1
|
Fukui K, Kato S. Imaging approaches for chromosome structures. Chromosome Res 2021; 29:5-17. [PMID: 33587223 DOI: 10.1007/s10577-021-09648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/30/2022]
Abstract
This review describes image analyses for chromosome visible structures, focusing on the chromosome imaging system CHIAS (Chromosome Image Analyzing System). CHIAS is the first comprehensive imaging system for the analysis and characterization of plant chromosomes. A simulation method for human vision for capturing band positive regions was developed and used for the image analysis of large plant chromosomes with bands. Applying this method to C-banded Crepis chromosomes enabled recognition of band positive regions as seen by human vision. Furthermore, a new image parameter, condensation pattern was developed and successfully applied to identify small plant chromosomes such as rice and brassicas. Condensation profile (CP) derived from condensation pattern was also effective in developing quantitative chromosome maps. The result was quantitative chromosomal maps of several plants with small chromosomes, including Arabidopsis, diploid brassicas, rapeseed, rice, spinach, and sugarcane. In the final chapter, various applications of imaging techniques to the analysis of pachytene chromosomes, improved visibility of multicolor FISH images, 3D reconstruction of a human chromosome based on cross-section images obtained by a FIB/SEM, automatic extraction of chromosomal regions by machine learning, etc. are described.
Collapse
Affiliation(s)
- Kiichi Fukui
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Seiji Kato
- Kobe Active Aging Research Hub (KAARb), Graduate School of Human Development and Environment, Kobe University, Tsurukabuto, Kobe, 657-8501, Japan
| |
Collapse
|
2
|
Ohmido N, Iwata A, Kato S, Wako T, Fukui K. Development of a quantitative pachytene chromosome map and its unification with somatic chromosome and linkage maps of rice (Oryza sativa L.). PLoS One 2018; 13:e0195710. [PMID: 29672536 PMCID: PMC5908146 DOI: 10.1371/journal.pone.0195710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/28/2018] [Indexed: 01/02/2023] Open
Abstract
A quantitative pachytene chromosome map of rice (Oryza sativa L.) was developed using imaging methods. The map depicts not only distribution patterns of chromomeres specific to pachytene chromosomes, but also the higher order information of chromosomal structures, such as heterochromatin (condensed regions), euchromatin (decondensed regions), the primary constrictions (centromeres), and the secondary constriction (nucleolar organizing regions, NOR). These features were image analyzed and quantitatively mapped onto the map by Chromosome Image Analyzing System ver. 4.0 (CHIAS IV). Correlation between H3K9me2, an epigenetic marker and formation and/or maintenance of heterochromatin, thus was, clearly visualized. Then the pachytene chromosome map was unified with the existing somatic chromosome and linkage maps by physically mapping common DNA markers among them, such as a rice A genome specific tandem repeat sequence (TrsA), 5S and 45S ribosomal RNA genes, five bacterial artificial chromosome (BAC) clones, four P1 bacteriophage artificial chromosome (PAC) clones using multicolor fluorescence in situ hybridization (FISH). Detailed comparison between the locations of the DNA probes on the pachytene chromosomes using multicolor FISH, and the linkage map enabled determination of the chromosome number and short/long arms of individual pachytene chromosomes using the chromosome number and arm assignment designated for the linkage map. As a result, the quantitative pachytene chromosome map was unified with two other major rice chromosome maps representing somatic prometaphase chromosomes and genetic linkages. In conclusion, the unification of the three rice maps serves as an indispensable basic information, not only for an in-depth comparison between genetic and chromosomal data, but also for practical breeding programs.
Collapse
Affiliation(s)
- Nobuko Ohmido
- Graduate School of Human Development and Environment, Kobe University, Kobe, Hyogo, Japan
| | - Aiko Iwata
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, United States of America
| | - Seiji Kato
- Yamanashi Prefectural Agritechnology Center, 1100, Shimoimai, Kai, Yamanashi, Japan
| | - Toshiyuki Wako
- Advanced Analysis Center, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Kiichi Fukui
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
3
|
Zadesenets KS, Polyakov AV, Katokhin AV, Mordvinov VA, Rubtsov NB. Chromosome morphometry in opisthorchiid species (Platyhelminthes, Trematoda). Parasitol Int 2016; 66:396-401. [PMID: 27404484 DOI: 10.1016/j.parint.2016.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/27/2016] [Accepted: 07/08/2016] [Indexed: 11/24/2022]
Abstract
Few existing studies have dealt with cytogenetics in trematodes, largely due to the attendant technical difficulty of chromosome preparation. We performed a comparative analysis of chromosomes in five opistorchiid species, including Opisthorchis felineus Rivolta, 1884, Opisthorchis viverrini Poirier, 1886, Clonorchis sinensis Cobbold, 1875, Metorchis xanthosomus Creplin 1846, and Metorchis bilis (Braun, 1790) Odening, 1962. For some of these species, no detailed morphometric description of their karyotypes has yet been published; for the karyotype of Metorchis bilis this is the first-ever description. We found that opisthorchiids, like other trematodes, are characterized by karyotypic conservatism (N=6-7) and karyotype asymmetry, although comparison of chromosome morphometric traits did reveal differences between the karyotypes of the species. Moreover, to address certain a methodological issue in trematode chromosome preparation, we analyzed how the source of chromosomal material (partenitae or mature flukes) and the chromosome preparation techniques used (air-drying and cell suspension methods) affected chromosome spreading and size, concluding that the most reliable comparative method involves comparing relative parameters (relative length, arm ratio, centromeric index) of chromosomes prepared using the same technique.
Collapse
Affiliation(s)
- Kira S Zadesenets
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| | - Andrey V Polyakov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexey V Katokhin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Viatcheslav A Mordvinov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nikolay B Rubtsov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
4
|
Taga M, Tanaka K, Kato S, Kubo Y. Cytological analyses of the karyotypes and chromosomes of three Colletotrichum species, C. orbiculare, C. graminicola and C. higginsianum. Fungal Genet Biol 2015; 82:238-50. [DOI: 10.1016/j.fgb.2015.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 01/03/2023]
|
5
|
Young HA, Sarath G, Tobias CM. Karyotype variation is indicative of subgenomic and ecotypic differentiation in switchgrass. BMC PLANT BIOLOGY 2012; 12:117. [PMID: 22834676 PMCID: PMC3492167 DOI: 10.1186/1471-2229-12-117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 07/11/2012] [Indexed: 05/07/2023]
Abstract
BACKGROUND Karyotypes can provide information about taxonomic relationships, genetic aberrations, and the evolutionary origins of species. However, differentiation of the tiny chromosomes of switchgrass (Panicum virgatum L.) and creation of a standard karyotype for this bioenergy crop has not been accomplished due to lack of distinguishing features and polyploidy. RESULTS A cytogenetic study was conducted on a dihaploid individual (2n = 2X = 18) of switchgrass to establish a chromosome karyotype. Size differences, condensation patterns, and arm-length ratios were used as identifying features and fluorescence in-situ hybridization (FISH) assigned 5S and 45S rDNA loci to chromosomes 7 and 2 respectively. Both a maize CentC and a native switchgrass centromeric repeat (PviCentC) that shared 73% sequence identity demonstrated a strong signal on chromosome 3. However, only the PviCentC probe labeled the centromeres of all chromosomes. Unexpected PviCentC and 5S rDNA hybidization patterns were consistent with severe reduction or total deletion of these repeats in one subgenome. These patterns were maintained in tetraploid and octoploid individuals. The 45S rDNA repeat produced the expected number of loci in dihaploid, tetraploid and octoploid individuals. Differences observed at the 5S rDNA loci between the upland and lowland ecotypes of switchgrass provided a basis for distinguishing these subpopulations. CONCLUSION Collectively, these results provide a quantitative karyotype of switchgrass chromosomes. FISH analyses indicate genetic divergence between subgenomes and allow for the classification of switchgrass plants belonging to divergent genetic pools. Furthermore, the karyotype structure and cytogenetic analysis of switchgrass provides a framework for future genetic and genomic studies.
Collapse
Affiliation(s)
- Hugh A Young
- Genomics and Gene Discovery Research Unit, USDA-Agricultural Research Service, Western Regional Research Center, 800 Buchanan Street, Albany, CA, 94710, USA
| | - Gautam Sarath
- USDA Central-East Regional Biomass Center, 137 Keim Hall, East Campus, UNL, Lincoln, NE, 68583, USA
| | - Christian M Tobias
- Genomics and Gene Discovery Research Unit, USDA-Agricultural Research Service, Western Regional Research Center, 800 Buchanan Street, Albany, CA, 94710, USA
| |
Collapse
|
6
|
Peng R, Zhang T, Liu F, Ling J, Wang C, Li S, Zhang X, Wang Y, Wang K. Preparations of meiotic pachytene chromosomes and extended DNA fibers from cotton suitable for fluorescence in situ hybridization. PLoS One 2012; 7:e33847. [PMID: 22442728 PMCID: PMC3307766 DOI: 10.1371/journal.pone.0033847] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 02/18/2012] [Indexed: 12/02/2022] Open
Abstract
Fluorescence in situ hybridization (FISH) has become one of the most important techniques applied in plant molecular cytogenetics. However, the application of this technique in cotton has lagged behind because of difficulties in chromosome preparation. The focus of this article was FISH performed not only on cotton pachytene chromosomes, but also on cotton extended DNA fibers. The cotton pollen mother cells (PMCs) instead of buds or anthers were directly digested in enzyme to completely breakdown the cell wall. Before the routine acetic acid treatment, PMCs were incubated in acetic acid and enzyme mixture to remove the cytoplasm and clear the background. The method of ice-cold Carnoy's solution spreading chromosome was adopted instead of nitrogen removed method to avoid chromosomes losing and fully stretch chromosome. With the above-improved steps, the high-quality well-differentiated pachytene chromosomes with clear background were obtained. FISH results demonstrated that a mature protocol of cotton pachytene chromosomes preparation was presented. Intact and no debris cotton nuclei were obtained by chopping from etiolation cotyledons instead of the conventional liquid nitrogen grinding method. After incubating the nuclei with nucleus lysis buffer on slide, the parallel and clear background DNA fibers were acquired along the slide. This method overcomes the twist, accumulation and fracture of DNA fibers compared with other methods. The entire process of DNA fibers preparation requires only 30 min, in contrast, it takes 3 h with routine nitrogen grinding method. The poisonous mercaptoethanol in nucleus lysis buffer is replaced by nonpoisonous dithiothreitol. PVP40 in nucleus isolation buffer is used to prevent oxidation. The probability of success in isolating nuclei for DNA fiber preparation is almost 100% tested with this method in cotton. So a rapid, safe, and efficient method for the preparation of cotton extended DNA fibers suitable for FISH was established.
Collapse
Affiliation(s)
- Renhai Peng
- State Key Laboratory of Cotton Biology, China and Cotton Research Institute of Chinese Academy of Agricultural Science, Anyang, Henan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ohmido N, Ishimaru A, Kato S, Sato S, Tabata S, Fukui K. Integration of cytogenetic and genetic linkage maps of Lotus japonicus, a model plant for legumes. Chromosome Res 2010; 18:287-99. [PMID: 20076998 DOI: 10.1007/s10577-009-9103-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 11/05/2009] [Accepted: 11/25/2009] [Indexed: 01/26/2023]
|
8
|
Ohmido N, Fukui K, Kinoshita T. Recent advances in rice genome and chromosome structure research by fluorescence in situ hybridization (FISH). PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:103-16. [PMID: 20154468 PMCID: PMC3417561 DOI: 10.2183/pjab.86.103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 01/04/2010] [Indexed: 05/28/2023]
Abstract
Fluorescence in situ hybridization (FISH) is an effective method for the physical mapping of genes and repetitive DNA sequences on chromosomes. Physical mapping of unique nucleotide sequences on specific rice chromosome regions was performed using a combination of chromosome identification and highly sensitive FISH. Increases in the detection sensitivity of smaller DNA sequences and improvements in spatial resolution have ushered in a new phase in FISH technology. Thus, it is now possible to perform in situ hybridization on somatic chromosomes, pachytene chromosomes, and even on extended DNA fibers (EDFs). Pachytene-FISH allows the integration of genetic linkage maps and quantitative chromosome maps. Visualization methods using FISH can reveal the spatial organization of the centromere, heterochromatin/euchromatin, and the terminal structures of rice chromosomes. Furthermore, EDF-FISH and the DNA combing technique can resolve a spatial distance of 1 kb between adjacent DNA sequences, and the detection of even a 300-bp target is now feasible. The copy numbers of various repetitive sequences and the sizes of various DNA molecules were quantitatively measured using the molecular combing technique. This review describes the significance of these advances in molecular cytology in rice and discusses future applications in plant studies using visualization techniques.
Collapse
Affiliation(s)
- Nobuko Ohmido
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan.
| | | | | |
Collapse
|
9
|
She CW, Liu JY, Song YC. CPD staining: an effective technique for detection of NORs and other GC-rich chromosomal regions in plants. Biotech Histochem 2009; 81:13-21. [PMID: 16760123 DOI: 10.1080/10520290600661414] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Mitotic chromosome spreads of 16 plant species belonging to six families were analyzed using an improved combined PI and DAPI (CPD) staining procedure. Fluorescence in situ hybridization (FISH) with 45S rDNA probe was conducted sequentially on the same spreads to evaluate the efficiency and sensitivity of the technique. Fluorochrome staining with chromomycin A3 (CMA)-DAPI also was conducted to clarify the properties of the sequences involved in the CPD banded regions. Our results revealed that all of the NORs (rDNA sites) in the species tested were efficiently shown as red bands by CPD staining, and the number and position of the bands corresponded precisely to those of the 45S rDNA FISH signals, indicating that the detection sensitivity of CPD staining is similar to that of FISH. In 10 of the species tested including Aegilops squarrosa, Allium sativum, Oryza sativum ssp. indica, Oryza officinalis, Pisum sativum, Secale cereale, Setaria italica, Sorghum vulgare, Vicia faba and Zea mays, CPD bands were exhibited exclusively in their NORs, while in other six species including Hordeum vulgare, Allium cepa, Psophocarpus tetragonolobus, Arabidopsis thaliana, Brassica oleracea var. capitata and Lycopersicon esculentum, CPD bands appeared in chromosomal regions other than their NORs. The CPD bands were in accordance with the CMA bands in all species tested, indicating GC-rich sequences in the CPD bands and that the improved CPD staining procedure is specific for GC-rich regions in plant genomes. Our investigation not only elucidated the banding mechanisms of CPD, but also demonstrated that the CPD staining technique, which may be preferable to CMA staining, is an effective tool for detecting NORs and other GC-rich chromosomal regions in plants.
Collapse
Affiliation(s)
- C W She
- Key Laboratory of MOE for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | | | | |
Collapse
|
10
|
Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe A, Ono A, Kawashima K, Fujishiro T, Katoh M, Kohara M, Kishida Y, Minami C, Nakayama S, Nakazaki N, Shimizu Y, Shinpo S, Takahashi C, Wada T, Yamada M, Ohmido N, Hayashi M, Fukui K, Baba T, Nakamichi T, Mori H, Tabata S. Genome structure of the legume, Lotus japonicus. DNA Res 2008; 15:227-39. [PMID: 18511435 PMCID: PMC2575887 DOI: 10.1093/dnares/dsn008] [Citation(s) in RCA: 446] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The legume Lotus japonicus has been widely used as a model system to investigate the genetic background of legume-specific phenomena such as symbiotic nitrogen fixation. Here, we report structural features of the L. japonicus genome. The 315.1-Mb sequences determined in this and previous studies correspond to 67% of the genome (472 Mb), and are likely to cover 91.3% of the gene space. Linkage mapping anchored 130-Mb sequences onto the six linkage groups. A total of 10 951 complete and 19 848 partial structures of protein-encoding genes were assigned to the genome. Comparative analysis of these genes revealed the expansion of several functional domains and gene families that are characteristic of L. japonicus. Synteny analysis detected traces of whole-genome duplication and the presence of synteny blocks with other plant genomes to various degrees. This study provides the first opportunity to look into the complex and unique genetic system of legumes.
Collapse
Affiliation(s)
- Shusei Sato
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Fujisawa M, Yamagata H, Kamiya K, Nakamura M, Saji S, Kanamori H, Wu J, Matsumoto T, Sasaki T. Sequence comparison of distal and proximal ribosomal DNA arrays in rice (Oryza sativa L.) chromosome 9S and analysis of their flanking regions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 113:419-28. [PMID: 16733757 DOI: 10.1007/s00122-006-0307-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 05/06/2006] [Indexed: 05/09/2023]
Abstract
Rice (Oryza sativa ssp. japonica cv. Nipponbare) harbors a ribosomal RNA gene (rDNA) cluster in the nucleolar-organizing region at the telomeric end of the short arm of chromosome 9. We isolated and sequenced two genomic clones carrying rice rDNA fragments from this region. The rice rDNA repeat units could be classified into three types based on length, which ranged from 7,928 to 8,934 bp. This variation was due to polymorphism in the number of 254-bp subrepeats in the intergenic spacer (IGS). Polymerase chain reaction (PCR) analysis suggested that the rDNA units in rice vary widely in length and that the copy number of the subrepeats in the IGS ranges from 1 to 12 in the rice genome. PCR and Southern blot analyses showed that most rDNA units have three intact and one truncated copies of the subrepeats in the IGS, and distal (telomere-side) rDNA units have more subrepeats than do proximal (centromere-side) ones. Both genomic clones we studied contained rDNA-flanking DNA sequences of either telomeric repeats (5'-TTTAGGG-3') or a chromosome-specific region, suggesting that they were derived from the distal or proximal end, respectively, of the rDNA cluster. A similarity search indicated that retrotransposons appeared more frequently in a 500-kb portion of the proximal rDNA-flanking region than in other subtelomeric regions or sequenced regions of the genome. This study reveals the repetitive nature of the telomeric end of the short arm of chromosome 9, which consists of telomeric repeats, an rDNA array, and a retrotransposon-rich chromosomal region.
Collapse
Affiliation(s)
- Masaki Fujisawa
- Rice Genome Research Program, National Institute of Agrobiological Sciences/Institute of the Society for Techno-innovation of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki, 305-8602, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kao FI, Cheng YY, Chow TY, Chen HH, Liu SM, Cheng CH, Chung MC. An integrated map of Oryza sativa L. chromosome 5. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 112:891-902. [PMID: 16365756 DOI: 10.1007/s00122-005-0191-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Accepted: 11/30/2005] [Indexed: 05/05/2023]
Abstract
The developments of molecular marker-based genetic linkage maps are now routine. Physical maps based on contigs of large insert genomic clones have been established in several plant species. However, integration of genetic, physical, and cytological maps is still a challenge for most plant species. Here we present an integrated map of rice (Oryza sativa L.) chromosome 5, developed by fluorescence in situ hybridization mapping of 18 bacterial artificial chromosome (BAC) clones or PI-derived artificial chromosome (PAC) clones on meiotic pachytene chromosomes. Each BAC/PAC clone was anchored by a restriction fragment length polymorphism marker mapped to the rice genetic linkage map. This molecular cytogenetic map shows the genetic recombination and sequence information of a physical map, correlated to the cytological features of rice chromosome 5. Detailed comparisons of the distances between markers on genetic, cytological, and physical maps, revealed the distributions of recombination events and molecular organization of the chromosomal features of rice chromosome 5 at the pachytene stage. Discordance of distances between the markers was found among the different maps. Our results revealed that neither the recombination events nor the degree of chromatin condensation were evenly distributed along the entire length of chromosome 5. Detailed comparisons of the correlative positions of markers on the genetic, cytological, and physical maps of rice chromosome 5 provide insight into the molecular architecture of rice chromosome 5, in relation to its cytological features and recombination events on the genetic map. The prospective applications of such an integrated cytogenetic map are discussed.
Collapse
Affiliation(s)
- Fang-I Kao
- Institute of Plant and Microbial Biology, Academia Sinica, 115 Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
13
|
Fukui K. Recent development of image analysis methods in plant chromosome research. Cytogenet Genome Res 2005; 109:83-9. [PMID: 15753563 DOI: 10.1159/000082386] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Indexed: 11/19/2022] Open
Abstract
Image analysis methods have provided effective tools in chromosome research along with the development both in computer software and hardware. A chromosome image analyzing system, CHIAS, for plant chromosomes was developed in 1985 and was subsequently revised so that with CHIAS3 one can take advantage of Internet use for downloading the program. In this review, the recent developments of imaging methods in plant chromosome research for automating chromosome identification, constructing a map of a pachytene chromosome, and patterning of interphase nuclei are described.
Collapse
Affiliation(s)
- K Fukui
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan.
| |
Collapse
|
14
|
Sato S, Isobe S, Asamizu E, Ohmido N, Kataoka R, Nakamura Y, Kaneko T, Sakurai N, Okumura K, Klimenko I, Sasamoto S, Wada T, Watanabe A, Kohara M, Fujishiro T, Tabata S. Comprehensive Structural Analysis of the Genome of Red Clover (Trifolium pratense L.). DNA Res 2005; 12:301-64. [PMID: 16769692 DOI: 10.1093/dnares/dsi018] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
With the aim of establishing the basic knowledge and resources needed for applied genetics, we investigated the genome structure of red clover Trifolium pratense L. by a combination of cytological, genomic and genetic approaches. The deduced genome size was approximately 440 Mb, as estimated by measuring the nuclear DNA content by flow cytometry. Seven chromosomes could be distinguished by microscopic observation of DAPI stained prometaphase chromosomes and fluorescence in situ hybridization using 28S and 5S rDNA probes and bacterial artificial chromosome probes containing microsatellite markers with known positions on a genetic linkage map. The average GC content of the genomes of chloroplast, mitochondrion and nucleus were shown to be 33.8, 42.9 and 34.2%, respectively, by the analysis of 1.4 Mb of random genomic sequences. A total of 26,356 expressed sequence tags (ESTs) that were grouped into 9339 non-redundant sequences were collected, and 78% of the ESTs showed sequence similarity to registered genes, mainly of Arabidopsis thaliana and rice. To facilitate basic and applied genetics in red clover, we generated a high-density genetic linkage map with gene-associated microsatellite markers. A total of 7159 primer pairs were designed to amplify simple sequence repeats (SSRs) identified in four different types of libraries. Based on sequence similarity, 82% of the SSRs were likely to be associated with genes. Polymorphism was examined using two parent plants, HR and R130, and 10 F(1) progeny by agarose gel electrophoresis, followed by genotyping for the primer pairs showing polymorphisms using 188 F(1) plants from the mapping population. The selected 1305 microsatellite markers as well as the previously developed 167 restriction fragment length polymorphism markers were subjected to linkage analysis. A total of 1434 loci detected by 1399 markers were successfully mapped onto seven linkage groups totaling 868.7 cM in length; 405 loci (28%) were bi-parental, 611 (43%) were specific to HR and 418 (29%) were specific to R130. Each genetic linkage group was linked to a corresponding chromosome by FISH analysis using seven microsatellite markers specific to each of the linkage groups as probes. Transferability of the developed microsatellite markers to other germplasms was confirmed by testing 268 selected markers on 88 red clover germplasms. Macrosynteny at the segmental level was observed between the genomes of red clover and two model legumes, Lotus japonicus and Medicago truncatula, strongly suggesting that the genome information for the model legumes is transferable to red clover for genetic investigations and experimental breeding.
Collapse
Affiliation(s)
- Shusei Sato
- Kazusa DNA Research Institute, Kazusa-kamatari, Kisarazu, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Jangsuwan N, Supputtitada S, Siripatanadilok S, Apisitwanich S. Idiogram of Condensation Chromosome Region and Some Morphological Characteristics of Paper Mulberry (Broussonetia papyrifera Vent.). CYTOLOGIA 2004. [DOI: 10.1508/cytologia.69.191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Nantana Jangsuwan
- Department of Applied Biology, Faculty of Science, Rajabhat Institute Thepsatri
| | | | | | | |
Collapse
|