treatment in liver cancer based on CRISPR/Cas9 technology. At last, its encouraging and powerful potential in the future application of the clinic is discussed, along with the issues that already exist and the difficulties that must be overcome. To sum up, our ultimate goal is to create a fresh knowledge that we can utilize this new CRISPR/Cas9 technology for the current popular immune checkpoint therapy to overcome the treatment issues of liver cancer.
Collapse
Affiliation(s)
- Ling-Wu Tong
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yong-Shan Hu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Shi-Jing Yu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Cheng-Lei Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Jing-Wei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
3
|
Palaz F, Ozsoz M, Zarrinpar A, Sahin I. CRISPR in Targeted Therapy and Adoptive T Cell Immunotherapy for Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:975-995. [PMID: 38832119 PMCID: PMC11146628 DOI: 10.2147/jhc.s456683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Despite recent therapeutic advancements, outcomes for advanced hepatocellular carcinoma (HCC) remain unsatisfactory, highlighting the need for novel treatments. The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) gene-editing technology offers innovative treatment approaches, involving genetic manipulation of either cancer cells or adoptive T cells to combat HCC. This review comprehensively assesses the applications of CRISPR systems in HCC treatment, focusing on in vivo targeting of cancer cells and the development of chimeric antigen receptor (CAR) T cells and T cell receptor (TCR)-engineered T cells. We explore potential synergies between CRISPR-based cancer therapeutics and existing treatment options, discussing ongoing clinical trials and the role of CRISPR technology in improving HCC treatment outcomes with advanced safety measures. In summary, this review provides insights into the promising prospects and current challenges of using CRISPR technology in HCC treatment, with the ultimate goal of improving patient outcomes and revolutionizing the landscape of HCC therapeutics.
Collapse
Affiliation(s)
- Fahreddin Palaz
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Mehmet Ozsoz
- Department of Biomedical Engineering, Near East University, Nicosia, Turkey
| | - Ali Zarrinpar
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Ilyas Sahin
- University of Florida Health Cancer Center, Gainesville, FL, USA
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Xing Y, Qin F, Han L, Yang J, Zhang H, Qi Y, Tu S, Zhai Y. Multi‑omics approach to improve patient‑tailored therapy using immune checkpoint blockade and cytokine‑induced killer cell infusion in an elderly patient with lung cancer: A case report and literature review. Oncol Lett 2024; 27:203. [PMID: 38516684 PMCID: PMC10955685 DOI: 10.3892/ol.2024.14334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/06/2024] [Indexed: 03/23/2024] Open
Abstract
The 5-year survival rate of patients with advanced non-small cell lung cancer (NSCLC) remains low, despite recent advances in targeted therapy and immunotherapy. Therefore, there is a need to identify alternative strategies to improve treatment outcomes. Modern diagnostics can significantly facilitate the selection of treatment plans to improve patient outcomes. In the present study, multi-form diagnostic methodologies were adopted, including next-generation sequencing-based actionable gene sequencing, programmed death ligand 1 (PD-L1) immunohistochemistry, a circulating tumor cell (CTC) assay, flow cytometric analysis of lymphocyte subsets and computed tomography, to improve disease management in an 86-year-old female patient with relapsed metastatic NSCLC. High expression of PD-L1, elevated CTC tmutations, were observed. Based on these results, the patient was initially treated with the programmed death protein 1 blocking antibody sintilimab for two cycles, resulting in the stabilization of their condition, although the patient still exhibited severe pain and other symptoms, including fatigue, malaise, a loss of appetite and poor mental state. Informed by dynamic monitoring of the patient's response to treatment, the treatment plan was subsequently adjusted to a combination therapy with sintilimab and autologous cytokine-induced killer cell infusion, which eventually led to improved outcomes in both the management of the cancer and quality of life. In conclusion, multi-omics analysis may be used to establish patient-tailored therapies to improve clinical outcomes in hard-to-treat elderly patients with metastatic NSCLC.
Collapse
Affiliation(s)
- Yasi Xing
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Fangyuan Qin
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Lei Han
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Jingwen Yang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Hongrui Zhang
- Zhengzhou Shenyou Biotechnology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yong Qi
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Shichun Tu
- Zhengzhou Shenyou Biotechnology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
- Scintillon Institute for Biomedical and Bioenergy Research, San Diego, CA 92121, USA
| | - Yaping Zhai
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
5
|
Hou K, Xu X, Ge X, Jiang J, Ouyang F. Blockade of PD-1 and CTLA-4: A potent immunotherapeutic approach for hepatocellular carcinoma. Biofactors 2024; 50:250-265. [PMID: 37921427 DOI: 10.1002/biof.2012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/07/2023] [Indexed: 11/04/2023]
Abstract
Immune checkpoints (ICPs) can promote tumor growth and prevent immunity-induced cancer cell apoptosis. Fortunately, targeting ICPs, such as programmed cell death 1 (PD-1) or cytotoxic T lymphocyte associated protein 4 (CTLA-4), has achieved great success in the past few years and has gradually become an effective treatment for cancers, including hepatocellular carcinoma (HCC). However, many patients do not respond to ICP therapy due to acquired resistance and recurrence. Therefore, clarifying the specific mechanisms of ICP in the development of HCC is very important for enhancing the efficacy of anti-PD-1 and anti-CTLA-4 therapy. In particular, antigen presentation and interferon-γ (IFN-γ) signaling were reported to be involved in the development of resistance. In this review, we have explained the role and regulatory mechanisms of ICP therapy in HCC pathology. Moreover, we have also elaborated on combinations of ICP inhibitors and other treatments to enhance the antitumor effect. Collectively, recent advances in the pharmacological targeting of ICPs provide insights for the development of a novel alternative treatment for HCC.
Collapse
Affiliation(s)
- Kai Hou
- Clinical Research Center of the Second Affiliated Hospital, University of South China, Hengyang, Hunan, PR China
| | - Xiaohui Xu
- Department of Medicine of the Second Affiliated Hospital, University of South China, Hengyang, Hunan, PR China
| | - Xin Ge
- Clinical Research Center of the Second Affiliated Hospital, University of South China, Hengyang, Hunan, PR China
| | - Jiacen Jiang
- Department of Medicine of the Second Affiliated Hospital, University of South China, Hengyang, Hunan, PR China
| | - Fan Ouyang
- Department of Cardiology, Zhuzhou Hospital, the Affiliated Hospital of Xiangya Medical College of Central South University, Zhuzhou, Hunan, PR China
| |
Collapse
|
6
|
Yu S, Zhao R, Zhang B, Lai C, Li L, Shen J, Tan X, Shao J. Research progress and application of the CRISPR/Cas9 gene-editing technology based on hepatocellular carcinoma. Asian J Pharm Sci 2023; 18:100828. [PMID: 37583709 PMCID: PMC10424087 DOI: 10.1016/j.ajps.2023.100828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/17/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is now a common cause of cancer death, with no obvious change in patient survival over the past few years. Although the traditional therapeutic modalities for HCC patients mainly involved in surgery, chemotherapy, and radiotherapy, which have achieved admirable achievements, challenges are still existed, such as drug resistance and toxicity. The emerging gene therapy of clustered regularly interspaced short palindromic repeat/CRISPR-associated nuclease 9-based (CRISPR/Cas9), as an alternative to traditional treatment methods, has attracted considerable attention for eradicating resistant malignant tumors and regulating multiple crucial events of target gene-editing. Recently, advances in CRISPR/Cas9-based anti-drugs are presented at the intersection of science, such as chemistry, materials science, tumor biology, and genetics. In this review, the principle as well as statues of CRISPR/Cas9 technique were introduced first to show its feasibility. Additionally, the emphasis was placed on the applications of CRISPR/Cas9 technology in therapeutic HCC. Further, a broad overview of non-viral delivery systems for the CRISPR/Cas9-based anti-drugs in HCC treatment was summarized to delineate their design, action mechanisms, and anticancer applications. Finally, the limitations and prospects of current studies were also discussed, and we hope to provide comprehensively theoretical basis for the designing of anti-drugs.
Collapse
Affiliation(s)
- Shijing Yu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ruirui Zhao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Bingchen Zhang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Chunmei Lai
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Linyan Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jiangwen Shen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiarong Tan
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jingwei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
7
|
Wang Y, Huang R, Wang Z, Xiong J, Wang X, Zhang X. Facing challenges with hope: universal immune cells for hematologic malignancies. Cancer Biol Med 2023; 20:229-247. [PMID: 37144558 PMCID: PMC10157807 DOI: 10.20892/j.issn.2095-3941.2022.0759] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/07/2023] [Indexed: 05/06/2023] Open
Abstract
Many patients have achieved a favorable overall survival rate since allogenic hematopoietic stem cell transplantation (allo-HSCT) has been widely implemented to treat hematologic malignancies. However, graft-versus-host disease (GVHD) and complications of immunosuppressive drugs after allo-HSCT are the main causes of non-relapse mortality and a poor quality of life. In addition, GVHD and infusion-induced toxicity still occur with donor lymphocyte infusions (DLIs) and chimeric antigen receptor (CAR) T-cell therapy. Because of the special immune tolerance characteristics and anti-tumor ability of universal immune cells, universal immune cell therapy may strongly reduce GVHD, while simultaneously reducing tumor burden. Nevertheless, widespread application of universal immune cell therapy is mainly restricted by poor expansion and persistence efficacy. Many strategies have been applied to improve universal immune cell proliferation and persistence efficacy, including the use of universal cell lines, signaling regulation and CAR technology. In this review we have summarized current advances in universal immune cell therapy for hematologic malignancies with a discussion of future perspectives.
Collapse
Affiliation(s)
- Yuqing Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
- Jinfeng Laboratory, Chongqing 400037, China
| | - Ruihao Huang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Zheng Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Jingkang Xiong
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
- Jinfeng Laboratory, Chongqing 400037, China
| |
Collapse
|
8
|
Xu Y, Chen C, Guo Y, Hu S, Sun Z. Effect of CRISPR/Cas9-Edited PD-1/PD-L1 on Tumor Immunity and Immunotherapy. Front Immunol 2022; 13:848327. [PMID: 35300341 PMCID: PMC8920996 DOI: 10.3389/fimmu.2022.848327] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease9 (CRISPR/Cas9) gene editing technology implements precise programming of the human genome through RNA guidance. At present, it has been widely used in the construction of animal tumor models, the study of drug resistance regulation mechanisms, epigenetic control and innovation in cancer treatment. Tumor immunotherapy restores the normal antitumor immune response by restarting and maintaining the tumor-immune cycle. CRISPR/Cas9 technology has occupied a central position in further optimizing anti-programmed cell death 1(PD-1) tumor immunotherapy. In this review, we summarize the recent progress in exploring the regulatory mechanism of tumor immune PD-1 and programmed death ligand 1(PD-L1) based on CRISPR/Cas9 technology and its clinical application in different cancer types. In addition, CRISPR genome-wide screening identifies new drug targets and biomarkers to identify potentially sensitive populations for anti-PD-1/PD-L1 therapy and maximize antitumor effects. Finally, the strong potential and challenges of CRISPR/Cas9 for future clinical applications are discussed.
Collapse
Affiliation(s)
- Yanxin Xu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaxin Guo
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Huang SL, Wang YM, Wang QY, Feng GG, Wu FQ, Yang LM, Zhang XH, Xin HW. Mechanisms and Clinical Trials of Hepatocellular Carcinoma Immunotherapy. Front Genet 2021; 12:691391. [PMID: 34306031 PMCID: PMC8296838 DOI: 10.3389/fgene.2021.691391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/08/2021] [Indexed: 12/29/2022] Open
Abstract
Hepatocellular carcinoma (HCC), one of the most common and lethal tumors worldwide, is usually not diagnosed until the disease is advanced, which results in ineffective intervention and unfavorable prognosis. Small molecule targeted drugs of HCC, such as sorafenib, provided only about 2.8 months of survival benefit, partially due to cancer stem cell resistance. There is an urgent need for the development of new treatment strategies for HCC. Tumor immunotherapies, including immune check point inhibitors, chimeric antigen receptor T cells (CAR-T) and bispecific antibodies (BsAb), have shown significant potential. It is known that the expression level of glypican-3 (GPC3) was significantly increased in HCC compared with normal liver tissues. A bispecific antibody (GPC3-S-Fabs) was reported to recruit NK cells to target GPC3 positive cancer cells. Besides, bispecific T-cell Engagers (BiTE), including GPC3/CD3, an aptamer TLS11a/CD3 and EpCAM/CD3, were recently reported to efficiently eliminate HCC cells. It is known that immune checkpoint proteins programmed death-1 (PD-1) binding by programmed cell death-ligand 1 (PD-L1) activates immune checkpoints of T cells. Anti-PD-1 antibody was reported to suppress HCC progression. Furthermore, GPC3-based HCC immunotherapy has been shown to be a curative approach to prolong the survival time of patients with HCC in clinically trials. Besides, the vascular endothelial growth factor (VEGF) inhibitor may inhibit the migration, invasion and angiogenesis of HCC. Here we review the cutting-edge progresses on mechanisms and clinical trials of HCC immunotherapy, which may have significant implication in our understanding of HCC and its immunotherapy.
Collapse
Affiliation(s)
- Shao-Li Huang
- Department of Clinical Laboratory, Lianjiang People's Hospital, Zhanjiang, China.,Doctoral Scientific Research Center, Lianjiang People's Hospital, Zhanjiang, China.,Guangdong Medical University Affiliated Lianjiang People's Hospital, Zhanjiang, China
| | - Yu-Ming Wang
- Department of Spinal and Neural Functional Reconstruction, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China.,School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | | | - Guang-Gui Feng
- Department of Clinical Laboratory, Lianjiang People's Hospital, Zhanjiang, China.,Guangdong Medical University Affiliated Lianjiang People's Hospital, Zhanjiang, China
| | - Fu-Qing Wu
- Department of Clinical Laboratory, Lianjiang People's Hospital, Zhanjiang, China.,Guangdong Medical University Affiliated Lianjiang People's Hospital, Zhanjiang, China
| | - Liu-Ming Yang
- Doctoral Scientific Research Center, Lianjiang People's Hospital, Zhanjiang, China.,Guangdong Medical University Affiliated Lianjiang People's Hospital, Zhanjiang, China.,Department of Gastroenterology and Hepatology, Lianjiang People's Hospital, Zhanjiang, China
| | - Xi-He Zhang
- Doctoral Scientific Research Center, Lianjiang People's Hospital, Zhanjiang, China.,Guangdong Medical University Affiliated Lianjiang People's Hospital, Zhanjiang, China
| | - Hong-Wu Xin
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Faculty of Medicine, Yangtze University, Jingzhou, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Faculty of Medicine, Yangtze University, Jingzhou, China
| |
Collapse
|
10
|
Qi T, Fu J, Zhang W, Cui W, Xu X, Yue J, Wang Q, Tian X. Mutation of PD-1 immune receptor tyrosine-based switch motif (ITSM) enhances the antitumor activity of cytotoxic T cells. Transl Cancer Res 2020; 9:6811-6819. [PMID: 35117290 PMCID: PMC8798335 DOI: 10.21037/tcr-20-2118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/09/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Programmed cell death protein 1 (PD-1), as an immune checkpoint cell membrane receptor, negatively regulates T cell activation via its immune receptor, the tyrosine-based switch motif (ITSM). The purpose of this research was to evaluate the antitumor activity T cells with the ITSM mutation of PD-1 on non-small cell lung cancer (NSCLC) in vitro and in vivo. METHODS In this study, the tyrosine of ITSM in cytotoxic T cells was mutated using the adenine base editor (ABE)-xCas9 system to evaluate its effect on the antitumor activity of T cells against NSCLC. RESULTS Results showed that the PD-1-deficient T cells enhanced the death of the cocultured NSCLC cells compared with the normal T cells and saline solution. PD-1-deficient T cells also changed the interleukin 2(IL-2), interferon γ (IFN-γ), tumor necrosis factor α (TNF-α), and granulocyte-macrophage colony-stimulating factor (GM-CSF) secretion of T cells compared with those of the normal T cells. The effectiveness of ITSM mutation in enhancing the antitumor activity of PD-1-deficient T cells was verified in vivo by using a mouse xenograft model. The xenografted mice treated with PD-1-deficient T cells demonstrated repressed tumor growth of the NSCLC cells compared with those treated with normal T cells and saline solution. CONCLUSIONS The mutation of ITSM in cytotoxic T cell via the ABE-xCas9 system can significantly enhance the antitumor activity of T cells.
Collapse
Affiliation(s)
- Tongbing Qi
- Key Laboratory of Biomedical Engineering & Technology of Shandong High School, Qilu Medical University, Zibo, China
| | - Juan Fu
- Shandong Bio-focus Gene Science and Technology Ltd., Zibo, China
| | - Wen Zhang
- Clinical laboratory of Zibo Central Hospital, Zibo, China
| | - Weitong Cui
- Key Laboratory of Biomedical Engineering & Technology of Shandong High School, Qilu Medical University, Zibo, China
| | - Xiaosong Xu
- Shandong Bio-focus Gene Science and Technology Ltd., Zibo, China
| | - Jianmei Yue
- Department of Endocrinology, the First Hospital of Zibo City, Qilu Medical University, Zibo, China
| | - Qinglu Wang
- Key Laboratory of Biomedical Engineering & Technology of Shandong High School, Qilu Medical University, Zibo, China
| | - Xuewen Tian
- College of Sports and Health, Shandong Sport University, Jinan, China
| |
Collapse
|