1
|
Hasegawa Y, Ooka H, Wakatsuki T, Sasaki M, Yamamoto A, Kobayashi T. Acidic growth conditions stabilize the ribosomal RNA gene cluster and extend lifespan through noncoding transcription repression. Genes Cells 2024; 29:111-130. [PMID: 38069450 PMCID: PMC11447830 DOI: 10.1111/gtc.13089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/07/2023] [Accepted: 11/19/2023] [Indexed: 02/06/2024]
Abstract
Blackcurrant (Ribes nigrum L.) is a classical fruit that has long been used to make juice, jam, and liqueur. Blackcurrant extract is known to relieve cells from DNA damage caused by hydrogen peroxide (H2 O2 ), methyl methane sulfonate (MMS), and ultraviolet (UV) radiation. We found that blackcurrant extract (BCE) stabilizes the ribosomal RNA gene cluster (rDNA), one of the most unstable regions in the genome, through repression of noncoding transcription in the intergenic spacer (IGS) which extended the lifespan in budding yeast. Reduced formation of extrachromosomal circles (ERCs) after exposure to fractionated BCE suggested that acidity of the growth medium impacted rDNA stability. Indeed, alteration of the acidity of the growth medium to pH ~4.5 by adding HCl increased rDNA stability and extended the lifespan. We identified RPD3 as the gene responsible for this change, which was mediated by the RPD3L histone deacetylase complex. In mammals, as inflammation sites in a tissue are acidic, DNA maintenance may be similarly regulated to prevent genome instability from causing cancer.
Collapse
Affiliation(s)
- Yo Hasegawa
- Laboratory of Genome RegenerationInstitute for Quantitative Biosciences (IQB)The University of TokyoBunkyo‐kuJapan
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoBunkyo‐kuJapan
| | - Hiroyuki Ooka
- Laboratory of Genome RegenerationInstitute for Quantitative Biosciences (IQB)The University of TokyoBunkyo‐kuJapan
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoBunkyo‐kuJapan
| | - Tsuyoshi Wakatsuki
- Laboratory of Genome RegenerationInstitute for Quantitative Biosciences (IQB)The University of TokyoBunkyo‐kuJapan
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoBunkyo‐kuJapan
- Department of Life Science and TechnologyTokyo Institute of TechnologyMidori‐kuJapan
| | - Mariko Sasaki
- Laboratory of Genome RegenerationInstitute for Quantitative Biosciences (IQB)The University of TokyoBunkyo‐kuJapan
- Present address:
Laboratory of Gene Quantity BiologyNational Institute of GeneticsMishimaJapan
| | - Ayumi Yamamoto
- Department of Industrial System EngineeringHachinohe CollegeHachinoheJapan
| | - Takehiko Kobayashi
- Laboratory of Genome RegenerationInstitute for Quantitative Biosciences (IQB)The University of TokyoBunkyo‐kuJapan
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoBunkyo‐kuJapan
- Department of Life Science and TechnologyTokyo Institute of TechnologyMidori‐kuJapan
- Collaborative Research Institute for Innovative MicrobiologyThe University of TokyoBunkyo‐kuJapan
| |
Collapse
|
2
|
Shimasawa M, Sakamaki JI, Maeda T, Mizushima N. The pH-sensing Rim101 pathway regulates cell size in budding yeast. J Biol Chem 2023; 299:102973. [PMID: 36738789 PMCID: PMC10011510 DOI: 10.1016/j.jbc.2023.102973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Although cell size regulation is crucial for cellular functions in a variety of organisms from bacteria to humans, the underlying mechanisms remain elusive. Here, we identify Rim21, a component of the pH-sensing Rim101 pathway, as a positive regulator of cell size through a flow cytometry-based genome-wide screen of Saccharomyces cerevisiae deletion mutants. We found that mutants defective in the Rim101 pathway were consistently smaller than wildtype cells in the log and stationary phases. We show that the expression of the active form of Rim101 increased the size of wildtype cells. Furthermore, the size of wildtype cells increased in response to external alkalization. Microscopic observation revealed that this cell size increase was associated with changes in both vacuolar and cytoplasmic volume. We also found that these volume changes were dependent on Rim21 and Rim101. In addition, a mutant lacking Vph1, a component of V-ATPase that is transcriptionally regulated by Rim101, was also smaller than wildtype cells, with no increase in size in response to alkalization. We demonstrate that the loss of Vph1 suppressed the Rim101-induced increase in cell size under physiological pH conditions. Taken together, our results suggest that the cell size of budding yeast is regulated by the Rim101-V-ATPase axis under physiological conditions as well as in response to alkaline stresses.
Collapse
Affiliation(s)
- Masaru Shimasawa
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun-Ichi Sakamaki
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Maeda
- Department of Biology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Mirisola MG, Longo VD. Yeast Chronological Lifespan: Longevity Regulatory Genes and Mechanisms. Cells 2022; 11:cells11101714. [PMID: 35626750 PMCID: PMC9139625 DOI: 10.3390/cells11101714] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
S. cerevisiae plays a pivotal role as a model system in understanding the biochemistry and molecular biology of mammals including humans. A considerable portion of our knowledge on the genes and pathways involved in cellular growth, resistance to toxic agents, and death has in fact been generated using this model organism. The yeast chronological lifespan (CLS) is a paradigm to study age-dependent damage and longevity. In combination with powerful genetic screening and high throughput technologies, the CLS has allowed the identification of longevity genes and pathways but has also introduced a unicellular “test tube” model system to identify and study macromolecular and cellular damage leading to diseases. In addition, it has played an important role in studying the nutrients and dietary regimens capable of affecting stress resistance and longevity and allowing the characterization of aging regulatory networks. The parallel description of the pro-aging roles of homologs of RAS, S6 kinase, adenylate cyclase, and Tor in yeast and in higher eukaryotes in S. cerevisiae chronological survival studies is valuable to understand human aging and disease. Here we review work on the S. cerevisiae chronological lifespan with a focus on the genes regulating age-dependent macromolecular damage and longevity extension.
Collapse
Affiliation(s)
- Mario G. Mirisola
- Department of Surgery, Oncology and Oral Sciences, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
- Correspondence: (M.G.M.); (V.D.L.)
| | - Valter D. Longo
- Department of Biological Sciences, Longevity Institute, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- IFOM, FIRC Institute of Molecular Oncology, 20139 Milan, Italy
- Correspondence: (M.G.M.); (V.D.L.)
| |
Collapse
|
4
|
Garcia DM, Campbell EA, Jakobson CM, Tsuchiya M, Shaw EA, DiNardo AL, Kaeberlein M, Jarosz DF. A prion accelerates proliferation at the expense of lifespan. eLife 2021; 10:e60917. [PMID: 34545808 PMCID: PMC8455135 DOI: 10.7554/elife.60917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/12/2021] [Indexed: 12/23/2022] Open
Abstract
In fluctuating environments, switching between different growth strategies, such as those affecting cell size and proliferation, can be advantageous to an organism. Trade-offs arise, however. Mechanisms that aberrantly increase cell size or proliferation-such as mutations or chemicals that interfere with growth regulatory pathways-can also shorten lifespan. Here we report a natural example of how the interplay between growth and lifespan can be epigenetically controlled. We find that a highly conserved RNA-modifying enzyme, the pseudouridine synthase Pus4/TruB, can act as a prion, endowing yeast with greater proliferation rates at the cost of a shortened lifespan. Cells harboring the prion grow larger and exhibit altered protein synthesis. This epigenetic state, [BIG+] (better in growth), allows cells to heritably yet reversibly alter their translational program, leading to the differential synthesis of dozens of proteins, including many that regulate proliferation and aging. Our data reveal a new role for prion-based control of an RNA-modifying enzyme in driving heritable epigenetic states that transform cell growth and survival.
Collapse
Affiliation(s)
- David M Garcia
- Department of Chemical & Systems Biology, Stanford University School of Medicine, Stanford, United States
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, United States
| | - Edgar A Campbell
- Department of Chemical & Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Christopher M Jakobson
- Department of Chemical & Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Mitsuhiro Tsuchiya
- Department of Pathology, University of Washington, Seattle, United States
| | - Ethan A Shaw
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, United States
| | - Acadia L DiNardo
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, United States
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, United States
| | - Daniel F Jarosz
- Department of Chemical & Systems Biology, Stanford University School of Medicine, Stanford, United States
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
5
|
Prins RC, Billerbeck S. A buffered media system for yeast batch culture growth. BMC Microbiol 2021; 21:127. [PMID: 33892647 PMCID: PMC8063419 DOI: 10.1186/s12866-021-02191-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/11/2021] [Indexed: 11/24/2022] Open
Abstract
Background Fungi are premier hosts for the high-yield secretion of proteins for biomedical and industrial applications. The stability and activity of these secreted proteins is often dependent on the culture pH. As yeast acidifies the commonly used synthetic complete drop-out (SD) media that contains ammonium sulfate, the pH of the media needs to be buffered in order to maintain a desired extracellular pH during biomass production. At the same time, many buffering agents affect growth at the concentrations needed to support a stable pH. Although the standard for biotechnological research and development is shaken batch cultures or microtiter plate cultures that cannot be easily automatically pH-adjusted during growth, there is no comparative study that evaluates the buffering capacity and growth effects of different media types across pH-values in order to develop a pH-stable batch culture system. Results We systematically test the buffering capacity and growth effects of a citrate-phosphate buffer (CPB) from acidic to neutral pH across different media types. These media types differ in their nitrogen source (ammonium sulfate, urea or both). We find that the widely used synthetic drop-out media that uses ammonium sulfate as nitrogen source can only be effectively buffered at buffer concentrations that also affect growth. At lower concentrations, yeast biomass production still acidifies the media. When replacing the ammonium sulfate with urea, the media alkalizes. We then develop a medium combining ammonium sulfate and urea which can be buffered at low CPB concentrations that do not affect growth. In addition, we show that a buffer based on Tris/HCl is not effective in maintaining any of our media types at neutral pH even at relatively high concentrations. Conclusion Here we show that the buffering of yeast batch cultures is not straight-forward and addition of a buffering agent to set a desired starting pH does not guarantee pH-maintenance during growth. In response, we present a buffered media system based on an ammonium sulfate/urea medium that enables relatively stable pH-maintenance across a wide pH-range without affecting growth. This buffering system is useful for protein-secretion-screenings, antifungal activity assays, as well as for other pH-dependent basic biology or biotechnology projects. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02191-5.
Collapse
Affiliation(s)
- Rianne C Prins
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Sonja Billerbeck
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
6
|
Chen KL, Ven TN, Crane MM, Brunner MLC, Pun AK, Helget KL, Brower K, Chen DE, Doan H, Dillard-Telm JD, Huynh E, Feng YC, Yan Z, Golubeva A, Hsu RA, Knight R, Levin J, Mobasher V, Muir M, Omokehinde V, Screws C, Tunali E, Tran RK, Valdez L, Yang E, Kennedy SR, Herr AJ, Kaeberlein M, Wasko BM. Loss of vacuolar acidity results in iron-sulfur cluster defects and divergent homeostatic responses during aging in Saccharomyces cerevisiae. GeroScience 2020; 42:749-764. [PMID: 31975050 PMCID: PMC7205917 DOI: 10.1007/s11357-020-00159-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/14/2020] [Indexed: 01/31/2023] Open
Abstract
The loss of vacuolar/lysosomal acidity is an early event during aging that has been linked to mitochondrial dysfunction. However, it is unclear how loss of vacuolar acidity results in age-related dysfunction. Through unbiased genetic screens, we determined that increased iron uptake can suppress the mitochondrial respiratory deficiency phenotype of yeast vma mutants, which have lost vacuolar acidity due to genetic disruption of the vacuolar ATPase proton pump. Yeast vma mutants exhibited nuclear localization of Aft1, which turns on the iron regulon in response to iron-sulfur cluster (ISC) deficiency. This led us to find that loss of vacuolar acidity with age in wild-type yeast causes ISC defects and a DNA damage response. Using microfluidics to investigate aging at the single-cell level, we observe grossly divergent trajectories of iron homeostasis within an isogenic and environmentally homogeneous population. One subpopulation of cells fails to mount the expected compensatory iron regulon gene expression program, and suffers progressively severe ISC deficiency with little to no activation of the iron regulon. In contrast, other cells show robust iron regulon activity with limited ISC deficiency, which allows extended passage and survival through a period of genomic instability during aging. These divergent trajectories suggest that iron regulation and ISC homeostasis represent a possible target for aging interventions.
Collapse
Affiliation(s)
- Kenneth L Chen
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Toby N Ven
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Matthew M Crane
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | | | - Adrian K Pun
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Kathleen L Helget
- Department of Biology and Biotechnology, University of Houston-Clear Lake, Houston, TX, 77058, USA
| | - Katherine Brower
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Dexter E Chen
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Ha Doan
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | | | - Ellen Huynh
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Yen-Chi Feng
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Zili Yan
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Alexandra Golubeva
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Roy A Hsu
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Raheem Knight
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Jessie Levin
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Vesal Mobasher
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Michael Muir
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Victor Omokehinde
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Corey Screws
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Esin Tunali
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Rachael K Tran
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Luz Valdez
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Edward Yang
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Scott R Kennedy
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Alan J Herr
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Brian M Wasko
- Department of Biology and Biotechnology, University of Houston-Clear Lake, Houston, TX, 77058, USA.
| |
Collapse
|
7
|
Chadwick SR, Fazio EN, Etedali-Zadeh P, Genereaux J, Duennwald ML, Lajoie P. A functional unfolded protein response is required for chronological aging in Saccharomyces cerevisiae. Curr Genet 2019; 66:263-277. [PMID: 31346745 DOI: 10.1007/s00294-019-01019-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/08/2019] [Accepted: 07/16/2019] [Indexed: 12/29/2022]
Abstract
Progressive impairment of proteostasis and accumulation of toxic misfolded proteins are associated with the cellular aging process. Here, we employed chronologically aged yeast cells to investigate how activation of the unfolded protein response (UPR) upon accumulation of misfolded proteins in the endoplasmic reticulum (ER) affects lifespan. We found that cells lacking a functional UPR display a significantly reduced chronological lifespan, which contrasts previous findings in models of replicative aging. We find exacerbated UPR activation in aged cells, indicating an increase in misfolded protein burden in the ER during the course of aging. We also observed that caloric restriction, which promotes longevity in various model organisms, extends lifespan of UPR-deficient strains. Similarly, aging in pH-buffered media extends lifespan, albeit independently of the UPR. Thus, our data support a role for caloric restriction and reduced acid stress in improving ER homeostasis during aging. Finally, we show that UPR-mediated upregulation of the ER chaperone Kar2 and functional ER-associated degradation (ERAD) are essential for proper aging. Our work documents the central role of secretory protein homeostasis in chronological aging in yeast and highlights that the requirement for a functional UPR can differ between post-mitotic and actively dividing eukaryotic cells.
Collapse
Affiliation(s)
- Sarah R Chadwick
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, N6A 5C1, Canada
| | - Elena N Fazio
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, N6A 5C1, Canada
| | - Parnian Etedali-Zadeh
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, N6A 5C1, Canada
| | - Julie Genereaux
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, N6A 5C1, Canada.,Department of Biochemistry, The University of Western Ontario, London, N6A 5C1, Canada
| | - Martin L Duennwald
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, N6A 5C1, Canada.,Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, N6A 5C1, Canada
| | - Patrick Lajoie
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, N6A 5C1, Canada.
| |
Collapse
|
8
|
Deprez MA, Eskes E, Winderickx J, Wilms T. The TORC1-Sch9 pathway as a crucial mediator of chronological lifespan in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 2019; 18:4980911. [PMID: 29788208 DOI: 10.1093/femsyr/foy048] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/19/2018] [Indexed: 12/18/2022] Open
Abstract
The concept of ageing is one that has intrigued mankind since the beginning of time and is now more important than ever as the incidence of age-related disorders is increasing in our ageing population. Over the past decades, extensive research has been performed using various model organisms. As such, it has become apparent that many fundamental aspects of biological ageing are highly conserved across large evolutionary distances. In this review, we illustrate that the unicellular eukaryotic organism Saccharomyces cerevisiae has proven to be a valuable tool to gain fundamental insights into the molecular mechanisms of cellular ageing in multicellular eukaryotes. In addition, we outline the current knowledge on how downregulation of nutrient signaling through the target of rapamycin (TOR)-Sch9 pathway or reducing calorie intake attenuates many detrimental effects associated with ageing and leads to the extension of yeast chronological lifespan. Given that both TOR Complex 1 (TORC1) and Sch9 have mammalian orthologues that have been implicated in various age-related disorders, unraveling the connections of TORC1 and Sch9 with yeast ageing may provide additional clues on how their mammalian orthologues contribute to the mechanisms underpinning human ageing and health.
Collapse
Affiliation(s)
- Marie-Anne Deprez
- Department of Biology, Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Elja Eskes
- Department of Biology, Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Joris Winderickx
- Department of Biology, Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Tobias Wilms
- Department of Biology, Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| |
Collapse
|
9
|
Marshall RS, Vierstra RD. Proteasome storage granules protect proteasomes from autophagic degradation upon carbon starvation. eLife 2018; 7:34532. [PMID: 29624167 PMCID: PMC5947986 DOI: 10.7554/elife.34532] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/05/2018] [Indexed: 12/14/2022] Open
Abstract
26S proteasome abundance is tightly regulated at multiple levels, including the elimination of excess or inactive particles by autophagy. In yeast, this proteaphagy occurs upon nitrogen starvation but not carbon starvation, which instead stimulates the rapid sequestration of proteasomes into cytoplasmic puncta termed proteasome storage granules (PSGs). Here, we show that PSGs help protect proteasomes from autophagic degradation. Both the core protease and regulatory particle sub-complexes are sequestered separately into PSGs via pathways dependent on the accessory proteins Blm10 and Spg5, respectively. Modulating PSG formation, either by perturbing cellular energy status or pH, or by genetically eliminating factors required for granule assembly, not only influences the rate of proteasome degradation, but also impacts cell viability upon recovery from carbon starvation. PSG formation and concomitant protection against proteaphagy also occurs in Arabidopsis, suggesting that PSGs represent an evolutionarily conserved cache of proteasomes that can be rapidly re-mobilized based on energy availability. Proteins perform many jobs within an organism, including providing structure and support, and protecting against infection. The levels of the many proteins in a cell need to be carefully controlled so that the correct amounts are present at the right place and time to perform these tasks. This control can be achieved by balancing the production of new proteins with the break down (or degradation) of proteins that are no longer required or become dysfunctional. Most cells have two pathways for degrading proteins. One pathway breaks down individual proteins specifically marked for elimination; this causes them to be recognized by a structure called the proteasome, which chops proteins into smaller pieces. Larger protein assemblies – including the proteasome itself – are to big for the proteasome and thus need to be degraded by another pathway called autophagy. This process engulfs and delivers parts of a cell to a membrane-bound compartment called the vacuole, which ‘digests’ and recycles these larger constituents. Proteasomes are degraded by autophagy when they are not working correctly and when nitrogen (a crucial nutrient) is in short supply. However, proteasomes are not degraded when cells lack carbon, even though this starvation is known to activate autophagy in the same way that an absence of nitrogen does. So how do proteasomes escape degradation when cells are starved for carbon? Marshall and Vierstra now show that upon carbon starvation, proteasomes rapidly exit the cell nucleus and cluster together in the main part of the cell (termed the cytosol). These clusters are known as proteasome storage granules (PSGs). In fungi and plants, mutations or conditions inside the cell that make it difficult for PSGs to assemble cause proteasomes to instead be broken down in the vacuole when carbon availability is low. Clustering into PSGs therefore protects proteasomes from autophagy. This clustering appears advantageous to cells; yeast cells that could form PSGs were better able to start growing again when their nutrient supply improved. Protein clustering (also known as aggregation) is an important strategy that cells use to survive stressful conditions. However, it can also be harmful when proteins aggregate inappropriately, such as occurs in Alzheimer’s disease. Researchers may be able to use PSG assembly as a convenient model to study the causes and consequences of protein aggregation; this knowledge could ultimately be applied to improve human health and crop productivity.
Collapse
Affiliation(s)
- Richard S Marshall
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| |
Collapse
|
10
|
Morgunova GV, Klebanov AA, Marotta F, Khokhlov AN. Culture medium pH and stationary phase/chronological aging of different cells. MOSCOW UNIVERSITY BIOLOGICAL SCIENCES BULLETIN 2017; 72:47-51. [DOI: 10.3103/s0096392517020109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Lee SG, Kaya A, Avanesov AS, Podolskiy DI, Song EJ, Go DM, Jin GD, Hwang JY, Kim EB, Kim DY, Gladyshev VN. Age-associated molecular changes are deleterious and may modulate life span through diet. SCIENCE ADVANCES 2017; 3:e1601833. [PMID: 28232953 PMCID: PMC5315447 DOI: 10.1126/sciadv.1601833] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 11/29/2016] [Indexed: 05/15/2023]
Abstract
Transition through life span is accompanied by numerous molecular changes, such as dysregulated gene expression, altered metabolite levels, and accumulated molecular damage. These changes are thought to be causal factors in aging; however, because they are numerous and are also influenced by genotype, environment, and other factors in addition to age, it is difficult to characterize the cumulative effect of these molecular changes on longevity. We reasoned that age-associated changes, such as molecular damage and tissue composition, may influence life span when used in the diet of organisms that are closely related to those that serve as a dietary source. To test this possibility, we used species-specific culture media and diets that incorporated molecular extracts of young and old organisms and compared the influence of these diets on the life span of yeast, fruitflies, and mice. In each case, the "old" diet or medium shortened the life span for one or both sexes. These findings suggest that age-associated molecular changes, such as cumulative damage and altered dietary composition, are deleterious and causally linked with aging and may affect life span through diet.
Collapse
Affiliation(s)
- Sang-Goo Lee
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Bioinspired Science, Ewha Womans University, Seoul 03760, South Korea
| | - Alaattin Kaya
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andrei S. Avanesov
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dmitriy I. Podolskiy
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eun Ju Song
- Ewha Laboratory Animal Genomic Center, Institute of Molecular Life Sciences and Technology, Office of Research Affairs, Ewha Womans University, Seoul 03760, South Korea
- Department of Veterinary Physiology, College of Veterinary Medicine, BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul 08826, South Korea
| | - Du-Min Go
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Gwi-Deuk Jin
- Department of Animal Life Science, Kangwon National University, Chuncheon 24341, South Korea
| | - Jae Yeon Hwang
- Department of Animal Life Science, Kangwon National University, Chuncheon 24341, South Korea
| | - Eun Bae Kim
- Department of Animal Life Science, Kangwon National University, Chuncheon 24341, South Korea
- Division of Applied Animal Science, Kangwon National University, Chuncheon 24341, South Korea
| | - Dae-Yong Kim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Corresponding author.
| |
Collapse
|
12
|
van Heerden A, Mouton M, Postma F, van Wyk PWJ, Lerm B, Van Zyl WH, Borstlap CJ, Botha A. The microcyclic conidial stage of Coniochaeta pulveracea and its effect on selected biological interactions. Folia Microbiol (Praha) 2015; 61:319-28. [PMID: 26658947 DOI: 10.1007/s12223-015-0441-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/01/2015] [Indexed: 12/20/2022]
Abstract
Coniochaeta pulveracea is a dimorphic lignicolous fungus that has mostly been isolated from decaying wood. However, relatively little work was conducted on the conditions for the dimorphic switch or the biological interactions of the fungus in its yeast-like microcyclic growth phase. Therefore, in this study, the microcyclic conidiation of C. pulveracea strains and representatives of the closely related species, Coniochaeta boothii and Coniochaeta subcorticalis, was studied under different environmental conditions. The strains were found to exhibit hyphal growth on solid substrates and underwent a dimorphic switch to produce microcycle conidiation upon transfer to a liquid medium which differed in physico-chemical composition compared to the original solid medium. Factors that were found to contribute to this dimorphic switch were temperature, pH and the presence of complex nitrogen sources such as casamino acids and peptone in the medium. However, C. pulveracea showed intraspecific differences with regard to its response to changes in the physico-chemical environment. The interactions of microcyclic Coniochaeta strains with selected yeasts, such as representatives of Meyerozyma guilliermondii and Cryptococcus neoformans, were subsequently studied in complex liquid media and it was found that, depending on medium composition, the microcyclic Coniochaeta exerted different effects on the different yeasts strains. In some co-cultures, a positive effect on yeast growth was observed, whilst in other cases microcyclic Coniochaeta inhibited yeast growth.
Collapse
Affiliation(s)
- Andrea van Heerden
- Department of Microbiology, Stellenbosch University, Private Bag X1, Stellenbosch, South Africa
| | - Marnel Mouton
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Stellenbosch, South Africa
| | - Ferdinand Postma
- Department of Microbiology, Stellenbosch University, Private Bag X1, Stellenbosch, South Africa
| | - Pieter W J van Wyk
- Centre for Confocal and Electron Microscopy, University of the Free State, P.O. Box 339, Bloemfontein, South Africa
| | - Barbra Lerm
- Department of Microbiology, Stellenbosch University, Private Bag X1, Stellenbosch, South Africa
| | - Willem H Van Zyl
- Department of Microbiology, Stellenbosch University, Private Bag X1, Stellenbosch, South Africa
| | - Cornelius J Borstlap
- Department of Microbiology, Stellenbosch University, Private Bag X1, Stellenbosch, South Africa
| | - Alfred Botha
- Department of Microbiology, Stellenbosch University, Private Bag X1, Stellenbosch, South Africa.
| |
Collapse
|
13
|
Bitto A, Wang AM, Bennett CF, Kaeberlein M. Biochemical Genetic Pathways that Modulate Aging in Multiple Species. Cold Spring Harb Perspect Med 2015; 5:5/11/a025114. [PMID: 26525455 DOI: 10.1101/cshperspect.a025114] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The mechanisms underlying biological aging have been extensively studied in the past 20 years with the avail of mainly four model organisms: the budding yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, the fruitfly Drosophila melanogaster, and the domestic mouse Mus musculus. Extensive research in these four model organisms has identified a few conserved genetic pathways that affect longevity as well as metabolism and development. Here, we review how the mechanistic target of rapamycin (mTOR), sirtuins, adenosine monophosphate-activated protein kinase (AMPK), growth hormone/insulin-like growth factor 1 (IGF-1), and mitochondrial stress-signaling pathways influence aging and life span in the aforementioned models and their possible implications for delaying aging in humans. We also draw some connections between these biochemical pathways and comment on what new developments aging research will likely bring in the near future.
Collapse
Affiliation(s)
- Alessandro Bitto
- Department of Pathology, University of Washington, Seattle, Washington 98195
| | - Adrienne M Wang
- Department of Pathology, University of Washington, Seattle, Washington 98195
| | | | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, Washington 98195
| |
Collapse
|
14
|
Medkour Y, Svistkova V, Titorenko VI. Cell-Nonautonomous Mechanisms Underlying Cellular and Organismal Aging. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 321:259-97. [PMID: 26811290 DOI: 10.1016/bs.ircmb.2015.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell-autonomous mechanisms underlying cellular and organismal aging in evolutionarily distant eukaryotes have been established; these mechanisms regulate longevity-defining processes within a single eukaryotic cell. Recent findings have provided valuable insight into cell-nonautonomous mechanisms modulating cellular and organismal aging in eukaryotes across phyla; these mechanisms involve a transmission of various longevity factors between different cells, tissues, and organisms. Herein, we review such cell-nonautonomous mechanisms of aging in eukaryotes. We discuss the following: (1) how low molecular weight transmissible longevity factors modulate aging and define longevity of cells in yeast populations cultured in liquid media or on solid surfaces, (2) how communications between proteostasis stress networks operating in neurons and nonneuronal somatic tissues define longevity of the nematode Caenorhabditis elegans by modulating the rates of aging in different tissues, and (3) how different bacterial species colonizing the gut lumen of C. elegans define nematode longevity by modulating the rate of organismal aging.
Collapse
Affiliation(s)
- Younes Medkour
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
15
|
Arlia-Ciommo A, Piano A, Leonov A, Svistkova V, Titorenko VI. Quasi-programmed aging of budding yeast: a trade-off between programmed processes of cell proliferation, differentiation, stress response, survival and death defines yeast lifespan. Cell Cycle 2015; 13:3336-49. [PMID: 25485579 PMCID: PMC4614525 DOI: 10.4161/15384101.2014.965063] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent findings suggest that evolutionarily distant organisms share the key features of the aging process and exhibit similar mechanisms of its modulation by certain genetic, dietary and pharmacological interventions. The scope of this review is to analyze mechanisms that in the yeast Saccharomyces cerevisiae underlie: (1) the replicative and chronological modes of aging; (2) the convergence of these 2 modes of aging into a single aging process; (3) a programmed differentiation of aging cell communities in liquid media and on solid surfaces; and (4) longevity-defining responses of cells to some chemical compounds released to an ecosystem by other organisms populating it. Based on such analysis, we conclude that all these mechanisms are programs for upholding the long-term survival of the entire yeast population inhabiting an ecological niche; however, none of these mechanisms is a ʺprogram of agingʺ - i.e., a program for progressing through consecutive steps of the aging process.
Collapse
Key Words
- D, diauxic growth phase
- ERCs, extrachromosomal rDNA circles
- IPOD, insoluble protein deposit
- JUNQ, juxtanuclear quality control compartment
- L, logarithmic growth phase
- MBS, the mitochondrial back-signaling pathway
- MTC, the mitochondrial translation control signaling pathway
- NPCs, nuclear pore complexes
- NQ, non-quiescent cells
- PD, post-diauxic growth phase
- Q, quiescent cells
- ROS, reactive oxygen species
- RTG, the mitochondrial retrograde signaling pathway
- Ras/cAMP/PKA, the Ras family GTPase/cAMP/protein kinase A signaling pathway
- ST, stationary growth phase
- TOR/Sch9, the target of rapamycin/serine-threonine protein kinase Sch9 signaling pathway
- UPRER, the unfolded protein response pathway in the endoplasmic reticulum
- UPRmt, the unfolded protein response pathway in mitochondria
- cell growth and proliferation
- cell survival
- cellular aging
- ecosystems
- evolution
- longevity
- programmed cell death
- yeast
- yeast colony
- yeast replicative and chronological aging
Collapse
|
16
|
Mei SC, Brenner C. Calorie restriction-mediated replicative lifespan extension in yeast is non-cell autonomous. PLoS Biol 2015; 13:e1002048. [PMID: 25633578 PMCID: PMC4310591 DOI: 10.1371/journal.pbio.1002048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/09/2014] [Indexed: 12/12/2022] Open
Abstract
Calorie-restriction extends lifespan in many multicellular organisms; here substances secreted by calorie-restricted yeast are found to induce longer life in other yeast cells, suggesting that cellular communication is a component of this phenomenon even in a single-celled organism. In laboratory yeast strains with Sir2 and Fob1 function, wild-type NAD+ salvage is required for calorie restriction (CR) to extend replicative lifespan. CR does not significantly alter steady state levels of intracellular NAD+ metabolites. However, levels of Sir2 and Pnc1, two enzymes that sequentially convert NAD+ to nicotinic acid (NA), are up-regulated during CR. To test whether factors such as NA might be exported by glucose-restricted mother cells to survive later generations, we developed a replicative longevity paradigm in which mother cells are moved after 15 generations on defined media. The experiment reveals that CR mother cells lose the longevity benefit of CR when evacuated from their local environment to fresh CR media. Addition of NA or nicotinamide riboside (NR) allows a moved mother to maintain replicative longevity despite the move. Moreover, conditioned medium from CR-treated cells transmits the longevity benefit of CR to moved mother cells. Evidence suggests the existence of a longevity factor that is dialyzable but is neither NA nor NR, and indicates that Sir2 is not required for the longevity factor to be produced or to act. Data indicate that the benefit of glucose-restriction is transmitted from cell to cell in budding yeast, suggesting that glucose restriction may benefit neighboring cells and not only an individual cell. Though calorie restriction extends lifespan and healthspan in multiple model organisms, the intrinsic mechanisms remain unclear. In budding yeast Saccharomyces cerevisiae, manipulation of nicotinamide adenine dinucleotide (NAD+)—a central metabolic cofactor—can restrict or extend replicative lifespan, suggesting that NAD+-dependent targets might be mediators of extended longevity. However, although treating cells with the NAD+ precursor nicotinamide riboside extends lifespan, intracellular NAD+ metabolites levels are not altered by glucose restriction. This suggests the potential involvement of extracellular factors in replicative lifespan extension. Here we show that though yeast cells display a longevity benefit upon glucose restriction, these cells surprisingly lose the longevity benefit if moved from their local environment to fresh glucose-restricted media. They are, however, able to regain the longevity benefit, despite the change in environment, if the new environment is supplemented with conditioned medium from glucose restricted cells. Our results suggest that calorie restriction-induced longevity is not cell autonomous and, instead, appears to be transmitted from cell to cell in S. cerevisiae via a dialyzable extracellular factor.
Collapse
Affiliation(s)
- Szu-Chieh Mei
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Charles Brenner
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|