1
|
Xu J, Shi P, Yang L, Cui H. Basic mechanism of mobilizing cell movement during invasion of glioblastoma and target selection of targeted therapy. J Adv Res 2025:S2090-1232(25)00286-3. [PMID: 40345646 DOI: 10.1016/j.jare.2025.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 04/09/2025] [Accepted: 04/27/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Glioblastoma (GBM), also known as glioblastoma multiforme, is a rapidly growing and highly invasive malignant tumor. Due to the inability to clearly distinguish between glioblastoma and normal tissue, surgery cannot achieve safe resection, often leading to poor patient prognosis and inevitable tumor recurrence. According to previous studies, GBM invasion is related to intercellular adhesion, matrix degradation, extracellular matrix and its related adhesion molecules, as well as the molecular matrix of protein hydrolases in the microenvironment of GBM cells and stromal cells. AIM OF REVIEW The aim is to enhance our understanding of the molecular mechanisms underlying GBM invasion and to advance research on targeted therapies for inhibiting GBM invasion. KEY SCIENTIFIC CONCEPTS OF REVIEW This article describes the protein hydrolases that may affect GBM cell invasion, changes in the cytoskeleton during motility, and the regulatory mechanisms of intracellular signaling pathways in GBM invasion. In addition, we also explored the possibility of targeted therapy against invasion related molecules in GBM.
Collapse
Affiliation(s)
- Jie Xu
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; Jinfeng Laboratory, Chongqing 401329, China
| | - Pengfei Shi
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; Jinfeng Laboratory, Chongqing 401329, China.
| | - Liqun Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China.
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; Jinfeng Laboratory, Chongqing 401329, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China.
| |
Collapse
|
2
|
Jiang C, Yue T, Jia Z, Song L, Zeng X, Bao Z, Li X, Cui Z, Mi W, Li Q. Disulfidptosis links the pathophysiology of ulcerative colitis and immune infiltration in colon adenocarcinoma. Sci Rep 2025; 15:5365. [PMID: 39948102 PMCID: PMC11825938 DOI: 10.1038/s41598-025-89128-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Ulcerative colitis (UC), a chronic inflammatory bowel disease, significantly increases the risk of colon adenocarcinoma (COAD). Disulfidptosis, a novel form of programmed cell death, has been implicated in various diseases, including UC. This study investigates the expression of disulfidptosis-related genes, particularly CD2AP and MYH10, in UC and COAD. Through analysis of public datasets, we found MYH10 significantly upregulated and CD2AP downregulated in UC compared to healthy controls, with consistent patterns in COAD. Immune infiltration analysis revealed correlations between these genes and specific immune cell types, suggesting their roles in immune modulation. Molecular docking showed strong binding affinities of UC drugs such as budesonide and sulfasalazine with CD2AP and MYH10. Connectivity Map analysis identified additional drug candidates, including simvastatin and mephenytoin, which may be repurposed for UC and COAD therapy. These findings suggest disulfidptosis-related genes as potential biomarkers and therapeutic targets, linking chronic inflammation to cancer progression.
Collapse
Affiliation(s)
- Chenhao Jiang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Teng Yue
- Epidemiology and Biostatistics Institute, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Ziyao Jia
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Lili Song
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaohang Zeng
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ziyu Bao
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xinying Li
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Zhuang Cui
- Epidemiology and Biostatistics Institute, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Wenyi Mi
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Qianqian Li
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
3
|
Tan Q, Li F, Wang J, Zou Y, Tang Y, Cai Y, Jiang X. HIF-1α Mediated Regulation of Glioblastoma Malignant Phenotypes through CD47 Protein: Understanding Functions and Mechanisms. J Cancer 2025; 16:750-764. [PMID: 39781344 PMCID: PMC11705044 DOI: 10.7150/jca.101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/23/2024] [Indexed: 01/12/2025] Open
Abstract
Glioblastoma (GBM) is a highly invasive and malignant primary intracranial tumor originating from glial cells, and it is associated with an extremely poor clinical prognosis. The hypoxic conditions within GBM promote various tumor cell processes such as angiogenesis, proliferation, migration, invasion, and drug resistance. A key aspect of tumor adaptation to the hypoxic environment and the promotion of malignant behaviors is the regulation of HIF-1α signaling pathways. However, the specific pathogenic mechanisms involving HIF-1α in GBM have not been thoroughly investigated. This study reveals significant overexpression of both HIF-1α and CD47 in GBM. Patients with high HIF-1α levels and CD47 expression had significantly reduced overall survival and disease-free survival times. Furthermore, a positive correlation was observed between the expression levels of HIF-1α and CD47 in GBM. Lentivirus-mediated knockdown of HIF-1α protein and plasmid-based overexpression of CD47 protein simultaneously enhanced cell proliferation, clonogenic potential and cell migration abilities in GBM, and HIF-1α was found to regulate key pathways, including the P-PI3K/P-AKT, SOX2/OCT4 and MMP2/MMP9 pathways, in GBM.
Collapse
Affiliation(s)
- Qijia Tan
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- Department of Neurosurgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Feng Li
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jun Wang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yuxi Zou
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yanping Tang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yingqian Cai
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xiaodan Jiang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| |
Collapse
|
4
|
Dutt R, Thorpe C, Galileo DS. QSOX1 Modulates Glioblastoma Cell Proliferation and Migration In Vitro and Invasion In Vivo. Cancers (Basel) 2024; 16:3620. [PMID: 39518060 PMCID: PMC11545231 DOI: 10.3390/cancers16213620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Quiescin Sulfhydryl Oxidase 1 (QSOX1) is an enzyme that catalyzes the oxidation of free thiols to generate disulfide bonds in a variety of proteins, including the cell surface and extracellular matrix. QSOX1 has been reported to be upregulated in a number of cancers, and the overexpression of QSOX1 has been correlated with aggressive cancers and poor patient prognosis. Glioblastoma (GBM) brain cancer has been practically impossible to treat effectively, with cells that rapidly invade normal brain tissue and escape surgery and other treatment. Thus, there is a crucial need to understand the multiple mechanisms that facilitate GBM cell invasion and to determine if QSOX1 is involved. Methods and Results: Here, we investigated the function of QSOX1 in human glioblastoma cells using two cell lines derived from T98G cells, whose proliferation, motility, and invasiveness has been shown by us to be dependent on disulfide bond-containing adhesion and receptor proteins, such as L1CAM and the FGFR. We lentivirally introduced shRNA to attenuate the QSOX1 protein expression in one cell line, and a Western blot analysis confirmed the decreased QSOX1 expression. A DNA content/cell cycle analysis using flow cytometry revealed 27% fewer knockdown cells in the S-phase of the cell cycle, indicating a reduced proliferation. A cell motility analysis utilizing our highly quantitative SuperScratch time-lapse microscopy assay revealed that knockdown cells migrated more slowly, with a 45% decrease in migration velocity. Motility was partly rescued by the co-culture of knockdown cells with control cells, indicating a paracrine effect. Surprisingly, knockdown cells exhibited increased motility when assayed using a Transwell migration assay. Our novel chick embryo orthotopic xenograft model was used to assess the in vivo invasiveness of knockdown vs. control cells, and tumors developed from both cell types. However, fewer invasive knockdown cells were observed after about a week. Conclusions: Our results indicate that an experimental reduction in QSOX1 expression in GBM cells leads to decreased cell proliferation, altered in vitro migration, and decreased in vivo invasion.
Collapse
Affiliation(s)
- Reetika Dutt
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA; (R.D.); (C.T.)
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA; (R.D.); (C.T.)
| | - Deni S. Galileo
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
5
|
Zhao X, Zhao Y, Zhang Y, Fan Q, Ke H, Chen X, Jin L, Tang H, Jiang Y, Ma J. Unraveling pathogenesis, biomarkers and potential therapeutic agents for endometriosis associated with disulfidptosis based on bioinformatics analysis, machine learning and experiment validation. J Biol Eng 2024; 18:42. [PMID: 39061076 PMCID: PMC11282767 DOI: 10.1186/s13036-024-00437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Endometriosis (EMs) is an enigmatic disease of yet-unknown pathogenesis. Disulfidptosis, a novel identified form of programmed cell death resulting from disulfide stress, stands a chance of treating diverse ailments. However, the potential roles of disulfidptosis-related genes (DRGs) in EMs remain elusive. This study aims to thoroughly explore the key disulfidptosis genes involved in EMs, and probe novel diagnostic markers and candidate therapeutic compounds from the aspect of disulfidptosis based on bioinformatics analysis, machine learning, and animal experiments. RESULTS Enrichment analysis on key module genes and differentially expressed genes (DEGs) of eutopic and ectopic endometrial tissues in EMs suggested that EMs was closely related to disulfidptosis. And then, we obtained 20 and 16 disulfidptosis-related DEGs in eutopic and ectopic endometrial tissue, respectively. The protein-protein interaction (PPI) network revealed complex interactions between genes, and screened nine and ten hub genes in eutopic and ectopic endometrial tissue, respectively. Furthermore, immune infiltration analysis uncovered distinct differences in the immunocyte, human leukocyte antigen (HLA) gene set, and immune checkpoints in the eutopic and ectopic endometrial tissues when compared with health control. Besides, the hub genes mentioned above showed a close correlation with the immune microenvironment of EMs. Furthermore, four machine learning algorithms were applied to screen signature genes in eutopic and ectopic endometrial tissue, including the binary logistic regression (BLR), the least absolute shrinkage and selection operator (LASSO), the support vector machine-recursive feature elimination (SVM-RFE), and the extreme gradient boosting (XGBoost). Model training and hyperparameter tuning were implemented on 80% of the data using a ten-fold cross-validation method, and tested in the testing sets which determined the excellent diagnostic performance of these models by six indicators (Sensitivity, Specificity, Positive Predictive Value, Negative Predictive Value, Accuracy, and Area Under Curve). And seven eutopic signature genes (ACTB, GYS1, IQGAP1, MYH10, NUBPL, SLC7A11, TLN1) and five ectopic signature genes (CAPZB, CD2AP, MYH10, OXSM, PDLIM1) were finally identified based on machine learning. The independent validation dataset also showed high accuracy of the signature genes (IQGAP1, SLC7A11, CD2AP, MYH10, PDLIM1) in predicting EMs. Moreover, we screened 12 specific compounds for EMs based on ectopic signature genes and the pharmacological impact of tretinoin on signature genes was further verified in the ectopic lesion in the EMs murine model. CONCLUSION This study verified a close association between disulfidptosis and EMs based on bioinformatics analysis, machine learning, and animal experiments. Further investigation on the biological mechanism of disulfidptosis in EMs is anticipated to yield novel advancements for searching for potential diagnostic biomarkers and revolutionary therapeutic approaches in EMs.
Collapse
Affiliation(s)
- Xiaoxuan Zhao
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Research Institute of Women's Reproductive Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Zhao
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanyuan Zhang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingnan Fan
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huanxiao Ke
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaowei Chen
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Linxi Jin
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongying Tang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuepeng Jiang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Jing Ma
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China.
- Research Institute of Women's Reproductive Health, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
6
|
Wei H, Li W, Zeng L, Ding N, Li K, Yu H, Jiang F, Yin H, Xia Y, Deng C, Cai N, Chen X, Gu L, Chen H, Zhang F, He Y, Li J, Zhang C. OLFM4 promotes the progression of intestinal metaplasia through activation of the MYH9/GSK3β/β-catenin pathway. Mol Cancer 2024; 23:124. [PMID: 38849840 PMCID: PMC11157765 DOI: 10.1186/s12943-024-02016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/04/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Intestinal metaplasia (IM) is classified into complete intestinal metaplasia (CIM) and incomplete intestinal metaplasia (IIM). Patients diagnosed with IIM face an elevated susceptibility to the development of gastric cancer, underscoring the critical need for early screening measures. In addition to the complexities associated with diagnosis, the exact mechanisms driving the progression of gastric cancer in IIM patients remain poorly understood. OLFM4 is overexpressed in several types of tumors, including colorectal, gastric, pancreatic, and ovarian cancers, and its expression has been associated with tumor progression. METHODS In this study, we used pathological sections from two clinical centers, biopsies of IM tissues, precancerous lesions of gastric cancer (PLGC) cell models, animal models, and organoids to explore the role of OLFM4 in IIM. RESULTS Our results show that OLFM4 expression is highly increased in IIM, with superior diagnostic accuracy of IIM when compared to CDX2 and MUC2. OLFM4, along with MYH9, was overexpressed in IM organoids and PLGC animal models. Furthermore, OLFM4, in combination with Myosin heavy chain 9 (MYH9), accelerated the ubiquitination of GSK3β and resulted in increased β-catenin levels through the Wnt signaling pathway, promoting the proliferation and invasion abilities of PLGC cells. CONCLUSIONS OLFM4 represents a novel biomarker for IIM and could be utilized as an important auxiliary means to delimit the key population for early gastric cancer screening. Finally, our study identifies cell signaling pathways involved in the progression of IM.
Collapse
Affiliation(s)
- Hongfa Wei
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Jinping, Shantou, Guangdong, 515041, P.R. China
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Wenchao Li
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
- The Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Leli Zeng
- Scientific Research Center, The Biobank, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, P.R. China
| | - Ni Ding
- Scientific Research Center, The Biobank, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, P.R. China
- The Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Kuan Li
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Hong Yu
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Fei Jiang
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Haofan Yin
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
- Department of Laboratory Medicine, Shenzhen People's Hospital, (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Yu Xia
- Scientific Research Center, The Biobank, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, P.R. China
| | - Cuncan Deng
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Nan Cai
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xiancong Chen
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Liang Gu
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Huanjie Chen
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Jinping, Shantou, Guangdong, 515041, P.R. China
| | - Feiran Zhang
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Jinping, Shantou, Guangdong, 515041, P.R. China.
| | - Yulong He
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Jia Li
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
- Scientific Research Center, The Biobank, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, P.R. China.
| | - Changhua Zhang
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
7
|
Li H, Liang L, Li J. Transcriptomic Profiling in Low-Risk Thyroid Cancer Induced by Microwave Ablation. Int J Endocrinol 2024; 2024:6674506. [PMID: 38779358 PMCID: PMC11111303 DOI: 10.1155/2024/6674506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 03/10/2024] [Accepted: 04/14/2024] [Indexed: 05/25/2024] Open
Abstract
Background Peripheral blood mononuclear cells (PBMCs) serve as the immune system's primary transportation hub outside of the affected ablated tissue. This study aims to explore the transcriptomic profiling of the immune response in PBMCs induced by microwave ablation (MWA) in low-risk thyroid cancer. Methods For eight patients diagnosed with low-risk thyroid cancer, 10 ml of peripheral venous blood was collected before MWA as well as one day and one month after MWA. mRNA was extracted from PBMCs for transcriptome next-generation gene sequencing and qRT-PCR analyses. The plasma samples were used for chemokine detection purposes. Results One day and one month after MWA, there were significant changes in GSEA, particularly in the NF-kappa B-TNFα pathway, inflammatory response, and early and late estrogen response. Common changes in differently expressed genes resulted in a significant downregulation of tumor-promoting genes (BCL3, NR6A1, and PFKFB3). One day after low-risk thyroid cancer MWA, GO enrichment analysis mainly revealed processes related to oxygen transport and other pathways. One month after MWA, GO enrichment analysis mainly revealed regulation of toll-like receptor signaling and other pathways. Furthermore, inflammation-related cytokines and regulatory genes, as well as tumor-promoting cytokines and regulatory genes, were downregulated after MWA. Conclusions This study presents a comprehensive profile of the systemic immune response induced by thermal ablation for treating low-risk thyroid cancer. More significantly, this study provides valuable insight into potential references for systemic antitumor immunity of ablation against low-risk thyroid cancer. This trial is registered with ChiCTR1900024544.
Collapse
Affiliation(s)
- Huarong Li
- Department of Ultrasound, Aerospace Center Hospital, Beijing 100049, China
| | - Lei Liang
- Department of Ultrasound, Aerospace Center Hospital, Beijing 100049, China
| | - Jianming Li
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Wang S, Xia K, Zhu X, Liu Y, Sun L, Zhu Q. Separation of high-purity plasma extracellular vesicles for investigating proteomic signatures in diabetic retinopathy. J Chromatogr A 2024; 1718:464700. [PMID: 38354507 DOI: 10.1016/j.chroma.2024.464700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Extracellular vesicles (EVs) play a multifaceted role in intercellular communication and hold significant promise as bio-functional indicators for clinical diagnosis. Although plasma samples represent one of the most critical sources of circulating EVs, the existing technical challenges associated with plasma-EV isolation have restricted their application in disease diagnosis and biomarker discovery. In this study, we introduce a two-step purification method utilizing ultracentrifugation (UC) to isolate crude extracellular vesicle (EV) samples, followed by a phospholipid affinity-based technique for the selective isolation of small EVs, ensuring a high level of purity for downstream proteomic analysis. Our research demonstrates that the UC & TiO2-coated magnetic bead (TiMB) purification system significantly improves the purity of EVs when compared to conventional UC or TiMB along. We further revealed that proteomic alterations in plasma EVs effectively reflect key gene ontology components associated with diabetic retinopathy (DR) pathogenesis, including the VEGF-activated neuropilin pathway, positive regulation of angiogenesis, angiogenesis, cellular response to vascular endothelial growth factor stimulus, and immune response. By employing a comprehensive analytical approach, which incorporates both time-series analysis (cluster analysis) and differential analysis, we have identified three potential protein signatures including LGALS3, MYH10, and CPB2 that closely associated with the retinopathy process. These proteins exhibit promising diagnostic and severity-classification capabilities for DR disease. This adaptable EV isolation system can be regarded as an effective analytical tool for enhancing plasma-based liquid biopsies toward clinical applications.
Collapse
Affiliation(s)
- Siyao Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Kangfu Xia
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei China
| | - Xinxi Zhu
- Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yuhan Liu
- Department of Laboratory Medicine, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lei Sun
- Department of Clinical Laboratory, Lu'an Hospital of Anhui Medical University, Lu'an People's Hospital of Anhui Province, Lu'an, 237005, China; Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Qingfu Zhu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
9
|
Osei-Amponsa V, Chandravanshi M, Lu X, Magidson V, Das S, Andresson T, Dyba M, Sabbasani VR, Swenson RE, Fromont C, Shrestha B, Zhao Y, Clapp ME, Chari R, Walters KJ. hRpn13 shapes the proteome and transcriptome through epigenetic factors HDAC8, PADI4, and transcription factor NF-κB p50. Mol Cell 2024; 84:522-537.e8. [PMID: 38151017 PMCID: PMC10872465 DOI: 10.1016/j.molcel.2023.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/04/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023]
Abstract
The anti-cancer target hRpn13 is a proteasome substrate receptor. However, hRpn13-targeting molecules do not impair its interaction with proteasomes or ubiquitin, suggesting other critical cellular activities. We find that hRpn13 depletion causes correlated proteomic and transcriptomic changes, with pronounced effects in myeloma cells for cytoskeletal and immune response proteins and bone-marrow-specific arginine deiminase PADI4. Moreover, a PROTAC against hRpn13 co-depletes PADI4, histone deacetylase HDAC8, and DNA methyltransferase MGMT. PADI4 binds and citrullinates hRpn13 and proteasomes, and proteasomes from PADI4-inhibited myeloma cells exhibit reduced peptidase activity. When off proteasomes, hRpn13 can bind HDAC8, and this interaction inhibits HDAC8 activity. Further linking hRpn13 to transcription, its loss reduces nuclear factor κB (NF-κB) transcription factor p50, which proteasomes generate by cleaving its precursor protein. NF-κB inhibition depletes hRpn13 interactors PADI4 and HDAC8. Altogether, we find that hRpn13 acts dually in protein degradation and expression and that proteasome constituency and, in turn, regulation varies by cell type.
Collapse
Affiliation(s)
- Vasty Osei-Amponsa
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Monika Chandravanshi
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Xiuxiu Lu
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Valentin Magidson
- Optical Microscopy and Image Analysis Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Sudipto Das
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD 21702, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD 21702, USA
| | - Marzena Dyba
- Biophysics Resource, Center for Structural Biology, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Venkata R Sabbasani
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rolf E Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Caroline Fromont
- Sequencing Facility, Cancer Research and Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Biraj Shrestha
- Sequencing Facility Bioinformatics Group, Biomedical Informatics and Data Science Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Yongmei Zhao
- Sequencing Facility Bioinformatics Group, Biomedical Informatics and Data Science Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Michelle E Clapp
- Genome Modification Core, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Raj Chari
- Genome Modification Core, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Kylie J Walters
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
10
|
Li P, Wang S, Wan H, Huang Y, Yin K, Sun K, Jin H, Wang Z. Construction of disulfidptosis-based immune response prediction model with artificial intelligence and validation of the pivotal grouping oncogene c-MET in regulating T cell exhaustion. Front Immunol 2024; 15:1258475. [PMID: 38352883 PMCID: PMC10862485 DOI: 10.3389/fimmu.2024.1258475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024] Open
Abstract
Background Given the lack of research on disulfidptosis, our study aimed to dissect its role in pan-cancer and explore the crosstalk between disulfidptosis and cancer immunity. Methods Based on TCGA, ICGC, CGGA, GSE30219, GSE31210, GSE37745, GSE50081, GSE22138, GSE41613, univariate Cox regression, LASSO regression, and multivariate Cox regression were used to construct the rough gene signature based on disulfidptosis for each type of cancer. SsGSEA and Cibersort, followed by correlation analysis, were harnessed to explore the linkage between disulfidptosis and cancer immunity. Weighted correlation network analysis (WGCNA) and Machine learning were utilized to make a refined prognosis model for pan-cancer. In particular, a customized, enhanced prognosis model was made for glioma. The siRNA transfection, FACS, ELISA, etc., were employed to validate the function of c-MET. Results The expression comparison of the disulfidptosis-related genes (DRGs) between tumor and nontumor tissues implied a significant difference in most cancers. The correlation between disulfidptosis and immune cell infiltration, including T cell exhaustion (Tex), was evident, especially in glioma. The 7-gene signature was constructed as the rough model for the glioma prognosis. A pan-cancer suitable DSP clustering was made and validated to predict the prognosis. Furthermore, two DSP groups were defined by machine learning to predict the survival and immune therapy response in glioma, which was validated in CGGA. PD-L1 and other immune pathways were highly enriched in the core blue gene module from WGCNA. Among them, c-MET was validated as a tumor driver gene and JAK3-STAT3-PD-L1/PD1 regulator in glioma and T cells. Specifically, the down-regulation of c-MET decreased the proportion of PD1+ CD8+ T cells. Conclusion To summarize, we dissected the roles of DRGs in the prognosis and their relationship with immunity in pan-cancer. A general prognosis model based on machine learning was constructed for pan-cancer and validated by external datasets with a consistent result. In particular, a survival-predicting model was made specifically for patients with glioma to predict its survival and immune response to ICIs. C-MET was screened and validated for its tumor driver gene and immune regulation function (inducing t-cell exhaustion) in glioma.
Collapse
Affiliation(s)
- Pengping Li
- Department of Thyroid and Breast Surgery, The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Shaowen Wang
- Neuromedicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Hong Wan
- Department of General Surgery, Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuqing Huang
- Department of Thyroid and Breast Surgery, The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Kexin Yin
- Department of Thyroid and Breast Surgery, The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Ke Sun
- Department of Thyroid and Breast Surgery, The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Haigang Jin
- Department of Thyroid and Breast Surgery, The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Zhenyu Wang
- Department of Thyroid and Breast Surgery, The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Li C, Guan R, Li W, Wei D, Cao S, Chang F, Wei Q, Wei R, Chen L, Xu C, Wu K, Lei D. Analysis of myosin genes in HNSCC and identify MYL1 as a specific poor prognostic biomarker, promotes tumor metastasis and correlates with tumor immune infiltration in HNSCC. BMC Cancer 2023; 23:840. [PMID: 37679666 PMCID: PMC10486092 DOI: 10.1186/s12885-023-11349-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
Head neck squamous cell carcinoma (HNSCC) is one of the most common malignant tumors which ranks the sixth incidence in the world. Although treatments for HNSCC have improved significantly in recent years, its recurrence rate and mortality rate remain high. Myosin genes have been studied in a variety of tumors, however its role in HNSCC has not been elucidated. GSE58911 and GSE30784 gene expression profile analysis were performed to detect significantly dys-regulated myosin genes in HNSCC. The Cancer Genome Atlas (TCGA) HNSCC database was used to verify the dys-regulated myosin genes and study the relationship between these genes and prognosis in HNSCC. The results showed that MYL1, MYL2, MYL3, MYH2, and MYH7 were down-regulated, while MYH10 was up-regulated in patients with HNSCC. Interestingly, MYL1, MYL2, MYH1, MYH2, and MYH7 were shown to be unfavorable prognostic markers in HNSCC. It is also worth noting that MYL1 was a specific unfavorable prognostic biomarker in HNSCC. MYL1, MYL2, MYL3, MYH2, MYH7, and MYH10 promoted CD4 + T cells activation in HNSCC. MYL1 was proved to be down-regulated in HNSCC tissues compared to normal tissues at protein levels. MYL1 overexpression had no effect on proliferation, but significantly promoted migration of Fadu cells. MYL1 increased EGF and EGFR protein expression levels. Moreover, there is a positive correlation between MYL1 expression and Tcm CD8 cells, Tcm CD4 + cells, NK cells, Mast cells, NKT cells, Tfh cells and Treg cells in HNSCC. Overall, MYL1 facilitates tumor metastasis and correlates with tumor immune infiltration in HNSCC and these effects may be associated with the EGF/EGFR pathway.
Collapse
Affiliation(s)
- Ce Li
- Department of Otorhinolaryngology, Qilu Hospital, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Rui Guan
- Department of Otorhinolaryngology, Qilu Hospital, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Wenming Li
- Department of Otorhinolaryngology, Qilu Hospital, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Dongmin Wei
- Department of Otorhinolaryngology, Qilu Hospital, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Shengda Cao
- Department of Otorhinolaryngology, Qilu Hospital, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Fen Chang
- Department of Otorhinolaryngology, Qilu Hospital, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Qun Wei
- Department of Otorhinolaryngology, Qilu Hospital, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Ran Wei
- Department of Otorhinolaryngology, Qilu Hospital, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Long Chen
- Department of Otorhinolaryngology, Qilu Hospital, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Chenyang Xu
- Department of Otorhinolaryngology, Qilu Hospital, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Kainan Wu
- Department of Otorhinolaryngology, Qilu Hospital, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Dapeng Lei
- Department of Otorhinolaryngology, Qilu Hospital, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
12
|
Rochín-Hernández LJ, Jiménez-Acosta MA, Ramírez-Reyes L, Figueroa-Corona MDP, Sánchez-González VJ, Orozco-Barajas M, Meraz-Ríos MA. The Proteome Profile of Olfactory Ecto-Mesenchymal Stem Cells-Derived from Patients with Familial Alzheimer's Disease Reveals New Insights for AD Study. Int J Mol Sci 2023; 24:12606. [PMID: 37628788 PMCID: PMC10454072 DOI: 10.3390/ijms241612606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disease and the first cause of dementia worldwide, has no effective treatment, and its pathological mechanisms are not yet fully understood. We conducted this study to explore the proteomic differences associated with Familial Alzheimer's Disease (FAD) in olfactory ecto-mesenchymal stem cells (MSCs) derived from PSEN1 (A431E) mutation carriers compared with healthy donors paired by age and gender through two label-free liquid chromatography-mass spectrometry approaches. The first analysis compared carrier 1 (patient with symptoms, P1) and its control (healthy donor, C1), and the second compared carrier 2 (patient with pre-symptoms, P2) with its respective control cells (C2) to evaluate whether the protein alterations presented in the symptomatic carrier were also present in the pre-symptom stages. Finally, we analyzed the differentially expressed proteins (DEPs) for biological and functional enrichment. These proteins showed impaired expression in a stage-dependent manner and are involved in energy metabolism, vesicle transport, actin cytoskeleton, cell proliferation, and proteostasis pathways, in line with previous AD reports. Our study is the first to conduct a proteomic analysis of MSCs from the Jalisco FAD patients in two stages of the disease (symptomatic and presymptomatic), showing these cells as a new and excellent in vitro model for future AD studies.
Collapse
Affiliation(s)
- Lory J. Rochín-Hernández
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.A.J.-A.); (M.d.P.F.-C.)
| | - Miguel A. Jiménez-Acosta
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.A.J.-A.); (M.d.P.F.-C.)
| | - Lorena Ramírez-Reyes
- Unidad de Genómica, Proteómica y Metabolómica, Laboratorio Nacional de Servicios Experimentales (LaNSE), Centro de Investigación y de Estudios Avanzados, Ciudad de México 07360, Mexico;
| | - María del Pilar Figueroa-Corona
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.A.J.-A.); (M.d.P.F.-C.)
| | - Víctor J. Sánchez-González
- Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (V.J.S.-G.); (M.O.-B.)
| | - Maribel Orozco-Barajas
- Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (V.J.S.-G.); (M.O.-B.)
| | - Marco A. Meraz-Ríos
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.A.J.-A.); (M.d.P.F.-C.)
| |
Collapse
|
13
|
Zarei Ghobadi M, Afsaneh E, Emamzadeh R. Gene biomarkers and classifiers for various subtypes of HTLV-1-caused ATLL cancer identified by a combination of differential gene co‑expression and support vector machine algorithms. Med Microbiol Immunol 2023:10.1007/s00430-023-00767-8. [PMID: 37222763 DOI: 10.1007/s00430-023-00767-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/12/2023] [Indexed: 05/25/2023]
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is pathogen-caused cancer that is progressed after the infection by human T-cell leukemia virus type 1. Four significant subtypes comprising acute, lymphoma, chronic, and smoldering have been identified for this cancer. However, there are no trustworthy prognostic biomarkers for these subtypes. We utilized a combination of two powerful network-based and machine-learning algorithms including differential co-expressed genes (DiffCoEx) and support vector machine-recursive feature elimination with cross-validation (SVM-RFECV) methods to categorize disparate ATLL subtypes from asymptomatic carriers (ACs). The results disclosed the significant involvement of CBX6, CNKSR1, and MAX in chronic, MYH10 and P2RY1 in acute, C22orf46 and HNRNPA0 in smoldering subtypes. These genes also can classify each ATLL subtype from AC carriers. The integration of the results of two powerful algorithms led to the identification of reliable gene classifiers and biomarkers for diverse ATLL subtypes.
Collapse
Affiliation(s)
- Mohadeseh Zarei Ghobadi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | | | - Rahman Emamzadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
14
|
Liu L, Chen C, Liu P, Li J, Pang Z, Zhu J, Lin Z, Zhou H, Xie Y, Lan T, Chen ZS, Zeng Z, Fang W. MYH10 Combines with MYH9 to Recruit USP45 by Deubiquitinating Snail and Promotes Serous Ovarian Cancer Carcinogenesis, Progression, and Cisplatin Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203423. [PMID: 36929633 DOI: 10.1002/advs.202203423] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 01/24/2023] [Indexed: 05/18/2023]
Abstract
The poor prognosis of serous ovarian cancer (SOC) is due to its high invasive capacity and cisplatin resistance of SOC cells, whereas the molecular mechanisms remain poorly understood. In the present study, the expression and function of non-muscle myosin heavy chain IIB (MYH10) in SOC are identified by immunohistochemistry, in vitro, and in vivo studies, respectively. The mechanism of MYH10 is demonstrated by co-immunoprecipitation, GST pull-down, confocal laser assays, and so on. The results show that the knockdown of MYH10 suppressed SOC cell proliferation, migration, invasion, metastasis, and cisplatin resistance both in vivo and in vitro. Further studies confirm that the MYH10 protein functional domain combines with non-muscle myosin heavy chain IIA (MYH9) to recruit the deubiquitinating enzyme Ubiquitin-specific proteases 45 and deubiquitinates snail to inhibit snail degradation, eventually promoting tumorigenesis, progression, and cisplatin resistance in SOC. In clinical samples, MYH10 expression is significantly elevated in SOC samples compared to the paratumor samples. And the expression of MYH10 is positively correlated with MYH9 expression. MYH10+/MYH9+ co-expression is an independent prognostic factor for predicting SOC patient survival. These findings uncover a key role of the MYH10-MYH9-snail axis in SOC carcinogenesis, progression, and cisplatin resistance, and provide potential novel therapeutic targets for SOC intervention.
Collapse
Affiliation(s)
- Longyang Liu
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Chunlin Chen
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ping Liu
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jing Li
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhanjun Pang
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiayu Zhu
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhongqiu Lin
- Department of Gynecological Oncology, The Memorial Hospital of Sun Yat-sen University, Guangzhou, 510000, China
| | - Haixu Zhou
- Department of Neurosurgery, Graduate School of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Yingying Xie
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Tiancai Lan
- Department of Neurosurgery, Liuzhou City People's Hospital, Guangxi, 545000, China
| | - Zhe-Sheng Chen
- Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, NY, 11439, USA
| | - Zhaoyang Zeng
- Department of Gynecology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| |
Collapse
|
15
|
Guo X, Jiao H, Cao L, Meng F. Biological implications and clinical potential of invasion and migration related miRNAs in glioma. Front Integr Neurosci 2022; 16:989029. [PMID: 36479040 PMCID: PMC9720134 DOI: 10.3389/fnint.2022.989029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/07/2022] [Indexed: 12/01/2024] Open
Abstract
Gliomas are the most common primary malignant brain tumors and are highly aggressive. Invasion and migration are the main causes of poor prognosis and treatment resistance in gliomas. As migration and invasion occur, patient survival and prognosis decline dramatically. MicroRNAs (miRNAs) are small, non-coding 21-23 nucleotides involved in regulating the malignant phenotype of gliomas, including migration and invasion. Numerous studies have demonstrated the mechanism and function of some miRNAs in glioma migration and invasion. However, the biological and clinical significance (including diagnosis, prognosis, and targeted therapy) of glioma migration and invasion-related miRNAs have not been systematically discussed. This paper reviews the progress of miRNAs-mediated migration and invasion studies in glioma and discusses the clinical value of migration and invasion-related miRNAs as potential biomarkers or targeted therapies for glioma. In addition, these findings are expected to translate into future directions and challenges for clinical applications. Although many biomarkers and their biological roles in glioma invasion and migration have been identified, none have been specific so far, and further exploration of clinical treatment is still in progress; therefore, we aimed to further identify specific markers that may guide clinical treatment and improve the quality of patient survival.
Collapse
Affiliation(s)
| | | | | | - Facai Meng
- Department of Neurosurgery, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
16
|
Microtubule and Actin Cytoskeletal Dynamics in Male Meiotic Cells of Drosophila melanogaster. Cells 2022; 11:cells11040695. [PMID: 35203341 PMCID: PMC8870657 DOI: 10.3390/cells11040695] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 01/12/2023] Open
Abstract
Drosophila dividing spermatocytes offer a highly suitable cell system in which to investigate the coordinated reorganization of microtubule and actin cytoskeleton systems during cell division of animal cells. Like male germ cells of mammals, Drosophila spermatogonia and spermatocytes undergo cleavage furrow ingression during cytokinesis, but abscission does not take place. Thus, clusters of primary and secondary spermatocytes undergo meiotic divisions in synchrony, resulting in cysts of 32 secondary spermatocytes and then 64 spermatids connected by specialized structures called ring canals. The meiotic spindles in Drosophila males are substantially larger than the spindles of mammalian somatic cells and exhibit prominent central spindles and contractile rings during cytokinesis. These characteristics make male meiotic cells particularly amenable to immunofluorescence and live imaging analysis of the spindle microtubules and the actomyosin apparatus during meiotic divisions. Moreover, because the spindle assembly checkpoint is not robust in spermatocytes, Drosophila male meiosis allows investigating of whether gene products required for chromosome segregation play additional roles during cytokinesis. Here, we will review how the research studies on Drosophila male meiotic cells have contributed to our knowledge of the conserved molecular pathways that regulate spindle microtubules and cytokinesis with important implications for the comprehension of cancer and other diseases.
Collapse
|
17
|
Jin Q, Cheng M, Xia X, Han Y, Zhang J, Cao P, Zhou G. Down-regulation of MYH10 driven by chromosome 17p13.1 deletion promotes hepatocellular carcinoma metastasis through activation of the EGFR pathway. J Cell Mol Med 2021; 25:11142-11156. [PMID: 34738311 PMCID: PMC8650048 DOI: 10.1111/jcmm.17036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/28/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022] Open
Abstract
Somatic copy number alterations (CNAs) are a genomic hallmark of cancers. Among them, the chromosome 17p13.1 deletions are recurrent in hepatocellular carcinoma (HCC). Here, utilizing an integrative omics analysis, we screened out a novel tumour suppressor gene within 17p13.1, myosin heavy chain 10 (MYH10). We observed frequent deletions (~38%) and significant down‐regulation of MYH10 in primary HCC tissues. Deletion or decreased expression of MYH10 was a potential indicator of poor outcomes in HCC patients. Knockdown of MYH10 significantly promotes HCC cell migration and invasion in vitro, and overexpression of MYH10 exhibits opposite effects. Further, inhibition of MYH10 markedly potentiates HCC metastasis in vivo. We preliminarily elucidated the mechanism by which loss of MYH10 promotes HCC metastasis by facilitating EGFR pathway activation. In conclusion, our study suggests that MYH10, a candidate target gene for 17p13 deletion, acts as a tumour suppressor and may serve as a potential prognostic indicator for HCC patients.
Collapse
Affiliation(s)
- Qian Jin
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Min Cheng
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China.,Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, China
| | - Xia Xia
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Yuqing Han
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jing Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China.,College of Life Sciences, Hebei University, Baoding City, China
| | - Pengbo Cao
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Gangqiao Zhou
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China.,Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, China.,College of Life Sciences, Hebei University, Baoding City, China
| |
Collapse
|
18
|
Changes in the expression and functional activities of Myosin II isoforms in human hyperplastic prostate. Clin Sci (Lond) 2021; 135:167-183. [PMID: 33393635 DOI: 10.1042/cs20201283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/05/2020] [Accepted: 01/04/2021] [Indexed: 01/21/2023]
Abstract
Benign prostatic hyperplasia (BPH) is a common disease among aging males with the etiology remaining unclear. We recently found myosin II was abundantly expressed in rat and cultured human prostate cells with permissive roles in the dynamic and static components. The present study aimed to explore the expression and functional activities of myosin II isoforms including smooth muscle (SM) myosin II (SMM II) and non-muscle myosin II (NMM II) in the hyperplastic prostate. Human prostate cell lines and tissues from normal human and BPH patients were used. Hematoxylin and Eosin (H&E), Masson's trichrome, immunohistochemical staining, in vitro organ bath, RT-polymerase chain reaction (PCR) and Western-blotting were performed. We further created cell models with NMM II isoforms silenced and proliferation, cycle, and apoptosis of prostate cells were determined by cell counting kit-8 (CCK-8) assay and flow cytometry. Hyperplastic prostate SM expressed more SM1 and LC17b isoforms compared with their alternatively spliced counterparts, favoring a slower more tonic-type contraction and greater force generation. For BPH group, blebbistatin (BLEB, a selective myosin II inhibitor), exhibited a stronger effect on relaxing phenylephrine (PE) pre-contracted prostate strips and inhibiting PE-induced contraction. Additionally, NMMHC-A and NMMHC-B were up-regulated in hyperplastic prostate with no change in NMMHC-C. Knockdown of NMMHC-A or NMMHC-B inhibited prostate cell proliferation and induced apoptosis, with no changes in cell cycle. Our novel data demonstrate that expression and functional activities of myosin II isoforms are altered in human hyperplastic prostate, suggesting a new pathological mechanism for BPH. Thus, the myosin II system may provide potential new therapeutic targets for BPH/lower urinary tract symptoms (LUTS).
Collapse
|
19
|
Zhang H, Bi Y, Wei Y, Liu J, Kuerban K, Ye L. Blocking Wnt/β-catenin Signal Amplifies Anti-PD-1 Therapeutic Efficacy by Inhibiting Tumor Growth, Migration, and Promoting Immune Infiltration in Glioblastomas. Mol Cancer Ther 2021; 20:1305-1315. [PMID: 34001635 DOI: 10.1158/1535-7163.mct-20-0825] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/01/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GBM), as the immunologically cold tumor, respond poorly to programmed cell death 1 (PD-1) immune checkpoint inhibitors because of insufficient immune infiltration. Herein, through the analysis of The Cancer Genome Atlas data and clinical glioma samples, we found Wnt/β-catenin signal was activated in GBM and inversely related to the degree of immune cell (CD8+) infiltration and programmed cell death ligand 1 (PD-L1) expression. Blockade of Wnt/β-catenin signal could inhibit GBM U118 cells' growth and migration, and upregulate their PD-L1 expression which indicated the possible better response to anti-PD-1 immunotherapy. Besides, in a co-culture system comprising U118 cells and Jurkat cells, Wnt inhibition alleviated Jurkat cell's apoptosis and enhanced its cytotoxic function as evidenced by obviously increased effector cytokine IFNγ secretion and lactate dehydrogenase release. Moreover, the enhanced anti-GBM effect of PD-1 antibody triggered by Wnt inhibition was observed in GL261 homograft mouse model, and the upregulation of immune cell (CD4+/CD8+) infiltration and IFNγ secretion in tumor tissues suggested that Wnt/β-catenin inhibition could inflame cold tumor and then sensitize GBM to PD-1 blockade therapy. Taken together, our study verified the blockade of Wnt/β-catenin signal could augment the efficacy of PD-1 blockade therapy on GBM through directly inhibiting tumor proliferation and migration, as well as facilitating T-cell infiltration and PD-L1 expression in tumor microenvironment.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Neurosurgery at Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, P.R. China.,Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, P.R. China
| | - Yongyan Bi
- Department of Neurosurgery at Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, P.R. China
| | - Yuxi Wei
- Department of Neurosurgery at Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, P.R. China
| | - Jiayang Liu
- Department of Neurosurgery at Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, P.R. China.,Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, P.R. China
| | - Kudelaidi Kuerban
- Department of Neurosurgery at Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, P.R. China.,Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, P.R. China
| | - Li Ye
- Department of Neurosurgery at Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, P.R. China. .,Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, P.R. China
| |
Collapse
|
20
|
Wei Y, Lu W, Yu Y, Zhai Y, Guo H, Yang S, Zhao C, Zhang Y, Liu J, Liu Y, Fei J, Shi J. miR-29c&b2 encourage extramedullary infiltration resulting in the poor prognosis of acute myeloid leukemia. Oncogene 2021; 40:3434-3448. [PMID: 33888868 DOI: 10.1038/s41388-021-01775-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/11/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
Extramedullary infiltration (EMI), as a concomitant symptom of acute myeloid leukemia (AML), is associated with low complete remission and poor prognosis in AML. However, the mechanism of EMI remains indistinct. Clinical trials showed that increased miR-29s were associated with a poor overall survival in AML [14]. Nevertheless, they were proved to work as tumor suppressor genes by encouraging apoptosis and inhibiting proliferation in vitro. These contradictory results led us to the hypothesis that miR-29s may play a notable role in the prognosis of AML rather than leukemogenesis. Thus, we explored the specimens of AML patients and addressed this issue into miR-29c&b2 knockout mice. As a result, a poor overall survival and invasive blast cells were observed in high miR-29c&b2-expression patients, and the wildtype mice presented a shorter survival with heavier leukemia infiltration in extramedullary organs. Subsequently, we found that the miR-29c&b2 inside leukemia cells promoted EMI, but not the one in the microenvironment. The analysis of signal pathway revealed that miR-29c&b2 could target HMG-box transcription factor 1 (Hbp1) directly, then reduced Hbp1 bound to the promoter of non-muscle myosin IIB (Myh10) as a transcript inhibitor. Thus, increased Myh10 encouraged the migration of leukemia cells. Accordingly, AML patients with EMI were confirmed to have high miR-29c&b2 and MYH10 with low HBP1. Therefore, we identify that miR-29c&b2 contribute to the poor prognosis of AML patients by promoting EMI, and related genes analyses are prospectively feasible in assessment of AML outcome.
Collapse
Affiliation(s)
- Yanyu Wei
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Lu
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yehua Yu
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuanmei Zhai
- Department of Hematology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hezhou Guo
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shaoxin Yang
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chong Zhao
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanjie Zhang
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiali Liu
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuhui Liu
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai, China. .,Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai, China.
| | - Jun Shi
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
21
|
Ruan Y, Ogana H, Gang E, Kim HN, Kim YM. Wnt Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1270:107-121. [PMID: 33123996 DOI: 10.1007/978-3-030-47189-7_7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dysregulated Wnt signaling plays a central role in initiation, progression, and metastasis in many types of human cancers. Cancer development and resistance to conventional cancer therapies are highly associated with the tumor microenvironment (TME), which is composed of numerous stable non-cancer cells, including immune cells, extracellular matrix (ECM), fibroblasts, endothelial cells (ECs), and stromal cells. Recently, increasing evidence suggests that the relationship between Wnt signaling and the TME promotes the proliferation and maintenance of tumor cells, including leukemia. Here, we review the Wnt pathway, the role of Wnt signaling in different components of the TME, and therapeutic strategies for targeting Wnt signaling.
Collapse
Affiliation(s)
- Yongsheng Ruan
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA.,Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Heather Ogana
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Eunji Gang
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Hye Na Kim
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Yong-Mi Kim
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Parajón E, Surcel A, Robinson DN. The mechanobiome: a goldmine for cancer therapeutics. Am J Physiol Cell Physiol 2020; 320:C306-C323. [PMID: 33175572 DOI: 10.1152/ajpcell.00409.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer progression is dependent on heightened mechanical adaptation, both for the cells' ability to change shape and to interact with varying mechanical environments. This type of adaptation is dependent on mechanoresponsive proteins that sense and respond to mechanical stress, as well as their regulators. Mechanoresponsive proteins are part of the mechanobiome, which is the larger network that constitutes the cell's mechanical systems that are also highly integrated with many other cellular systems, such as gene expression, metabolism, and signaling. Despite the altered expression patterns of key mechanobiome proteins across many different cancer types, pharmaceutical targeting of these proteins has been overlooked. Here, we review the biochemistry of key mechanoresponsive proteins, specifically nonmuscle myosin II, α-actinins, and filamins, as well as the partnering proteins 14-3-3 and CLP36. We also examined a wide range of data sets to assess how gene and protein expression levels of these proteins are altered across many different cancer types. Finally, we determined the potential of targeting these proteins to mitigate invasion or metastasis and suggest that the mechanobiome is a goldmine of opportunity for anticancer drug discovery and development.
Collapse
Affiliation(s)
- Eleana Parajón
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexandra Surcel
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
23
|
Sechi S, Frappaolo A, Karimpour-Ghahnavieh A, Fraschini R, Giansanti MG. A novel coordinated function of Myosin II with GOLPH3 controls centralspindlin localization during cytokinesis in Drosophila. J Cell Sci 2020; 133:jcs252965. [PMID: 33037125 DOI: 10.1242/jcs.252965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022] Open
Abstract
In animal cell cytokinesis, interaction of non-muscle myosin II (NMII) with F-actin provides the dominant force for pinching the mother cell into two daughters. Here we demonstrate that celibe (cbe) is a missense allele of zipper, which encodes the Drosophila Myosin heavy chain. Mutation of cbe impairs binding of Zipper protein to the regulatory light chain Spaghetti squash (Sqh). In dividing spermatocytes from cbe males, Sqh fails to concentrate at the equatorial cortex, resulting in thin actomyosin rings that are unable to constrict. We show that cbe mutation impairs localization of the phosphatidylinositol 4-phosphate [PI(4)P]-binding protein Golgi phosphoprotein 3 (GOLPH3, also known as Sauron) and maintenance of centralspindlin at the cell equator of telophase cells. Our results further demonstrate that GOLPH3 protein associates with Sqh and directly binds the centralspindlin subunit Pavarotti. We propose that during cytokinesis, the reciprocal dependence between Myosin and PI(4)P-GOLPH3 regulates centralspindlin stabilization at the invaginating plasma membrane and contractile ring assembly.
Collapse
Affiliation(s)
- Stefano Sechi
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Anna Frappaolo
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Angela Karimpour-Ghahnavieh
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Roberta Fraschini
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano Bicocca, 20126, Milano, Italy
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| |
Collapse
|
24
|
Anderson AN, McClanahan D, Jacobs J, Jeng S, Vigoda M, Blucher AS, Zheng C, Yoo YJ, Hale C, Ouyang X, Clayburgh D, Andersen P, Tyner JW, Bar A, Lucero OM, Leitenberger JJ, McWeeney SK, Kulesz-Martin M. Functional genomic analysis identifies drug targetable pathways in invasive and metastatic cutaneous squamous cell carcinoma. Cold Spring Harb Mol Case Stud 2020; 6:a005439. [PMID: 32843430 PMCID: PMC7476409 DOI: 10.1101/mcs.a005439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022] Open
Abstract
Although cutaneous squamous cell carcinoma (cSCC) is treatable in the majority of cases, deadly invasive and metastatic cases do occur. To date there are neither reliable predictive biomarkers of disease progression nor FDA-approved targeted therapies as standard of care. To address these issues, we screened patient-derived primary cultured cells from invasive/metastatic cSCC with 107 small-molecule inhibitors. In-house bioinformatics tools were used to cross-analyze drug responses and DNA mutations in tumors detected by whole-exome sequencing (WES). Aberrations in molecular pathways with evidence of potential drug targets were identified, including the Eph-ephrin and neutrophil degranulation signaling pathways. Using a screening panel of siRNAs, we identified EPHA6 and EPHA7 as targets within the Eph-ephrin pathway responsible for mitigating decreased cell viability. These studies form a plausible foundation for detecting biomarkers of high-risk progressive disease applicable in dermatopathology and for patient-specific therapeutic options for invasive/metastatic cSCC.
Collapse
Affiliation(s)
- Ashley N Anderson
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Danielle McClanahan
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - James Jacobs
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University Knight Cancer Institute, Portland, Oregon 97239, USA
| | - Sophia Jeng
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University Knight Cancer Institute, Portland, Oregon 97239, USA
- Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, Oregon 97339, USA
| | - Myles Vigoda
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Aurora S Blucher
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University Knight Cancer Institute, Portland, Oregon 97239, USA
| | - Christina Zheng
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University Knight Cancer Institute, Portland, Oregon 97239, USA
| | - Yeon Jung Yoo
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Carolyn Hale
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Xiaoming Ouyang
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Daniel Clayburgh
- Department of Otolaryngology, Oregon Health & Science University, Portland, Oregon 97239, USA
- Operative Care Division, Veterans Affairs Medical Center, Portland, Oregon 97239, USA
| | - Peter Andersen
- Department of Otolaryngology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Jeffrey W Tyner
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University Knight Cancer Institute, Portland, Oregon 97239, USA
- Division of Hematology and Medical Oncology, Oregon Health and Science University Knight Cancer Institute, Portland, Oregon 97239, USA
| | - Anna Bar
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Olivia M Lucero
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Justin J Leitenberger
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Shannon K McWeeney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University Knight Cancer Institute, Portland, Oregon 97239, USA
| | - Molly Kulesz-Martin
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon 97239, USA
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University Knight Cancer Institute, Portland, Oregon 97239, USA
| |
Collapse
|
25
|
Chidamide Inhibits Glioma Cells by Increasing Oxidative Stress via the miRNA-338-5p Regulation of Hedgehog Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7126976. [PMID: 32256960 PMCID: PMC7086450 DOI: 10.1155/2020/7126976] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/28/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022]
Abstract
Objective Chidamide has a broad spectrum of antitumor activity but its function on glioma remains unknown. The increase of reactive oxygen species (ROS) and reactive nitrogen species (RNS) may control glioma risk by promoting its apoptosis and necrosis. Hedgehog pathway is crucial to glioma cell proliferation and controls ROS production. We aimed to explore the effects of chidamide on the levels of miR-338-5p (glioma cell inhibitor), which may regulate Hedgehog signaling, resulting in the changes of RNS. Materials and Methods. Migration and invasion activities of glioma cells were measured by using the Transwell chamber assay. The expression levels of Sonic Hedgehog (Shh), Indian Hedgehog (Ihh), Desert Hedgehog (Dhh), miR-338-5p, and related molecules were detected by using real-time PCR (RT-PCR) and or Western Blot in U87 and HS683 glioma cells. The effects of chidamide on these molecules were measured by using the miR-338-5p inhibitor or mimics in U87 and HS683 glioma cell lines. ROS and RNS were measured by DCF DA and DAF-FM DA fluorescence. Biomarkers of oxidative stress were measured by using a corresponding kit. Apoptosis and necrosis rates were measured by using flow cytometry. Results Chidamide inhibited the growth rate, migration, and invasion of human malignant glioma cells and increased the level of miR-338-5p. miR-338-5p inhibitor or mimics increased or inhibited the growth rate of U87 and HS683 glioma cells. Chidamide inhibited the levels of Shh, Ihh, migration protein E-cadherin, and invading protein MMP-2. The increase in the level of Shh and Ihh led to the reduction in the ROS and RNS levels. miR-338-5p inhibitor or mimics also showed a promoting or inhibitory function for the levels of Shh and Ihh. Furthermore, miR-338-5p mimics and inhibitor inhibited or promoted the migration and invasion of the glioma cells (P < 0.05). Evaluated levels of miR-338-5p increased oxidative stress level and apoptosis and necrosis rate by regulating the levels of biomarkers of oxidative stress (P < 0.05). Evaluated levels of miR-338-5p increased oxidative stress level and apoptosis and necrosis rate by regulating the levels of biomarkers of oxidative stress ( Conclusion Chidamide inhibits glioma cells by increasing oxidative stress via the miRNA-338-5p regulation of Hedgehog signaling. Chidamide may be a potential drug in the prevention of glioma development.
Collapse
|
26
|
Liu W, Cai T, Li L, Chen H, Chen R, Zhang M, Zhang W, Zhao L, Xiong H, Qin P, Gao X, Jiang Q. MiR-200a Regulates Nasopharyngeal Carcinoma Cell Migration and Invasion by Targeting MYH10. J Cancer 2020; 11:3052-3060. [PMID: 32226520 PMCID: PMC7086266 DOI: 10.7150/jca.40438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/04/2020] [Indexed: 12/17/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC), is one of the most common malignant tumor in southern China and southeast Asia. MYH10 is a coding gene of the NMMHC-IIB protein. Previous studies have shown that MYH10 expression was up-regulated in breast cancer, glioma and meningioma. Moreover, it was targeted by miR200 family. However, no relevant studies have been found in NPC. In present study, we found in 48 NPC specimens, MYH10 level was lower in most cancer areas than that in the adjacent normal tissue. Moreover, the depletion of MYH10 can promote the migration and invasion of NPC. In addition, we demonstrated that miR-200a has the strongest regulation to MYH10 among miR-200 family. miR-200a mimics could decrease MYH10 expression, while miR-200a inhibitor increase MYH10 expression. Next, we found that miR-200a bound directly to MYH10 using Dual-luciferase reporter. Finally, it was demonstrated that siMYH10 could reverse the effect of miR-200a inhibitor on NPC cell migration and invasion. Taken together, it can be concluded that MYH10 is lowly expressed in NPC compared with adjacent tissues, and the loss of MYH10 can promote the migration and invasion of NPC cells; Among the miR-200 family, miR-200a has the strongest regulatory effect on MYH10; MYH10 is a direct target gene of miR200a, and miR200a targets MYH10 to regulate the migration and invasion of NPC cells.
Collapse
Affiliation(s)
- Wenya Liu
- Department of Pathology, the Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China 510150.,Department of Pathology, the First Affiliated Hospital, Anhui Medical University, Hefei, China 230022
| | - Tonghui Cai
- Department of Pathology, the Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China 510150
| | - Lingjun Li
- Department of Pathology, the Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China 510150
| | - Hui Chen
- Department of Pathology, the Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China 510150
| | - Ruichao Chen
- Department of Pathology, the Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China 510150
| | - Minfen Zhang
- Department of Pathology, the Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China 510150
| | - Wei Zhang
- Department of Pathology, the Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China 510150
| | - Li Zhao
- Department of Pathology, the Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China 510150
| | - Hanzhen Xiong
- Department of Pathology, the Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China 510150
| | - Ping Qin
- Department of Pathology, the Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China 510150
| | - Xingcheng Gao
- The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China 511436
| | - Qingping Jiang
- Department of Pathology, the Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China 510150
| |
Collapse
|
27
|
Wang K, Yang S, Gao Y, Zhang C, Sui Q. MicroRNA-769-3p inhibits tumor progression in glioma by suppressing ZEB2 and inhibiting the Wnt/β-catenin signaling pathway. Oncol Lett 2019; 19:992-1000. [PMID: 31897212 PMCID: PMC6924179 DOI: 10.3892/ol.2019.11135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence suggests the crucial role of microRNAs (miRNAs) in human cancers. The present study aimed to investigate the clinical and functional roles of miR-769-3p in glioma, as well as the underlying molecular mechanisms. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to determine the expression levels of miR-769-3p in glioma tissues and cells. Receiver operating characteristic (ROC) curve analysis was applied to calculate the diagnostic value of miR-769-3p. The 5-year survival rate of patients was calculated using Kaplan-Meier analysis and Cox regression analysis. Cell experiments were used to investigate the functional role of miR-769-3p in glioma. The gene target of miR-769-3p was predicted by TargetScan. Changes in the levels of Wnt signaling-related proteins were measured by western blotting. miR-769-3p was significantly downregulated in glioma tissues and serum, as well as in glioma cell lines (P<0.001). miR-769-3p expression was significantly associated with the World Health Organization grade and Karnofsky performance score. The ROC curves demonstrated that serum miR-769-3p level reliably distinguished patients with glioma from healthy individuals. High tissue miR-769-3p expression predicted poor overall survival in patients with glioma (log-rank P=0.001) and was identified as an independent prognostic factor. In addition, zinc finger E-box binding homeobox 2 (ZEB2) was demonstrated to be a direct target of miR-769-3p in glioma cells using a luciferase assay. miR-769-3p upregulation suppressed the activity of the Wnt/β-catenin signaling pathway in glioma cells. In conclusion, miR-769-3p may serve as a diagnostic and prognostic biomarker in patients with glioma and target ZEB2 to inhibit tumor progression via the Wnt/β-catenin signaling pathway. miR-769-3p may be a novel therapeutic target for the treatment of glioma.
Collapse
Affiliation(s)
- Kai Wang
- Department of Neurosurgery, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| | - Shasha Yang
- Department of Burns, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| | - Yishen Gao
- Department of Neurosurgery, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| | - Caihong Zhang
- Department of Ultrasound, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| | - Qiangbo Sui
- Department of Neurosurgery, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| |
Collapse
|