1
|
Datta S, Sarkar I, Goswami N, Mahanta S, Borah P, Sen A. Phytocompounds from Phyllanthus acidus (L.) Skeels in the management of Monkeypox Virus infections. J Biomol Struct Dyn 2025; 43:1083-1100. [PMID: 38079302 DOI: 10.1080/07391102.2023.2291166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/20/2023] [Indexed: 01/01/2025]
Abstract
Monkeypox is a communicable disease similar to smallpox, primarily occurring in African countries. However, recently it has spread to countries outside Africa and may arise as the next threat after COVID-pandemic. The causative organism, i.e. Monkeypox Virus (MPV) spreads from one individual to another primarily through inhalation of respiratory droplets or through contact with skin lesions of infected individuals. No known drugs are available specifically for MPV. Due to its similarity with smallpox, treatment of monkeypox is being attempted through the administration of the smallpox vaccine. Therefore, we evaluated the efficacy of the plant Phyllanthus acidus against MPV since it is traditionally used in the treatment of chickenpox and smallpox. Through functional annotation, PASS prediction and Network pharmacology analysis, the effectiveness of these chosen P. acidus-derived phytocompounds against MPV was confirmed. Target prediction of the phytocompounds identified in GC-MS analysis of the plant extract showed them to be associated with 76 human proteins. The compounds also show good binding affinity with selected viral proteins: DNA polymerase (DNApol), Putative Virulence Factor (vPVF) and Cytokine Binding Protein. Prediction of Activity Spectra for Substances (PASS) and functional annotation of the target proteins further support their antiviral nature through interaction with these proteins. The compounds were found to modulate pathways related to symptoms of viral infection and this may help in maintaining homeostasis. Our study demonstrates antiviral activity as well as the therapeutic potential of the plant against MPV infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sutapa Datta
- Department of Botany, Molecular Genetics Laboratory, University of North Bengal, Siliguri, India
| | - Indrani Sarkar
- Bioinformatics Facility, University of North Bengal, Siliguri, India
| | - Nabajyoti Goswami
- Department of Bioengineering and Technology, Gauhati University, Guwahati, India
- National Institute of Electronics and Information Technology (NIELIT) Guwahati, Assam Financial Corporation Building (1st and 2nd Floor), Guwahati, India
| | - Saurov Mahanta
- National Institute of Electronics and Information Technology (NIELIT) Guwahati, Assam Financial Corporation Building (1st and 2nd Floor), Guwahati, India
| | - Probodh Borah
- Department of Animal Biotechnology, College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Arnab Sen
- Department of Botany, Molecular Genetics Laboratory, University of North Bengal, Siliguri, India
- Bioinformatics Facility, University of North Bengal, Siliguri, India
- Biswa Bangla Genome Centre, University of North Bengal, Siliguri, India
| |
Collapse
|
2
|
López-Muñoz AD, Yewdell JW. Cell surface RNA virus nucleocapsid proteins: a viral strategy for immunosuppression? NPJ VIRUSES 2024; 2:41. [PMID: 40295865 PMCID: PMC11721653 DOI: 10.1038/s44298-024-00051-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/06/2024] [Indexed: 04/30/2025]
Abstract
Nucleocapsid protein (N), or nucleoprotein (NP) coats the genome of most RNA viruses, protecting and shielding RNA from cytosolic RNAases and innate immune sensors, and plays a key role in virion biogenesis and viral RNA transcription. Often one of the most highly expressed viral gene products, N induces strong antibody (Ab) and T cell responses. N from different viruses is present on the infected cell surface in copy numbers ranging from tens of thousands to millions per cell, and it can be released to bind to uninfected cells. Surface N is targeted by Abs, which can contribute to viral clearance via Fc-mediated cellular cytotoxicity. Surface N can modulate host immunity by sequestering chemokines (CHKs), extending prior findings that surface N interferes with innate and adaptive immunity. In this review, we consider aspects of surface N cell biology and immunology and describe its potential as a target for anti-viral intervention.
Collapse
Affiliation(s)
| | - Jonathan W Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, NIAID (NIH), Bethesda, MD, USA.
| |
Collapse
|
3
|
Lucena-Neto FD, Falcão LFM, Vieira-Junior AS, Moraes ECS, David JPF, Silva CC, Sousa JR, Duarte MIS, Vasconcelos PFC, Quaresma JAS. Monkeypox Virus Immune Evasion and Eye Manifestation: Beyond Eyelid Implications. Viruses 2023; 15:2301. [PMID: 38140542 PMCID: PMC10747317 DOI: 10.3390/v15122301] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Monkeypox virus (MPXV), belonging to the Poxviridae family and Orthopoxvirus genus, is closely related to the smallpox virus. Initial prodromal symptoms typically include headache, fever, and lymphadenopathy. This review aims to detail various ocular manifestations and immune evasion associated with the monkeypox viral infection and its complications, making it appropriate as a narrative review. Common external ocular manifestations of MPXV typically involve a generalized pustular rash, keratitis, discharges, and dried secretions related to conjunctival pustules, photophobia, and lacrimation. Orthopoxviruses can evade host immune responses by secreting proteins that antagonize the functions of host IFNγ, CC and CXC chemokines, IL-1β, and the complement system. One of the most important transcription factors downstream of pattern recognition receptors binding is IRF3, which controls the expression of the crucial antiviral molecules IFNα and IFNβ. We strongly recommend that ophthalmologists include MPXV as part of their differential diagnosis when they encounter similar cases presenting with ophthalmic manifestations such as conjunctivitis, blepharitis, or corneal lesions. Furthermore, because non-vaccinated individuals are more likely to exhibit these symptoms, it is recommended that healthcare administrators prioritize smallpox vaccination for at-risk groups, including very young children, pregnant women, older adults, and immunocompromised individuals, especially those in close contact with MPXV cases.
Collapse
Affiliation(s)
- Francisco D. Lucena-Neto
- Department of Infectious Disease, School of Medicine, State University of Pará, Belém 66087-670, PA, Brazil; (F.D.L.-N.); (L.F.M.F.); (A.S.V.-J.); (C.C.S.); (J.R.S.); (P.F.C.V.)
| | - Luiz F. M. Falcão
- Department of Infectious Disease, School of Medicine, State University of Pará, Belém 66087-670, PA, Brazil; (F.D.L.-N.); (L.F.M.F.); (A.S.V.-J.); (C.C.S.); (J.R.S.); (P.F.C.V.)
| | - Adolfo S. Vieira-Junior
- Department of Infectious Disease, School of Medicine, State University of Pará, Belém 66087-670, PA, Brazil; (F.D.L.-N.); (L.F.M.F.); (A.S.V.-J.); (C.C.S.); (J.R.S.); (P.F.C.V.)
| | - Evelly C. S. Moraes
- Department of Infectious Disease, School of Medicine, Federal University of Pará, Belém 66075-110, PA, Brazil; (E.C.S.M.); (J.P.F.D.)
| | - Joacy P. F. David
- Department of Infectious Disease, School of Medicine, Federal University of Pará, Belém 66075-110, PA, Brazil; (E.C.S.M.); (J.P.F.D.)
| | - Camilla C. Silva
- Department of Infectious Disease, School of Medicine, State University of Pará, Belém 66087-670, PA, Brazil; (F.D.L.-N.); (L.F.M.F.); (A.S.V.-J.); (C.C.S.); (J.R.S.); (P.F.C.V.)
| | - Jorge R. Sousa
- Department of Infectious Disease, School of Medicine, State University of Pará, Belém 66087-670, PA, Brazil; (F.D.L.-N.); (L.F.M.F.); (A.S.V.-J.); (C.C.S.); (J.R.S.); (P.F.C.V.)
| | - Maria I. S. Duarte
- Department of Infectious Disease, School of Medicine, São Paulo University, São Paulo 01246-904, SP, Brazil;
| | - Pedro F. C. Vasconcelos
- Department of Infectious Disease, School of Medicine, State University of Pará, Belém 66087-670, PA, Brazil; (F.D.L.-N.); (L.F.M.F.); (A.S.V.-J.); (C.C.S.); (J.R.S.); (P.F.C.V.)
| | - Juarez A. S. Quaresma
- Department of Infectious Disease, School of Medicine, State University of Pará, Belém 66087-670, PA, Brazil; (F.D.L.-N.); (L.F.M.F.); (A.S.V.-J.); (C.C.S.); (J.R.S.); (P.F.C.V.)
- Department of Infectious Disease, School of Medicine, Federal University of Pará, Belém 66075-110, PA, Brazil; (E.C.S.M.); (J.P.F.D.)
- Department of Infectious Disease, School of Medicine, São Paulo University, São Paulo 01246-904, SP, Brazil;
- Virology Section, Evandro Chagas Institute, Ananindeua 67030-000, PA, Brazil
| |
Collapse
|
4
|
Lee W, Kim YJ, Lee SJ, Ahn DG, Kim SJ. Current Status of Epidemiology, Diagnosis, Therapeutics, and Vaccines for the Re-Emerging Human Monkeypox Virus. J Microbiol Biotechnol 2023; 33:981-991. [PMID: 37519276 PMCID: PMC10468680 DOI: 10.4014/jmb.2306.06033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/01/2023]
Abstract
Monkeypox (Mpox) virus, a member of the Poxviridae family, causes a severe illness similar to smallpox, which is characterized by symptoms such as high fever, rash, and pustules. Human-to-human transmission cases have been reported but remained low since the first recorded case of human infection occurred in the Congo in 1970. Recently, Mpox has re-emerged, leading to an alarming surge in infections worldwide since 2022, originating in the United Kingdom. Consequently, the World Health Organization (WHO) officially declared the '2022-23 Mpox outbreak'. Currently, no specific therapy or vaccine is available for Mpox. Therefore, patients infected with Mpox are treated using conventional therapies developed for smallpox. However, the vaccines developed for smallpox have demonstrated only partial efficacy against Mpox, allowing viral transmission among humans. In this review, we discuss the current epidemiology of the ongoing Mpox outbreak and provide an update on the progress made in diagnosis, treatment, and development of vaccines for Mpox.
Collapse
Affiliation(s)
- Wooseong Lee
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Yu-Jin Kim
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Su Jin Lee
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Dae-Gyun Ahn
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Seong-Jun Kim
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| |
Collapse
|
5
|
Hernaez B, Alcamí A. Detection of Chemokine Binding Proteins Association to Cell Surface Glycosaminoglycans by Flow Cell Cytometry and Indirect Immunofluorescence. Methods Mol Biol 2023; 2597:121-129. [PMID: 36374418 DOI: 10.1007/978-1-0716-2835-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Viruses encode secreted proteins that bind chemokines to modulate their activity. Viral proteins may simultaneously interact with glycosaminoglycans allowing these proteins to be anchored at the cell surface to increase their anti-chemokine activity in the proximity of infection. Here we describe methodology to evaluate the interaction of viral secreted proteins with cell-surface glycosaminoglycans by immunofluorescence and detection by flow cytometry or microscopy. These methods could be equally applied to other chemokine binding proteins that do not have viral origin.
Collapse
Affiliation(s)
- Bruno Hernaez
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain.
| | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| |
Collapse
|
6
|
Shannon JP, Vrba SM, Reynoso GV, Wynne-Jones E, Kamenyeva O, Malo CS, Cherry CR, McManus DT, Hickman HD. Group 1 innate lymphoid-cell-derived interferon-γ maintains anti-viral vigilance in the mucosal epithelium. Immunity 2021; 54:276-290.e5. [PMID: 33434494 DOI: 10.1016/j.immuni.2020.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 09/10/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023]
Abstract
The oropharyngeal mucosa serves as a perpetual pathogen entry point and a critical site for viral replication and spread. Here, we demonstrate that type 1 innate lymphoid cells (ILC1s) were the major immune force providing early protection during acute oral mucosal viral infection. Using intravital microscopy, we show that ILC1s populated and patrolled the uninfected labial mucosa. ILC1s produced interferon-γ (IFN-γ) in the absence of infection, leading to the upregulation of key antiviral genes, which were downregulated in uninfected animals upon genetic ablation of ILC1s or antibody-based neutralization of IFN-γ. Thus, tonic IFN-γ production generates increased oral mucosal viral resistance even before infection. Our results demonstrate barrier-tissue protection through tissue surveillance in the absence of rearranged-antigen receptors and the induction of an antiviral state during homeostasis. This aspect of ILC1 biology raises the possibility that these cells do not share true functional redundancy with other tissue-resident lymphocytes.
Collapse
Affiliation(s)
- John P Shannon
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sophia M Vrba
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Glennys V Reynoso
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erica Wynne-Jones
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Olena Kamenyeva
- Biological Imaging Section, Research Technology Branch, NIAID, NIH, Bethesda, MD 20892, USA
| | - Courtney S Malo
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christian R Cherry
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel T McManus
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Heather D Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Virus-encoded cytokine and chemokine decoy receptors. Curr Opin Immunol 2020; 66:50-56. [PMID: 32408109 DOI: 10.1016/j.coi.2020.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 01/16/2023]
Abstract
Poxviruses and herpesviruses encode secreted versions of cytokine receptors as a unique strategy to evade the host immune response. Recent advances in the field have shown the great impact of some of these proteins in immune modulation and viral pathogenesis, and have uncovered unique properties of these viral proteins not found in the cellular counterparts. These modifications inspired by viruses lead to improved immune modulatory activity of the soluble cytokine receptors, information that has been used to develop more efficient therapeutics to treat inflammatory conditions.
Collapse
|
8
|
Intracellular Pathogens: Host Immunity and Microbial Persistence Strategies. J Immunol Res 2019; 2019:1356540. [PMID: 31111075 PMCID: PMC6487120 DOI: 10.1155/2019/1356540] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/15/2019] [Accepted: 04/02/2019] [Indexed: 01/18/2023] Open
Abstract
Infectious diseases caused by pathogens including viruses, bacteria, fungi, and parasites are ranked as the second leading cause of death worldwide by the World Health Organization. Despite tremendous improvements in global public health since 1950, a number of challenges remain to either prevent or eradicate infectious diseases. Many pathogens can cause acute infections that are effectively cleared by the host immunity, but a subcategory of these pathogens called "intracellular pathogens" can establish persistent and sometimes lifelong infections. Several of these intracellular pathogens manage to evade the host immune monitoring and cause disease by replicating inside the host cells. These pathogens have evolved diverse immune escape strategies and overcome immune responses by residing and multiplying inside host immune cells, primarily macrophages. While these intracellular pathogens that cause persistent infections are phylogenetically diverse and engage in diverse immune evasion and persistence strategies, they share common pathogen type-specific mechanisms during host-pathogen interaction inside host cells. Likewise, the host immune system is also equipped with a diverse range of effector functions to fight against the establishment of pathogen persistence and subsequent host damage. This article provides an overview of the immune effector functions used by the host to counter pathogens and various persistence strategies used by intracellular pathogens to counter host immunity, which enables their extended period of colonization in the host. The improved understanding of persistent intracellular pathogen-derived infections will contribute to develop improved disease diagnostics, therapeutics, and prophylactics.
Collapse
|
9
|
A virus-encoded type I interferon decoy receptor enables evasion of host immunity through cell-surface binding. Nat Commun 2018; 9:5440. [PMID: 30575728 PMCID: PMC6303335 DOI: 10.1038/s41467-018-07772-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022] Open
Abstract
Soluble cytokine decoy receptors are potent immune modulatory reagents with therapeutic applications. Some virus-encoded secreted cytokine receptors interact with glycosaminoglycans expressed at the cell surface, but the biological significance of this activity in vivo is poorly understood. Here, we show the type I interferon binding protein (IFNα/βBP) encoded by vaccinia and ectromelia viruses requires of this cell binding activity to confer full virulence to these viruses and to retain immunomodulatory activity. Expression of a variant form of the IFNα/βBP that inhibits IFN activity, but does not interact with cell surface glycosaminoglycans, results in highly attenuated viruses with a virulence similar to that of the IFNα/βBP deletion mutant viruses. Transcriptomics analysis and infection of IFN receptor-deficient mice confirmed that the control of IFN activity is the main function of the IFNα/βBP in vivo. We propose that retention of secreted cytokine receptors at the cell surface may largely enhance their immunomodulatory activity.
Collapse
|
10
|
Wong PS, Sutejo R, Chen H, Ng SH, Sugrue RJ, Tan BH. A System Based-Approach to Examine Cytokine Response in Poxvirus-Infected Macrophages. Viruses 2018; 10:v10120692. [PMID: 30563103 PMCID: PMC6316232 DOI: 10.3390/v10120692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023] Open
Abstract
The poxviruses are large, linear, double-stranded DNA viruses about 130 to 230 kbp, that have an animal origin and evolved to infect a wide host range. Variola virus (VARV), the causative agent of smallpox, is a poxvirus that infects only humans, but other poxviruses such as monkey poxvirus and cowpox virus (CPXV) have crossed over from animals to infect humans. Therefore understanding the biology of poxviruses can devise antiviral strategies to prevent these human infections. In this study we used a system-based approach to examine the host responses to three orthopoxviruses, CPXV, vaccinia virus (VACV), and ectromelia virus (ECTV) in the murine macrophage RAW 264.7 cell line. Overall, we observed a significant down-regulation of gene expressions for pro-inflammatory cytokines, chemokines, and related receptors. There were also common and virus-specific changes in the immune-regulated gene expressions for each poxvirus-infected RAW cells. Collectively our results showed that the murine macrophage RAW 264.7 cell line is a suitable cell-based model system to study poxvirus host response.
Collapse
Affiliation(s)
- Pui-San Wong
- Defence Medical and Environmental Research Institute, DSO National Labs, Singapore 117510, Singapore.
| | - Richard Sutejo
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Hui Chen
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Sock-Hoon Ng
- Defence Medical and Environmental Research Institute, DSO National Labs, Singapore 117510, Singapore.
| | - Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Boon-Huan Tan
- Defence Medical and Environmental Research Institute, DSO National Labs, Singapore 117510, Singapore.
- Infection and Immunity, LKC School of Medicine, Nanyang Technological University, Singapore 308232, Singapore.
| |
Collapse
|