1
|
Panda SS, Biswal BK. The phytochemical plumbagin: mechanism behind its "pleiotropic" nature and potential as an anticancer treatment. Arch Toxicol 2024; 98:3585-3601. [PMID: 39271481 DOI: 10.1007/s00204-024-03861-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Chemotherapeutics are most often used to treat cancer, but side effects, drug resistance, and toxicity often compromise their effectiveness. In contrast, phytocompound plumbagin possesses a distinct pleiotropic nature, targeting multiple signaling pathways, such as ROS generation, cell death, cellular proliferation, metastasis, and drug resistance, and is shown to enhance the efficacy of chemotherapeutic drugs. Plumbagin has been shown to act synergistically with various chemotherapeutic drugs and enhance their efficacy in drug-resistant cancers. The pleiotropic nature is believed to be due to plumbagin's unique structure, which contains a naphthoquinone ring and a hydroxyl group responsible for plumbagin's various biological responses. Despite limitations such as restricted bioavailability and delivery, recent developments aim to address these challenges and harness the potential of plumbagin as an anticancer therapeutics. This review delves into the structural aspect of the plumbagin molecule contributing to its pleiotropic nature, explores the diverse mechanism that it targets, and discusses emerging strategies to overcome its limitations.
Collapse
Affiliation(s)
- Shikshya Swarupa Panda
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Bijesh Kumar Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India.
| |
Collapse
|
2
|
Sharma B, Dhiman C, Hasan GM, Shamsi A, Hassan MI. Pharmacological Features and Therapeutic Implications of Plumbagin in Cancer and Metabolic Disorders: A Narrative Review. Nutrients 2024; 16:3033. [PMID: 39275349 PMCID: PMC11397539 DOI: 10.3390/nu16173033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024] Open
Abstract
Plumbagin (PLB) is a naphthoquinone extracted from Plumbago indica. In recent times, there has been a growing body of evidence suggesting the potential importance of naphthoquinones, both natural and artificial, in the pharmacological world. Numerous studies have indicated that PLB plays a vital role in combating cancers and other disorders. There is substantial evidence indicating that PLB may have a significant role in the treatment of breast cancer, brain tumours, lung cancer, hepatocellular carcinoma, and other conditions. Moreover, its potent anti-oxidant and anti-inflammatory properties offer promising avenues for the treatment of neurodegenerative and cardiovascular diseases. A number of studies have identified various pathways that may be responsible for the therapeutic efficacy of PLB. These include cell cycle regulation, apoptotic pathways, ROS induction pathways, inflammatory pathways, and signal transduction pathways such as PI3K/AKT/mTOR, STAT3/PLK1/AKT, and others. This review aims to provide a comprehensive analysis of the diverse pharmacological roles of PLB, examining the mechanisms through which it operates and exploring its potential applications in various medical conditions. In addition, we have conducted a review of the various formulations that have been reported in the literature with the objective of enhancing the efficacy of the compound. However, the majority of the reviewed data are based on in vitro and in vivo studies. To gain a comprehensive understanding of the safety and efficacy of PLB in humans and to ascertain its potential integration into therapeutic regimens for cancer and chronic diseases, rigorous clinical trials are essential. Finally, by synthesizing current research and identifying gaps in knowledge, this review seeks to enhance our understanding of PLB and its therapeutic prospects, paving the way for future studies and clinical applications.
Collapse
Affiliation(s)
- Bhoomika Sharma
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Chitra Dhiman
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Md Imtiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
3
|
Irshad R, Batool F, Raj N, Karim S, Alkreathy HM, Manzoor N, Husain M. Multi-targeted effects of D-carvone against Non-Small Cell Lung Cancer (NSCLC): A network pharmacology-based study. Toxicol Appl Pharmacol 2024; 487:116978. [PMID: 38795847 DOI: 10.1016/j.taap.2024.116978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/01/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Non-small cell lung cancer (NSCLC) is a complex malignancy with a high degree of heterogeneity, representing approximately 85% of all lung cancer cases. The treatment landscape for NSCLC has been revolutionised by incorporating targeted and immunotherapies; however, novel therapeutic modalities are consistently needed to enhance the treatment outcomes. Indeed, alternative anti-cancer therapies involving natural products have drawn the attention of clinicians and scientists owing to their remarkable chemopreventive potential, often displaying minimal toxicity. D-carvone (CN) is one such natural product that has exhibited numerous promising therapeutic benefits, yet its efficacy against NSCLC remains enigmatic. In the present study, network pharmacological studies and molecular docking in conjunction with in-vitro validation were used to elucidate the underlying mechanism of action of CN comprehensively. Different databases revealed a total of 77 putative anti-NSCLC targets of CN. The identified core targets were utilised to construct a "Compound- Target- Disease" network by Cytoscape (v3.9.0). Further analysis identified 5 core/ hub targets of CN including JAK2, ERK1, ESR1, GSK3B and HSP90AA1. Molecular docking indicated a strong binding interaction of the compound with these core targets. Also, Gene Ontology and KEGG analysis validated the involvement of multiple biological processes. Additionally, CN significantly inhibited cell proliferation, clonogenicity, and wound healing potential while promoting apoptosis in a dose-dependent manner in H1299 and A549 cell lines as examined by flow cytometry, morphological assessment, and western blotting. In conclusion, this study delineates the therapeutic effects of CN on NSCLC, thus highlighting CN as a putative drug candidate for further analysis.
Collapse
Affiliation(s)
- Rasha Irshad
- Virology and Oncology Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Faiqah Batool
- Virology and Oncology Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Nafis Raj
- Medical Mycology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Shahid Karim
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Huda Mohammed Alkreathy
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nikhat Manzoor
- Medical Mycology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Husain
- Virology and Oncology Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
4
|
Gupta S, Banavath HN, Tejavath KK. Pharmacoinformatic screening of phytoconstituent and evaluation of its anti-PDAC effect using in vitro studies. J Biomol Struct Dyn 2023; 41:10627-10641. [PMID: 36510680 DOI: 10.1080/07391102.2022.2155701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
With no prominent treatment for pancreatic ductal adenocarcinoma (PDAC) in conventional chemotherapy, recent studies have focused on uniting conventional and traditional medicines including plant phytoconstituents. Herein, we used pharmacoinformatic studies to identify potent phytoconstituent as ligand having inhibition activities against canonical anticancer targets, and evaluated its effect on PDAC cell lines. SwissTargetPrediction and SuperPred tools were utilized to segregate protein targets of ligand in humans, following which FunRich was applied to garner its targets in PDAC. STRING analysis predicted protein-protein interactions and dynamic simulation studies confirmed stability of ligand-protein complex. For in vitro cytotoxic potential, ligand treatment at different concentrations was given to PDAC cell lines both alone and combined with gemcitabine, followed by evaluation of effects on migration. Differential gene expression was checked using PCR for evaluating mechanism of cytotoxicity. Results showed pentagalloylglucose (PGG) with highest docking and MMGBSA scores for Cyclooxygenase 2 (Cox2) inhibition site. SwissTargetPrediction and SuperPred analysis detected 40 targets of PGG in PDAC. Simulation data showed stability of protein-ligand complex. In in vitro experiments Mia-PaCa-2 was more sensitive to PGG than Panc-1. PGG successfully inhibited migration both alone and in combination with gemcitabine. Additionally, PGG treatment induced apoptosis in both the cell lines; but showed antagonism when combined with gemcitabine. In conclusion, our report demonstrates PGG has good binding with Cox2 and showed anti-PDAC activity by inhibiting migration and inducing apoptosis, thus it can be used as a therapy option. But further studies are required to confirm its behaviour as a combination therapy drug.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shruti Gupta
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Hemanth Naick Banavath
- Department of Sports Bio-Sciences, School of Sports Science MYAS-CURAJ, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Kiran Kumar Tejavath
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
5
|
Wu W, Cheng C, Yuan D, Peng L, Li L. Explore intersection genes of oxymatrine and COVID-19 with lung cancer as potential therapeutic targets based on network pharmacology. J Med Microbiol 2023; 72. [PMID: 37855710 DOI: 10.1099/jmm.0.001766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Introduction. Oxymatrine is a natural quinazine alkaloid extracted from Sophora flavescens and has many medicinal values. Oxymatrine showed protective effects, viral inhibition and effects against lung cancer.Hypothesis/Gap Statement. Individuals with lung cancer exhibit heightened vulnerability to COVID-19 infection due to compromised immune function. In conjunction with COVID-19, it is hypothesized that oxymatrine may exert potent pharmacological effects on lung cancer patients.Aim. The objective of this study was to assess the pharmacological mechanisms and targets of oxymatrine in relation to COVID-19 lung cancer.Methodology. Utilizing network pharmacology analysis, a selection of 2628 genes were identified as co-targets for both COVID-19 and lung cancer. Subsequently, a clinicopathological analysis was conducted by integrating RNA-Seq and clinical data obtained from the TCGA-LUAD lung cancer dataset, which was acquired from the official TCGA website. The identification of pharmacological targets for oxymatrine was accomplished through the utilization of various databases including Pharm mapper, SWISS Target prediction, and STITCH. These identified targets were further investigated for protein-protein interaction (PPI) using STRING, as well as for gene ontology (GO) and KEGG pathways.Results. The effects of oxymatrine on COVID-19-induced lung cancer were mediated by immune regulation, cytoprotection, antiviral, and anti-inflammatory activities, immune regulation, and control of related signalling pathways, including the formation of the neutrophil extracellular trap, phagosome, Toll-like receptor signalling pathway, apoptosis, proteoglycans in cancer, extracellular matrix disassembly, and proteolysis involved in cellular protein catabolism. Furthermore, important substances and genes like ALB, MMP3, MMP1, and TLR4 may affect how oxymatrine suppresses lung cancer/COVID-19 development.Conclusion. To treat COVID-19 or lung cancer paired with COVID-19, oxymatrine may improve the therapeutic efficacy of current clinical antiviral medicines and immunotherapy.
Collapse
Affiliation(s)
- Wei Wu
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, PR China
| | - Chuan Cheng
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, PR China
| | - Dongdong Yuan
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, PR China
| | - Li Peng
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, PR China
| | - Le Li
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, PR China
| |
Collapse
|
6
|
Shin B, Lee JY, Im Y, Yoo H, Park J, Lee JS, Lee KY, Jeon K. Prognostic implication of downregulated exosomal miRNAs in patients with sepsis: a cross-sectional study with bioinformatics analysis. J Intensive Care 2023; 11:35. [PMID: 37537685 PMCID: PMC10399058 DOI: 10.1186/s40560-023-00683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Despite the understanding of sepsis-induced extracellular vesicles (EVs), such as exosomes, and their role in intercellular communication during sepsis, little is known about EV contents such as microRNA (miRNA), which modulate important cellular processes contributing to sepsis in body fluids. This study aimed to analyze the differential expression of exosomal miRNAs in plasma samples collected from sepsis patients and healthy controls, and to identify potential miRNA regulatory pathways contributing to sepsis pathogenesis. METHODS Quantitative real-time PCR-based microarrays were used to profile plasma exosomal miRNA expression levels in 135 patients with sepsis and 11 healthy controls from an ongoing prospective registry of critically ill adult patients admitted to the intensive care unit. The identified exosomal miRNAs were tested in an external validation cohort (35 sepsis patients and 10 healthy controls). And then, functional enrichment analyses of gene ontology, KEGG pathway analysis, and protein-protein interaction network and cluster analyses were performed based on the potential target genes of the grouped miRNAs. Finally, to evaluate the performance of the identified exosomal miRNAs in predicting in-hospital and 90-day mortalities of sepsis patients, receiver operating characteristic curve (ROC) and Kaplan-Meier analyses were performed. RESULTS Compared with healthy controls, plasma exosomes from sepsis patients showed significant changes in 25 miRNAs; eight miRNAs were upregulated and 17 downregulated. Additionally, the levels of hsa-let-7f-5p, miR-331-3p miR-301a-3p, and miR-335-5p were significantly lower in sepsis patients than in healthy controls (p < 0.0001). These four miRNAs were confirmed in an external validation cohort. In addition, the most common pathway for these four miRNAs were PI3K-Akt and mitogen-activated protein kinase (MAPK) signaling pathways based on the KEGG analysis. The area under the ROC of hsa-let-7f-5p, miR-331-3p, miR-301a-3p, and miR-335-5p level for in-hospital mortality was 0.913, 0.931, 0.929, and 0.957, respectively (p < 0.001), as confirmed in an external validation cohort. Also, the Kaplan-Meier analysis showed a significant difference in 90-day mortality between sepsis patients with high and low miR-335-5p, miR-301a-3p, hsa-let-7f-5p, and miR-331-3p levels (p < 0.001, log-rank test). CONCLUSION Among the differentially-expressed miRNAs detected in microarrays, the top four downregulated exosomal miRNAs (hsa-let-7f-5p, miR-331-3p miR-301a-3p, and miR-335-5p) were identified as independent prognostic factors for in-hospital and 90-day mortalities among sepsis patients. Bioinformatics analysis demonstrated that these four microRNAs might provide a significant contribution to sepsis pathogenesis through PI3K-Akt and MAPK signaling pathway.
Collapse
Affiliation(s)
- Beomsu Shin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Jin Young Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Yunjoo Im
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Hongseok Yoo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Junseon Park
- Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Joo Sang Lee
- Department of Artificial Intelligence and Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Ki-Young Lee
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyeongman Jeon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkawan University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Tian S, Wu L, Zheng H, Zhong X, Yu X, Wu W. Identification of autophagy-related genes in neuropathic pain through bioinformatic analysis. Hereditas 2023; 160:8. [PMID: 36855217 PMCID: PMC9976393 DOI: 10.1186/s41065-023-00269-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 02/16/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Neuropathic pain (NP) is one of the most common types of chronic pain and significantly compromises the quality of life. Autophagy is an intracellular catabolic process that is required to maintain cellular homeostasis in response to various stresses. The role of autophagy-related genes in the diagnosis and treatment of neuropathic pain remains unclear. METHODS We identified autophagy-related differentially expressed genes (ARDEGs) and differentially expressed miRNAs (DE-miRNAs) in neuropathic pain by bioinformatics analysis of the GSE145226 and GSE145199 datasets. These ARDEGs and their co-expressed genes were subjected to Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, Gene Set Enrichment Analysis (GSEA) and friends analysis. Meanwhile, we constructed TFs-ARDEGs, miRNA-ARDEGs regulatory network through ChIPBase database and the HTFtarget database, multiMir R package. Finally, we performed immune infiltration analysis of ARDEGs by Single Sample Gene Set Enrichment Analysis (ssGSEA). RESULTS We identified 2 potential autophagy-related differentially expressed genes (Sirt2 and ST7) that may be closely associated with the pathogenesis of neuropathic pain. GO, KEGG and GSEA analysis revealed that these two ARDEGs were mainly enriched in pyridine nucleotide metabolic process, nicotinamide nucleotide metabolic process, Nicotinate and nicotinamide metabolism, NF-κB pathway, KRAS signaling, P53 pathway. In the TFs-ARDEGs and miRNA-ARDEGs regulatory network, miR-140-5p and Cebpb were predicted to be as crucial regulators in the progression of NP. For the ssGSEA results, Sirt2 was positively correlated with Eosinophil and Effector memory CD8+ T cell infiltration, which suggested that it may be involved in the regulation of neuroimmune-related signaling. CONCLUSION Two autophagy-related differentially expressed genes, especially Sirt2, may be potential biomarkers for NP, providing more evidence about the crucial role of autophagy in neuropathic pain.
Collapse
Affiliation(s)
- Sheng Tian
- grid.412455.30000 0004 1756 5980Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 China
| | - Lanxiang Wu
- grid.412455.30000 0004 1756 5980Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 China
| | - Heqing Zheng
- grid.412455.30000 0004 1756 5980Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 China
| | - Xianhui Zhong
- grid.412455.30000 0004 1756 5980Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 China
| | - Xinping Yu
- grid.412455.30000 0004 1756 5980Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 China
| | - Wei Wu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
8
|
Sidhu H, Capalash N. Plumbagin downregulates UHRF1, p-Akt, MMP-2 and suppresses survival, growth and migration of cervical cancer CaSki cells. Toxicol In Vitro 2023; 86:105512. [PMID: 36336213 DOI: 10.1016/j.tiv.2022.105512] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/07/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Plumbagin is a natural compound known to impede growth of cancerous cells. However, anti-cervical cancer effects of plumbagin and its underlying molecular mechanism still remains elusive. In this study, plumbagin reduced the viability of CaSki cells in a concentration dependent manner and suppressed their colony formation potential. It led to G2/M phase arrest with downregulation of E2F1 and upregulation of p21. Plumbagin reduced mitochondrial membrane potential and concomitantly increased the percentage of apoptotic cells as revealed by annexin V-propidium iodide staining. Real Time PCR and western blotting confirmed that plumbagin induced apoptosis by reducing the expression of pAkt, procaspase 9 and full-length PARP. Furthermore, scratch assay showed that plumbagin suppressed migratory potential of CaSki cells which could be due to the reduced expression and activity of MMP-2 and upregulation of TIMP2. Interestingly, plumbagin also downregulated UHRF1 expression. Transient silencing of UHRF1 like plumbagin, induced G2/M phase arrest, enhanced apoptosis and suppressed metastasis of CaSki cells suggesting the role of UHRF1 in mediating anti-cancer activities of plumbagin. Plumbagin at IC20 (1 μM) interacted synergistically with cisplatin and reduced its IC50 value by 13.23 fold with improved effectivity as revealed by augmented apoptosis in CaSki cells.
Collapse
Affiliation(s)
- Harsimran Sidhu
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
9
|
Liang K, Pan X, Chen Y, Huang S. Anti-ovarian cancer actions and pharmacological targets of plumbagin. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1205-1210. [PMID: 36692828 DOI: 10.1007/s00210-023-02393-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
Ovarian cancer is a gynecological malignancy characterized with increasing death rate in the world. It is clinically reported that chemotherapy against ovarian cancer is still found with poor curative effect and potential side effect. Plumbagin is an emerging anti-cancer compound. Although some experimental findings of plumbagin anti-ovarian cancer activity are described, the pharmacological targets should be further explored. In this study, we aimed to investigate the underlying pharmacological activities and targets of plumbagin against ovarian cancer in vitro. As results, in silico docking analysis suggested plumbagin potently treating ovarian cancer through regulating pharmacological targets, including octamer-binding transcription factor 4 (OCT4) and Kruppel-like factor 4 (KLF4). The preliminary experimental data showed that plumbagin treatment inhibited cell growth and induced apoptosis in cancer cells. In addition, decreased mRNA expressions of intracellular OCT4, PCNA, and elevated KLF4 mRNA activation were detected in plumbagin-treated cancer cells. Furthermore, immunostaining determination showed reduced OCT4-positive cells and increased KLF4-positive cells were observed following plumbagin treatments. To sum up, our current findings have preliminarily showed the anti-ovarian cancer benefits of plumbagin, and the pharmacological targets may be identified as KLF4 and OCT4 pathway. Thus, we conclude that plumbagin may be a bioactive compound for ovarian cancer treatment.
Collapse
Affiliation(s)
- Kai Liang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Qingxiu District, Guangxi, Nanning, People's Republic of China
| | - Xinwei Pan
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Qingxiu District, Guangxi, Nanning, People's Republic of China.
| | - Yumei Chen
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China
| | - Shaode Huang
- Guangxi Vocational University of Agriculture, Nanning, People's Republic of China
| |
Collapse
|
10
|
Murugaiyaa Pandiyan S, Shanmugaraj P, Manoharan JP, Vidyalakshmi S. A network pharmacological approach to reveal the multidrug resistance reversal and associated mechanisms of acetogenins against colorectal cancer. J Biomol Struct Dyn 2022; 40:13527-13546. [PMID: 34669561 DOI: 10.1080/07391102.2021.1990130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Multidrug Resistance (MDR) in tumors is caused by the over-expression of ATP Binding Cassette transporter proteins such as Multidrug Resistance Protein 1 and Breast Cancer Resistance Protein 1. This in silico study focuses on identifying a MDR inhibitor among acetogenins (AGEs) of Annona muricata and also aims at predicting colorectal cancer (CRC) core targets of AGEs through a network pharmacological approach. Twenty-four AGEs were initially screened for their ADME properties. Molecular interaction studies were performed with the two proteins MRP1 and BCRP1. As the structure of MRP1 was not available, an inward-facing conformation of MRP1 was modeled. A Protein-protein interaction network was constructed for the correlating targets of CRC. KEGG pathway and Gene Ontology analysis were performed for the predicted CRC targets. We identified four lead AGEs: Muricatocin B, Annonacinone, Annonacin A and Annomuricin E having a higher binding affinity towards MDR proteins. MD simulation studies performed with the three lead AGEs and the MDR proteins showed that MRP1(DBD): Annomuricin E complex was stable throughout the simulation. Our analysis revealed ABCG2, ERBB2, STAT3, AR, SRC and ABCC1 as CRC targets of the lead molecules. The top 10 signaling pathways and functions of correlative CRC targets were also predicted. We conclude that the identified lead molecules might act as competitive inhibitors for reversing MDR in CRC. Additionally, network pharmacological studies established the correlative CRC targets and their mechanisms of action. Further experimental studies are needed to validate our findings. Communicated by Ramaswamy H. Sarma.
Collapse
|
11
|
Qing L, Pan B, He Y, Liu Y, Zhao M, Niu B, Gao X. Exploring the mechanisms underlying the therapeutic effect of the Radix Bupleuri-Rhizoma Cyperi herb pair on hepatocellular carcinoma using multilevel data integration and molecular docking. Aging (Albany NY) 2022; 14:9103-9127. [PMID: 36403263 PMCID: PMC9740357 DOI: 10.18632/aging.204388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
Traditional Chinese medicine (TCM) is a promising and effective treatment for cancer with minimal side effects through a multi-active ingredient multitarget network. Radix Bupleuri and Rhizoma Cyperi are listed as herbs dispersing stagnated liver Qi in China. They have been used clinically to treat liver diseases for many years and recent pharmacological studies have shown that they inhibit the proliferation of hepatocellular carcinoma (HCC). However, the pharmacological mechanisms, potential targets, and clinical value of the Radix Bupleuri-Rhizoma Cyperi herb pair (CXP) for suppressing HCC growth have not been fully elucidated. We identified 44 CXP targets involved in the treatment of HCC using the GEO dataset and HERB database. An analysis of the Traditional Chinese Medicine System Pharmacology Database (TCMSP) showed that CXP exerts synergistic effects through 4 active ingredients, including quercetin, stigmasterol, isorhamnetin, and kaempferol. GO and KEGG analyses revealed that CXP mainly regulates HCC progression through metabolic pathways, the p53 signaling pathway, and the cell cycle. Additionally, we applied The Cancer Genome Atlas (TCGA)-liver hepatocellular carcinoma (LIHC) database to perform the expression patterns, clinical features, and prognosis of 6 genes (CCNB1, CDK1, CDK4, MYC, CDKN2A, and CHEK1) in cell cycle pathways to reveal that CXP suppresses HCC clinical therapeutic value. Moreover, based on molecular docking, we further verified that CXP exerts its anti-HCC activity through the interaction of multiple active components with cell cycle-related genes. We systematically revealed the potential pharmacological mechanisms and targets of CXP in HCC using multilevel data integration and molecular docking strategies.
Collapse
Affiliation(s)
- Luzhi Qing
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, PR China
| | - Botao Pan
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, PR China
| | - Yanjun He
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, PR China,Emergency Department, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, PR China
| | - Yu Liu
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, PR China
| | - Minhong Zhao
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, PR China
| | - Bo Niu
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, PR China
| | - Xiuan Gao
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, PR China
| |
Collapse
|
12
|
Li R, Yu S, Liang X, Li Y, Lai KP. Vitamin C exerts anti-cadmium induced fracture functions/targets: bioinformatic and biostructural findings. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Liang X, Pan Q, Liao Y, Nie L, Yang L, Liu F, Su M. In silico analysis and experimental validation to exhibit anti-nasopharyngeal carcinoma effects of plumbagin, an anti-cancer compound. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5460-5467. [PMID: 35355274 DOI: 10.1002/jsfa.11900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/28/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is publicly known as a malignant tumor. Our previous study reported that plumbagin exhibits potent anti-cancer actions. Nevertheless, more mechanical details of plumbagin against NPC remain unknown. The present study aimed to unmask the core targets/genes and anti-NPC mechanisms involved in the signaling pathways of plumbagin prior to biochemical validation. METHODS A network pharmacology approach was employed to respective identification of mutual and core targets/genes in plumbagin and/treating NPC. Molecular docking determination was used to identify core target proteins for biochemical validation using human and cell line samples. RESULTS In total, 60 anti-NPC genes of plumbagin were screened out, and then nine core target genes of plumbagin against NPC were identified accordingly. The enrichment findings revealed detailed biological functions and pharmacological pathways of plumbagin against NPC. Moreover, in silico analysis using molecular docking had determined the core targets for further experimental validation, comprising protein kinase B (AKT1) and sarcoma gene (SRC). In human sample validation, clinical NPC sections showed increased positive expression of AKT1 and SRC. Additionally, plumbagin-treated NPC cells resulted in inactivated protein expression of AKT1 and SRC. CONCLUSION The re-identified core targets/genes in the molecular docking report may function as plumbagin-related pharmacological targets for treating NPC via experimental validation. Furthermore, additional anti-NPC molecular mechanisms of plumbagin action were disclosed on the basis of enrichment findings. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiao Liang
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, China
| | - Qijin Pan
- Department of Oncology, Guigang City Peoples' Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, China
| | - Yimei Liao
- Department of Pharmacy, Guigang City Peoples' Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, China
| | - Litao Nie
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, China
| | - Lu Yang
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, China
| | - Fangxian Liu
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Min Su
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, China
| |
Collapse
|
14
|
Vijayan S, Loganathan C, Sakayanathan P, Thayumanavan P. Synthesis and Characterization of Plumbagin S-Allyl Cysteine Ester: Determination of Anticancer Activity In Silico and In Vitro. Appl Biochem Biotechnol 2022; 194:5827-5847. [PMID: 35819687 DOI: 10.1007/s12010-022-04079-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022]
Abstract
In recent years, derivatives of natural compounds are synthesized to increase the bioavailability, pharmacology, and pharmacokinetics properties. The naphthoquinone, plumbagin (PLU), is well known for its anticancer activity. However, the clinical use of PLU is hindered due to its toxicity. Previous reports have shown that modification of PLU at 5'-hydroxyl group has reduced its toxicity towards normal cell line. In accordance, in the present study, 5'-hydroxyl group of PLU was esterified with S-allyl cysteine (SAC) to obtain PLU-SAC ester. The drug-likeness of PLU-SAC was understood by in silico ADME analysis. PLU-SAC was characterized by UV-visible spectroscopy, mass spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. Molecular docking and dynamics simulation analysis revealed the interaction of PLU-SAC with proteins of interest in cancer therapy such as human estrogen receptor α, tumor protein p53 negative regulator mouse double minute 2, and cyclin-dependent kinase 2. MMGBSA calculation showed the favorable binding energy which in turn demonstrated the stable binding of PLU-SAC with these proteins. PLU-SAC showed apoptosis in breast cancer cell line (MCF-7) by inducing oxidative stress, disturbing mitochondrial function, arresting cells at G1 phase of cell cycle, and initiating DNA fragmentation. However, PLU-SAC did not show toxicity towards normal Vero cell line. PLU-SAC was synthesized and structurally characterized, and its anticancer activity was determined by in silico and in vitro analysis.
Collapse
Affiliation(s)
- Sudha Vijayan
- Department of Biochemistry, Periyar University, Salem, Tamil Nadu, 636011, India
| | - Chitra Loganathan
- Department of Biochemistry, Periyar University, Salem, Tamil Nadu, 636011, India.,Research and Development Center, Bioinnov Solutions LLP, Salem, Tamil Nadu, 636002, India
| | | | | |
Collapse
|
15
|
Wang T, Wang G, Zhang G, Hou R, Zhou L, Tian X. Systematic analysis of the lysine malonylome in Sanghuangporus sanghuang. BMC Genomics 2021; 22:840. [PMID: 34798813 PMCID: PMC8603570 DOI: 10.1186/s12864-021-08120-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 10/22/2021] [Indexed: 01/18/2023] Open
Abstract
Background Sanghuangporus sanghuang is a well-known traditional medicinal mushroom associated with mulberry. Despite the properties of this mushroom being known for many years, the regulatory mechanisms of bioactive compound biosynthesis in this medicinal mushroom are still unclear. Lysine malonylation is a posttranslational modification that has many critical functions in various aspects of cell metabolism. However, at present we do not know its role in S. sanghuang. In this study, a global investigation of the lysine malonylome in S. sanghuang was therefore carried out. Results In total, 714 malonyl modification sites were matched to 255 different proteins. The analysis indicated that malonyl modifications were involved in a wide range of cellular functions and displayed a distinct subcellular localization. Bioinformatics analysis indicated that malonylated proteins were engaged in different metabolic pathways, including glyoxylate and dicarboxylate metabolism, glycolysis/gluconeogenesis, and the tricarboxylic acid (TCA) cycle. Notably, a total of 26 enzymes related to triterpene and polysaccharide biosynthesis were found to be malonylated, indicating an indispensable role of lysine malonylation in bioactive compound biosynthesis in S. sanghuang. Conclusions These findings suggest that malonylation is associated with many metabolic pathways, particularly the metabolism of the bioactive compounds triterpene and polysaccharide. This paper represents the first comprehensive survey of malonylation in S. sanghuang and provides important data for further study on the physiological function of lysine malonylation in S. sanghuang and other medicinal mushrooms. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08120-0.
Collapse
Affiliation(s)
- Tong Wang
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| | - Guangyuan Wang
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| | - Guoli Zhang
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| | - Ranran Hou
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| | - Liwei Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuemei Tian
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China.
| |
Collapse
|
16
|
Das S, Talukdar AD, Nath R, Nath D, Rahaman A, Bhattacharjee S, Choudhury MD. Molecular docking analysis of flupenthixol and desmethylastemizole with the apoptotic regulator proteins CFLAR and TRAF2 linked to lung carcinoma. Bioinformation 2021; 17:470-478. [PMID: 34602774 PMCID: PMC8450155 DOI: 10.6026/97320630017470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/31/2021] [Accepted: 04/29/2021] [Indexed: 11/23/2022] Open
Abstract
It is known that molecular changes in apoptotic genes due to mutation may cause disruption of apoptotic pathway resulting in an abrupt increase in cell proliferation. Therefore, it is of interest to identify compounds that could potentially replenish the
changes in the apoptotic pathway, resulted from mutation. The gene network analysis using the Network Analyzer Plugin of Cytoscape (3.5.1) shows CFLAR and TRAF2 as influential genes in the apoptotic pathway. Mutation in these genes brings loss in apoptotic
property of a cell and thus increases the cell proliferating activity. Thus, data on the molecular docking analysis of four natural compounds from Ottelia alismoides (L.) Pers with the two target proteins were reported. Flupenthixol and desmethylastemizole was
found to be two efficient ligand molecules based on ligand-target interaction. In stereochemical quality assessment, the Ramachandran plot analysis of receptors indicates the better stereochemical characteristics for receptor-ligand interaction.
Collapse
Affiliation(s)
- Subrata Das
- Department of Life Science and Bioinformatics, Assam University, Silchar-788011, India
| | - Anupam Das Talukdar
- Department of Life Science and Bioinformatics, Assam University, Silchar-788011, India
| | - Rajat Nath
- Department of Life Science and Bioinformatics, Assam University, Silchar-788011, India
| | - Deepa Nath
- Department of Botany, Gurucharan College, Silchar 4, Assam, India
| | - Ashikur Rahaman
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, North 24 Parganas, Barasat, Kolkata-700126, West Bengal, India
| | - Shamee Bhattacharjee
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, North 24 Parganas, Barasat, Kolkata-700126, West Bengal, India
| | | |
Collapse
|
17
|
Abstract
The aim of current study was to exhume the potential targets and molecular mechanisms of oxyresveratrol, a structurally re-constructed resveratrol, for treating liver cancer through bioinformatics investigation and experimentative validation. To start with, the network pharmacology approach and molecular docking technology were used to uncover all candidate targets of oxyresveratrol to treat liver cancer, accompanied with identified anti-liver cancer targets including estrogen receptor 1 (ESR1), epidermal growth factor receptor (EGFR). In addition, more pharmacological mechanisms of oxyresveratrol against liver cancer were revealed in details. In experimental verification, the clinical samples of liver cancer showed elevated ESR1, EGFR mRNA expressions. The in-vitro data indicated that intracellular contents of ESR1, EGFR mRNAs in oxyresveratrol-treated liver cancer cells were reduced. Taken together, the bioinformatics and validated findings have highlighted detailed pharmacological targets and molecular mechanisms of oxyresveratrol for treating liver cancer. Following with experimental verification, the identified genes of ESR1, EGFR may function as potential screening anti-liver cancer markers.
Collapse
|
18
|
A Network Pharmacology Approach to Investigate the Mechanism of Erjing Prescription in Type 2 Diabetes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9933236. [PMID: 34349832 PMCID: PMC8328705 DOI: 10.1155/2021/9933236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/11/2021] [Accepted: 07/17/2021] [Indexed: 01/20/2023]
Abstract
Erjing prescription (EJP) was an ancient formula that was recorded in the General Medical Collection of Royal Benevolence of the Song Dynasty. It has been frequently used to treat type 2 diabetes mellitus (T2DM) in the long history of China. The formula consists of Lycium barbarum L. and Polygonatum sibiricum F. Delaroche with a ratio of 1 : 1. This study aimed to identify the potential effects and mechanisms of EJP treatment T2DM. The target proteins and possible pathways of EJP in T2DM treatment were investigated by the approach of network pharmacology and real-time PCR (RT-PCR). 99 diabetes-related proteins were regulated by 56 bioactive constituents in EJP in 26 signal pathways by Cytoscape determination. According to GO analysis, 606 genes entries have been enriched. The PPI network suggested that AKT1, EGF, EGFR, MAPK1, and GSK3β proteins were core genes. Among the 26 signal pathways, the PI3K-AKT signal pathway was tested by the RT-PCR. The expression level of PI3K p85, AKT1, GSK3β, and Myc mRNA of this pathway was regulated by EJP. The study based on network pharmacology and RT-PCR analysis revealed that the blood sugar level was regulated by EJP via regulating the PI3K-AKT signal pathway. Plenty of new treatment methods for T2DM using EJP were provided by network pharmacology analysis.
Collapse
|
19
|
Djamgoz MBA, Jentzsch V. Integrative Management of Pancreatic Cancer (PDAC): Emerging Complementary Agents and Modalities. Nutr Cancer 2021; 74:1139-1162. [PMID: 34085871 DOI: 10.1080/01635581.2021.1934043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease. The standard first-line treatment for PDAC is gemcitabine chemotherapy which, unfortunately, offers only limited chance of a lasting cure. This review further evaluates the hypothesis that the effectiveness of gemcitabine can be improved by combining it with evidence-based complementary measures. Previously, supported by clinical trial data, we suggested that a number of dietary factors and nutraceuticals can be integrated with gemcitabine therapy. Here, we evaluate a further 10 agents for which no clinical trials have (yet) been carried out but there are promising data from in vivo and/or in vitro studies including experiments involving combined treatments with gemcitabine. Two groups of complementary agents are considered: Dietary factors (resveratrol, epigallocatechin gallate, vitamin B9, capsaicin, quercetin and sulforaphane) and nutraceutical agents (artemisinin, garcinol, thymoquinone and emodin). In addition, we identified seven promising agents for which there is currently only basic (mostly in vitro) data. Finally, as a special case of combination therapy, we highlighted synergistic drug combinations involving gemcitabine with "repurposed" aspirin or metformin. We conclude overall that integrated management of PDAC currently is likely to produce the best outcome for patients and for this a wide range of complementary measures is available.
Collapse
Affiliation(s)
- Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, London, UK
- Biotechnology Research Centre, Cyprus International University, Nicosia, Cyprus
| | - Valerie Jentzsch
- Department of Life Sciences, Imperial College London, London, UK
- Department of Health Policy, London School of Economics and Political Science, London, UK
| |
Collapse
|
20
|
Li R, Guo C, Li Y, Qin Z, Huang W. Therapeutic targets and signaling mechanisms of vitamin C activity against sepsis: a bioinformatics study. Brief Bioinform 2021; 22:5835559. [PMID: 32393985 PMCID: PMC7454291 DOI: 10.1093/bib/bbaa079] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/16/2020] [Indexed: 12/17/2022] Open
Abstract
Sepsis is a life-threatening complication of pneumonia, including coronavirus disease-2019 (COVID-19)-induced pneumonia. Evidence of the benefits of vitamin C (VC) for the treatment of sepsis is accumulating. However, data revealing the targets and molecular mechanisms of VC action against sepsis are limited. In this report, a bioinformatics analysis of network pharmacology was conducted to demonstrate screening targets, biological functions, and the signaling pathways of VC action against sepsis. As shown in network assays, 63 primary causal targets for the VC action against sepsis were identified from the data, and four optimal core targets for the VC action against sepsis were identified. These core targets were epidermal growth factor receptor (EGFR), mitogen-activated protein kinase-1 (MAPK1), proto-oncogene c (JUN), and signal transducer and activator of transcription-3 (STAT3). In addition, all biological processes (including a top 20) and signaling pathways (including a top 20) potentially involved in the VC action against sepsis were identified. The hub genes potentially involved in the VC action against sepsis and interlaced networks from the Kyoto Encyclopedia of Genes and Genomes Mapper assays were highlighted. Considering all the bioinformatic findings, we conclude that VC antisepsis effects are mechanistically and pharmacologically implicated with suppression of immune dysfunction-related and inflammation-associated functional processes and other signaling pathways. These primary predictive biotargets may potentially be used to treat sepsis in future clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Wenjun Huang
- Corresponding author: Wenjun Huang, Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, 109 North 2nd Huancheng Road Guilin, Guangxi, Chin. Tel: 0086-773-3680162; E-mail:
| |
Collapse
|
21
|
Li R, Li Y, Liang X, Yang L, Su M, Lai KP. Network Pharmacology and bioinformatics analyses identify intersection genes of niacin and COVID-19 as potential therapeutic targets. Brief Bioinform 2021; 22:1279-1290. [PMID: 33169132 PMCID: PMC7717147 DOI: 10.1093/bib/bbaa300] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Patients with colorectal cancer (CRC) may be susceptible to the coronavirus disease-2019 (COVID-19). However, anti-CRC/COVID-19 treatment options are currently unavailable. Since niacin is a vitamin with cytoprotective and anti-inflammatory functions, this study aimed to evaluate the possible functional roles and underlying mechanisms of action of niacin as an anti-COVID-19 and -CRC therapy. INTERVENTIONS We used a series of network pharmacology-based and computational analyses to understand and characterize the binding capacity, biological functions, pharmacological targets and therapeutic mechanisms of niacin in CRC/COVID-19. MEASUREMENTS AND MAIN RESULTS We revealed the clinical characteristics of CRC patients and COVID-19 patients, including predisposing genes, survival rate and prognosis. Moreover, the results of molecular docking analysis indicated that niacin exerted effective binding capacity in COVID-19. Further, we disclosed the targets, biological functions and signaling pathways of niacin in CRC/COVID-19. The analysis indicated that niacin could help in treating CRC/COVID-19 through cytoprotection, enhancement of immunologic functions, inhibition of inflammatory reactions and regulation of cellular microenvironment. Furthermore, five core pharmacological targets of niacin in CRC/COVID-19 were also identified, including BCL2L1, PTGS2, IL1B, IFNG and SERPINE1. CONCLUSIONS This study, for the first time, revealed the niacin-associated molecular functions and pharmacological targets for treating CRC/COVID-19, as COVID-19 remains a serious pandemic. But the findings were not validated in actual CRC patients infected with COVID-19, so further investigation is needed to confirm the potential use of niacin for treating CRC/COVID-19.
Collapse
Affiliation(s)
| | - Yu Li
- Gyuilin Medical University
| | | | | | - Min Su
- Gyuilin Medical University
| | | |
Collapse
|
22
|
Li R, Guo C, Li Y, Liang X, Su M. Functional benefit and molecular mechanism of vitamin C against perfluorooctanesulfonate-associated leukemia. CHEMOSPHERE 2021; 263:128242. [PMID: 33297189 DOI: 10.1016/j.chemosphere.2020.128242] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 06/12/2023]
Abstract
Perfluorooctanesulfonate (PFOS) is a persistent pollutant that can induce toxic effects, including leukemia, on blood cells. Vitamin C (VC), a functional nutrient, has been found to possess potent cytoprotective effects. However, there are currently no reports on its ability to treat PFOS-associated leukemia. This study used a molecular networking analysis to reveal the functional action and pharmacological mechanism of VC against PFOS-associated leukemia. The biological informatics findings revealed a total of 17 intersection targets against PFOS-associated leukemia. In addition, seven core-functional targets, including tumor protein p53 (TP53), mitogen-activated protein kinase 1 (MAPK1), estrogen receptor 1 (ESR1), sirtuin 1 (SIRT1), nitric oxide synthase 3 (NOS3), myeloid cell leukemia-1 (MCL1), and telomerase reverse transcriptase (TERT), were screened and identified. Notably, the molecular docking findings indicated that TP53, MAPK1, and ESR1 were potent pharmacological targets of VC against PFOS-associated leukemia. Moreover, the pharmacological functions including biological processes, cell components, and molecular pathways of VC against PFOS-associated leukemia were determined. According to the computational findings, we conclude that VC protects against PFOS-associated leukemia action by suppressing leukemia-associated cell proliferation and tumor growth. The validated genes of TP53, MAPK1, ESR1 may become potential biomarkers for monitoring and treating PFOS-associated leukemia.
Collapse
Affiliation(s)
- Rong Li
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Chao Guo
- Department of Pharmacy, Guigang City People's Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi, PR China
| | - Yu Li
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Xiao Liang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Min Su
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China.
| |
Collapse
|
23
|
Li Y, Yu S, Li Y, Liang X, Su M, Li R. Medical Significance of Uterine Corpus Endometrial Carcinoma Patients Infected With SARS-CoV-2 and Pharmacological Characteristics of Plumbagin. Front Endocrinol (Lausanne) 2021; 12:714909. [PMID: 34712201 PMCID: PMC8547653 DOI: 10.3389/fendo.2021.714909] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/08/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Clinically, evidence shows that uterine corpus endometrial carcinoma (UCEC) patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may have a higher death-rate. However, current anti-UCEC/coronavirus disease 2019 (COVID-19) treatment is lacking. Plumbagin (PLB), a pharmacologically active alkaloid, is an emerging anti-cancer inhibitor. Accordingly, the current report was designed to identify and characterize the anti-UCEC function and mechanism of PLB in the treatment of patients infected with SARS-CoV-2 via integrated in silico analysis. METHODS The clinical analyses of UCEC and COVID-19 in patients were conducted using online-accessible tools. Meanwhile, in silico methods including network pharmacology and biological molecular docking aimed to screen and characterize the anti-UCEC/COVID-19 functions, bio targets, and mechanisms of the action of PLB. RESULTS The bioinformatics data uncovered the clinical characteristics of UCEC patients infected with SARS-CoV-2, including specific genes, health risk, survival rate, and prognostic index. Network pharmacology findings disclosed that PLB-exerted anti-UCEC/COVID-19 effects were achieved through anti-proliferation, inducing cytotoxicity and apoptosis, anti-inflammation, immunomodulation, and modulation of some of the key molecular pathways associated with anti-inflammatory and immunomodulating actions. Following molecular docking analysis, in silico investigation helped identify the anti-UCEC/COVID-19 pharmacological bio targets of PLB, including mitogen-activated protein kinase 3 (MAPK3), tumor necrosis factor (TNF), and urokinase-type plasminogen activator (PLAU). CONCLUSIONS Based on the present bioinformatic and in silico findings, the clinical characterization of UCEC/COVID-19 patients was revealed. The candidate, core bio targets, and molecular pathways of PLB action in the potential treatment of UCEC/COVID-19 were identified accordingly.
Collapse
Affiliation(s)
- Yongming Li
- Department of Gynecology, Guigang Maternal and Child Health Care Hospital, Guigang, China
| | - Songzuo Yu
- Department of Neurosurgery, Guigang City People’s Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, China
| | - Yu Li
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, China
| | - Xiao Liang
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, China
| | - Min Su
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, China
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
- *Correspondence: Min Su, ; Rong Li, ;
| | - Rong Li
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, China
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
- *Correspondence: Min Su, ; Rong Li, ;
| |
Collapse
|
24
|
Gorji-Bahri G, Moghimi HR, Hashemi A. RAB5A is associated with genes involved in exosome secretion: Integration of bioinformatics analysis and experimental validation. J Cell Biochem 2020; 122:425-441. [PMID: 33225526 DOI: 10.1002/jcb.29871] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/31/2022]
Abstract
Exosomes, as cell-cell communicators with an endosomal origin, are involved in the progression of various diseases. RAB5A, a member of the small Rab GTPases family, which is well known as a key regulator of cellular endocytosis, is expected to be involved in exosome secretion. Here, we found the impact of RAB5A on exosome secretion from human hepatocellular carcinoma cell line using a rapid yet reliable bioinformatics approach followed by experimental analysis. Initially, RAB5A and exosome secretion-related genes were gathered from bioinformatics tools, namely, CTD, COREMINE, and GeneMANIA; and published papers. Protein-protein interaction (PPI) was then constructed by the Search Tool for Retrieval of Interacting Genes (STRING) database. Among them, several genes with different combined scores were validated by the real-time quantitative polymerase chain reaction (RT-qPCR) in stable RAB5A knockdown cells. Thereafter, to validate the bioinformatics results functionally, the impact of RAB5A knockdown on exosome secretion was evaluated. Bioinformatics analysis showed that RAB5A interacts with 37 genes involved in exosome secretion regulatory pathways. Validation by RT-qPCR confirmed the association of RAB5A with candidate interacted genes and interestingly showed that even medium to low combined scores of the STRING database could be experimentally valid. Moreover, the functional analysis demonstrated that the stable silencing of RAB5A could experimentally decrease exosome secretion. In conclusion, we suggest RAB5A as a regulator of exosome secretion based on our bioinformatics approach and experimental analysis. Also, we propose the usage of PPI-derived from the STRING database regardless of their combined scores in advanced bioinformatics analysis.
Collapse
Affiliation(s)
- Gilar Gorji-Bahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Moghimi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Integrated Microarray to Identify the Hub miRNAs and Constructed miRNA-mRNA Network in Neuroblastoma Via Bioinformatics Analysis. Neurochem Res 2020; 46:197-212. [PMID: 33104965 DOI: 10.1007/s11064-020-03155-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/07/2020] [Accepted: 10/17/2020] [Indexed: 12/11/2022]
Abstract
Neuroblastomas (NB) are childhood malignant tumors originating in the sympathetic nervous system. MicroRNAs (miRNAs) play an essential regulatory role in tumorigenesis and development. In this study, NB miRNA and mRNA expression profile data in the Gene Expression Omnibus database were used to screen for differentially expressed miRNAs (DEMs) and genes (DEGs). We used the miRTarBase and miRSystem databases to predict the target genes of the DEMs, and we selected target genes that overlapped with the DEGs as candidate genes for further study. Annotations, visualization, and the DAVID database were used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis on the candidate genes. Additionally, the protein-protein interaction (PPI) network and miRNA-mRNA regulatory network were constructed and visualized using the STRING database and Cytoscape, and the hub modules were analyzed for function and pathway enrichment using the DAVID database and BiNGO plug-in. 107 DEMs and 1139 DEGs were identified from the miRNA and mRNA chips, respectively. 4390 overlapping target genes were identified using the two databases, and 405 candidate genes which intersected with the DEGs were selected. These candidate genes were enriched in 363 GO terms and 24 KEGG pathways. By constructing a PPI network and a miRNA-mRNA regulatory network, three hub miRNAs (hsa-miR-30e-5p, hsa-miR-15a, and hsa-miR-16) were identified. The target genes of the hub miRNAs were significantly enriched in the following pathways: microRNAs in cancer, the PI3K-Akt signaling pathway, pathways in cancer, the p53 signaling pathway, and the cell cycle. In summary, our results have identified candidate genes and pathways related to the underlying molecular mechanism of NB. These findings provide a new perspective for NB research and treatment.
Collapse
|
26
|
Cheng X, Liu N, Liu H, Huang N, Sun X, Zhang G. Bioinformatic and biochemical findings disclosed anti-hepatic steatosis mechanism of calycosin. Bioorg Chem 2020; 100:103914. [PMID: 32417523 DOI: 10.1016/j.bioorg.2020.103914] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
As revealed in previous reports, calycosin is a functional flavonoid characterized with identified pharmacological activities. Most of evidences are used to demonstrate the anti-cancer benefits of calycosin, however, the existing study of anti-fatty liver medicated by calycosin is limitedly reported. Recently, an emerging avenue based on network pharmacology may contribute to excavate the biological targets and molecular mechanisms of calycosin for anti-fatty liver. In confirmatory experiments, the human and animal studies were subjected to verify some of bioinformatic results. Accordingly, bioinformatic data based on network pharmacology suggested that discoverable biotargets of calycosin for anti-fatty liver were aldehyde dehydrogenase (ALDH2), Niemann pick C1 (NPC1), high mobility group protein 1 (HMGB1), bilirubin UDP glucuronosyltransferase 1 (UGT1A1), mitogen-activated protein kinase 3 (MAPK3), epidermal growth factor receptor (EGFR), hydroxytryptamine receptor 2 (HTR2), migration inhibitory factor (MIF), cytochrome P450, family 19A1 (CYP19A1). Furthermore, all significant biological characteristics and mechanisms of to treat fatty liver were revealed in several. In human findings, the blood tests showed changed glucose and lipid contents, elevated insulin resistance and inflammatory stress. And fatty liver sections from patients resulted in negative expressions of ALDH2, NPC1, and positive HMGB1 expression. In a study in vivo, calycosin-treated high fat diet (HFD)-fed mice exhibited reduced liver weights, decreased fasting serum glucose and insulin, liver functional transaminases, blood lipids, metabolic enzymes, and inflammatory cytokines. And the data in gene tests displayed up-regulations of ALDH2, NPC1 mRNAs, and down-regulation of HMGB1 mRNA in calycosin-treated liver samples. Together, the current bioinformatic data demonstrate biological targets, functions and mechanisms of calycosin for anti-fatty liver. Interestingly, these bioinformatic findings can be partially verified with clinical and animal samples.
Collapse
Affiliation(s)
- Xuebing Cheng
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Na Liu
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | | | - Na Huang
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Guangdong Zhang
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China.
| |
Collapse
|
27
|
Liu F, Pan Q, Wang L, Yi S, Liu P, Huang W. Anticancer targets and mechanisms of calycosin to treat nasopharyngeal carcinoma. Biofactors 2020; 46:675-684. [PMID: 32449282 DOI: 10.1002/biof.1639] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/19/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022]
Abstract
Calycosin is a naturally occurring phytoestrogen, and it has the anti-nasopharyngeal carcinoma (NPC) action played by calycosin. However, the elaborate mechanisms of calycosin treating NPC remain to be unrevealed. In current report, a promising tool of network pharmacology method was used to uncover the anti-NPC targets and therapeutic mechanisms played by calycosin. Furthermore, were conducted to validate the bioinformatic findings in human and preclinical studies. As results, the bioinformatic findings showed the core anti-NPC targets played by calycosin included tumor protein p53 (TP53), mitogen-activated protein kinase 14 (MAPK14), caspase 8 (CASP8), mitogen-activated protein kinase 3 (MAPK3), caspase 3 (CASP3), receptor interacting protein kinase 1 (RIPK1), proto-oncogene c (JUN), and estrogen receptor 1 (ESR1). Concurrently, the top 20 biological processes and top 20 pharmacological pathways of calycosin treating NPC were identified and illustrated. In clinical data, NPC samples showed up-regulated expression of MAPK14, reduced TP53, and CASP8 expressions in comparison with those in non-NPC controls. As revealed in experimental data, calycosin-treated NPC cells resulted in reduced cell survival rate, increased cell apoptosis. In apoptosis-specific staining, calycosin-treated NPC cells exhibited elevated apoptotic cell number. Following the immunostaining assays, the results indicated increased TP53-, CASP8-positive cells, and reduced MAPK14-positive cells in calycosin-treated NPC cells and xenograft tumor sections. Altogether, the bioinformatic findings from network pharmacology reveal all core targets and mechanisms of calycosin treating NPC, and some of bioinformatic findings are identified using human and preclinical experiments. Notably, the screened biotargets may be potentially used to clinically treat NPC.
Collapse
Affiliation(s)
- Fangxian Liu
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Qijin Pan
- Department of Oncology, Guigang City Peoples' Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi, China
| | - Liangliang Wang
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Shijiang Yi
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Peng Liu
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Wenjun Huang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
28
|
Liang Y, Zhou R, Liang X, Kong X, Yang B. Pharmacological targets and molecular mechanisms of plumbagin to treat colorectal cancer: A systematic pharmacology study. Eur J Pharmacol 2020; 881:173227. [PMID: 32505664 DOI: 10.1016/j.ejphar.2020.173227] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022]
Abstract
Plumbagin (PL) pharmacologically plays the anti-proliferative effects in cancer cells, including effective suppression of colorectal cancer (CRC). However, the exact molecular mechanism of PL to treat CRC remains unclear. Using available SwissTargetPrediction and SuperPred databases, the anti-cancer biotargets of PL were identified, and the CRC-diseased targets were obtained through a DisGeNET database. The biological processes, and signaling pathways of PL to treat CRC were identified and visualized. Further, clinical and cell culture data were used to validate some bioinformatic findings. As shown in bioinformatics findings, 64 predictive biotargets of PL to treat CRC were collected, and 7 most important biotargets of tumor protein p53 (TP53), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), mitogen-activated protein kinase 1 (MAPK1), E1A-associated protein p300 (EP300), poly (ADP-ribose) polymerase 1 (PARP1), nuclear factor kappa p65 protein (RELA), Bcl-2 like protein 1 (BCL2L1) were identified respectively. In addition, top 20 functional biological processes, signaling pathways of PL to treat CRC were screened and prioritized. In human study, CRC samples showed elevated expressions of neoplastic MAPK1, PARP1 mRNAs and reduced EP300 mRNA level. In cell culture study, PL-treated CRC cells resulted in down-regulated MAPK1, PARP1 mRNA expressions and up-regulation of EP300 mRNA level, characterized with suppressed cell proliferation. Taken together, the therapeutic biotargets and molecular mechanisms of PL to treat CRC were screened and identified by using a systematic pharmacology analysis, and some bioinformatic findings were validated in clinical and cell line experiments. Potentially, these hub biotargets may be the biomarkers for CRC detection and treatment.
Collapse
Affiliation(s)
- Yujia Liang
- College of Pharmacy, Guangxi Medical University, Guangxi, Nanning, PR China
| | - Rui Zhou
- Department of Hepatobiliary Surgery, Guigang City People's Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi, PR China
| | - Xiaoliu Liang
- College of Pharmacy, Guangxi Medical University, Guangxi, Nanning, PR China
| | - Xiaolong Kong
- College of Pharmacy, Guangxi Medical University, Guangxi, Nanning, PR China.
| | - Bin Yang
- College of Pharmacy, Guangxi Medical University, Guangxi, Nanning, PR China.
| |
Collapse
|
29
|
Ge B, Guo C, Liang Y, Liu M, Wu K. Network analysis, and human and animal studies disclose the anticystitis glandularis effects of vitamin C. Biofactors 2019; 45:912-919. [PMID: 31469455 DOI: 10.1002/biof.1558] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/13/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Our present study aimed to unravel the therapeutic biotargets of vitamin C (VC) against cystitis glandularis (CG), and to elucidate the molecular mechanisms for VC treating CG. METHODS Network pharmacology was used to predict therapeutic targets of VC against CG, and to identify molecular mechanisms. In addition, further human and animal studies were designed to validate the bioinformatic findings through biochemical tests, computerized tomography scans, and immunostaining assays. RESULTS In bioinformatic analyses, pathogenic targets of CG and putative targets of VC were identified, respectively. An interaction network between biological target and functional protein was produced before screening and collecting the key therapeutic targets of VC against CG, biological processes, and signaling pathways. In addition, ingenuity pathway analysis with cloud platform indicated that anti-CG mechanisms of VC were achieved through modulating a cluster of molecular pathways, such as tumor necrosis factor (TNF) pathway. Meanwhile, 18 core targets of VC against CG were identified, and the most important TNF, interleukin-6 (IL6), and Jun biotargets were obtained, respectively. In further validation in human study, cellular TNF-α, IL6, and c-Jun expressions in patient's CG samples were elevated significantly, accompanied with detectable urinary tract infection. Beneficially, VC-dosed CG mice resulted in downregulated expressions of endogenous TNF-α, IL6, and c-Jun in blood and bladder samples. CONCLUSION Collectively, these bioinformatic findings and experimentative data uncover the therapeutic targets and biological mechanisms of VC for treating CG, in which the key biomarkers of TNF-α, IL6, and c-Jun may be the potential molecules for treating CG in clinical application.
Collapse
Affiliation(s)
- Bo Ge
- Department of Urology Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Chao Guo
- Department of Pharmacy, Guigang City People's Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi, China
| | - Yujia Liang
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Meizhen Liu
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Ka Wu
- Department of Pharmacy, The Second People's Hospital of Nanning City, The Third Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
30
|
Hou-Pan S, Mei-Yan Z, Xiao-Juan C, Xin-Yi C, Yi-Jing Y, Ya-Sha Z, Ye T, Xiao-Qing L, Xiong C, Qing-Hua P, Jun P. A Network Pharmacology Approach to Uncover the Molecular Targets and Associated Potential Pathways of Lycii Fructus for the Treatment of Retinitis Pigmentosa. DIGITAL CHINESE MEDICINE 2019. [DOI: 10.1016/j.dcmed.2019.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|