1
|
Flora A, Jepsen R, Kozera EK, Woods JA, Cains GD, Radzieta M, Jensen SO, Malone M, Frew JW. Human dermal fibroblast subpopulations and epithelial mesenchymal transition signals in hidradenitis suppurativa tunnels are normalized by spleen tyrosine kinase antagonism in vivo. PLoS One 2023; 18:e0282763. [PMID: 37922232 PMCID: PMC10624284 DOI: 10.1371/journal.pone.0282763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/19/2023] [Indexed: 11/05/2023] Open
Abstract
Hidradenitis Suppurativa is a chronic inflammatory disease of which the pathogenesis is incompletely understood. Dermal fibroblasts have been previously identified as a major source of inflammatory cytokines, however information pertaining to the characteristics of subpopulations of fibroblasts in HS remains unexplored. Using in silico-deconvolution of whole-tissue RNAseq, Nanostring gene expression panels and confirmatory immunohistochemistry we identified fibroblast subpopulations in HS tissue and their relationship to disease severity and lesion morphology. Gene signatures of SFRP2+ fibroblast subsets were increased in lesional tissue, with gene signatures of SFRP1+ fibroblast subsets decreased. SFRP2+ and CXCL12+ fibroblast numbers, measured by IHC, were increased in HS tissue, with greater numbers associated with epithelialized tunnels and Hurley Stage 3 disease. Pro-inflammatory CXCL12+ fibroblasts were also increased, with reductions in SFRP1+ fibroblasts compared to healthy controls. Evidence of Epithelial Mesenchymal Transition was seen via altered gene expression of SNAI2 and altered protein expression of ZEB1, TWIST1, Snail/Slug, E-Cadherin and N-Cadherin in HS lesional tissue. The greatest dysregulation of EMT associated proteins was seen in biopsies containing epithelialized tunnels. The use of the oral Spleen tyrosine Kinase inhibitor Fostamatinib significantly reduced expression of genes associated with chronic inflammation, fibroblast proliferation and migration suggesting a potential role for targeting fibroblast activity in HS.
Collapse
Affiliation(s)
- Akshay Flora
- Laboratory of Translational Cutaneous Medicine, Ingham Institute for Applied Medical Research, Sydney, Australia
- University of New South Wales, Sydney, Australia
- Department of Dermatology, Liverpool Hospital, Sydney, Australia
| | | | - Emily K. Kozera
- University of New South Wales, Sydney, Australia
- Department of Dermatology, Liverpool Hospital, Sydney, Australia
| | - Jane A. Woods
- University of New South Wales, Sydney, Australia
- Department of Dermatology, Liverpool Hospital, Sydney, Australia
| | - Geoffrey D. Cains
- University of New South Wales, Sydney, Australia
- Department of Dermatology, Liverpool Hospital, Sydney, Australia
| | - Michael Radzieta
- South West Sydney Limb Preservation and Wound Research, Ingham Institute for Applied Medical Research, Liverpool, Australia
- School of Medicine, Western Sydney University, Sydney, Australia
| | - Slade O. Jensen
- School of Medicine, Western Sydney University, Sydney, Australia
| | - Matthew Malone
- South West Sydney Limb Preservation and Wound Research, Ingham Institute for Applied Medical Research, Liverpool, Australia
- School of Medicine, Western Sydney University, Sydney, Australia
| | - John W. Frew
- Laboratory of Translational Cutaneous Medicine, Ingham Institute for Applied Medical Research, Sydney, Australia
- University of New South Wales, Sydney, Australia
- Department of Dermatology, Liverpool Hospital, Sydney, Australia
- Holdsworth House Medical Practice, Sydney, Australia
| |
Collapse
|
2
|
Zhang Y, Xiao WH, Huang YX, Yang YY, Ouyang SX, Liang YM, Liu KH. miR-128-3p inhibits high-glucose-induced peritoneal mesothelial cells fibrosis via PAK2/SyK/TGF-β1 axis. Ther Apher Dial 2023; 27:343-352. [PMID: 35900049 DOI: 10.1111/1744-9987.13912] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/26/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
Abstract
AIM To elucidate the mechanism of miR-128-3p in peritoneal fibrosis (PF). METHODS Peritoneal mesothelial cells (PMCs) were dealt with high glucose (HG) for 3 days. The expressions of miR-128-3p, p21-activated kinase 2 (PAK2), spleen tyrosine kinase (SyK), and transforming growth factor-β1 (TGF-β1) were detected with quantitative real-time reverse transcription polymerase chain reaction. The levels of IL-1β, TNF-α, IL-6, and monocyte chemotactic protein-1 in supernatant were measured by ELISA. Proteins of TGF-β1, SyK, PAK2, α-SMA, collagen I, vimentin, ERK/AP-1, and IκBα/NF-κB pathway related proteins were measured by Western blot. The correlation between miR-128-3p and PAK2 was found by bioinformatics analysis and luciferase reporter gene analysis. RESULTS miR-128-3p was decreased while PAK2, SyK, and TGF-β1 were increased in HG-induced PMCs. Moreover, miR-128-3p inhibited HG-induced fibrosis and inflammation in PMCs by targeting PAK2. PAK2 activated SyK, which induced TGF-β1 expression through ERK/AP-1 and IκBα/NF-κB pathways to promote HG-induced fibrosis of PMCs. CONCLUSION miR-128-3p inhibited HG-induced PMCs fibrosis via PAK2/SyK/TGF-β1 axis.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Nephrology and Laboratory of Kidney Disease, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha Clinical Research Center for Kidney Disease, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, Hunan, China
| | - Wu-Hao Xiao
- Department of Nephrology and Laboratory of Kidney Disease, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha Clinical Research Center for Kidney Disease, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, Hunan, China
| | - Yi-Xiong Huang
- Department of Nephrology and Laboratory of Kidney Disease, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha Clinical Research Center for Kidney Disease, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, Hunan, China
| | - Yi-Ya Yang
- Department of Nephrology and Laboratory of Kidney Disease, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha Clinical Research Center for Kidney Disease, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, Hunan, China
| | - Sha-Xi Ouyang
- Department of Nephrology and Laboratory of Kidney Disease, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha Clinical Research Center for Kidney Disease, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, Hunan, China
| | - Yu-Mei Liang
- Department of Nephrology and Laboratory of Kidney Disease, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha Clinical Research Center for Kidney Disease, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, Hunan, China
| | - Kang-Han Liu
- Department of Nephrology and Laboratory of Kidney Disease, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha Clinical Research Center for Kidney Disease, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, Hunan, China
| |
Collapse
|
3
|
Ahmadi A, Moghadasali R, Najafi I, Shekarchian S, Alatab S. Potential of Autologous Adipose-Derived Mesenchymal Stem Cells in Peritoneal Fibrosis: A Pilot Study. ARCHIVES OF IRANIAN MEDICINE 2023; 26:100-109. [PMID: 37543930 PMCID: PMC10685899 DOI: 10.34172/aim.2023.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 01/01/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND We aimed to determine the effects of systemic therapy with autologous adipose tissue derived mesenchymal stem cells (AD-MSCs) on different parameters of peritoneal function and inflammation in peritoneal dialysis (PD) patients. METHODS We enrolled nine PD patients with ultrafiltration failure (UFF). Patients received 1.2±0.1×106 cell/kg of AD-MSCs via cubital vein and were then followed for six months at time points of baseline, 3, 6, 12, 16 and 24 weeks after infusion. UNI-PET was performed for assessment of peritoneal characteristics at baseline and weeks 12 and 24. Systemic and peritoneal levels of tumor necrosis factor α (TNF-α), interleukin-6(IL-6), IL-2 and CA125 (by ELISA) and gene expression levels of transforming growth factor beta (TGF-β), smooth muscle actin (𝛼-SMA) and fibroblast-specific protein-1 (FSP-1) in PD effluent derived cells (by quantitative real-time PCR) were measured at baseline and weeks 3, 6, 12, 16 and 24. RESULTS Slight improvement was observed in the following UF capacity indices: free water transport (FWT, 32%), ultrafiltration - small pore (UFSP, 18%), ultrafiltration total (UFT, 25%), osmotic conductance to glucose (OCG, 25%), D/P creatinine (0.75 to 0.70), and Dt/D0 glucose (0.23 to 0.26). There was a slight increase in systemic and peritoneal levels of CA125 and a slight decrease in gene expression levels of TGF-β, α-SMA and FSP-1 that was more prominent at week 12 and vanished by the end of the study. CONCLUSION Our results for the first time showed the potential of MSCs for treatment of peritoneal damage in a clinical trial. Our results could be regarded as hypothesis suggestion and will need confirmation in future studies.
Collapse
Affiliation(s)
- Amin Ahmadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Iraj Najafi
- Nephrology Research Center, Shariati Hospital, Tehran University of Medical sciences, Tehran, Iran
| | | | - Sudabeh Alatab
- Digestive Disease Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Gefitinib and fostamatinib target EGFR and SYK to attenuate silicosis: a multi-omics study with drug exploration. Signal Transduct Target Ther 2022; 7:157. [PMID: 35551173 PMCID: PMC9098425 DOI: 10.1038/s41392-022-00959-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 02/06/2023] Open
Abstract
Silicosis is the most prevalent and fatal occupational disease with no effective therapeutics, and currently used drugs cannot reverse the disease progress. Worse still, there are still challenges to be addressed to fully decipher the intricated pathogenesis. Thus, specifying the essential mechanisms and targets in silicosis progression then exploring anti-silicosis pharmacuticals are desperately needed. In this work, multi-omics atlas was constructed to depict the pivotal abnormalities of silicosis and develop targeted agents. By utilizing an unbiased and time-resolved analysis of the transcriptome, proteome and phosphoproteome of a silicosis mouse model, we have verified the significant differences in transcript, protein, kinase activity and signaling pathway level during silicosis progression, in which the importance of essential biological processes such as macrophage activation, chemotaxis, immune cell recruitment and chronic inflammation were emphasized. Notably, the phosphorylation of EGFR (p-EGFR) and SYK (p-SYK) were identified as potential therapeutic targets in the progression of silicosis. To inhibit and validate these targets, we tested fostamatinib (targeting SYK) and Gefitinib (targeting EGFR), and both drugs effectively ameliorated pulmonary dysfunction and inhibited the progression of inflammation and fibrosis. Overall, our drug discovery with multi-omics approach provides novel and viable therapeutic strategies for the treatment of silicosis.
Collapse
|
5
|
Li F, Li L, Zhang J, Yang X, Liu Y. Histone methyltransferase DOT1L mediates the TGF-β1/Smad3 signaling pathway through epigenetic modification of SYK in myocardial infarction. Hum Cell 2022; 35:98-110. [PMID: 34635982 DOI: 10.1007/s13577-021-00625-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022]
Abstract
Myocardial infarction (MI) represents the most critical condition in coronary artery disease, and the fibrotic process, detrimental to optimal recovery, often sustains. In the present work, we assessed whether suppression of disruptor of telomeric silencing 1-like (DOT1L) could alleviate fibrosis in vivo and cardiac fibroblast (CFS) proliferation in vitro, and elucidated the possible mechanism involved in these events. After left coronary artery ligation, we found that the MI mice exhibited a decrease in cardiac function, along with evident MI and myocardial fibrosis. In addition, AngII increased CFS viability and migration, and enhanced the expression of fibrotic proteins. Inhibition of DOT1L ameliorated proliferation and fibrosis in CFS. Furthermore, DOT1L promoted the expression of spleen tyrosine kinase (SYK) by increasing the H3K79me2 modification of the SYK promoter. SYK upregulation reversed the inhibitory effect of DOT1L knockdown on CFS proliferation and fibrosis by activating the TGF-β1/Smad3 signaling. SYK also mitigated the ameliorative effect of DOT1L knockdown on myocardial injury and fibrosis caused by MI in vivo. In conclusion, these data indicated that DOT1L depletion might be a promising therapeutic target for fibrosis in MI.
Collapse
Affiliation(s)
- Fei Li
- Department of Cardiology, Yantai Mountain Hospital, Yantai, 264001, Shandong, People's Republic of China
| | - Lei Li
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.16369, Jingshi Road, Jinan, 250014, Shandong, People's Republic of China
| | - Jiacheng Zhang
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.16369, Jingshi Road, Jinan, 250014, Shandong, People's Republic of China
| | - Xuesong Yang
- Department of Vascular Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, People's Republic of China
| | - Yang Liu
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.16369, Jingshi Road, Jinan, 250014, Shandong, People's Republic of China.
| |
Collapse
|
6
|
Ruiqi L, Ming P, Qihang S, Yangyang L, Junli C, Wei L, Chao G, Xinyue L, Kang Y, Hongtao Y. Saikosaponin D Inhibits Peritoneal Fibrosis in Rats With Renal Failure by Regulation of TGFβ1/ BMP7 / Gremlin1/ Smad Pathway. Front Pharmacol 2021; 12:628671. [PMID: 34721005 PMCID: PMC8555629 DOI: 10.3389/fphar.2021.628671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/09/2021] [Indexed: 12/30/2022] Open
Abstract
Peritoneal dialysis (PD) can improve the quality of life of patients with kidney disease and prolong survival. However, peritoneal fibrosis can often occur and lead to PD withdrawal. Therefore, it is imperative to better understand how to inhibit and slow down progression of peritoneal fibrosis. This study aimed to investigate the regulatory effect of Saikosaponin d (SSD), a monomer extracted from the plant Bupleurum, on peritoneal fibrosis and the contribution of TGFβ1/BMP7/Gremlin1 pathway cross-talk in this process. To this aim, we used a model 5/6 nephrectomy and peritoneal fibrosis in rats. Rats were divided into four groups, namely a control group (saline administration); a model group (dialysate administration; group M); a SSD group (dialysate and SSD administration); and a positive drug group (dialysate and Benazepril Hydrochloride administration; group M + A). Histological analysis indicated that peritoneal fibrosis occurred in all groups. WB, ELISA, and PCR essays suggested that TGFβ1 and Gremlin1 levels in group M were significantly higher than those in group C, whereas BMP7 expression was significantly lower. TGFβ1, Gremlin1 and BMP7 levels were significantly lower in the group where SSD was administered than in the other groups. The expression of BMP7 in SSD group was significantly increased. In addition, levels of Smad1/5/8 as assessed by PCR, and levels of p-Smad1/5/8 expression as assessed by WB were also significantly higher in the SSD group than in the M group. Expression of vimentin and α-SMA, two important markers of fibrosis, was also significantly decreased. Our study suggests a role for the TGFβ1/BMP7/Gremlin1/Smad pathway in peritoneal fibrosis with potential therapeutic implications. Finally, our results also suggest that the monomer SSD may be able to reverse peritoneal fibrosis via regulation of the TGFβ1/BMP7/Gremlin1/Smad pathway.
Collapse
Affiliation(s)
- Liu Ruiqi
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Pei Ming
- Renal Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine and National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Su Qihang
- Renal Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine and National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lei Yangyang
- Renal Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine and National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chen Junli
- Renal Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine and National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lin Wei
- Renal Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine and National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Gao Chao
- Renal Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine and National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Liu Xinyue
- Renal Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine and National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yang Kang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yang Hongtao
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| |
Collapse
|
7
|
Hu F, Li M, Han F, Zhang Q, Zeng Y, Zhang W, Cheng X. Role of TRPM7 in cardiac fibrosis: A potential therapeutic target (Review). Exp Ther Med 2020; 21:173. [PMID: 33456540 PMCID: PMC7792474 DOI: 10.3892/etm.2020.9604] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiac fibrosis is a hallmark of cardiac remodeling associated with nearly all forms of heart disease. Clinically, no effective therapeutic drugs aim to inhibit cardiac fibrosis, owing to the complex etiological heterogeneity and pathogenesis of this disease. A two-in-one protein structure, a ubiquitous expression profile and unique biophysical characteristics enable the involvement of transient receptor potential melastatin-subfamily member 7 (TRPM7) in the pathogenesis and development of fibrosis-related cardiac diseases, such as heart failure (HF), cardiomyopathies, arrhythmia and hyperaldosteronism. In response to a variety of stimuli, multiple bioactive molecules can activate TRPM7 and related signaling pathways, leading to fibroblast proliferation, differentiation and extracellular matrix production in cardiac fibroblasts. TRPM7-mediated Ca2+ signaling and TGF-β1 signaling pathways are critical for the formation of fibrosis. Accumulating evidence has demonstrated that TRPM7 is a potential pharmacological target for halting the development of fibrotic cardiac diseases. Reliable drug-like molecules for further development of high-affinity in vivo drugs targeting TRPM7 are urgently needed. The present review discusses the widespread and significant role of TRPM7 in cardiac fibrosis and focuses on its potential as a therapeutic target for alleviating heart fibrogenesis.
Collapse
Affiliation(s)
- Feng Hu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Meiyong Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fengyu Han
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qing Zhang
- Department of Cardiology, The Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yuhao Zeng
- Department of Medical Education, The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Weifang Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaoshu Cheng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Center for Prevention and Treatment of Cardiovascular Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
8
|
Islam MT, Bardaweel SK, Mubarak MS, Koch W, Gaweł-Beben K, Antosiewicz B, Sharifi-Rad J. Immunomodulatory Effects of Diterpenes and Their Derivatives Through NLRP3 Inflammasome Pathway: A Review. Front Immunol 2020; 11:572136. [PMID: 33101293 PMCID: PMC7546345 DOI: 10.3389/fimmu.2020.572136] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
Nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein (NLRP) inflammasomes are involved in the molecular pathogenesis of many diseases and disorders. Among NLRPs, the NLRP3 (in humans encoded by the NLRP3 gene) is expressed predominantly in macrophages as a component of the inflammasome and is associated with many diseases, including gout, type 2 diabetes, multiple sclerosis, atherosclerosis, and neurological diseases and disorders. Diterpenes containing repeated isoprenoid units in their structure are a member of some essential oils that possess diverse biological activities and are becoming a landmark in the field of drug discovery and development. This review sketches a current scenario of diterpenes or their derivatives acting through NLRPs, especially NLRP3-associated pathways with anti-inflammatory effects. For this, a literature survey on the subject has been undertaken using a number of known databases with specific keywords. Findings from the aforementioned databases suggest that diterpenes and their derivatives can exert anti-inflammatory effects via NLRPs-related pathways. Andrographolide, triptolide, kaurenoic acid, carnosic acid, oridonin, teuvincenone F, and some derivatives of tanshinone IIA and phorbol have been found to act through NLRP3 inflammasome pathways. In conclusion, diterpenes and their derivatives could be one of the promising compounds for the treatment of NLRP3-mediated inflammatory diseases and disorders.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Pharmacy, Ho Chi Minh City, Vietnam
| | - Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, Jordan
| | | | - Wojciech Koch
- Chair and Department of Food and Nutrition, Medical University of Lublin, Lublin, Poland
| | - Katarzyna Gaweł-Beben
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, Rzeszów, Poland
| | - Beata Antosiewicz
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, Rzeszów, Poland
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
9
|
SIRT1-modified human umbilical cord mesenchymal stem cells ameliorate experimental peritoneal fibrosis by inhibiting the TGF-β/Smad3 pathway. Stem Cell Res Ther 2020; 11:362. [PMID: 32811535 PMCID: PMC7436980 DOI: 10.1186/s13287-020-01878-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/01/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction Peritoneal fibrosis is a serious complication of long-term peritoneal dialysis (PD). Combination therapies are emerging as a promising treatment for tissue damage. Here, we investigated the therapeutic potential of SIRT1-modified human umbilical cord mesenchymal stem cells (hUCMSCs) for peritoneal fibrosis. Methods SIRT1 was overexpressed in hUCMSCs to establish SIRT1-modified hUCMSCs. Co-culture and transplantation experiments were performed in TGF-β-stimulated Met-5A cells and peritoneal damage rodent model to assess the therapeutic potential of SIRT1-modified hUCMSCs for peritoneal fibrosis through qPCR, Western blot, and peritoneal function analyses. Results SIRT1-modified hUCMSC administration had more potent anti-fibrosis ability than hUCMSCs, which significantly inhibited the expression of fibrotic genes and suppressed EMT process, increased ultrafiltration volume, and restored homeostasis of bioincompatible factors in dialysis solution. Mechanistically, SIRT1-modified hUCMSCs attenuated peritoneal fibrosis through reducing peritoneal inflammation and inhibiting the TGF-β/Smad3 pathway in peritoneal omentum tissues. Conclusion SIRT1-modified hUCMSCs might work as a promising therapeutic strategy for the treatment of peritoneal dialysis-induced peritoneal damage and fibrosis.
Collapse
|