1
|
Zhu Z, Huang Y, Song Y, Lu J, Hu L, Chen X. LncRNA MALAT1 Knockdown Alleviates Fibrogenic Response in Human Endometrial Stromal Cells Via the miR-22-3p/TGFβR1/Smad2/3 Pathway. Cell Biochem Biophys 2024; 82:3573-3584. [PMID: 39154131 DOI: 10.1007/s12013-024-01445-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/19/2024]
Abstract
Intrauterine adhesion (IUA) resulting from irreversible fibrotic repair of endometrium is the main cause of secondary infertility in women, and current therapeutic approaches to IUA are limited. Increasing evidence has suggested the important role of competitive endogenous RNA (ceRNA) in IUA pathologies. This study aimed to investigate the long noncoding RNA (lncRNA) metastasis associated lung adenocarcinoma transcript 1 (MALAT1)-associated ceRNA in IUA development. We harvested endometrial tissues from patients with or without IUA and extracted endometrial stromal cells (ESCs) from normal endometrial tissues. Transforming growth factor β1 (TGF-β1) was used to induce fibrosis in ESCs. The expression of transforming growth factor β receptor 1 (TGFβR1), α-smooth muscle actin, phosphorylated suppressor of mother against decapentaplegic (p-Smad)2/3, collagen type I alpha 1, MALAT1, and microRNA (miR)-22-3p in endometrial tissues and ESCs was measured by reverse transcription quantitative polymerase chain reaction (RT-qPCR) or western blotting. Pearson's correlation analysis was conducted to assess the correlation between miR-22-3p expression or TGFβR1 and MALAT1 expression in endometrial tissues. The expression of TGFβR1 in ESCs was also evaluated by immunofluorescence staining. The location of MALAT1 was examined by fluorescence in situ hybridization. Luciferase reporter assays were performed to verify the binding relationship between MALAT1 or TGFβR1 and miR-22-3p. Cell viability was assessed via cell counting kit-8 assays. Our findings revealed that lncRNA MALAT1 and TGFβR1 were upregulated while miR-22-3p was downregulated in IUA endometrial tissues or TGF-β1-stimulated ESCs, and lncRNA MALAT1 expression was negatively correlated with miR-22-3p expression while being positively correlated with TGFβR1 expression in IUA endometrial tissues. Additionally, lncRNA MALAT1 was mainly located in the cytoplasm of ESCs and directly targeted miR-22-3p to regulate TGFβR1 expression. Moreover, knockdown of lncRNA MALAT1 exerted anti-fibrotic effects on ESCs by targeting miR-22-3p, and miR-22-3p overexpression inhibited the fibrosis of ESCs by binding to TGFβR1 3'untranslated region. Collectively, lncRNA MALAT1 promotes endometrial fibrosis by sponging miR-22-3p to regulate TGFβR1 and Smad2/3, and inhibition of MALAT1 may represent a promising therapeutic option for suppressing endometrial fibrosis.
Collapse
Affiliation(s)
- Zhengyan Zhu
- Department of Gynecology, Wuhan Third Hospital (Guanggu Campus), Wuhan, 430000, Hubei, China
| | - Yu Huang
- Department of Gynecology, Wuhan Third Hospital (Guanggu Campus), Wuhan, 430000, Hubei, China
| | - Yu Song
- Department of Gynecology, Wuhan Third Hospital (Guanggu Campus), Wuhan, 430000, Hubei, China
| | - Jingquan Lu
- Department of Gynecology, Wuhan Third Hospital (Guanggu Campus), Wuhan, 430000, Hubei, China
| | - Lina Hu
- Department of Gynecology, Wuhan Third Hospital (Guanggu Campus), Wuhan, 430000, Hubei, China
| | - Xuemei Chen
- Department of Gynecology, Wuhan Third Hospital (Guanggu Campus), Wuhan, 430000, Hubei, China.
| |
Collapse
|
2
|
Shi T, Hou C, Duan Y, Li Y, Liu W, Huang P, Zhou Y, Yu S, Song L. Mechanism of Smilax china L. in the treatment of intrauterine adhesions based on network pharmacology, molecular docking and experimental validation. BMC Complement Med Ther 2024; 24:150. [PMID: 38580999 PMCID: PMC10996135 DOI: 10.1186/s12906-024-04414-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/27/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Smilax china L. (SCL) is a traditional herbal medicine for the potential treatment of intrauterine adhesion (IUA). However, the mechanisms of action have not yet been determined. In this study, we explored the effects and mechanisms of SCL in IUA by network pharmacology, molecular docking and molecular biology experiments. METHODS Active ingredients and targets of SCL were acquired from TCMSP and SwissTargetPrediction. IUA-related targets were collected from the GeneCards, DisGeNET, OMIM and TTD databases. A protein‒protein interaction (PPI) network was constructed by Cytoscape 3.9.1 and analysed with CytoHubba and CytoNCA to identify the core targets. The DAVID tool was used for GO and KEGG enrichment analyses. Furthermore, molecular docking was employed to assess the interaction between the compounds and key targets. Finally, the mechanisms and targets of SCL in IUA were verified by cellular experiments and western blot. RESULTS A total of 196 targets of SCL were identified, among which 93 were related to IUA. Topological and KEGG analyses results identified 15 core targets that were involved in multiple pathways, such as inflammation, apoptosis, and PI3K/AKT signalling pathways. Molecular docking results showed that the active compounds had good binding to the core targets. In vitro experiments showed that astilbin (AST), a major component of SCL, significantly reduced TGF-β-induced overexpression of fibronectin (FN), activation of the PI3K/AKT signalling pathway and the expression of downstream factors (NF-κB and BCL2) in human endometrial stromal cells, suggesting that AST ameliorates IUA by mediating the PI3K/AKT/NF-κB and BCL2 proteins. CONCLUSIONS AST, a major component of SCL, may be a potential therapeutic agent for IUA. Moreover, its mechanism is strongly associated with regulation of the PI3K/AKT signalling pathway and the downstream NF-κB and BCL2 proteins. This study will provide new strategies that utilize AST for the treatment of IUA.
Collapse
Affiliation(s)
- Tingting Shi
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, #253 Industrial Avenue Zhong, Guangzhou, 510280, Guangdong, China
| | - Chuqi Hou
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yongzhen Duan
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, #253 Industrial Avenue Zhong, Guangzhou, 510280, Guangdong, China
| | - Yuliang Li
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, #253 Industrial Avenue Zhong, Guangzhou, 510280, Guangdong, China
| | - Wenqin Liu
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Peixian Huang
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, #253 Industrial Avenue Zhong, Guangzhou, 510280, Guangdong, China
| | - Yuhua Zhou
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, #253 Industrial Avenue Zhong, Guangzhou, 510280, Guangdong, China
| | - Shanshan Yu
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, #253 Industrial Avenue Zhong, Guangzhou, 510280, Guangdong, China.
| | - Luyao Song
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, #253 Industrial Avenue Zhong, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
3
|
Wang X, Gu Y, Zhang L, Ma J, Xia Y, Wang X. Long noncoding RNAs regulate intrauterine adhesion and cervical cancer development and progression. Semin Cell Dev Biol 2024; 154:221-226. [PMID: 36841649 DOI: 10.1016/j.semcdb.2023.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/27/2023]
Abstract
Intrauterine adhesion, one of reproductive system diseases in females, is developed due to endometrial injury, such as infection, trauma, uterine congenital abnormalities and uterine curettage. Intrauterine adhesion affects female infertility and causes several complications, including amenorrhoea, hypomenorrhoea, and recurrent abortion. Cervical cancer is one of the common gynecological tumors and the fourth leading cancer-related death in women worldwide. Although the treatments of cervical cancer have been improved, the advanced cervical cancer patients have a low survival rate due to tumor recurrence and metastasis. The molecular mechanisms of intrauterine adhesion and cervical tumorigenesis have not been fully elucidated. In recent years, long noncoding RNAs (lncRNAs) have been known to participate in intrauterine adhesion and cervical carcinogenesis. Therefore, in this review, we will summarize the role of lncRNAs in regulation of intrauterine adhesion development and progression. Moreover, we will discuss the several lncRNAs in control of cervical oncogenesis and progression. Furthermore, we highlight that targeting lncRNAs could be used for treatment of intrauterine adhesion and cervical cancer.
Collapse
Affiliation(s)
- Xuemei Wang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China
| | - Yu Gu
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China
| | - Leichao Zhang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China
| | - Jingchao Ma
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China
| | - Yong Xia
- Department of Gynecology and Obstetrics, Fuzhou Maternity and Infant Hospital, Fuzhou, Fujian 350301, China
| | - Xueju Wang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China.
| |
Collapse
|
4
|
Babaei K, Aziminezhad M, Norollahi SE, Vahidi S, Samadani AA. Cell therapy for the treatment of reproductive diseases and infertility: an overview from the mechanism to the clinic alongside diagnostic methods. Front Med 2022; 16:827-858. [PMID: 36562947 DOI: 10.1007/s11684-022-0948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022]
Abstract
Infertility is experienced by 8%-12% of adults in their reproductive period globally and has become a prevalent concern. Besides routine therapeutic methods, stem cells are rapidly being examined as viable alternative therapies in regenerative medicine and translational investigation. Remarkable progress has been made in understanding the biology and purpose of stem cells. The affected pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs) are further studied for their possible use in reproductive medicine, particularly for infertility induced by premature ovarian insufficiency and azoospermia. Accordingly, this study discusses current developments in the use of some kinds of MSCs such as adipose-derived stem cells, bone marrow stromal cells, umbilical cord MSCs, and menstrual blood MSCs. These methods have been used to manage ovarian and uterine disorders, and each technique presents a novel method for the therapy of infertility.
Collapse
Affiliation(s)
- Kosar Babaei
- Non-Communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mohsen Aziminezhad
- Non-Communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.,UMR INSERM U 1122, IGE-PCV, Interactions Gène-Environment En Physiopathologie Cardiovascular Université De Lorraine, Nancy, France
| | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
5
|
Liu HD, Wang SW. Role of noncoding RNA in the pathophysiology and treatment of intrauterine adhesion. Front Genet 2022; 13:948628. [PMID: 36386826 PMCID: PMC9650223 DOI: 10.3389/fgene.2022.948628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Intrauterine adhesion (IUA) is one of the most common diseases of the reproductive system in women. It is often accompanied by serious clinical problems that damage reproductive function, such as menstrual disorder, infertility, or recurrent abortion. The clinical effect of routine treatment is not ideal, and the postoperative recurrence rate is still very high. Therefore, exploring the pathological mechanism of IUA and finding new strategies for the effective prevention and treatment of IUA are needed. The main pathological mechanism of IUA is endometrial fibrosis and scar formation. Noncoding RNA (ncRNA) plays an important role in the fibrosis process, which is one of the latest research advances in the pathophysiology of IUA. Moreover, the exosomal miRNAs derived from mesenchymal stem cells can be used to improve IUA. This paper reviewed the role of ncRNAs in IUA pathogenesis, summarized the core pathways of endometrial fibrosis regulated by ncRNAs, and finally introduced the potential of ncRNAs as a therapeutic target.
Collapse
Affiliation(s)
- Hui-Dong Liu
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China,Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shao-Wei Wang
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China,Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China,*Correspondence: Shao-Wei Wang,
| |
Collapse
|
6
|
A review of the effects of estrogen and epithelial-mesenchymal transformation on intrauterine adhesion and endometriosis. Transpl Immunol 2022; 79:101679. [PMID: 35908631 DOI: 10.1016/j.trim.2022.101679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 12/13/2022]
Abstract
Uterus transplantation has become an option for women suffering from some form of infertility. Current review discusses key physiological functions of the endometrium requiring the transition of tissue cells between the mesenchyme and epithelial cell phenotype, a process known as epithelial-mesenchymal transition (EMT). Estrogen and EMT play a key role in the pathogenesis and treatment of intrauterine adhesion and endometriosis. There is also a close regulatory relationship between estrogen and EMT, and investigation of this relationship is of great significance for the treatment of endometrial disorders. The present review discusses the effects of estrogen on endometrial dysfunction, with a focus on the relationship between estrogen and EMT in endometrial disorders, taking into consideration the mechanisms by which receptors that regulate their functions and proteins that regulate their local biological functions interact with the factors involved in EMT. In addition, the review summarizes emerging drugs targeting receptors or proteins and provides information on the direction of new therapies for endometrial disorders.
Collapse
|
7
|
Chen Y, Sun D, Shang D, Jiang Z, Miao P, Gao J. miR-223-3p alleviates TGF-β-induced epithelial-mesenchymal transition and extracellular matrix deposition by targeting SP3 in endometrial epithelial cells. Open Med (Wars) 2022; 17:518-526. [PMID: 35350836 PMCID: PMC8919841 DOI: 10.1515/med-2022-0424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/26/2021] [Accepted: 12/15/2021] [Indexed: 01/06/2023] Open
Abstract
Intrauterine adhesion (IUA) is the clinical manifestation of endometrial fibrosis. The dysregulation of microRNAs (miRNAs) has been confirmed to implicate in a diversity of human diseases, including IUA. Nevertheless, the specific function of miR-223-3p in IUA remains to be clarified. Reverse transcription quantitative polymerase chain reaction analysis displayed the downregulation of miR-223-3p in IUA tissues and endometrial epithelial cells (EECs). Results from wound healing assay, Transwell assay and western blotting showed that TGF-β facilitated the migration and invasion of EECs and induced epithelial-mesenchymal transition (EMT) process as well as extracellular matrix (ECM) deposition. Overexpression of miR-223-3p in EECs was shown to suppress the effects induced by TGF-β. Bioinformatics analysis and luciferase reporter assay revealed the binding relation between miR-223-3p and SP3. SP3 was highly expressed in IUA and its expression was inversely correlated with miR-223-3p expression in IUA tissue samples. Additionally, upregulation of SP3 reversed the influence of miR-223-3p on the phenotypes of EECs. In conclusion, miR-223-3p alleviates TGF-β-induced cell migration, invasion, EMT process and ECM deposition in EECs by targeting SP3.
Collapse
Affiliation(s)
- Yanling Chen
- Department of Obstetrics and Gynecology, School of Medicine, Wuhan University of Science and Technology, Wuhan 430072, Hubei, China
| | - Dongyan Sun
- Department of Gynecology, Maternity and Child Health Care Hospital of Hubei Province, 745 Wuluo Road, Wuchang District, Wuhan 430000, Hubei, China
| | - Di Shang
- Department of Obstetrics and Gynecology, School of Medicine, Wuhan University of Science and Technology, Wuhan 430072, Hubei, China
| | - Zhihe Jiang
- Department of Obstetrics and Gynecology, School of Medicine, Wuhan University of Science and Technology, Wuhan 430072, Hubei, China
| | - Pan Miao
- Yangtze University Health Science Center, Jingzhou 430199, Hubei, China
| | - Jian Gao
- Department of Obstetrics and Gynecology, School of Medicine, Wuhan University of Science and Technology, Wuhan 430072, Hubei, China
| |
Collapse
|
8
|
Liao Z, Liu C, Wang L, Sui C, Zhang H. Therapeutic Role of Mesenchymal Stem Cell-Derived Extracellular Vesicles in Female Reproductive Diseases. Front Endocrinol (Lausanne) 2021; 12:665645. [PMID: 34248842 PMCID: PMC8261239 DOI: 10.3389/fendo.2021.665645] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Reproductive disorders, including intrauterine adhesion (IUA), premature ovarian insufficiency (POI), and polycystic ovary syndrome (PCOS), are great threats to female reproduction. Recently, mesenchymal stem cells derived-extracellular vesicles (MSC-EVs) have presented their potentials to cure these diseases, not only for the propensity ability they stemmed from the parent cells, but also for the higher biology stability and lower immunogenicity, compared to MSCs. EVs are lipid bilayer complexes, functional as mediators by transferring multiple molecules to recipient cells, such as proteins, microRNAs, lipids, and cytokines. EVs appeared to have a therapeutic effect on the female reproductive disorder, such as repairing injured endometrium, suppressing fibrosis of endometrium, regulating immunity and anti-inflammatory, and repressing apoptosis of granulosa cells (GCs) in ovaries. Although the underlying mechanisms of MSC-EVs have reached a consensus, several theories have been proposed, including promoting angiogenesis, regulating immunity, and reducing oxidate stress levels. In the current study, we summarized the current knowledge of functions of MSC-EVs on IUA, POI, and PCOS. Given the great potentials of MSC-EVs on reproductive health, the critical issues discussed will guide new insights in this rapidly expanding field.
Collapse
Affiliation(s)
| | - Chang Liu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Cong Sui
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanwang Zhang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Javadi M, Rad JS, Farashah MSG, Roshangar L. An Insight on the Role of Altered Function and Expression of Exosomes and MicroRNAs in Female Reproductive Diseases. Reprod Sci 2021; 29:1395-1407. [PMID: 33825167 DOI: 10.1007/s43032-021-00556-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Exosomes are small bilayer-lipid membrane vesicles secreted by living cells that are able to transfer regulatory molecules and genetic information from one cell to another. These vesicles are enriched with several nucleic acids including mRNAs, microRNAs (miRNAs), other non-coding RNAs, as well as proteins and lipids. Alterations in the exosomal content and functions are observed in numerous reproductive diseases in both animals and human cases. MicroRNAs, a class of small endogenous RNA molecules, can negatively regulate gene expression at the post-transcription level. Aberrant microRNA expression has been reported in multiple human reproductive diseases such as polycystic ovary syndrome, preeclampsia, uterine leiomyomata, ovarian cancer, endometriosis, and Asherman's syndrome. This study focuses to review recent research on alterations of microRNA expression and the role of exosomes in female reproductive diseases. It has been demonstrated that exosomes may be a potential therapeutic approach in various female reproductive diseases. In addition, changes in expression of microRNAs act as molecular biomarkers for diagnosis of several reproductive diseases in women, and regulation of their expression can potentially reduce infertility.
Collapse
Affiliation(s)
- Maryam Javadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sadegh Gholami Farashah
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Anatomical Sciences, Faculty of medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|