1
|
Siti Farah Norasyikeen SO, Ngui R, Syaza Zafirah AR, Md Zoqratt MZH, Eng WWH, Ayub Q, Amin Nordin S, Narcisse Mary Sither Joseph V, Musa S, Lim YAL. Study on intestinal parasitic infections and gut microbiota in cancer patients at a tertiary teaching hospital in Malaysia. Sci Rep 2024; 14:13650. [PMID: 38871760 DOI: 10.1038/s41598-024-59969-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/17/2024] [Indexed: 06/15/2024] Open
Abstract
Intestinal parasitic infections (IPIs) can lead to significant morbidity and mortality in cancer patients. While they are unlikely to cause severe disease and are self-limiting in healthy individuals, cancer patients are especially susceptible to opportunistic parasitic infections. The gut microbiota plays a crucial role in various aspects of health, including immune regulation and metabolic processes. Parasites occupy the same environment as bacteria in the gut. Recent research suggests intestinal parasites can disrupt the normal balance of the gut microbiota. However, there is limited understanding of this co-infection dynamic among cancer patients in Malaysia. A study was conducted to determine the prevalence and relationship between intestinal parasites and gut microbiota composition in cancer patients. Stool samples from 134 cancer patients undergoing active treatment or newly diagnosed were collected and examined for the presence of intestinal parasites and gut microbiota composition. The study also involved 17 healthy individuals for comparison and control. Sequencing with 16S RNA at the V3-V4 region was used to determine the gut microbial composition between infected and non-infected cancer patients and healthy control subjects. The overall prevalence of IPIs among cancer patients was found to be 32.8%. Microsporidia spp. Accounted for the highest percentage at 20.1%, followed by Entamoeba spp. (3.7%), Cryptosporidium spp. (3.0%), Cyclospora spp. (2.2%), and Ascaris lumbricoides (0.8%). None of the health control subjects tested positive for intestinal parasites. The sequencing data analysis revealed that the gut microbiota diversity and composition were significantly different in cancer patients than in healthy controls (p < 0.001). A significant dissimilarity was observed in the bacterial composition between parasite-infected and non-infected patients based on Bray-Curtis (p = 0.041) and Jaccard (p = 0.021) measurements. Bacteria from the genus Enterococcus were enriched in the parasite-infected groups, while Faecalibacterium prausnitzii reduced compared to non-infected and control groups. Further analysis between different IPIs and non-infected individuals demonstrated a noteworthy variation in Entamoeba-infected (unweighted UniFrac: p = 0.008), Cryptosporidium-infected (Bray-Curtis: p = 0.034) and microsporidia-infected (unweighted: p = 0.026; weighted: p = 0.019; Jaccard: p = 0.031) samples. No significant dissimilarity was observed between Cyclospora-infected groups and non-infected groups. Specifically, patients infected with Cryptosporidium and Entamoeba showed increased obligate anaerobic bacteria. Clostridiales were enriched with Entamoeba infections, whereas those from Coriobacteriales decreased. Bacteroidales and Clostridium were found in higher abundance in the gut microbiota with Cryptosporidium infection, while Bacillales decreased. Additionally, bacteria from the genus Enterococcus were enriched in microsporidia-infected patients. In contrast, bacteria from the Clostridiales order, Faecalibacterium, Parabacteroides, Collinsella, Ruminococcus, and Sporosarcina decreased compared to the non-infected groups. These findings underscore the importance of understanding and managing the interactions between intestinal parasites and gut microbiota for improved outcomes in cancer patients.
Collapse
Affiliation(s)
- Sidi Omar Siti Farah Norasyikeen
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Malaysia
| | - Romano Ngui
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Malaysia.
| | - Ab Rahman Syaza Zafirah
- Department of Paediatrics, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - Wilhelm Wei Han Eng
- Monash University Malaysia Genomics Facility, Monash University Malaysia, 47500, Subang Jaya, Malaysia
| | - Qasim Ayub
- Monash University Malaysia Genomics Facility, Monash University Malaysia, 47500, Subang Jaya, Malaysia
| | - Syafinaz Amin Nordin
- Department of Microbiology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| | | | - Sabri Musa
- Department of Children's Dentistry and Orthodontics, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yvonne Ai Lian Lim
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Vandeweyer D, Bruno D, Bonelli M, IJdema F, Lievens B, Crauwels S, Casartelli M, Tettamanti G, De Smet J. Bacterial biota composition in gut regions of black soldier fly larvae reared on industrial residual streams: revealing community dynamics along its intestinal tract. Front Microbiol 2023; 14:1276187. [PMID: 38107863 PMCID: PMC10722301 DOI: 10.3389/fmicb.2023.1276187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/30/2023] [Indexed: 12/19/2023] Open
Abstract
Some insect species have gained attention as efficient bioconverters of low-value organic substrates (i.e., residual streams) into high-value biomass. Black soldier fly (BSF) (Hermetia illucens) larvae are particularly interesting for bioconversion due to their ability to grow on a wide range of substrates, including low-value industrial residual streams. This is in part due to the plasticity of the gut microbiota of polyphagous insects, like BSF. Gut microbiota composition varies depending on rearing substrates, via a mechanism that might support the recruitment of microorganisms that facilitate digestion of a specific substrate. At the same time, specific microbial genera do persist on different substrates via unknown mechanisms. This study aimed to offer insights on this microbial plasticity by investigating how the composition of the bacterial community present in the gut of BSF larvae responds to two industrial residual streams: swill (a mixture of catering and supermarket leftovers) and distiller's dried grains with solubles. The bacterial biota composition of substrates, whole larvae at the beginning of the rearing period and at harvest, rearing residues, and larval gut regions were investigated through 16S rRNA gene sequencing. It was observed that both substrate and insect development influenced the bacterial composition of the whole larvae. Zooming in on the gut regions, there was a clear shift in community composition from a higher to a lower diversity between the anterior/middle midgut and the posterior midgut/hindgut, indicating a selective pressure occurring in the middle midgut region. Additionally, the abundance of the bacterial biota was always high in the hindgut, while its diversity was relatively low. Even more, the bacterial community in the hindgut was found to be relatively more conserved over the different substrates, harboring members of the BSF core microbiota. We postulate a potential role of the hindgut as a reservoir for insect-associated microbes. This warrants further research on that underexplored region of the intestinal tract. Overall, these findings contribute to our understanding of the bacterial biota structure and dynamics along the intestinal tract, which can aid microbiome engineering efforts to enhance larval performance on (industrial) residual streams.
Collapse
Affiliation(s)
- Dries Vandeweyer
- Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems, KU Leuven, Geel, Belgium
| | - Daniele Bruno
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Marco Bonelli
- Department of Biosciences, University of Milan, Milan, Italy
| | - Freek IJdema
- Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems, KU Leuven, Geel, Belgium
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Sam Crauwels
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Morena Casartelli
- Department of Biosciences, University of Milan, Milan, Italy
- Interuniversity Center for Studies on Bioinspired Agro-environmental Technology, University of Naples Federico II, Portici, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Interuniversity Center for Studies on Bioinspired Agro-environmental Technology, University of Naples Federico II, Portici, Italy
| | - Jeroen De Smet
- Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems, KU Leuven, Geel, Belgium
| |
Collapse
|
3
|
Aziz G, Zaidi A, Tariq M. Compositional Quality and Possible Gastrointestinal Performance of Marketed Probiotic Supplements. Probiotics Antimicrob Proteins 2022; 14:288-312. [PMID: 35199309 DOI: 10.1007/s12602-022-09931-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 12/15/2022]
Abstract
The local pharmacies and shops are brimming with various probiotic products that herald a range of health benefits. The poor quality of probiotic products in both dosage and species is symptomatic of this multi-billion-dollar market making it difficult for consumers to single out reliable ones. This study aims to fill the potential gap in the labeling accuracy of probiotic products intended for human consumption. We describe a combinatorial approach using classical culture-dependent technique to quantify and molecular techniques (16 s rRNA gene sequencing, multilocus sequence, and ribotyping) for strain recognition of the microbial contents. The full gamut of probiotic characteristics including acid, bile and lysozyme tolerances, adhesiveness, anti-pathogenicity, and degree of safeness were performed. Their capacity to endure gastro-intestinal (GIT) stresses and select drugs was assessed in vitro. Our results forced us to declare that the local probiotic market is essentially unregulated. Almost none of the probiotic products tested met the label claim. Some (11%) have no viable cells, and a quarter (27%) showing significant inter-batch variation. A lower microbial count was typical with undesirables constituting a quarter of the total (~ 27%). Half of the products contained antibiotic-resistant strains; the unregulated use of these probiotics carries the risk of spreading antibiotic resistance to gut pathobionts. Poor tolerance to gut conditions and mediocre functionalism make the case worse. The current regulatory systems do not take this discrepancy into account. We recommend an evidence-based regular market surveillance of marketed probiotics to ensure the authenticity of the claims and product effectiveness.
Collapse
Affiliation(s)
- Ghazal Aziz
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C)-PIEAS, Faisalabad, 38000, Punjab, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650, ICT, Pakistan
| | - Arsalan Zaidi
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C)-PIEAS, Faisalabad, 38000, Punjab, Pakistan.
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650, ICT, Pakistan.
| | - Muhammad Tariq
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C)-PIEAS, Faisalabad, 38000, Punjab, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650, ICT, Pakistan
| |
Collapse
|
4
|
Sam-on MFS, Mustafa S, Yusof MT, Mohd Hashim A, Abbasiliasi S, Zulkifly S, Jahari MA, Roslan MAH. Evaluation of three Bacillus spp. isolated from the gut of giant freshwater prawn as potential probiotics against pathogens causing Vibriosis and Aeromonosis. Microb Pathog 2022; 164:105417. [DOI: 10.1016/j.micpath.2022.105417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/20/2023]
|
5
|
Pradhan SK, Heinonen-Tanski H, Veijalainen AM, Peräniemi S, Torvinen E. Phosphorus Recovery from Sewage Sludge Using Acidithiobacilli. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18137135. [PMID: 34281070 PMCID: PMC8296893 DOI: 10.3390/ijerph18137135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 11/25/2022]
Abstract
Sewage sludge contains a significant amount of phosphorus (P), which could be recycled to address the global demand for this non-renewable, important plant nutrient. The P in sludge can be solubilized and recovered so that it can be recycled when needed. This study investigated the P solubilization from sewage sludge using Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans. The experiment was conducted by mixing 10 mL of sewage sludge with 90 mL of different water/liquid medium/inoculum and incubated at 30 °C. The experiment was conducted in three semi-continuous phases by replacing 10% of the mixed incubated medium with fresh sewage sludge. In addition, 10 g/L elemental sulfur (S) was supplemented into the medium in the third phase. The pH of the A. thiooxidans and A. ferrooxidans treated sludge solutions was between 2.2 and 6.3 until day 42. In phase 3, after supplementing with S, the pH of A. thiooxidans treated sludge was reduced to 0.9, which solubilized and extracted 92% of P. We found that acidithiobacilli supplemented with S can be used to treat sludge, i.e., achieve hygienization, removal of heavy metals, and solubilization and recovery of P.
Collapse
Affiliation(s)
- Surendra K. Pradhan
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; (H.H.-T.); (A.-M.V.); (E.T.)
- Correspondence:
| | - Helvi Heinonen-Tanski
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; (H.H.-T.); (A.-M.V.); (E.T.)
| | - Anna-Maria Veijalainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; (H.H.-T.); (A.-M.V.); (E.T.)
| | - Sirpa Peräniemi
- Department of Pharmacy, University of Eastern Finland, FI-70211 Kuopio, Finland;
| | - Eila Torvinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; (H.H.-T.); (A.-M.V.); (E.T.)
| |
Collapse
|
6
|
Rizkiantino R, Pasaribu FH, Soejoedono RD, Purnama S, Wibowo DB, Wibawan IWT. Experimental infection of Enterococcus faecalis in red tilapia ( Oreochromis hybrid) revealed low pathogenicity to cause streptococcosis. Open Vet J 2021; 11:309-318. [PMID: 34307089 PMCID: PMC8288741 DOI: 10.5455/ovj.2021.v11.i2.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/29/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Streptococcosis, as a bacterial disease with broad tropism in fish and one of the causes of septicemia. Enterococcus faecalis is one of the causative agents of streptococcosis that can be isolated in tilapia. Aim: This study was undertaken to complete the reporting gap on the pathogenicity profile and clinical symptoms of E. faecalis bacterial infection in red tilapia (Oreochromis hybrid). The study is expected to provide enriching information regarding recognizable clinical signs in the field that can lead to the diagnosis of streptococcosis caused by E. faecalis, especially in the Indonesian aquaculture environment. Methods: The method used in this artificial infection study using red tilapia, which were divided into two types of route groups infection, namely intraperitoneal (IP) and peroral (PO) with bacterial concentrations given for each route of infection to be 2.1 × 108 CFU ml−1; 2.1 × 107 CFU ml−1; and 2.1 × 106 CFU ml−1. One group was given brain heart infusion broth media sterile as a non-infectious control. Clinical symptoms, changes in swimming habits and consuming feed, external and internal organ lesion, and leukocytes profile changes were observed during the observation period along 14 days to evaluate the infectious effect of each treated fish group. The lethal dose 50 (LD50) was estimated with the Spearman–Kärber method. The evaluation of the leukocyte profile was performed to find leukocytosis as the clinical sign of infection. Results: The results showed variations in clinical symptoms inflicted on fish through death or the moribund stage. The highest mortality occurred in the treatment group of 2.1 × 108 CFU ml−1 with the PO route. The bacterial concentration of 2.1 × 107 CFU ml−1 given either as PO or IP can cause mild infection symptoms but did not cause mortality. The LD50 of the PO and IP route was obtained at 1.99 × 108 CFU ml−1 and 0.79 × 108 CFU ml−1, respectively. The total leukocytes in the infected fish group increased significantly (p < 0.05) by twofold when compared with the non-infectious group. The bacteria’s discovery on the blood smear examination was taken from fresh dead fish or moribund fish in the treatment group of 2.1 × 108 CFU ml−1, for both PO and IP. Conclusion: Enterococcus faecalis with low pathogenicity can lead to septicemia, characterized by a total increase in leukocytes, bacteria’s discovery on the blood smear examination, and various clinical symptoms systemically found in the treated fish.
Collapse
Affiliation(s)
- Rifky Rizkiantino
- Division of Medical Microbiology, Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, Bogor Agricultural University (IPB University), Bogor, Indonesia
| | - Fachriyan Hasmi Pasaribu
- Division of Medical Microbiology, Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, Bogor Agricultural University (IPB University), Bogor, Indonesia
| | - Retno Damajanti Soejoedono
- Division of Medical Microbiology, Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, Bogor Agricultural University (IPB University), Bogor, Indonesia
| | - Sucitya Purnama
- Division of Medical Microbiology, Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, Bogor Agricultural University (IPB University), Bogor, Indonesia
| | - Danny Bagus Wibowo
- Undergraduate Program, Faculty of Veterinary Medicine, Bogor Agricultural University (IPB University), Bogor, Indonesia
| | - I Wayan Teguh Wibawan
- Division of Medical Microbiology, Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, Bogor Agricultural University (IPB University), Bogor, Indonesia
| |
Collapse
|
7
|
Mavani HAK, Tew IM, Wong L, Yew HZ, Mahyuddin A, Ahmad Ghazali R, Pow EHN. Antimicrobial Efficacy of Fruit Peels Eco-Enzyme against Enterococcus Faecalis: An In Vitro Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5107. [PMID: 32679828 PMCID: PMC7400228 DOI: 10.3390/ijerph17145107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 11/17/2022]
Abstract
Sodium hypochlorite (NaOCl), an effective endodontic irrigant against Enterococcus faecalis (EF), is harmful to periapical tissues. Natural pineapple-orange eco-enzymes (M-EE) and papaya eco-enzyme (P-EE) could be potential alternatives. This study aimed to assess the antimicrobial efficacy of M-EE and P-EE at different concentrations and fermentation periods against EF, compared to 2.5% NaOCl. Fermented M-EE and P-EE (3 and 6 months) at various concentrations were mixed with EF in a 96-well plate incubated for 24 h anaerobically. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of M-EE and P-EE were determined via EF growth observation. EF inhibition was quantitatively measured and compared between different irrigants using the one-way analysis of variance (ANOVA), and different fermentation periods using the independent-samples T-test. M-EE and P-EE showed MIC at 50% and MBC at 100% concentrations. There was no significant difference in antimicrobial effect when comparing M-EE and P-EE at 50% and 100% to 2.5% NaOCl. P-EE at 6 months fermentation exhibited higher EF inhibition compared to 3 months at concentrations of 25% (p = 0.017) and 0.78% (p = 0.009). The antimicrobial properties of M-EE and P-EE, at both 100% and 50% concentrations, are comparable to 2.5% NaOCl. They could therefore be potential alternative endodontic irrigants, but further studies are required.
Collapse
Affiliation(s)
- Hetal Ashvin Kumar Mavani
- Department of Restorative Dentistry, Faculty of Dentistry, The National University of Malaysia, Kuala Lumpur 50300, Malaysia
| | - In Meei Tew
- Department of Restorative Dentistry, Faculty of Dentistry, The National University of Malaysia, Kuala Lumpur 50300, Malaysia
| | - Lishen Wong
- Department of Restorative Dentistry, Faculty of Dentistry, The National University of Malaysia, Kuala Lumpur 50300, Malaysia
| | - Hsu Zenn Yew
- Department of Restorative Dentistry, Faculty of Dentistry, The National University of Malaysia, Kuala Lumpur 50300, Malaysia
| | - Alida Mahyuddin
- Department of Family Dentistry, Faculty of Dentistry, The National University of Malaysia, Kuala Lumpur 50300, Malaysia
| | - Rohi Ahmad Ghazali
- Department of CITRA & Teaching, Faculty of Health Sciences, The National University of Malaysia, Kuala Lumpur 50300, Malaysia
| | - Edmond Ho Nang Pow
- Department of Restorative Dentistry, Faculty of Dentistry, The National University of Malaysia, Kuala Lumpur 50300, Malaysia
- Division of Restorative Dental Sciences, Faculty of Dentistry, University of Hong Kong, Hong Kong, China
| |
Collapse
|