1
|
Gómez-Eguílaz M, López-Alava S, Ramón-Trapero JL, Castillo-Álvarez F, Gómez Loizaga N, García-Penco C, Boukichou-Abdelkader N, Pérez-Martínez L. Focusing on post-COVID syndrome fatigue. Neurologia 2025; 40:204-215. [PMID: 39947285 DOI: 10.1016/j.nrleng.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 09/16/2023] [Indexed: 02/20/2025] Open
Abstract
INTRODUCTION More than 100 million people worldwide have been infected by SARS-CoV-2 virus, the virus responsible for the acute disease COVID-19. Multiple studies have shown how various symptoms in these patients can persist for several months after resolution of the acute process, a phenomenon known as post-COVID syndrome. Neurological symptoms are varied, but the great majority of patients present fatigue. OBJECTIVE To analyse post-COVID fatigue. METHODS We present a prospective, single-centre, case-control study comparing patients with fatigue in the context of post-COVID syndrome with patients with history of COVID-19 but without post-COVID fatigue. Data were recorded at baseline (April 2021) and at 6 months. Data were recorded on clinical variables, fatigue questionnaires, sleep disorders, depression, anxiety, cognitive impairment, and quality of life. Basic laboratory analysis was performed with blood samples collected at the 2 visits. In addition, a substudy of proinflammatory (IL-6, IL-1β, TNF-α) and anti-inflammatory (IL-10) cytokines was performed. RESULTS Fatigue as measured by the Chalder Fatigue Scale was mixed (physical and psychological) and of moderate intensity. At 6 months, physical fatigue improved, but psychological fatigue did not. Significant differences were found in sleepiness, cognitive impairment, anxiety, and quality of life. Significant alterations were observed in TNF-α levels, but not in the remaining cytokines. CONCLUSIONS Patients with fatigue presented a poorer quality of life, with an improvement being observed at 6 months, which suggests a course that may be self-limiting; however, this will have to be confirmed with longer studies.
Collapse
Affiliation(s)
- M Gómez-Eguílaz
- Servicio de Neurología, Hospital Universitario San Pedro, Logroño, Spain.
| | - S López-Alava
- Servicio de Neurología, Hospital Universitario San Pedro, Logroño, Spain
| | - J L Ramón-Trapero
- Centro de Salud de Haro, Servicio de Atención Primaria de La Rioja, Haro, La Rioja, Spain
| | - F Castillo-Álvarez
- Servicio de Neurología, Hospital Universitario San Pedro, Logroño, Spain
| | - N Gómez Loizaga
- Sección de Neurofisiología, Hospital Universitario San Pedro, Logroño, Spain
| | - C García-Penco
- Sección de Neurofisiología, Hospital Universitario San Pedro, Logroño, Spain
| | - N Boukichou-Abdelkader
- Unidad de Ciencia del Dato, Innovación Sanitaria de La Rioja. Fundación Rioja Salud, CIBIR, Logroño, Spain
| | - L Pérez-Martínez
- Centro de Investigación Biomédica de La Rioja, CIBIR, Logroño, Spain
| |
Collapse
|
2
|
dos Santos Brito WR, de Brito WB, dos Santos Ferreira F, Santana EGM, da Costa Lopes J, da Silva Graça Amoras E, Lima SS, dos Santos EF, da Costa FP, de Sarges KML, Cantanhede MHD, de Brito MTFM, da Silva ALS, de Meira Leite M, de Nazaré do Socorro de Almeida Viana M, Rodrigues FBB, da Silva R, Viana GMR, do Socorro Souza Chaves T, de Oliveira Lameira Veríssimo A, da Silva Carvalho M, Henriques DF, da Silva CP, Nunes JAL, Costa IB, Brasil-Costa I, Quaresma JAS, Cayres-Vallinoto IMV, Reis LO, Falcão LFM, dos Santos EJM, Vallinoto ACR, Queiroz MAF. Polymorphisms Influence the Expression of the Fas and FasL Genes in COVID-19. Int J Mol Sci 2025; 26:666. [PMID: 39859379 PMCID: PMC11765610 DOI: 10.3390/ijms26020666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
The apoptotic molecule Fas and its ligand FasL are involved in the process of T-lymphocyte death, which may lead to lymphopenia, a characteristic of severe coronavirus disease 2019 (COVID-19). In this study, we investigated the influence of polymorphisms in the FAS and FASL genes, FAS and FASL gene expression, and plasma cytokine levels on COVID-19 severity and long COVID occurrence. A total of 116 individuals with severe COVID-19 and 254 with the non-severe form of the disease were evaluated. In the post-COVID-19 period, samples from 196 individuals with long COVID and 67 from people who did not have long COVID were included. Genotyping and quantification of gene expression were performed via real-time PCR, and cytokine measurement was performed via flow cytometry. The AA genotype for FAS rs1800682 (A/G) and the TT genotype for FASL rs763110 (C/T) were associated with increased FAS and FASL gene expression, respectively (p < 0.005). Higher plasma IFN-γ levels were associated with higher FAS and FASL gene expression (p < 0.05). Among individuals with non-severe COVID-19, carriers of the AA genotype for FAS rs1800682 (A/G) had higher levels of FAS expression, more symptoms, and higher IFN-γ levels (p < 0.05). No association of the evaluated markers with long COVID were observed. The AA genotype of FAS rs1800682 (A/G) and the TT genotype of FASL rs763110 (C/T) influence the levels of FAS and FASL gene expression. Higher gene expression of FAS and FASL may lead to greater inflammation in COVID-19 patients, with higher levels of IFN-γ and T lymphocyte death.
Collapse
Affiliation(s)
- Wandrey Roberto dos Santos Brito
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (W.R.d.S.B.); (W.B.d.B.); (F.d.S.F.); (E.G.M.S.); (J.d.C.L.); (E.d.S.G.A.); (S.S.L.); (I.M.V.C.-V.); (A.C.R.V.)
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (E.F.d.S.); (F.P.d.C.); (K.M.L.d.S.); (M.H.D.C.); (M.d.N.d.S.d.A.V.); (F.B.B.R.); (R.d.S.); (E.J.M.d.S.)
| | - William Botelho de Brito
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (W.R.d.S.B.); (W.B.d.B.); (F.d.S.F.); (E.G.M.S.); (J.d.C.L.); (E.d.S.G.A.); (S.S.L.); (I.M.V.C.-V.); (A.C.R.V.)
| | - Fabiane dos Santos Ferreira
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (W.R.d.S.B.); (W.B.d.B.); (F.d.S.F.); (E.G.M.S.); (J.d.C.L.); (E.d.S.G.A.); (S.S.L.); (I.M.V.C.-V.); (A.C.R.V.)
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (E.F.d.S.); (F.P.d.C.); (K.M.L.d.S.); (M.H.D.C.); (M.d.N.d.S.d.A.V.); (F.B.B.R.); (R.d.S.); (E.J.M.d.S.)
| | - Emmanuelle Giuliana Mendes Santana
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (W.R.d.S.B.); (W.B.d.B.); (F.d.S.F.); (E.G.M.S.); (J.d.C.L.); (E.d.S.G.A.); (S.S.L.); (I.M.V.C.-V.); (A.C.R.V.)
| | - Jeferson da Costa Lopes
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (W.R.d.S.B.); (W.B.d.B.); (F.d.S.F.); (E.G.M.S.); (J.d.C.L.); (E.d.S.G.A.); (S.S.L.); (I.M.V.C.-V.); (A.C.R.V.)
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (E.F.d.S.); (F.P.d.C.); (K.M.L.d.S.); (M.H.D.C.); (M.d.N.d.S.d.A.V.); (F.B.B.R.); (R.d.S.); (E.J.M.d.S.)
| | - Ednelza da Silva Graça Amoras
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (W.R.d.S.B.); (W.B.d.B.); (F.d.S.F.); (E.G.M.S.); (J.d.C.L.); (E.d.S.G.A.); (S.S.L.); (I.M.V.C.-V.); (A.C.R.V.)
| | - Sandra Souza Lima
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (W.R.d.S.B.); (W.B.d.B.); (F.d.S.F.); (E.G.M.S.); (J.d.C.L.); (E.d.S.G.A.); (S.S.L.); (I.M.V.C.-V.); (A.C.R.V.)
| | - Erika Ferreira dos Santos
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (E.F.d.S.); (F.P.d.C.); (K.M.L.d.S.); (M.H.D.C.); (M.d.N.d.S.d.A.V.); (F.B.B.R.); (R.d.S.); (E.J.M.d.S.)
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (M.T.F.M.d.B.); (A.L.S.d.S.); (M.d.M.L.)
| | - Flávia Póvoa da Costa
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (E.F.d.S.); (F.P.d.C.); (K.M.L.d.S.); (M.H.D.C.); (M.d.N.d.S.d.A.V.); (F.B.B.R.); (R.d.S.); (E.J.M.d.S.)
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (M.T.F.M.d.B.); (A.L.S.d.S.); (M.d.M.L.)
| | - Kevin Matheus Lima de Sarges
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (E.F.d.S.); (F.P.d.C.); (K.M.L.d.S.); (M.H.D.C.); (M.d.N.d.S.d.A.V.); (F.B.B.R.); (R.d.S.); (E.J.M.d.S.)
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (M.T.F.M.d.B.); (A.L.S.d.S.); (M.d.M.L.)
| | - Marcos Henrique Damasceno Cantanhede
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (E.F.d.S.); (F.P.d.C.); (K.M.L.d.S.); (M.H.D.C.); (M.d.N.d.S.d.A.V.); (F.B.B.R.); (R.d.S.); (E.J.M.d.S.)
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (M.T.F.M.d.B.); (A.L.S.d.S.); (M.d.M.L.)
| | - Mioni Thieli Figueiredo Magalhães de Brito
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (M.T.F.M.d.B.); (A.L.S.d.S.); (M.d.M.L.)
| | - Andréa Luciana Soares da Silva
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (M.T.F.M.d.B.); (A.L.S.d.S.); (M.d.M.L.)
| | - Mauro de Meira Leite
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (M.T.F.M.d.B.); (A.L.S.d.S.); (M.d.M.L.)
| | - Maria de Nazaré do Socorro de Almeida Viana
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (E.F.d.S.); (F.P.d.C.); (K.M.L.d.S.); (M.H.D.C.); (M.d.N.d.S.d.A.V.); (F.B.B.R.); (R.d.S.); (E.J.M.d.S.)
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (M.T.F.M.d.B.); (A.L.S.d.S.); (M.d.M.L.)
| | - Fabíola Brasil Barbosa Rodrigues
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (E.F.d.S.); (F.P.d.C.); (K.M.L.d.S.); (M.H.D.C.); (M.d.N.d.S.d.A.V.); (F.B.B.R.); (R.d.S.); (E.J.M.d.S.)
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (M.T.F.M.d.B.); (A.L.S.d.S.); (M.d.M.L.)
| | - Rosilene da Silva
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (E.F.d.S.); (F.P.d.C.); (K.M.L.d.S.); (M.H.D.C.); (M.d.N.d.S.d.A.V.); (F.B.B.R.); (R.d.S.); (E.J.M.d.S.)
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (M.T.F.M.d.B.); (A.L.S.d.S.); (M.d.M.L.)
| | - Giselle Maria Rachid Viana
- Laboratory of Basic Research on Malaria, Parasitology Section, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua 66093-020, Brazil; (G.M.R.V.); (T.d.S.S.C.)
| | - Tânia do Socorro Souza Chaves
- Laboratory of Basic Research on Malaria, Parasitology Section, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua 66093-020, Brazil; (G.M.R.V.); (T.d.S.S.C.)
- School of Medicine, Institute of Medical Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | | | | | - Daniele Freitas Henriques
- Arbovirology and Hemorrhagic Fevers Section, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua 66093-020, Brazil; (D.F.H.); (C.P.d.S.)
| | - Carla Pinheiro da Silva
- Arbovirology and Hemorrhagic Fevers Section, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua 66093-020, Brazil; (D.F.H.); (C.P.d.S.)
| | - Juliana Abreu Lima Nunes
- Laboratory of Immunology, Section of Virology, Instituto Evandro Chagas, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua 66093-020, Brazil; (J.A.L.N.); (I.B.C.); (I.B.-C.)
| | - Iran Barros Costa
- Laboratory of Immunology, Section of Virology, Instituto Evandro Chagas, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua 66093-020, Brazil; (J.A.L.N.); (I.B.C.); (I.B.-C.)
- Graduate Program in Virology, Evandro Chagas Institute, Department of Science, Technology, Innovation and Strategic Health Inputs, Ministry of Health of Brazil, Ananindeua 66093-020, Brazil;
| | - Igor Brasil-Costa
- Laboratory of Immunology, Section of Virology, Instituto Evandro Chagas, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua 66093-020, Brazil; (J.A.L.N.); (I.B.C.); (I.B.-C.)
- Graduate Program in Virology, Evandro Chagas Institute, Department of Science, Technology, Innovation and Strategic Health Inputs, Ministry of Health of Brazil, Ananindeua 66093-020, Brazil;
| | - Juarez Antônio Simões Quaresma
- Graduate Program in Virology, Evandro Chagas Institute, Department of Science, Technology, Innovation and Strategic Health Inputs, Ministry of Health of Brazil, Ananindeua 66093-020, Brazil;
- Center of Biological and Health Sciences, University of the State of Pará, Belém 66087-670, Brazil;
| | - Izaura Maria Vieira Cayres-Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (W.R.d.S.B.); (W.B.d.B.); (F.d.S.F.); (E.G.M.S.); (J.d.C.L.); (E.d.S.G.A.); (S.S.L.); (I.M.V.C.-V.); (A.C.R.V.)
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (E.F.d.S.); (F.P.d.C.); (K.M.L.d.S.); (M.H.D.C.); (M.d.N.d.S.d.A.V.); (F.B.B.R.); (R.d.S.); (E.J.M.d.S.)
| | - Leonardo Oliveira Reis
- UroScience, Faculty of Medical Sciences, State University of Campinas, Campinas 13083-590, Brazil;
- ImmunOncology, Pontifical Catholic University of Campinas, Campinas 13060-904, Brazil
| | - Luiz Fábio Magno Falcão
- Center of Biological and Health Sciences, University of the State of Pará, Belém 66087-670, Brazil;
| | - Eduardo José Melo dos Santos
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (E.F.d.S.); (F.P.d.C.); (K.M.L.d.S.); (M.H.D.C.); (M.d.N.d.S.d.A.V.); (F.B.B.R.); (R.d.S.); (E.J.M.d.S.)
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (M.T.F.M.d.B.); (A.L.S.d.S.); (M.d.M.L.)
| | - Antonio Carlos Rosário Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (W.R.d.S.B.); (W.B.d.B.); (F.d.S.F.); (E.G.M.S.); (J.d.C.L.); (E.d.S.G.A.); (S.S.L.); (I.M.V.C.-V.); (A.C.R.V.)
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (E.F.d.S.); (F.P.d.C.); (K.M.L.d.S.); (M.H.D.C.); (M.d.N.d.S.d.A.V.); (F.B.B.R.); (R.d.S.); (E.J.M.d.S.)
- Graduate Program in Virology, Evandro Chagas Institute, Department of Science, Technology, Innovation and Strategic Health Inputs, Ministry of Health of Brazil, Ananindeua 66093-020, Brazil;
| | - Maria Alice Freitas Queiroz
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (W.R.d.S.B.); (W.B.d.B.); (F.d.S.F.); (E.G.M.S.); (J.d.C.L.); (E.d.S.G.A.); (S.S.L.); (I.M.V.C.-V.); (A.C.R.V.)
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (E.F.d.S.); (F.P.d.C.); (K.M.L.d.S.); (M.H.D.C.); (M.d.N.d.S.d.A.V.); (F.B.B.R.); (R.d.S.); (E.J.M.d.S.)
| |
Collapse
|
3
|
Li B, Bai J, Xiong Y, Guo D, Fu B, Deng G, Wu H. Understanding the mechanisms and treatments of long COVID to address future public health risks. Life Sci 2024; 353:122938. [PMID: 39084516 DOI: 10.1016/j.lfs.2024.122938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/20/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
The 2019 coronavirus disease (COVID-19), triggered by the severe acute respiratory syndrome coronavirus (SARS-CoV-2), has seen numerous individuals undergo and recover from it, drawing extensive attention to their health conditions. Extensive studies indicate that even after surpassing the acute phase of infection, patients continue to experience persistent symptoms such as fatigue, pain, depression, weakening, and anosmia. COVID-19 appears not to have concluded but rather to persist long-term in certain individuals, termed as "long COVID." This represents a heterogeneous ailment involving multiple organ systems, with a perceived complex and still elusive pathogenesis. Among patients with long COVID, observations reveal immune dysregulation, coagulation impairments, and microbial dysbiosis, considered potential mechanisms explaining sustained adverse outcomes post COVID-19. Based on the multifactorial nature, varied symptoms, and heterogeneity of long COVID, we have summarized several categories of current therapeutic approaches. Furthermore, the symptoms of long COVID resemble those of other viral illnesses, suggesting that existing knowledge may offer novel insights into long-term COVID implications. Here, we provide an overview of existing literature associated with long COVID and summarize potential mechanisms, treatment modalities, and other analogous conditions. Lastly, we underscore the inadequacies in long COVID treatment approaches and emphasize the significance of conducting further research and clinical trials.
Collapse
Affiliation(s)
- Bohao Li
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Junlu Bai
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yan Xiong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Dong Guo
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Beibei Fu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Guohong Deng
- Department of Infectious Diseases, First Affiliated Hospital, Army Medical University, Chongqing, China.
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
4
|
Zhai X, Wu W, Zeng S, Miao Y. Advance in the mechanism and clinical research of myalgia in long COVID. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2024; 13:142-164. [PMID: 39310121 PMCID: PMC11411160 DOI: 10.62347/txvo6284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/18/2024] [Indexed: 09/25/2024]
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, mortality rates of coronavirus disease 2019 (COVID-19) have significantly decreased. However, a variable proportion of patients exhibit persistent prolonged symptoms of COVID-19 infection (long COVID). This virus primarily attacks respiratory system, but numerous individuals complain persistent skeletal muscle pain or worsening pre-existing muscle pain post COVID-19, which severely affects the quality of life and recovery. Currently, there is limited research on the skeletal muscle pain in long COVID. In this brief review, we review potential pathological mechanisms of skeletal muscle pain in long COVID, and summarize the various auxiliary examinations and treatments for skeletal muscle pain in long COVID. We consider abnormal activation of inflammatory response, myopathy, and neurological damages as pivotal pathological mechanisms of skeletal muscle pain in long COVID. A comprehensive examination is significantly important in order to work out effective treatment plans and relieve skeletal muscle pain. So far, rehabilitation interventions for myalgia in long COVID contain but are not limited to drug, nutraceutical therapy, gut microbiome-targeted therapy, interventional therapy and strength training. Our study provides a potential mechanism reference for clinical researches, highlighting the importance of comprehensive approach and management of skeletal muscle pain in long COVID. The relief of skeletal muscle pain will accelerate rehabilitation process, improve activities of daily living and enhance the quality of life, promoting individuals return to society with profound significance.
Collapse
Affiliation(s)
- Xiuyun Zhai
- Department of Rehabilitation, Shanghai General Hospital, Shanghai Jiaotong UniversityNo. 100, Haining Road, Shanghai 200080, China
| | - Weijun Wu
- Department of Rehabilitation, Shanghai General Hospital, Shanghai Jiaotong UniversityNo. 100, Haining Road, Shanghai 200080, China
| | - Siliang Zeng
- Department of Rehabilitation Therapy, School of Health, Shanghai Normal University Tianhua CollegeNo. 1661, North Shengxin Road, Shanghai 201815, China
| | - Yun Miao
- Department of Rehabilitation, Shanghai General Hospital, Shanghai Jiaotong UniversityNo. 100, Haining Road, Shanghai 200080, China
- Department of Rehabilitation, School of International Medical Technology, Shanghai Sanda UniversityNo. 2727, Jinhai Road, Shanghai 201209, China
| |
Collapse
|
5
|
Shaban RA, Abdulgalil AE, Bahie A. Post-COVID anxiety, depression, and quality of life among Egyptian hemodialysis patients. Ther Apher Dial 2024; 28:608-619. [PMID: 38629237 DOI: 10.1111/1744-9987.14128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/30/2023] [Accepted: 04/01/2024] [Indexed: 07/05/2024]
Abstract
INTRODUCTION This study examined the impact of Coronavirus disease 2019 on anxiety, depression, and health-related quality of life (HRQOL) among Egyptian hemodialysis (HD) patients. METHODS This multicenter cross-sectional study was carried out in Egypt in the years 2021-2022, where 300 HD patients from four HD centers were allocated into two groups: post-COVID and non-COVID. The Hospital Anxiety and Depression Scale (HADS) and the Kidney Disease QOL-36 questionnaire were used to assess anxiety, depression, and QOL of the included patients. RESULTS In the post-COVID group, abnormal and borderline cases of anxiety and depression were detected in 38.6% and 62.5% of patients, respectively, with no statistically significant difference between both groups. The post-COVID group showed higher work status and lower sexual and physical functioning, which correlated negatively with anxiety and depression scores. CONCLUSION Past-COVID infection did not influence depression and anxiety symptoms in HD patients. Sexual and physical functioning were more affected among COVID-survivors.
Collapse
Affiliation(s)
| | - Ahmed E Abdulgalil
- Mansoura Nephrology and Dialysis Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed Bahie
- Mansoura Nephrology and Dialysis Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
6
|
Glace BW, Kremenic IJ, Hogan DE, Kwiecien SY, McHUGH MP. Habitual physical activity and COVID-19. J Sports Med Phys Fitness 2024; 64:685-693. [PMID: 38916092 DOI: 10.23736/s0022-4707.24.15516-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
BACKGROUND Physical activity (PA) is known to decrease COVID-19 risk factors and can attenuate symptoms of viral infections. However, difficulty exercising and fatigue are common complaints after COVID-19. It is unknown whether prior habitual PA will improve outcomes and what the time course is until full recovery of PA after COVID-19. METHODS Invitations were emailed to 21,933 adults who were SARS-CoV-2 positive between March 2020 and February 2021. Participants completed intake surveys and the Physical Activity History (PAH) questionnaire regarding PA during the 3-month prior to infection. Monthly thereafter, for up to 23 months, participants were emailed surveys. Scores were computed for moderate and heavy PA. Long COVID (LC) was defined as having recurring/persistent symptoms 9 months after diagnosis. RESULTS Overall, 993 patients completed the intake survey (age 50.7±15.8 years, BMI 27.3±9.2, 58% women); 28% had been hospitalized. One-third had recovered to their pre-infection level of PA at 9 months post-infection; this increased to 65% at one year, and 90% at two years. Higher pre-diagnosis PA reduced odds of hospitalization (P<0.05) but not of LC. Factors predictive of poor PA recovery were higher pre-diagnosis PA, shortness of breath and fatigue during acute illness, and fatigue chronically. Participants who reported ongoing symptoms had consistently poorer recovery of habitual PA compared to those not reporting chronic symptoms. CONCLUSIONS Habitual PA reduced odds of hospitalization but not of LC. Thirty-five percent had not returned to pre-COVID-19 levels of PA one year after infection, representing a major public health threat.
Collapse
Affiliation(s)
- Beth W Glace
- Nicholas Institute of Sports Medicine and Athletic Trauma, Department of Orthopedic Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, USA -
| | - Ian J Kremenic
- Nicholas Institute of Sports Medicine and Athletic Trauma, Department of Orthopedic Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Daniel E Hogan
- Nicholas Institute of Sports Medicine and Athletic Trauma, Department of Orthopedic Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Susan Y Kwiecien
- Nicholas Institute of Sports Medicine and Athletic Trauma, Department of Orthopedic Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Malachy P McHUGH
- Nicholas Institute of Sports Medicine and Athletic Trauma, Department of Orthopedic Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, USA
| |
Collapse
|
7
|
Hällqvist J, Bartl M, Dakna M, Schade S, Garagnani P, Bacalini MG, Pirazzini C, Bhatia K, Schreglmann S, Xylaki M, Weber S, Ernst M, Muntean ML, Sixel-Döring F, Franceschi C, Doykov I, Śpiewak J, Vinette H, Trenkwalder C, Heywood WE, Mills K, Mollenhauer B. Plasma proteomics identify biomarkers predicting Parkinson's disease up to 7 years before symptom onset. Nat Commun 2024; 15:4759. [PMID: 38890280 PMCID: PMC11189460 DOI: 10.1038/s41467-024-48961-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Parkinson's disease is increasingly prevalent. It progresses from the pre-motor stage (characterised by non-motor symptoms like REM sleep behaviour disorder), to the disabling motor stage. We need objective biomarkers for early/pre-motor disease stages to be able to intervene and slow the underlying neurodegenerative process. Here, we validate a targeted multiplexed mass spectrometry assay for blood samples from recently diagnosed motor Parkinson's patients (n = 99), pre-motor individuals with isolated REM sleep behaviour disorder (two cohorts: n = 18 and n = 54 longitudinally), and healthy controls (n = 36). Our machine-learning model accurately identifies all Parkinson patients and classifies 79% of the pre-motor individuals up to 7 years before motor onset by analysing the expression of eight proteins-Granulin precursor, Mannan-binding-lectin-serine-peptidase-2, Endoplasmatic-reticulum-chaperone-BiP, Prostaglaindin-H2-D-isomaerase, Interceullular-adhesion-molecule-1, Complement C3, Dickkopf-WNT-signalling pathway-inhibitor-3, and Plasma-protease-C1-inhibitor. Many of these biomarkers correlate with symptom severity. This specific blood panel indicates molecular events in early stages and could help identify at-risk participants for clinical trials aimed at slowing/preventing motor Parkinson's disease.
Collapse
Affiliation(s)
- Jenny Hällqvist
- UCL Institute of Child Health and Great Ormond Street Hospital, London, UK.
- UCL Queen Square Institute of Neurology, Clinical and Movement Neurosciences, London, UK.
| | - Michael Bartl
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany.
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Goettingen, Goettingen, Germany.
| | - Mohammed Dakna
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | | | - Paolo Garagnani
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | | | - Chiara Pirazzini
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Kailash Bhatia
- National Hospital for Neurology & Neurosurgery, Queen Square, WC1N3BG, London, UK
| | | | - Mary Xylaki
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Sandrina Weber
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Marielle Ernst
- Institute of Diagnostic and Interventional Neuroradiology, University Medical Center Goettingen, Goettingen, Germany
| | | | - Friederike Sixel-Döring
- Paracelsus-Elena-Klinik, Kassel, Germany
- Department of Neurology, Philipps-University, Marburg, Germany
| | - Claudio Franceschi
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Ivan Doykov
- UCL Institute of Child Health and Great Ormond Street Hospital, London, UK
| | - Justyna Śpiewak
- UCL Institute of Child Health and Great Ormond Street Hospital, London, UK
| | - Héloїse Vinette
- UCL Institute of Child Health and Great Ormond Street Hospital, London, UK
- UCL: Food, Microbiomes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Claudia Trenkwalder
- Paracelsus-Elena-Klinik, Kassel, Germany
- Department of Neurosurgery, University Medical Center Goettingen, Goettingen, Germany
| | - Wendy E Heywood
- UCL Institute of Child Health and Great Ormond Street Hospital, London, UK
| | - Kevin Mills
- UCL Queen Square Institute of Neurology, Clinical and Movement Neurosciences, London, UK
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
- Paracelsus-Elena-Klinik, Kassel, Germany
| |
Collapse
|
8
|
Hamlin RE, Blish CA. Challenges and opportunities in long COVID research. Immunity 2024; 57:1195-1214. [PMID: 38865966 PMCID: PMC11210969 DOI: 10.1016/j.immuni.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/19/2024] [Accepted: 05/10/2024] [Indexed: 06/14/2024]
Abstract
Long COVID (LC) is a condition in which patients do not fully recover from the initial SARS-CoV-2 infection but rather have persistent or new symptoms for months to years following the infection. Ongoing research efforts are investigating the pathophysiologic mechanisms of LC and exploring preventative and therapeutic treatment approaches for patients. As a burgeoning area of investigation, LC research can be structured to be more inclusive, innovative, and effective. In this perspective, we highlight opportunities for patient engagement and diverse research expertise, as well as the challenges of developing definitions and reproducible studies. Our intention is to provide a foundation for collaboration and progress in understanding the biomarkers and mechanisms driving LC.
Collapse
Affiliation(s)
| | - Catherine A Blish
- Department of Medicine, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
9
|
Calcaterra V, Zanelli S, Foppiani A, Verduci E, Benatti B, Bollina R, Bombaci F, Brucato A, Cammarata S, Calabrò E, Cirnigliaro G, Della Torre S, Dell’osso B, Moltrasio C, Marzano AV, Nostro C, Romagnuolo M, Trotta L, Savasi V, Smiroldo V, Zuccotti G. Long COVID in Children, Adults, and Vulnerable Populations: A Comprehensive Overview for an Integrated Approach. Diseases 2024; 12:95. [PMID: 38785750 PMCID: PMC11120262 DOI: 10.3390/diseases12050095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Long COVID affects both children and adults, including subjects who experienced severe, mild, or even asymptomatic SARS-CoV-2 infection. We have provided a comprehensive overview of the incidence, clinical characteristics, risk factors, and outcomes of persistent COVID-19 symptoms in both children and adults, encompassing vulnerable populations, such as pregnant women and oncological patients. Our objective is to emphasize the critical significance of adopting an integrated approach for the early detection and appropriate management of long COVID. The incidence and severity of long COVID symptoms can have a significant impact on the quality of life of patients and the course of disease in the case of pre-existing pathologies. Particularly, in fragile and vulnerable patients, the presence of PASC is related to significantly worse survival, independent from pre-existing vulnerabilities and treatment. It is important try to achieve an early recognition and management. Various mechanisms are implicated, resulting in a wide range of clinical presentations. Understanding the specific mechanisms and risk factors involved in long COVID is crucial for tailoring effective interventions and support strategies. Management approaches involve comprehensive biopsychosocial assessments and treatment of symptoms and comorbidities, such as autonomic dysfunction, as well as multidisciplinary rehabilitation. The overall course of long COVID is one of gradual improvement, with recovery observed in the majority, though not all, of patients. As the research on long-COVID continues to evolve, ongoing studies are likely to shed more light on the intricate relationship between chronic diseases, such as oncological status, cardiovascular diseases, psychiatric disorders, and the persistent effects of SARS-CoV-2 infection. This information could guide healthcare providers, researchers, and policymakers in developing targeted interventions.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Department of Internal Medicine and Therapeutics, Università degli Sudi di Pavia, 27100 Pavia, Italy;
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (S.Z.); (E.V.)
| | - Sara Zanelli
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (S.Z.); (E.V.)
| | - Andrea Foppiani
- International Center for the Assessment of Nutritional Status and the Development of Dietary Intervention Strategies (ICANS-DIS), Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20157 Milano, Italy;
- IRCCS Istituto Auxologico Italiano, Department of Endocrine and Metabolic Medicine, Clinical Nutrition Unit, 20145 Milano, Italy
| | - Elvira Verduci
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (S.Z.); (E.V.)
- Department of Health Sciences, Università degli Studi di Milano, 20157 Milano, Italy
| | - Beatrice Benatti
- “Aldo Ravelli” Center for Nanotechnology and Neurostimulation, Università degli Studi di Milano, 20157 Milano, Italy; (B.B.); (B.D.)
- Department of Psychiatry, ASST Fatebenefratelli-Sacco, University of Milano, 20154 Milano, Italy; (G.C.); (C.N.)
| | - Roberto Bollina
- Department of Medical Oncology, ASST Rhodense, 20024 Milano, Italy; (R.B.); (S.D.T.); (V.S.)
| | - Francesco Bombaci
- Department of Radiology, ASST Fatebenefratelli Sacco, 20154 Milano, Italy;
| | - Antonio Brucato
- Department of Internal Medicine, ASST Fatebenefratelli-Sacco, 20154 Milano, Italy; (A.B.); (E.C.); (L.T.)
| | - Selene Cammarata
- Department of Woman, Mother and Neonate, Luigi Sacco Hospital, ASST Fatebenefratelli-Sacco, 20154 Milano, Italy; (S.C.); (V.S.)
| | - Elisa Calabrò
- Department of Internal Medicine, ASST Fatebenefratelli-Sacco, 20154 Milano, Italy; (A.B.); (E.C.); (L.T.)
| | - Giovanna Cirnigliaro
- Department of Psychiatry, ASST Fatebenefratelli-Sacco, University of Milano, 20154 Milano, Italy; (G.C.); (C.N.)
| | - Silvia Della Torre
- Department of Medical Oncology, ASST Rhodense, 20024 Milano, Italy; (R.B.); (S.D.T.); (V.S.)
| | - Bernardo Dell’osso
- “Aldo Ravelli” Center for Nanotechnology and Neurostimulation, Università degli Studi di Milano, 20157 Milano, Italy; (B.B.); (B.D.)
- Department of Psychiatry, ASST Fatebenefratelli-Sacco, University of Milano, 20154 Milano, Italy; (G.C.); (C.N.)
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
- Centro per lo Studio dei Meccanismi Molecolari alla Base delle Patologie Neuro-Psico-Geriatriche, Università degli Studi di Milano, 20157 Milano, Italy
| | - Chiara Moltrasio
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (C.M.); (A.V.M.); (M.R.)
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (C.M.); (A.V.M.); (M.R.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milano, Italy
| | - Chiara Nostro
- Department of Psychiatry, ASST Fatebenefratelli-Sacco, University of Milano, 20154 Milano, Italy; (G.C.); (C.N.)
| | - Maurizio Romagnuolo
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (C.M.); (A.V.M.); (M.R.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milano, Italy
| | - Lucia Trotta
- Department of Internal Medicine, ASST Fatebenefratelli-Sacco, 20154 Milano, Italy; (A.B.); (E.C.); (L.T.)
| | - Valeria Savasi
- Department of Woman, Mother and Neonate, Luigi Sacco Hospital, ASST Fatebenefratelli-Sacco, 20154 Milano, Italy; (S.C.); (V.S.)
- Department of Biomedical and Clinical Science, Università degli Studi di Milano, 20157 Milano, Italy
| | - Valeria Smiroldo
- Department of Medical Oncology, ASST Rhodense, 20024 Milano, Italy; (R.B.); (S.D.T.); (V.S.)
| | - Gianvincenzo Zuccotti
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (S.Z.); (E.V.)
- Department of Biomedical and Clinical Science, Università degli Studi di Milano, 20157 Milano, Italy
| |
Collapse
|
10
|
Akhmaltdinova L, Mekhantseva I, Turgunova L, Kostinov M, Zhumadilova Z, Turmukhambetova A. Association of soluble PD-L1 and NLR combination with 1-Year mortality in patients with COVID-19. Int Immunopharmacol 2024; 129:111600. [PMID: 38325048 DOI: 10.1016/j.intimp.2024.111600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
PURPOSE Understanding the relationship between patient immune characteristics, disease severity, and mortality represents a critical step in the fight against COVID-19. Elevated levels of programmed death ligand-1 (PD-L1) and Neutrophil-lymphocyte ratio (NLR) are linked to increased severity of acute COVID-19 in patients. This study aimed to investigate the association of the combination of sPD-L1 and NLR with 1-year Mortality in patients with COVID-19. METHODS A prospective study was conducted involving patients with COVID-19 in Karaganda, Kazakhstan. The level of sPD-L1 in the blood serum was evaluated by ELISA. The effect of biomarkers on the development of mortality was analyzed with multivariate regression. RESULTS The risk of mortality within one year HR was 2.46 if the plasma sPD-L1 value of more than 277.13 pg/ml, and for NLR more than 2.46 HR was 2.87. The model of combining sPD-L1 and NLR resulted in an improvement in the predictive accuracy of the Hazard Ratio 7.6 (95 % CI: 3.02-19.11). CONCLUSION The combination of two immune-mediated markers (sPD-L1 and NLR), which reflect the systemic inflammatory balance of activation and exhaustion, can complement each other and improve the assessment of the risk of death in patients with COVID-19.
Collapse
Affiliation(s)
| | - Irina Mekhantseva
- Karaganda Medical University, Scientific and Research Center, Karaganda, Kazakhstan.
| | - Lyudmila Turgunova
- Karaganda Medical University, Scientific and Research Center, Karaganda, Kazakhstan.
| | - Mikhail Kostinov
- I.I. Mechnikov Research Institute of Vaccines and Sera, Sechenov First Moscow State Medical University, Department of Epidemiology and Modern Vaccination Technologies, Moscow, Russia.
| | - Zhibek Zhumadilova
- Karaganda Medical University, Scientific and Research Center, Karaganda, Kazakhstan.
| | - Anar Turmukhambetova
- Karaganda Medical University, Scientific and Research Center, Karaganda, Kazakhstan.
| |
Collapse
|
11
|
Cui YX, Du JB, Jin HF. Insights into postural orthostatic tachycardia syndrome after COVID-19 in pediatric patients. World J Pediatr 2024; 20:201-207. [PMID: 38363488 DOI: 10.1007/s12519-024-00796-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024]
Affiliation(s)
- Ya-Xi Cui
- Department of Pediatrics, Peking University First Hospital, No.1 Xi-an Men Street, West District, Beijing 100034, China
| | - Jun-Bao Du
- Department of Pediatrics, Peking University First Hospital, No.1 Xi-an Men Street, West District, Beijing 100034, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China.
| | - Hong-Fang Jin
- Department of Pediatrics, Peking University First Hospital, No.1 Xi-an Men Street, West District, Beijing 100034, China.
| |
Collapse
|
12
|
Queiroz MAF, Brito WRDS, Pereira KAS, Pereira LMS, Amoras EDSG, Lima SS, Santos EFD, Costa FPD, Sarges KMLD, Cantanhede MHD, Brito MTFMD, Silva ALSD, Leite MDM, Viana MDNDSDA, Rodrigues FBB, Silva RD, Viana GMR, Chaves TDSS, Veríssimo ADOL, Carvalho MDS, Henriques DF, Silva CPD, Nunes JAL, Costa IB, Cayres-Vallinoto IMV, Brasil-Costa I, Quaresma JAS, Falcão LFM, Santos EJMD, Vallinoto ACR. Severe COVID-19 and long COVID are associated with high expression of STING, cGAS and IFN-α. Sci Rep 2024; 14:4974. [PMID: 38424312 PMCID: PMC10904751 DOI: 10.1038/s41598-024-55696-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/27/2024] [Indexed: 03/02/2024] Open
Abstract
The cGAS-STING pathway appears to contribute to dysregulated inflammation during coronavirus disease 2019 (COVID-19); however, inflammatory factors related to long COVID are still being investigated. In the present study, we evaluated the association of cGAS and STING gene expression levels and plasma IFN-α, TNF-α and IL-6 levels with COVID-19 severity in acute infection and long COVID, based on analysis of blood samples from 148 individuals, 87 with acute COVID-19 and 61 in the post-COVID-19 period. Quantification of gene expression was performed by real-time PCR, and cytokine levels were quantified by ELISA and flow cytometry. In acute COVID-19, cGAS, STING, IFN-α, TNF-α, and IL-6 levels were higher in patients with severe disease than in those with nonsevere manifestations (p < 0.05). Long COVID was associated with elevated cGAS, STING and IFN-α levels (p < 0.05). Activation of the cGAS-STING pathway may contribute to an intense systemic inflammatory state in severe COVID-19 and, after infection resolution, induce an autoinflammatory disease in some tissues, resulting in long COVID.
Collapse
Affiliation(s)
- Maria Alice Freitas Queiroz
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil.
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil.
| | - Wandrey Roberto Dos Santos Brito
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Keise Adrielle Santos Pereira
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Leonn Mendes Soares Pereira
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | - Sandra Souza Lima
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Erika Ferreira Dos Santos
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Flávia Póvoa da Costa
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Kevin Matheus Lima de Sarges
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Marcos Henrique Damasceno Cantanhede
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | | | - Mauro de Meira Leite
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Maria de Nazaré do Socorro de Almeida Viana
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Fabíola Brasil Barbosa Rodrigues
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Rosilene da Silva
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Giselle Maria Rachid Viana
- Laboratory of Basic Research On Malaria, Parasitology Section, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Brazil
| | - Tânia do Socorro Souza Chaves
- Laboratory of Basic Research On Malaria, Parasitology Section, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Brazil
- School of Medicine, Institute of Medical Sciences, Federal University of Pará, Belém, Pará, Brazil
| | | | | | - Daniele Freitas Henriques
- Arbovirology and Hemorrhagic Fevers Section, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Brazil
| | - Carla Pinheiro da Silva
- Arbovirology and Hemorrhagic Fevers Section, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Brazil
| | - Juliana Abreu Lima Nunes
- Laboratory of Immunology, Section of Virology, Instituto Evandro Chagas, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Brazil
| | - Iran Barros Costa
- Laboratory of Immunology, Section of Virology, Instituto Evandro Chagas, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Brazil
- Graduate Program in Virology, Evandro Chagas Institute, Department of Science, Technology, Innovation and Strategic Health Inputs, Ministry of Health of Brazil, Ananindeua, Brazil
| | - Izaura Maria Vieira Cayres-Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Igor Brasil-Costa
- Laboratory of Immunology, Section of Virology, Instituto Evandro Chagas, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Brazil
- Graduate Program in Virology, Evandro Chagas Institute, Department of Science, Technology, Innovation and Strategic Health Inputs, Ministry of Health of Brazil, Ananindeua, Brazil
| | - Juarez Antônio Simões Quaresma
- Graduate Program in Virology, Evandro Chagas Institute, Department of Science, Technology, Innovation and Strategic Health Inputs, Ministry of Health of Brazil, Ananindeua, Brazil
- Center of Biological and Health Sciences, University of the State of Pará, Belém, Brazil
| | | | - Eduardo José Melo Dos Santos
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Antonio Carlos Rosário Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Virology, Evandro Chagas Institute, Department of Science, Technology, Innovation and Strategic Health Inputs, Ministry of Health of Brazil, Ananindeua, Brazil
| |
Collapse
|
13
|
Al-Jewair T, Michelogiannakis D, Khoo E, Prevost R. Potential Impact of Long COVID-19 on Orthodontic Treatment. Eur J Dent 2024; 18:387-391. [PMID: 37336480 PMCID: PMC10959594 DOI: 10.1055/s-0043-1768467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Pooled estimates indicate about 226 million individuals are currently experiencing or have experienced persistent symptoms from COVID-19. Long COVID-19 (LC) has been associated with a prolonged inflammatory and stress responses in affected individuals. Due to common pathways, LC could impact the biological mechanisms of orthodontic tooth movement, orthodontically-induced inflammatory root resorption and periodontal tissue response of patients undergoing orthodontic treatment. The authors of the present report discussed potential biological mechanisms through which LC may influence orthodontic treatment highlighting the need for further research in this area.
Collapse
Affiliation(s)
- Thikriat Al-Jewair
- Department of Orthodontics, School of Dental Medicine, University at Buffalo, Buffalo, New York, United States
| | - Dimitrios Michelogiannakis
- Department of Orthodontics and Dentofacial Orthopedics, Eastman Institute for Oral Health, University of Rochester, New York, United States
| | - Edmund Khoo
- Department of Orthodontics and Dentofacial Orthopedics, Eastman Institute for Oral Health, University of Rochester, New York, United States
- Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, United States
- Department of General Dentistry, Eastman Institute for Oral Health, University of Rochester, New York, United States
| | - Ryan Prevost
- Department of Orthodontics, School of Dental Medicine, University at Buffalo, Buffalo, New York, United States
| |
Collapse
|
14
|
Yendewa GA, Perez JA, Patil N, McComsey GA. Associations between post-acute sequelae of SARS-CoV-2, COVID-19 vaccination and HIV infection: a United States cohort study. Front Immunol 2024; 15:1297195. [PMID: 38318191 PMCID: PMC10838972 DOI: 10.3389/fimmu.2024.1297195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Background People with HIV (PWH) are at higher risk of complications from acute COVID-19, but their risk of subsequent post-acute sequelae of SARS-CoV2 (PASC) remains unclear. Although vaccination is protective of PASC among survivors in the general population, its effectiveness in PWH has not been explored. Methods We used the TriNetX health research database to identify patients with and without HIV aged ≥18 years with confirmed SARS-CoV-2 between January 1, 2020 and July 20, 2023. We employed 1:1 propensity score matching to balance HIV and non-HIV cohorts based on demographics and key comorbidities. The primary outcomes accessed odds of PASC and mortality and secondary outcomes assessed odds of PASC and mortality by vaccination status. PASC was defined as new-onset conditions ≥ 28 days after COVID-19 diagnosis. We reported odd ratios (OR) of outcomes with 95% confidence intervals (CI), with statistical significance set at p < 0.05. Results Of 3,029,340 people with confirmed SARS-CoV-2 infection, 0.5% (n=13,214) were PWH, with 7.5% of PWH (n=989) vaccinated. After 28 days post-COVID-19, PWH had higher odds of mortality compared with their non-HIV counterparts (OR 1.22, 95% CI 1.06-1.40) and developing new-onset HTN (OR 1.18, 95% CI 1.03-1.36), heart disease (OR 1.35 95% CI 1.18-1.54), malignancy (OR 1.49, 95% CI 1.22-1.81), and mental disorders (OR 1.62, 95% CI 1.42-1.85). Furthermore, vaccinated PWH had significantly lower odds of death (OR 0.63, 95% CI 0.42-0.93) and new-onset PASC outcomes: DM (OR 0.65, 95% CI 0.43-0.99), heart disease (OR 0.58, 95% CI 0.4-0.85), mental disorders (OR 0.66, 95% CI 0.43-1.00), fatigue (OR 0.82, 95% CI 0.67-0.98), respiratory (OR 0.82, 95% CI 0.70-0.95) and gastrointestinal symptoms (OR 0.78, 95% CI 0.67-0.90). Conclusion HIV-positive status increased PASC odds, while COVID-19 vaccination reduced PASC and all-cause mortality risks in PWH.
Collapse
Affiliation(s)
- George A. Yendewa
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Division of Infectious Diseases and HIV Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Jaime Abraham Perez
- Center for Clinical Research, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Nirav Patil
- Center for Clinical Research, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Grace A. McComsey
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Division of Infectious Diseases and HIV Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
- Center for Clinical Research, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
15
|
Álvarez-Santacruz C, Tyrkalska SD, Candel S. The Microbiota in Long COVID. Int J Mol Sci 2024; 25:1330. [PMID: 38279329 PMCID: PMC10816132 DOI: 10.3390/ijms25021330] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024] Open
Abstract
Interest in the coronavirus disease 2019 (COVID-19) has progressively decreased lately, mainly due to the great effectivity of vaccines. Furthermore, no new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants able to circumvent the protection of these vaccines, while presenting high transmissibility and/or lethality, have appeared. However, long COVID has emerged as a huge threat to human health and economy globally. The human microbiota plays an important role in health and disease, participating in the modulation of innate and adaptive immune responses. Thus, multiple studies have found that the nasopharyngeal microbiota is altered in COVID-19 patients, with these changes associated with the onset and/or severity of the disease. Nevertheless, although dysbiosis has also been reported in long COVID patients, mainly in the gut, little is known about the possible involvement of the microbiota in the development of this disease. Therefore, in this work, we aim to fill this gap in the knowledge by discussing and comparing the most relevant studies that have been published in this field up to this point. Hence, we discuss that the relevance of long COVID has probably been underestimated, and that the available data suggest that the microbiota could be playing a pivotal role on the pathogenesis of the disease. Further research to elucidate the involvement of the microbiota in long COVID will be essential to explore new therapeutic strategies based on manipulation of the microbiota.
Collapse
Affiliation(s)
| | - Sylwia D. Tyrkalska
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain;
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sergio Candel
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain;
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
16
|
Owen R, Ashton RE, Skipper L, Phillips BE, Yates J, Thomas C, Ferraro F, Bewick T, Haggan K, Faghy MA. Long COVID quality of life and healthcare experiences in the UK: a mixed method online survey. Qual Life Res 2024; 33:133-143. [PMID: 37740144 PMCID: PMC10784347 DOI: 10.1007/s11136-023-03513-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 09/24/2023]
Abstract
PURPOSE The complexity of long COVID and its diverse symptom profile contributes to unprecedented challenges for patients, clinicians, and healthcare services. The threat of long COVID remains ignored by Governments, the media and public health messaging, and patients' experiences must be heard through understanding of the lived experience. This study aimed to understand the lived experience of those living with long COVID. METHODS An online web-based survey was designed using Patient and Public Involvement and Engagement (PPIE) to increase understanding of the lived experiences of long COVID, and was distributed through PPIE groups, social media, and word of mouth. The survey used closed and open questions relating to demographics, pre- and post-COVID-19 health quality of life, daily activities and long COVID experiences. RESULTS Within our sample of 132 people living with long COVID, the findings highlight that individuals are being severely impacted by their symptoms and are unable to or limited in participating in their daily activities, reducing quality of life. Long COVID places strain on relationships, the ability to live life fully and is detrimental to mental health. Varying health care experiences are described by participants, with reports of medical gaslighting and inadequate support received. CONCLUSIONS Long COVID has a severe impact on the ability to live life fully, and strains mental health. The appropriate mechanisms and support services are needed to support those living with long COVID and manage symptoms.
Collapse
Affiliation(s)
- Rebecca Owen
- School of Human Sciences, University of Derby, Derby, UK.
| | - Ruth E Ashton
- School of Human Sciences, University of Derby, Derby, UK
| | | | - Bethan E Phillips
- NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, UK
| | - James Yates
- School of Human Sciences, University of Derby, Derby, UK
| | - Callum Thomas
- School of Human Sciences, University of Derby, Derby, UK
| | | | - Tom Bewick
- Respiratory Medicine, University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
| | - Kate Haggan
- Respiratory Medicine, University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
| | - Mark A Faghy
- School of Human Sciences, University of Derby, Derby, UK
- Healthy Living for Pandemic Event Protection (HL-PIVOT) Network, Chicago, Illinois, USA
| |
Collapse
|
17
|
Cha C, Baek G. Symptoms and management of long COVID: A scoping review. J Clin Nurs 2024; 33:11-28. [PMID: 34913540 DOI: 10.1111/jocn.16150] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022]
Abstract
AIM This scoping review aims to describe published work on the symptoms and management of long COVID conditions. BACKGROUND Symptoms and management of COVID-19 have focused on the acute stage. However, long-term consequences have also been observed. METHODS A scoping review was performed based on the framework suggested by Arksey and O'Malley. We conducted a literature search to retrieve articles published from May 2020 to March 2021 in CINHAL, Cochrane library, Embase, PubMed and Web of science, including backward and forward citation tracking from the included articles. Among the 1880 articles retrieved, 34 articles met our criteria for review: 21 were related to symptom presentation and 13 to the management of long COVID. RESULTS Long COVID symptoms were described in 21 articles. Following COVID-19 treatment, hospitalised patients most frequently reported dyspnoea, followed by anosmia/ageusia, fatigue and cough, while non-hospitalised patients commonly reported cough, followed by fever and myalgia/arthralgia. Thirteen studies described management for long COVID: Focused on a multidisciplinary approach in seven articles, pulmonary rehabilitation in three articles, fatigue management in two articles and psychological therapy in one study. CONCLUSION People experience varied COVID-19 symptoms after treatment. However, guidelines on evidence-based, multidisciplinary management for long COVID conditions are limited in the literature. The COVID-19 pandemic may extend due to virus mutations; therefore, it is crucial to develop and disseminate evidence-based, multidisciplinary management guidelines. RELEVANCE TO CLINICAL PRACTICE A rehabilitation care plan and community healthcare plans are necessary for COVID-19 patients before discharge. Remote programmes could facilitate the monitoring and screening of people with long COVID.
Collapse
Affiliation(s)
- Chiyoung Cha
- College of Nursing & System Health & Engineering Graduate School, Ewha Womans University, Seoul, South Korea
| | - Gumhee Baek
- College of Nursing, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
18
|
Shu H, Wen Z, Li N, Zhang Z, Ceesay BM, Peng Y, Zhou N, Wang DW. COVID-19 and Cardiovascular Diseases: From Cellular Mechanisms to Clinical Manifestations. Aging Dis 2023; 14:2071-2088. [PMID: 37199573 PMCID: PMC10676802 DOI: 10.14336/ad.2023.0314] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/14/2023] [Indexed: 05/19/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), quickly spread worldwide and led to over 581 million confirmed cases and over 6 million deaths as 1 August 2022. The binding of the viral surface spike protein to the human angiotensin-converting enzyme 2 (ACE2) receptor is the primary mechanism of SARS-CoV-2 infection. Not only highly expressed in the lung, ACE2 is also widely distributed in the heart, mainly in cardiomyocytes and pericytes. The strong association between COVID-19 and cardiovascular disease (CVD) has been demonstrated by increased clinical evidence. Preexisting CVD risk factors, including obesity, hypertension, and diabetes etc., increase susceptibility to COVID-19. In turn, COVID-19 exacerbates the progression of CVD, including myocardial damage, arrhythmia, acute myocarditis, heart failure, and thromboembolism. Moreover, cardiovascular risks post recovery and the vaccination-associated cardiovascular problems have become increasingly evident. To demonstrate the association between COVID-19 and CVD, this review detailly illustrated the impact of COVID-19 on different cells (cardiomyocytes, pericytes, endothelial cells, and fibroblasts) in myocardial tissue and provides an overview of the clinical manifestations of cardiovascular involvements in the pandemic. Finally, the issues related to myocardial injury post recovery, as well as vaccination-induced CVD, has also been emphasized.
Collapse
Affiliation(s)
- Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Na Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Zixuan Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Bala Musa Ceesay
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Yizhong Peng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Ning Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China.
| |
Collapse
|
19
|
Wolff D, Drewitz KP, Ulrich A, Siegels D, Deckert S, Sprenger AA, Kuper PR, Schmitt J, Munblit D, Apfelbacher C. Allergic diseases as risk factors for Long-COVID symptoms: Systematic review of prospective cohort studies. Clin Exp Allergy 2023; 53:1162-1176. [PMID: 37936547 DOI: 10.1111/cea.14391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 11/09/2023]
Abstract
OBJECTIVE The role of allergy as a risk factor for Long-COVID (LC) is unclear and has not been thoroughly examined yet. We aimed to systematically review and appraise the epidemiological evidence on allergic diseases as risk factors for LC. DESIGN This is an initial systematic review. Two reviewers independently performed the study selection and data extraction using Covidence. Risk of bias (RoB) and certainty of evidence (GRADE) were assessed. Random effects meta-analyses were used to pool unadjusted ORs within homogeneous data subsets. DATA SOURCES We retrieved articles published between January 1st, 2020 and January 19th, 2023 from MEDLINE via PubMed, Scopus, the WHO-COVID-19 database and the LOVE platform (Epistemonikos Foundation). In addition, citations and reference lists were searched. ELIGIBILITY CRITERIA We included prospective cohort studies recruiting individuals of all ages with confirmed SARS-CoV-2 infection that were followed up for at least 12 months for LC symptoms where information on pre-existing allergic diseases was available. We excluded all study designs that were not prospective cohort studies and all publication types that were not original articles. RESULTS We identified 13 studies (9967 participants, range 39-1950 per study), all assessed as high RoB, due to population selection and methods used to ascertain the exposures and the outcome. Four studies did not provide sufficient data to calculate Odds Ratios. The evidence supported a possible relationship between LC and allergy, but was very uncertain. For example, pre-existing asthma measured in hospital-based populations (6 studies, 4019 participants) may be associated with increased risk of LC (Odds Ratio 1.94, 95% CI 1.08, 3.50) and findings were similar for pre-existing rhinitis (3 studies, 1141 participants; Odds Ratio 1.96, 95% CI 1.61, 2.39), both very low certainty evidence. CONCLUSIONS Pre-existing asthma or rhinitis may increase the risk of LC.
Collapse
Affiliation(s)
- Doreen Wolff
- Institute of Social Medicine and Health Systems Research, University of Magdeburg, Magdeburg, Germany
| | - Karl Philipp Drewitz
- Institute of Social Medicine and Health Systems Research, University of Magdeburg, Magdeburg, Germany
| | - Angela Ulrich
- Institute of Social Medicine and Health Systems Research, University of Magdeburg, Magdeburg, Germany
| | - Doreen Siegels
- Center for Evidence-Based Healthcare, University Hospital and Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Stefanie Deckert
- Center for Evidence-Based Healthcare, University Hospital and Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Antonia Anabella Sprenger
- Institute of Social Medicine and Health Systems Research, University of Magdeburg, Magdeburg, Germany
| | - Paula Ricarda Kuper
- Institute of Social Medicine and Health Systems Research, University of Magdeburg, Magdeburg, Germany
| | - Jochen Schmitt
- Center for Evidence-Based Healthcare, University Hospital and Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Daniel Munblit
- Care for Long Term Conditions Division, King's College London, London, UK
| | - Christian Apfelbacher
- Institute of Social Medicine and Health Systems Research, University of Magdeburg, Magdeburg, Germany
- Family Medicine and Primary Care, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore City, Singapore
| |
Collapse
|
20
|
Wang Y, Nardo L, Spencer BA, Abdelhafez YG, Li EJ, Omidvari N, Chaudhari AJ, Badawi RD, Jones T, Cherry SR, Wang G. Total-Body Multiparametric PET Quantification of 18F-FDG Delivery and Metabolism in the Study of Coronavirus Disease 2019 Recovery. J Nucl Med 2023; 64:1821-1830. [PMID: 37591539 PMCID: PMC10626370 DOI: 10.2967/jnumed.123.265723] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/05/2023] [Indexed: 08/19/2023] Open
Abstract
Conventional whole-body static 18F-FDG PET imaging provides a semiquantitative evaluation of overall glucose metabolism without insight into the specific transport and metabolic steps. Here we demonstrate the ability of total-body multiparametric 18F-FDG PET to quantitatively evaluate glucose metabolism using macroparametric quantification and assess specific glucose delivery and phosphorylation processes using microparametric quantification for studying recovery from coronavirus disease 2019 (COVID-19). Methods: The study included 13 healthy subjects and 12 recovering COVID-19 subjects within 8 wk of confirmed diagnosis. Each subject had a 1-h dynamic 18F-FDG scan on the uEXPLORER total-body PET/CT system. Semiquantitative SUV and the SUV ratio relative to blood (SUVR) were calculated for different organs to measure glucose utilization. Tracer kinetic modeling was performed to quantify the microparametric blood-to-tissue 18F-FDG delivery rate [Formula: see text] and the phosphorylation rate k 3, as well as the macroparametric 18F-FDG net influx rate ([Formula: see text]). Statistical tests were performed to examine differences between healthy subjects and recovering COVID-19 subjects. The effect of COVID-19 vaccination was also investigated. Results: We detected no significant difference in lung SUV but significantly higher lung SUVR and [Formula: see text] in COVID-19 recovery, indicating improved sensitivity of kinetic quantification for detecting the difference in glucose metabolism. A significant difference was also observed in the lungs with the phosphorylation rate k 3 but not with [Formula: see text], which suggests that glucose phosphorylation, rather than glucose delivery, drives the observed difference of glucose metabolism. Meanwhile, there was no or little difference in bone marrow 18F-FDG metabolism measured with SUV, SUVR, and [Formula: see text] but a significantly higher bone marrow [Formula: see text] in the COVID-19 group, suggesting a difference in glucose delivery. Vaccinated COVID-19 subjects had a lower lung [Formula: see text] and a higher spleen [Formula: see text] than unvaccinated COVID-19 subjects. Conclusion: Higher lung glucose metabolism and bone marrow glucose delivery were observed with total-body multiparametric 18F-FDG PET in recovering COVID-19 subjects than in healthy subjects, implying continued inflammation during recovery. Vaccination demonstrated potential protection effects. Total-body multiparametric PET of 18F-FDG can provide a more sensitive tool and more insights than conventional whole-body static 18F-FDG imaging to evaluate metabolic changes in systemic diseases such as COVID-19.
Collapse
Affiliation(s)
- Yiran Wang
- Department of Radiology, Davis Medical Center, University of California, Sacramento, California;
- Department of Biomedical Engineering, University of California, Davis, Davis, California; and
| | - Lorenzo Nardo
- Department of Radiology, Davis Medical Center, University of California, Sacramento, California
| | - Benjamin A Spencer
- Department of Radiology, Davis Medical Center, University of California, Sacramento, California
- Department of Biomedical Engineering, University of California, Davis, Davis, California; and
| | - Yasser G Abdelhafez
- Department of Radiology, Davis Medical Center, University of California, Sacramento, California
- Nuclear Medicine Unit, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Elizabeth J Li
- Department of Biomedical Engineering, University of California, Davis, Davis, California; and
| | - Negar Omidvari
- Department of Biomedical Engineering, University of California, Davis, Davis, California; and
| | - Abhijit J Chaudhari
- Department of Radiology, Davis Medical Center, University of California, Sacramento, California
| | - Ramsey D Badawi
- Department of Radiology, Davis Medical Center, University of California, Sacramento, California
- Department of Biomedical Engineering, University of California, Davis, Davis, California; and
| | - Terry Jones
- Department of Radiology, Davis Medical Center, University of California, Sacramento, California
| | - Simon R Cherry
- Department of Radiology, Davis Medical Center, University of California, Sacramento, California
- Department of Biomedical Engineering, University of California, Davis, Davis, California; and
| | - Guobao Wang
- Department of Radiology, Davis Medical Center, University of California, Sacramento, California
| |
Collapse
|
21
|
Al-Johani MS, Khalil R, Al-Mohaimeed YA, Al-Mundarij OM, Al-Samani AS, Al-saqry OS, Al-saawi AA, Al-dhali IK, Al-Essa WA. Post-COVID-19 fatigue and health-related quality of life in Saudi Arabia: a population-based study. Front Public Health 2023; 11:1254723. [PMID: 37869192 PMCID: PMC10585179 DOI: 10.3389/fpubh.2023.1254723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Background Despite substantial literature on symptoms and long-term health implications associated with COVID-19; prevalence and determinants of post-acute COVID-19 fatigue (PCF) remain largely elusive and understudied, with scant research documenting health-related quality of life (HRQoL). Hence, prevalence of PCF and its associated factors, and HRQoL among those who have survived Covid-19 within the general population of Saudi Arabia (KSA) is the subject under examination in this research. Methods This cross-sectional study was conducted on 2063 individuals, selected from the KSA's general population, using a non-probability sampling approach. An online survey was used to employ a self-administered questionnaire to the participants, which included socio-demographic information, the patient's COVID-19 infection history, 12-item Short Form Health Survey (SF-12) to assess quality of life, and Chalder Fatigue Scale (CFS) (CFQ 11) to evaluate the extent and severity of fatigue. Data were analyzed using SPSS version 26. A p < 0.05 was considered to be strong evidence against the null hypothesis. Results The median age of participants was 34 (IQR = 22) years, with females comprising the majority (66.2%). According to the SF-12 questionnaire, 91.2% of patients experienced physical conditions, and 77% experienced depression. The prevalence of PCF was 52% on CFQ 11 scale. Female gender, higher levels of education, a pre-existing history of chronic disease, as well as the manifestations of shortness of breath and confusion during acute COVID-19 infection, were identified as independent predictors of fatigue. Conclusion To facilitate timely and effective intervention for post-acute COVID-19 fatigue, it is essential to continuously monitor the individuals who have recovered from acute COVID-19 infection. Also, it is critical to raise health-education among these patients to improve their quality of life. Future research is required to determine whether COVID-19 survivors would experience fatigue for an extended duration and the impact of existing interventions on its prevalence and severity.
Collapse
Affiliation(s)
- Moath S. Al-Johani
- Department of Family and Community Medicine, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Rehana Khalil
- Department of Family and Community Medicine, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Yazeed A. Al-Mohaimeed
- Research Unit, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Omar M. Al-Mundarij
- Research Unit, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Abdulmajeed S. Al-Samani
- Research Unit, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Osama S. Al-saqry
- Research Unit, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Alwaleed A. Al-saawi
- Research Unit, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Ibrahim K. Al-dhali
- Research Unit, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Waleed A. Al-Essa
- Research Unit, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| |
Collapse
|
22
|
Allan-Blitz LT, Akbari O, Kojima N, Saavedra E, Chellamuthu P, Denny N, MacMullan MA, Hess V, Shacreaw M, Brobeck M, Turner F, Slepnev VI, Ibrayeva A, Klausner JD. Unique immune and inflammatory cytokine profiles may define long COVID syndrome. Clin Exp Med 2023; 23:2925-2930. [PMID: 37061998 PMCID: PMC10105906 DOI: 10.1007/s10238-023-01065-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/02/2023] [Indexed: 04/17/2023]
Abstract
PURPOSE Long COVID is estimated to occur in 5-10% of individuals after acute SARS-CoV-2 infection. However, the pathophysiology driving the disease process is poorly understood. METHODS We evaluated urine and plasma inflammatory and immune cytokine profiles in 33 individuals with long COVID compared to 33 who were asymptomatic and recovered, and 34 without prior infection. RESULTS Mean urinary leukotriene E4 was significantly elevated among individuals with long COVID compared to asymptomatic and recovered individuals (mean difference 774.2 pg/mL; SD 335.7) and individuals without prior SARS-CoV-2 infection (mean difference 503.1 pg/ml; SD 467.7). Plasma chemokine ligand 6 levels were elevated among individuals with long COVID compared to individuals with no prior SARS-CoV-2 infection (mean difference 0.59 units; SD 0.42). We found no significant difference in angiotensin-converting enzyme 2 antibody levels. Plasma tumor necrosis factor receptor-associated factor 2 (TRAF2) levels were reduced among individuals with long COVID compared to individuals who were asymptomatic and recovered (mean difference = 0.6 units, SD 0.46). Similarly, the mean level of Sarcoma Homology 2-B adapter protein 3 was 3.3 units (SD 1.24) among individuals with long COVID, lower than 4.2 units (SD 1.1) among individuals with recovered, asymptomatic COVID. CONCLUSION Our findings suggest that further studies should be conducted to evaluate the role of leukotriene E4 as a potential biomarker for a diagnostic test. Furthermore, based on reductions in TRAF2, long COVID may be driven in part by impaired TRAF2-dependent immune-mediated inflammation and potentially immune exhaustion.
Collapse
Affiliation(s)
- Lao-Tzu Allan-Blitz
- Division of Global Health Equity: Department of Medicine, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115 USA
| | - Omid Akbari
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
| | - Noah Kojima
- Department of Medicine, University of California Los Angeles, Los Angeles, CA USA
| | | | | | | | | | | | | | | | | | | | - Albina Ibrayeva
- Department of Medicine, University of California Los Angeles, Los Angeles, CA USA
| | - Jeffrey D. Klausner
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
| |
Collapse
|
23
|
Hällqvist J, Pinto RC, Heywood WE, Cordey J, Foulkes AJM, Slattery CF, Leckey CA, Murphy EC, Zetterberg H, Schott JM, Mills K, Paterson RW. A Multiplexed Urinary Biomarker Panel Has Potential for Alzheimer's Disease Diagnosis Using Targeted Proteomics and Machine Learning. Int J Mol Sci 2023; 24:13758. [PMID: 37762058 PMCID: PMC10531486 DOI: 10.3390/ijms241813758] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
As disease-modifying therapies are now available for Alzheimer's disease (AD), accessible, accurate and affordable biomarkers to support diagnosis are urgently needed. We sought to develop a mass spectrometry-based urine test as a high-throughput screening tool for diagnosing AD. We collected urine from a discovery cohort (n = 11) of well-characterised individuals with AD (n = 6) and their asymptomatic, CSF biomarker-negative study partners (n = 5) and used untargeted proteomics for biomarker discovery. Protein biomarkers identified were taken forward to develop a high-throughput, multiplexed and targeted proteomic assay which was tested on an independent cohort (n = 21). The panel of proteins identified are known to be involved in AD pathogenesis. In comparing AD and controls, a panel of proteins including MIEN1, TNFB, VCAM1, REG1B and ABCA7 had a classification accuracy of 86%. These proteins have been previously implicated in AD pathogenesis. This suggests that urine-targeted mass spectrometry has potential utility as a diagnostic screening tool in AD.
Collapse
Affiliation(s)
- Jenny Hällqvist
- Translational Mass Spectrometry Research Group, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK; (J.H.); (K.M.)
| | - Rui C. Pinto
- Faculty of Medicine, School of Public Health, Imperial College London, London SW7 2BX, UK
| | - Wendy E. Heywood
- Translational Mass Spectrometry Research Group, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK; (J.H.); (K.M.)
| | - Jonjo Cordey
- Translational Mass Spectrometry Research Group, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK; (J.H.); (K.M.)
| | | | | | - Claire A. Leckey
- Translational Mass Spectrometry Research Group, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK; (J.H.); (K.M.)
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Eimear C. Murphy
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
- UK Dementia Research Institute, UCL, London WC1E 6BT, UK
| | - Jonathan M. Schott
- National Hospital for Neurology and Neurosurgery, Queen Square London, London WC1N 3BG, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Kevin Mills
- Translational Mass Spectrometry Research Group, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK; (J.H.); (K.M.)
| | - Ross W. Paterson
- National Hospital for Neurology and Neurosurgery, Queen Square London, London WC1N 3BG, UK
- Darent Valley Hospital, Dartford DA2 8DA, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
| |
Collapse
|
24
|
Kasper S, Eckert A, Möller HJ, Volz HP, Seifritz E. Psychiatric manifestations of post-COVID-19 syndrome: the potential benefit of Silexan. Int J Psychiatry Clin Pract 2023; 27:285-291. [PMID: 37021969 DOI: 10.1080/13651501.2023.2187308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/10/2023] [Accepted: 03/01/2023] [Indexed: 04/07/2023]
Abstract
Objective: Psychiatric symptoms are common and bothersome in individuals with post-COVID-19 syndrome. Because they are often mixed and subthreshold, established treatment regimens cannot be applied. There is an urgent need to identify therapeutics for affected patients. Silexan, a proprietary essential oil from Lavandula angustifolia, has demonstrated efficacy against anxiety, comorbid symptoms, and subthreshold and mixed syndromes. The aim of the current narrative review is to examine the therapeutic potential of Silexan for psychiatric manifestations in patients with post-COVID-19 syndrome.Methods: We reviewed clinical evidence regarding the efficacy of Silexan and first clinical experience in patients with psychiatric symptoms attributable to the post-COVID-19 syndrome. Furthermore, we discussed potential modes of action based on nonclinical data.Results: Silexan has demonstrated therapeutic efficacy for the treatment of generalised anxiety disorder; subsyndromal anxiety disorders; comorbid depressive, somatic, and sleep disturbance symptoms; and mixed anxiety and depression. Emerging clinical experience also suggests the effectiveness and tolerability of Silexan for patients with post-COVID-19 syndrome. This can be explained by the fact that the therapeutic profile of Silexan overlaps with the spectrum of psychiatric symptoms in such patients.Conclusion: Preliminary findings indicate a promising potential of Silexan for the treatment of psychiatric manifestations in patients with post-COVID-19 syndrome.Key pointsAnxiety and mixed neuropsychiatric manifestations are commonly observed in patients with post-COVID-19 syndrome.Silexan has anxiolytic properties and can alleviate comorbid depressive, somatic, and sleep impairment symptoms.Silexan exhibits several biological mechanisms, such as neurotrophic and anti-inflammatory properties, which have the potential to positively impact post-COVID-19 disease.Silexan has a favourable safety profile and high acceptance among patients.Emerging data suggest that Silexan can alleviate neuropsychiatric symptoms in patients with post-COVID-19 syndrome.Silexan should be considered as a therapeutic in patients with psychiatric manifestations of post-COVID-19 syndrome.
Collapse
Affiliation(s)
| | - Anne Eckert
- Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Hans-Jürgen Möller
- Clinic and Policlinic for Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Hans-Peter Volz
- Hospital for Psychiatry, Psychotherapy and Psychosomatic Medicine Schloss Werneck, Werneck, Germany
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric Hospital, University of Zürich, Zürich, Switzerland
| |
Collapse
|
25
|
Gerritzen I, Brus IM, Spronk I, Biere-Rafi S, Polinder S, Haagsma JA. Identification of post-COVID-19 condition phenotypes, and differences in health-related quality of life and healthcare use: a cluster analysis. Epidemiol Infect 2023; 151:e123. [PMID: 37462040 PMCID: PMC10540165 DOI: 10.1017/s0950268823001139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 08/05/2023] Open
Abstract
The aim of this cross-sectional study was to identify post-COVID-19 condition (PCC) phenotypes and to investigate the health-related quality of life (HRQoL) and healthcare use per phenotype. We administered a questionnaire to a cohort of PCC patients that included items on socio-demographics, medical characteristics, health symptoms, healthcare use, and the EQ-5D-5L. A principal component analysis (PCA) of PCC symptoms was performed to identify symptom patterns. K-means clustering was used to identify phenotypes. In total, 8630 participants completed the survey. The median number of symptoms was 18, with the top 3 being fatigue, concentration problems, and decreased physical condition. Eight symptom patterns and three phenotypes were identified. Phenotype 1 comprised participants with a lower-than-average number of symptoms, phenotype 2 with an average number of symptoms, and phenotype 3 with a higher-than-average number of symptoms. Compared to participants in phenotypes 1 and 2, those in phenotype 3 consulted significantly more healthcare providers (median 4, 6, and 7, respectively, p < 0.001) and had a significantly worse HRQoL (p < 0.001). In conclusion, number of symptoms rather than type of symptom was the driver in the identification of PCC phenotypes. Experiencing a higher number of symptoms is associated with a lower HRQoL and more healthcare use.
Collapse
Affiliation(s)
- Iris Gerritzen
- Department of Public Health, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Iris M. Brus
- Department of Public Health, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Inge Spronk
- Department of Public Health, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Suzanne Polinder
- Department of Public Health, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Juanita A. Haagsma
- Department of Public Health, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
26
|
Aloè T, Novelli F, Puppo G, Pinelli V, Barisione E, Trucco E, Costanzo R, Covesnon MG, Grillo F, Zoccali P, Milanese M, Maniscalco S, Tagliabue E, Piroddi IMG, Venturi S, Serra M, Scordamaglia F, Ferrari M, Serafini A. Prevalence of Long COVID Symptoms Related to SARS-CoV-2 Strains. Life (Basel) 2023; 13:1558. [PMID: 37511933 PMCID: PMC10381360 DOI: 10.3390/life13071558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Few studies have assessed the differences of patterns of Long COVID (L-COVID) with regards to the pathogenetic SARS-CoV-2 strains. OBJECTIVES To investigate the relationship between demographic and clinical characteristics of acute phase of infection and the persistence of L-COVID symptoms and clinical presentation across different SARS-CoV-2 strains. METHODS In this observational-multicenter study we recorded all demographic and clinical characteristics, severity of infection, presence/persistence of symptoms of fatigue, dyspnoea and altered quality of life (QoL) at baseline and after 6 months, in a sample of Italian patients from Liguria between March 2020 and March 2022. RESULTS 308 patients (mean age 63.2 years; 55.5% men) with previous COVID were enrolled. Obese patients were 21.2% with a significant difference in obesity prevalence across the second and third wave (p = 0.012). Treatment strategies differed between waves (p < 0.001): more patients required invasive mechanical ventilation in the first wave, more patients were treated with high-flow nasal cannula/non-invasive ventilation in the in the second and more patients were treated with oxygen-therapy in the fourth wave. At baseline, a high proportion of patients were symptomatic (dyspnoea and fatigue), with impairment in some QoL indicators. A higher prevalence of patients with pain, were seen in the first wave compared to later infections (p = 0.01). At follow-up, we observed improvement of dyspnoea, fatigue and some dimensions of QoL scale evaluation such as mobility, usual activities, pain evaluations; instead there was no improvement in remaining QoL scale indicators (usual care and anxiety-depression). CONCLUSIONS There were no significant differences in the prevalence of the most frequent L-COVID symptoms, except for QoL pain domain that was especially associated with classical variant. Our results show substantial impact on social and professional life and usual care activities. These findings highlight the importance of multidisciplinary post COVID follow-up care including mental health support and rehabilitation program.
Collapse
Affiliation(s)
- Teresita Aloè
- Interventional Pulmonology Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16100 Genoa, Italy
| | | | | | | | - Emanuela Barisione
- Interventional Pulmonology Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16100 Genoa, Italy
| | - Elisa Trucco
- Pulmonology Unit, Ospedale Civile, 18100 Imperia, Italy
| | - Roberta Costanzo
- Pulmonology Unit, Ospedale Villa Scassi, ASL3 Genovese, 16100 Genoa, Italy
| | | | - Federica Grillo
- Anatomic Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16100 Genoa, Italy
- Anatomic Pathology Unit, Università degli Studi di Genova, 16100 Genoa, Italy
| | | | - Manlio Milanese
- Pulmonology Unit, Ospedale S.Corona, 17027 Pietra Ligure, Italy
| | - Sara Maniscalco
- Pulmonology Unit, Ospedale S.Corona, 17027 Pietra Ligure, Italy
| | - Elena Tagliabue
- Interventional Pulmonology Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16100 Genoa, Italy
| | - Ines Maria Grazia Piroddi
- Interventional Pulmonology Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16100 Genoa, Italy
| | - Simonetta Venturi
- Pulmonology Unit, Ospedale Villa Scassi, ASL3 Genovese, 16100 Genoa, Italy
| | - Maria Serra
- Pulmonology Unit, Ospedale Villa Scassi, ASL3 Genovese, 16100 Genoa, Italy
| | | | - Marta Ferrari
- Pulmonology Unit, IRCCS Ospedale Policlinico San Martino, 16100 Genoa, Italy
| | | |
Collapse
|
27
|
Allan-Blitz LT, Goodrich J, Hu H, Akbari O, Klausner JD. Altered Tumor Necrosis Factor Response in Neurologic Postacute SARS-CoV-2 Syndrome. J Interferon Cytokine Res 2023; 43:307-313. [PMID: 37384921 PMCID: PMC10354723 DOI: 10.1089/jir.2023.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 04/27/2023] [Indexed: 07/01/2023] Open
Abstract
Neurologic manifestations of postacute sequelae after SARS-CoV-2 infection (neuro-PASC) are common; however, the underlying drivers of those symptoms remain poorly understood. Prior work has postulated that immune dysregulation leads to ongoing neuroinflammation. We aimed to identify the cytokines involved in that immune dysregulation by comparing 37 plasma cytokine profiles among 20 case patients with neuro-PASC to 20 age- and gender-matched controls. Neuro-PASC cases were defined as individuals with self-reported persistent headache, general malaise, and anosmia or ageusia at least 28 days post-SARS-CoV-2 infection. As a sensitivity analysis, we repeated the main analysis among only participants of Hispanic heritage. In total, 40 specimens were tested. Participants were an average of 43.5 years old (interquartile range 30-52), 20 (50.0%) of whom identified as women. Levels of tumor necrosis factor alpha (TNFα) were 0.76 times lower [95% confidence interval (CI) 0.62-0.94] among cases of neuro-PASC compared with controls, as were levels of C-C motif chemokine 19 (CCL19) (0.67; 95% CI 0.50-0.91), C-C motif chemokine 2 (CCL2) (0.72; 95% CI 0.55-0.95), chemokine interferon-gamma inducible protein 10 (CXCL10) (0.63; 95% CI 0.42-0.96), and chemokine interferon-gamma inducible protein 9 (CXCL9) (0.62; 95% CI 0.38-0.99). Restricting analysis of TNF and CCL19 to participants who identified as Hispanic did not alter results. We noted a reduction in TNFα and down-stream chemokines among patients with neuro-PASC, suggesting an overall immune attenuation.
Collapse
Affiliation(s)
- Lao-Tzu Allan-Blitz
- Division of Global Health Equity, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jesse Goodrich
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Howard Hu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Omid Akbari
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jeffrey D. Klausner
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
28
|
Stasenko SV, Kovalchuk AV, Eremin EV, Drugova OV, Zarechnova NV, Tsirkova MM, Permyakov SA, Parin SB, Polevaya SA. Using Machine Learning Algorithms to Determine the Post-COVID State of a Person by Their Rhythmogram. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115272. [PMID: 37299999 DOI: 10.3390/s23115272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
This study introduces a novel method for detecting the post-COVID state using ECG data. By leveraging a convolutional neural network, we identify "cardiospikes" present in the ECG data of individuals who have experienced a COVID-19 infection. With a test sample, we achieve an 87 percent accuracy in detecting these cardiospikes. Importantly, our research demonstrates that these observed cardiospikes are not artifacts of hardware-software signal distortions, but rather possess an inherent nature, indicating their potential as markers for COVID-specific modes of heart rhythm regulation. Additionally, we conduct blood parameter measurements on recovered COVID-19 patients and construct corresponding profiles. These findings contribute to the field of remote screening using mobile devices and heart rate telemetry for diagnosing and monitoring COVID-19.
Collapse
Affiliation(s)
- Sergey V Stasenko
- Neurotechnology Department, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Andrey V Kovalchuk
- Laboratory of Autowave Processes, Institute of Applied Physics, Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
| | - Evgeny V Eremin
- Faculty of Social Sciences, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Olga V Drugova
- Department of Medical Biophysics, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia
| | - Natalya V Zarechnova
- GBUZ NO "Nizhny Novgorod Regional Clinical Oncological Dispensary", 603126 Nizhny Novgorod, Russia
| | - Maria M Tsirkova
- Clinical Hospital No. 2, Privolzhsky District Medical Center, 603032 Nizhny Novgorod, Russia
| | - Sergey A Permyakov
- Faculty of Social Sciences, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Sergey B Parin
- Faculty of Social Sciences, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Sofia A Polevaya
- Faculty of Social Sciences, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| |
Collapse
|
29
|
In silico study of novel niclosamide derivatives, SARS-CoV-2 nonstructural proteins catalytic residue-targeting small molecules drug candidates. ARAB J CHEM 2023; 16:104654. [PMID: 36777994 PMCID: PMC9904858 DOI: 10.1016/j.arabjc.2023.104654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-mediated coronavirus disease 2019 (COVID-19) infection remains a global pandemic and health emergency with overwhelming social and economic impacts throughout the world. Therapeutics for COVID-19 are limited to only remdesivir; therefore, there is a need for combined, multidisciplinary efforts to develop new therapeutic molecules and explore the effectiveness of existing drugs against SARS-CoV-2. In the present study, we reported eight (SCOV-L-02, SCOV-L-09, SCOV-L-10, SCOV-L-11, SCOV-L-15, SCOV-L-18, SCOV-L-22, and SCOV-L-23) novel structurally related small-molecule derivatives of niclosamide (SCOV-L series) for their targeting potential against angiotensin-converting enzyme-2 (ACE2), type II transmembrane serine protease (TMPRSS2), and SARS-COV-2 nonstructural proteins (NSPs) including NSP5 (3CLpro), NSP3 (PLpro), and RdRp. Our correlation analysis suggested that ACE2 and TMPRSS2 modulate host immune response via regulation of immune-infiltrating cells at the site of tissue/organs entries. In addition, we identified some TMPRSS2 and ACE2 microRNAs target regulatory networks in SARS-CoV-2 infection and thus open up a new window for microRNAs-based therapy for the treatment of SARS-CoV-2 infection. Our in vitro study revealed that with the exception of SCOV-L-11 and SCOV-L-23 which were non-active, the SCOV-L series exhibited strict antiproliferative activities and non-cytotoxic effects against ACE2- and TMPRSS2-expressing cells. Our molecular docking for the analysis of receptor-ligand interactions revealed that SCOV-L series demonstrated high ligand binding efficacies (at higher levels than clinical drugs) against the ACE2, TMPRSS2, and SARS-COV-2 NSPs. SCOV-L-18, SCOV-L-15, and SCOV-L-09 were particularly found to exhibit strong binding affinities with three key SARS-CoV-2's proteins: 3CLpro, PLpro, and RdRp. These compounds bind to the several catalytic residues of the proteins, and satisfied the criteria of drug-like candidates, having good adsorption, distribution, metabolism, excretion, and toxicity (ADMET) pharmacokinetic profile. Altogether, the present study suggests the therapeutic potential of SCOV-L series for preventing and managing SARs-COV-2 infection and are currently under detailed investigation in our lab.
Collapse
|
30
|
Chen TH, Chang CJ, Hung PH. Possible Pathogenesis and Prevention of Long COVID: SARS-CoV-2-Induced Mitochondrial Disorder. Int J Mol Sci 2023; 24:8034. [PMID: 37175745 PMCID: PMC10179190 DOI: 10.3390/ijms24098034] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Patients who have recovered from coronavirus disease 2019 (COVID-19) infection may experience chronic fatigue when exercising, despite no obvious heart or lung abnormalities. The present lack of effective treatments makes managing long COVID a major challenge. One of the underlying mechanisms of long COVID may be mitochondrial dysfunction. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections can alter the mitochondria responsible for energy production in cells. This alteration leads to mitochondrial dysfunction which, in turn, increases oxidative stress. Ultimately, this results in a loss of mitochondrial integrity and cell death. Moreover, viral proteins can bind to mitochondrial complexes, disrupting mitochondrial function and causing the immune cells to over-react. This over-reaction leads to inflammation and potentially long COVID symptoms. It is important to note that the roles of mitochondrial damage and inflammatory responses caused by SARS-CoV-2 in the development of long COVID are still being elucidated. Targeting mitochondrial function may provide promising new clinical approaches for long-COVID patients; however, further studies are needed to evaluate the safety and efficacy of such approaches.
Collapse
Affiliation(s)
- Tsung-Hsien Chen
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan;
| | - Chia-Jung Chang
- Division of Critical Care Medicine, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
| | - Peir-Haur Hung
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan;
- Department of Life and Health Science, Chia-Nan University of Pharmacy and Science, Tainan 717301, Taiwan
| |
Collapse
|
31
|
Gyöngyösi M, Alcaide P, Asselbergs FW, Brundel BJJM, Camici GG, Martins PDC, Ferdinandy P, Fontana M, Girao H, Gnecchi M, Gollmann-Tepeköylü C, Kleinbongard P, Krieg T, Madonna R, Paillard M, Pantazis A, Perrino C, Pesce M, Schiattarella GG, Sluijter JPG, Steffens S, Tschöpe C, Van Linthout S, Davidson SM. Long COVID and the cardiovascular system-elucidating causes and cellular mechanisms in order to develop targeted diagnostic and therapeutic strategies: a joint Scientific Statement of the ESC Working Groups on Cellular Biology of the Heart and Myocardial and Pericardial Diseases. Cardiovasc Res 2023; 119:336-356. [PMID: 35875883 PMCID: PMC9384470 DOI: 10.1093/cvr/cvac115] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 02/07/2023] Open
Abstract
Long COVID has become a world-wide, non-communicable epidemic, caused by long-lasting multiorgan symptoms that endure for weeks or months after SARS-CoV-2 infection has already subsided. This scientific document aims to provide insight into the possible causes and therapeutic options available for the cardiovascular manifestations of long COVID. In addition to chronic fatigue, which is a common symptom of long COVID, patients may present with chest pain, ECG abnormalities, postural orthostatic tachycardia, or newly developed supraventricular or ventricular arrhythmias. Imaging of the heart and vessels has provided evidence of chronic, post-infectious perimyocarditis with consequent left or right ventricular failure, arterial wall inflammation, or microthrombosis in certain patient populations. Better understanding of the underlying cellular and molecular mechanisms of long COVID will aid in the development of effective treatment strategies for its cardiovascular manifestations. A number of mechanisms have been proposed, including those involving direct effects on the myocardium, microthrombotic damage to vessels or endothelium, or persistent inflammation. Unfortunately, existing circulating biomarkers, coagulation, and inflammatory markers, are not highly predictive for either the presence or outcome of long COVID when measured 3 months after SARS-CoV-2 infection. Further studies are needed to understand underlying mechanisms, identify specific biomarkers, and guide future preventive strategies or treatments to address long COVID and its cardiovascular sequelae.
Collapse
Affiliation(s)
- Mariann Gyöngyösi
- Division of Cardiology, 2nd Department of Internal Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Health Data Research UK and Institute of Health Informatics, University College London, London, UK
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital, Zurich, Switzerland
| | - Paula da Costa Martins
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, The Netherlands
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Marianna Fontana
- Division of Medicine, Royal Free Hospital London, University College London, London, UK
| | - Henrique Girao
- Center for Innovative Biomedicine and Biotechnology (CIBB), Clinical Academic Centre of Coimbra (CACC), Faculty of Medicine, Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal
| | - Massimiliano Gnecchi
- Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy
- Unit of Translational Cardiology, Division of Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Petra Kleinbongard
- Institut für Pathophysiologie, Westdeutsches Herz- und Gefäßzentrum, Universitätsklinikum Essen, Essen, Germany
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Rosalinda Madonna
- Department of Pathology, Institute of Cardiology, University of Pisa, Pisa, Italy
| | - Melanie Paillard
- Laboratoire CarMeN-équipe IRIS, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, Univ-Lyon, 69500 Bron, France
| | - Antonis Pantazis
- National Heart and Lung Institute, Imperial College London, London, UK
- Cardiovascular Research Centre at Royal Brompton and Harefield Hospitals, London, UK
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, 80131 Naples, Italy
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Gabriele G Schiattarella
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
- Center for Cardiovascular Research (CCR), Department of Cardiology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Joost P G Sluijter
- Laboratory of Experimental Cardiology, Cardiology, UMC Utrecht Regenerative Medicine Center, Utrecht, The Netherlands
- Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Munich, Germany
- Germany and Munich Heart Alliance, DZHK Partner Site Munich, Munich, Germany
| | - Carsten Tschöpe
- Berlin Institute of Health (BIH) at Charité, Universitätmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), German Center for Cardiovascular Research (DZHK), Partner site Berlin and Dept Cardiology (CVK), Charité, Berlin, Germany
| | - Sophie Van Linthout
- Berlin Institute of Health (BIH) at Charité, Universitätmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), German Center for Cardiovascular Research (DZHK), Partner site Berlin and Dept Cardiology (CVK), Charité, Berlin, Germany
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, WC1E 6HX London, UK
| |
Collapse
|
32
|
da Silva R, de Sarges KML, Cantanhede MHD, da Costa FP, Dos Santos EF, Rodrigues FBB, de Nazaré do Socorro de Almeida Viana M, de Meira Leite M, da Silva ALS, de Brito MTM, da Silva Torres MK, Queiroz MAF, Vallinoto IMVC, Henriques DF, Dos Santos CP, Viana GMR, Quaresma JAS, Falcão LFM, Vallinoto ACR, Dos Santos EJM. Thrombophilia and Immune-Related Genetic Markers in Long COVID. Viruses 2023; 15:v15040885. [PMID: 37112866 PMCID: PMC10143911 DOI: 10.3390/v15040885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Aiming to evaluate the role of ten functional polymorphisms in long COVID, involved in major inflammatory, immune response and thrombophilia pathways, a cross-sectional sample composed of 199 long COVID (LC) patients and a cohort composed of 79 COVID-19 patients whose follow-up by over six months did not reveal any evidence of long COVID (NLC) were investigated to detect genetic susceptibility to long COVID. Ten functional polymorphisms located in thrombophilia-related and immune response genes were genotyped by real time PCR. In terms of clinical outcomes, LC patients presented higher prevalence of heart disease as preexistent comorbidity. In general, the proportions of symptoms in acute phase of the disease were higher among LC patients. The genotype AA of the interferon gamma (IFNG) gene was observed in higher frequency among LC patients (60%; p = 0.033). Moreover, the genotype CC of the methylenetetrahydrofolate reductase (MTHFR) gene was also more frequent among LC patients (49%; p = 0.045). Additionally, the frequencies of LC symptoms were higher among carriers of IFNG genotypes AA than among non-AA genotypes (Z = 5.08; p < 0.0001). Two polymorphisms were associated with LC in both inflammatory and thrombophilia pathways, thus reinforcing their role in LC. The higher frequencies of acute phase symptoms among LC and higher frequency of underlying comorbidities might suggest that acute disease severity and the triggering of preexisting condition may play a role in LC development.
Collapse
Affiliation(s)
- Rosilene da Silva
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 58255-000, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 58255-000, Brazil
| | - Kevin Matheus Lima de Sarges
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 58255-000, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 58255-000, Brazil
| | - Marcos Henrique Damasceno Cantanhede
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 58255-000, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 58255-000, Brazil
| | - Flávia Póvoa da Costa
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 58255-000, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 58255-000, Brazil
| | - Erika Ferreira Dos Santos
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 58255-000, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 58255-000, Brazil
| | - Fabíola Brasil Barbosa Rodrigues
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 58255-000, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 58255-000, Brazil
| | - Maria de Nazaré do Socorro de Almeida Viana
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 58255-000, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 58255-000, Brazil
| | - Mauro de Meira Leite
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 58255-000, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 58255-000, Brazil
| | - Andréa Luciana Soares da Silva
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 58255-000, Brazil
- Graduate Program in Clinical Analysis, Federal University of Pará, Belém 58255-000, Brazil
| | - Mioni Thieli Magalhães de Brito
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 58255-000, Brazil
- Graduate Program in Clinical Analysis, Federal University of Pará, Belém 58255-000, Brazil
| | - Maria Karoliny da Silva Torres
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 58255-000, Brazil
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 58255-000, Brazil
| | - Maria Alice Freitas Queiroz
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 58255-000, Brazil
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 58255-000, Brazil
| | - Izaura Maria Vieira Cayres Vallinoto
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 58255-000, Brazil
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 58255-000, Brazil
| | - Daniele Freitas Henriques
- Section of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretary of Health Surveillance, Ministry of Health of Brazil, Ananindeua 67000-000, Brazil
| | - Carla Pinheiro Dos Santos
- Section of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretary of Health Surveillance, Ministry of Health of Brazil, Ananindeua 67000-000, Brazil
| | - Giselle Maria Rachid Viana
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 58255-000, Brazil
- Malaria Basic Research Laboratory, Parasitology Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua 67000-000, Brazil
| | - Juarez Antônio Simões Quaresma
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 58255-000, Brazil
- Center for Biological and Health Sciences, State University of Pará, Belém 58255-000, Brazil
| | - Luiz Fábio Magno Falcão
- Center for Biological and Health Sciences, State University of Pará, Belém 58255-000, Brazil
| | - Antonio Carlos Rosário Vallinoto
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 58255-000, Brazil
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 58255-000, Brazil
| | - Eduardo José Melo Dos Santos
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 58255-000, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 58255-000, Brazil
- Graduate Program in Clinical Analysis, Federal University of Pará, Belém 58255-000, Brazil
| |
Collapse
|
33
|
Wang Y, Nardo L, Spencer BA, Abdelhafez YG, Li EJ, Omidvari N, Chaudhari AJ, Badawi RD, Jones T, Cherry SR, Wang G. Total-Body Multiparametric PET Quantification of 18 F-FDG Delivery and Metabolism in the Study of COVID-19 Recovery. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.26.23287673. [PMID: 37034643 PMCID: PMC10081414 DOI: 10.1101/2023.03.26.23287673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Conventional whole-body 18 F-FDG PET imaging provides a semi-quantitative evaluation of overall glucose metabolism without gaining insight into the specific transport and metabolic steps. Here we demonstrate the ability of total-body multiparametric 18 F-FDG PET to quantitatively evaluate glucose metabolism using macroparametric quantification and assess specific glucose delivery and phosphorylation processes using microparametric quantification for studying recovery from coronavirus disease 2019 (COVID-19). Methods The study included thirteen healthy subjects and twelve recovering COVID-19 subjects within eight weeks of confirmed diagnosis. Each subject had a dynamic 18 F-FDG scan on the uEXPLORER total-body PET/CT system for one hour. Semiquantitative standardized uptake value (SUV) and SUV ratio relative to blood (SUVR) were calculated for regions of interest (ROIs) in different organs to measure glucose utilization. Tracer kinetic modeling was performed to quantify microparametric rate constants K 1 and k 3 that characterize 18 F-FDG blood-to-tissue delivery and intracellular phosphorylation, respectively, and a macroparameter K i that represents 18 F-FDG net influx rate. Statistical tests were performed to examine differences between the healthy controls and recovering COVID-19 subjects. Impact of COVID-19 vaccination was investigated. We further generated parametric images to confirm the ROI-based analysis. Results We detected no significant difference in lung SUV but significantly higher lung SUVR and K i in the recovering COVID-19 subjects, indicating an improved sensitivity of kinetic quantification for detecting the difference in glucose metabolism. A significant difference was also observed in the lungs with the phosphorylation rate k 3 , but not with the delivery rate K 1 , which suggests it is glucose phosphorylation, not glucose delivery, that drives the observed difference of glucose metabolism in the lungs. Meanwhile, there was no or little difference in bone marrow metabolism measured with SUV, SUVR and K i , but a significant increase in bone-marrow 18 F-FDG delivery rate K 1 in the COVID-19 group ( p < 0.05), revealing a difference of glucose delivery in this immune-related organ. The observed differences were lower or similar in vaccinated COVID-19 subjects as compared to unvaccinated ones. The organ ROI-based findings were further supported by parametric images. Conclusions Higher lung glucose metabolism and bone-marrow glucose delivery were observed with total-body multiparametric 18 F-FDG PET in recovering COVID-19 subjects as compared to healthy subjects, which suggests continued inflammation due to COVID-19 during the early stages of recovery. Total-body multiparametric PET of 18 F-FDG delivery and metabolism can provide a more sensitive tool and more insights than conventional static whole-body 18 F-FDG imaging to evaluate metabolic changes in systemic diseases such as COVID-19.
Collapse
Affiliation(s)
- Yiran Wang
- Department of Radiology, University of California Davis Medical Center
- Department of Biomedical Engineering, University of California, Davis
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis Medical Center
| | - Benjamin A. Spencer
- Department of Radiology, University of California Davis Medical Center
- Department of Biomedical Engineering, University of California, Davis
| | - Yasser G. Abdelhafez
- Department of Radiology, University of California Davis Medical Center
- Nuclear Medicine Unit, South Egypt Cancer Institute, Assiut University, Egypt
| | - Elizabeth J. Li
- Department of Biomedical Engineering, University of California, Davis
| | - Negar Omidvari
- Department of Biomedical Engineering, University of California, Davis
| | | | - Ramsey D. Badawi
- Department of Radiology, University of California Davis Medical Center
- Department of Biomedical Engineering, University of California, Davis
| | - Terry Jones
- Department of Radiology, University of California Davis Medical Center
| | - Simon R. Cherry
- Department of Radiology, University of California Davis Medical Center
- Department of Biomedical Engineering, University of California, Davis
| | - Guobao Wang
- Department of Radiology, University of California Davis Medical Center
| |
Collapse
|
34
|
Amiama-Roig A, Pérez-Martínez L, Rodríguez Ledo P, Verdugo-Sivianes EM, Blanco JR. Should We Expect an Increase in the Number of Cancer Cases in People with Long COVID? Microorganisms 2023; 11:713. [PMID: 36985286 PMCID: PMC10051562 DOI: 10.3390/microorganisms11030713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
The relationship between viral infections and the risk of developing cancer is well known. Multiple mechanisms participate in and determine this process. The COVID-19 pandemic caused by the SARS-CoV-2 virus has resulted in the deaths of millions of people worldwide. Although the effects of COVID-19 are limited for most people, a large number of people continue to show symptoms for a long period of time (long COVID). Several studies have suggested that cancer could also be a potential long-term complication of the virus; however, the causes of this risk are not yet well understood. In this review, we investigated arguments that could support or reject this possibility.
Collapse
Affiliation(s)
- Ana Amiama-Roig
- Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| | | | | | - Eva M. Verdugo-Sivianes
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41013 Seville, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José-Ramón Blanco
- Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
- Servicio de Enfermedades Infecciosas, Hospital Universitario San Pedro, 26006 Logroño, Spain
| |
Collapse
|
35
|
Maki FM, Al-Thwani AN, Jiad KS. Study of some immunological signatures and their association with COVID-19 in a sample of recovered Iraqi patients. Immunobiology 2023; 228:152348. [PMID: 36827832 PMCID: PMC9920766 DOI: 10.1016/j.imbio.2023.152348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Since its emergence about two years ago, the novel coronavirus has continued to be a challenge and threat to public health, struck most parts of the world, leaving more than half a billion cases of infection and more than five million deaths. Immune response abnormalities post-infection with SARS-CoV-2 have been reported, and the mechanisms that lead to them are still ambiguous. This study was conducted to evaluate some immunological markers in the serum samples of COVID-19 convalescent patients and investigate the association of these immunological signatures with their age and sex. The serum levels of immunoglobulin G, interleukin-1 beta, and interferon lambda-1 of 75 patients and 50 healthy control group members were measured, with 55 % males and 45 % females participating and ages ranging from 20 to 80 years. The measurement of the immunological signatures was performed using the enzyme-linked immunosorbent assay (ELISA). The result revealed highly significant elevated levels of the serum immunological signatures of the convalescent group in comparison to the control group, with P-values of 0.00001 for each signature. Moreover, age was observed to have an association with an elevated level of the immunological signatures as it increased in the elderly, whereas no association with sex was detected. The findings strongly suggest that COVID-19 infection results in a persistent inflammatory response, which leads to prolonged post-recovery symptoms. Post-COVID-19 syndrome necessitates additional research to clarify its pathophysiology, pathogenesis, and long-term implications.
Collapse
Affiliation(s)
- Fadia M Maki
- Genetic Engineering and Biotechnology Institute, University of Baghdad, Baghdad, Iraq.
| | - Amina N Al-Thwani
- Genetic Engineering and Biotechnology Institute, University of Baghdad, Baghdad, Iraq
| | | |
Collapse
|
36
|
Pfaff ER, Madlock-Brown C, Baratta JM, Bhatia A, Davis H, Girvin A, Hill E, Kelly E, Kostka K, Loomba J, McMurry JA, Wong R, Bennett TD, Moffitt R, Chute CG, Haendel M. Coding long COVID: characterizing a new disease through an ICD-10 lens. BMC Med 2023; 21:58. [PMID: 36793086 PMCID: PMC9931566 DOI: 10.1186/s12916-023-02737-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/13/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Naming a newly discovered disease is a difficult process; in the context of the COVID-19 pandemic and the existence of post-acute sequelae of SARS-CoV-2 infection (PASC), which includes long COVID, it has proven especially challenging. Disease definitions and assignment of a diagnosis code are often asynchronous and iterative. The clinical definition and our understanding of the underlying mechanisms of long COVID are still in flux, and the deployment of an ICD-10-CM code for long COVID in the USA took nearly 2 years after patients had begun to describe their condition. Here, we leverage the largest publicly available HIPAA-limited dataset about patients with COVID-19 in the US to examine the heterogeneity of adoption and use of U09.9, the ICD-10-CM code for "Post COVID-19 condition, unspecified." METHODS We undertook a number of analyses to characterize the N3C population with a U09.9 diagnosis code (n = 33,782), including assessing person-level demographics and a number of area-level social determinants of health; diagnoses commonly co-occurring with U09.9, clustered using the Louvain algorithm; and quantifying medications and procedures recorded within 60 days of U09.9 diagnosis. We stratified all analyses by age group in order to discern differing patterns of care across the lifespan. RESULTS We established the diagnoses most commonly co-occurring with U09.9 and algorithmically clustered them into four major categories: cardiopulmonary, neurological, gastrointestinal, and comorbid conditions. Importantly, we discovered that the population of patients diagnosed with U09.9 is demographically skewed toward female, White, non-Hispanic individuals, as well as individuals living in areas with low poverty and low unemployment. Our results also include a characterization of common procedures and medications associated with U09.9-coded patients. CONCLUSIONS This work offers insight into potential subtypes and current practice patterns around long COVID and speaks to the existence of disparities in the diagnosis of patients with long COVID. This latter finding in particular requires further research and urgent remediation.
Collapse
Affiliation(s)
- Emily R Pfaff
- University of North Carolina at Chapel Hill, Chapel Hill, USA.
| | | | - John M Baratta
- University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Abhishek Bhatia
- University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Hannah Davis
- Patient-Led Research Collaborative, New York, USA
| | | | | | - Elizabeth Kelly
- University of North Carolina at Chapel Hill, Chapel Hill, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yan MZ, Yang M, Lai CL. Post-COVID-19 Syndrome Comprehensive Assessment: From Clinical Diagnosis to Imaging and Biochemical-Guided Diagnosis and Management. Viruses 2023; 15:v15020533. [PMID: 36851746 PMCID: PMC9964207 DOI: 10.3390/v15020533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/04/2023] [Accepted: 02/05/2023] [Indexed: 02/17/2023] Open
Abstract
The COVID-19 outbreak was first reported in 2019, causing massive morbidity and mortality. The majority of the COVID-19 patients survived and developed Post-COVID-19 Syndrome (PC19S) of varying severity. Currently, the diagnosis of PC19S is achieved through history and symptomatology that cannot be explained by an alternative diagnosis. However, the heavy reliance on subjective reporting is prone to reporting errors. Besides, there is no unified diagnostic assessment tool to classify the clinical severity of patients. This leads to significant difficulties when managing patients in terms of public resource utilization, clinical progression monitorization and rehabilitation plan formulation. This narrative review aims to review current evidence of diagnosis based on triple assessment: clinical symptomatology, biochemical analysis and imaging evidence. Further assessment tools can be developed based on triple assessment to monitor patient's clinical progression, prognosis and intervals of monitoring. It also highlights the high-risk features of patients for closer and earlier monitoring. Rehabilitation programs and related clinical trials are evaluated; however, most of them focus on cardiorespiratory fitness and psychiatric presentations such as anxiety and depression. Further research is required to establish an objective and comprehensive assessment tool to facilitate clinical management and rehabilitation plans.
Collapse
Affiliation(s)
- Michael Zhipeng Yan
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
- Correspondence: (M.Z.Y.); (C.-L.L.)
| | - Ming Yang
- Department of Ophthalmology, The University of Hong Kong, Hong Kong SAR, China
| | - Ching-Lung Lai
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
- Correspondence: (M.Z.Y.); (C.-L.L.)
| |
Collapse
|
38
|
Ong IZ, Kolson DL, Schindler MK. Mechanisms, Effects, and Management of Neurological Complications of Post-Acute Sequelae of COVID-19 (NC-PASC). Biomedicines 2023; 11:377. [PMID: 36830913 PMCID: PMC9953707 DOI: 10.3390/biomedicines11020377] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
With a growing number of patients entering the recovery phase following infection with SARS-CoV-2, understanding the long-term neurological consequences of the disease is important to their care. The neurological complications of post-acute sequelae of SARS-CoV-2 infection (NC-PASC) represent a myriad of symptoms including headaches, brain fog, numbness/tingling, and other neurological symptoms that many people report long after their acute infection has resolved. Emerging reports are being published concerning COVID-19 and its chronic effects, yet limited knowledge of disease mechanisms has challenged therapeutic efforts. To address these issues, we review broadly the literature spanning 2020-2022 concerning the proposed mechanisms underlying NC-PASC, outline the long-term neurological sequelae associated with COVID-19, and discuss potential clinical interventions.
Collapse
Affiliation(s)
- Ian Z. Ong
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dennis L. Kolson
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew K. Schindler
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
39
|
Pak VM, Lee J. Examining the role of micronutrients on improving long COVID sleep-related symptoms. J Clin Nurs 2022:10.1111/jocn.16326. [PMID: 36539931 PMCID: PMC9880629 DOI: 10.1111/jocn.16326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/20/2022] [Indexed: 12/24/2022]
Abstract
AIMS AND OBJECTIVES Long COVID is defined as the continuation of symptoms for four or more weeks after initial contraction of the virus. This review article examines the role of four select micronutrients (zinc, vitamins C, D and polyphenols) for their anti-inflammatory and therapeutic potential to improve sleep-related symptoms in persons with long COVID. BACKGROUND Evidence suggests a link between long COVID and increased inflammation. There are currently no therapeutic interventions for common sleep-related symptoms associated with long COVID. Micronutrients, due to their antioxidant and anti-inflammatory properties, may have a role in the treatment of sleep-related symptoms in the context of long COVID. DESIGN A narrative literature review was conducted and guided by the PRISMA checklist. METHODS All articles were screened from PubMed, ScienceDirect, NCBI or Google Scholar and were limited to human studies. The following keywords were used: 'COVID-19', 'sleep symptoms', 'zinc', 'vitamin C', 'vitamin D', 'polyphenols' and 'micronutrients'. RESULTS There are currently no studies that examine the usage of micronutrients and its impacts on long-term, sleep-related symptoms post-COVID-19 infection. We focussed our review on prior studies that examined micronutrients in the context of sleep symptoms and inflammation, while exploring the potential for micronutrients to help improve sleep-related symptoms associated with long COVID. CONCLUSIONS There is evidence to suggest that sleep-related symptoms associated with long COVID, such as fatigue and poor sleep quality, are associated with inflammation. Zinc, vitamins C, D and polyphenols all have the potential to improve both inflammation and sleep quality to alleviate symptoms. Future research should further examine these micronutrients in the context of long COVID to improve sleep and quality of life. RELEVANCE TO CLINICAL PRACTICE This article provides implications for clinicians to be at the forefront of research on the usage of micronutrients to improve sleep-related symptoms in persons with long COVID.
Collapse
Affiliation(s)
- Victoria M. Pak
- Emory Nell Hodgson Woodruff School of NursingAtlantaGeorgiaUSA
- Department of EpidemiologyEmory Rollins School of Public HealthAtlantaGeorgiaUSA
| | - Jiyun Lee
- Emory University‐College of Arts and SciencesAtlantaGeorgiaUSA
| |
Collapse
|
40
|
Buonsenso A, Murri A, Centorbi M, Di Martino G, Calcagno G, di Cagno A, Fiorilli G, Iuliano E. Psychological Wellbeing and Perceived Fatigue in Competitive Athletes after SARS-CoV-2 Infection 2 Years after Pandemic Start: Practical Indications. J Funct Morphol Kinesiol 2022; 8:jfmk8010001. [PMID: 36648893 PMCID: PMC9844459 DOI: 10.3390/jfmk8010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The COVID-19 pandemic deeply affected sports and athletes, influencing performance and psychological wellbeing. In order to provide useful guidelines for coaches, a web-based survey was conducted. Three web-based questionnaires were administered during the last phase of the Omicron wave to a total of 204 Italian athletes (age 24.96 ± 9.82): an informative questionnaire to collect sociodemographic data and infection symptoms information, the Fatigue Severity Scale (FSS) and the General Health Questionnaire-12 (GHQ-12). No differences between infection sequels of different variant typologies were found over the long term after the infection. The most frequently declared symptoms included cough (50%), muscular skeletal impairments (48%) fatigue (43%) and fever (43%). Results showed that female athletes have a higher risk of developing post-COVID-19 symptoms, GHQ-12 worse results (p = 0.005) and greater fatigue (p = 0.0002) than males. No significant difference in infection incidence between high- and low-level athletes was found. Endurance athletes showed greater perceived fatigue than anaerobic sports athletes (p = 0.045). Conclusions: These results suggested the need for specific approaches and continuous updating to differentiate training programs for different athletes during the return to play. Medical controls and daily monitoring of athletes of all levels after the infection could be advisable.
Collapse
Affiliation(s)
- Andrea Buonsenso
- Department of Medicine and Health Sciences, University of Molise, v. De Sanctis 1, 86100 Campobasso, Italy
| | - Arianna Murri
- Department of Motor, Human and Health Sciences, University of Rome “Foro Italico”, Lauro de Bosis Square 15, 00197 Rome, Italy
| | - Marco Centorbi
- Department of Medicine and Health Sciences, University of Molise, v. De Sanctis 1, 86100 Campobasso, Italy
| | - Giulia Di Martino
- Department of Medicine and Health Sciences, University of Molise, v. De Sanctis 1, 86100 Campobasso, Italy
| | - Giuseppe Calcagno
- Department of Medicine and Health Sciences, University of Molise, v. De Sanctis 1, 86100 Campobasso, Italy
| | - Alessandra di Cagno
- Department of Motor, Human and Health Sciences, University of Rome “Foro Italico”, Lauro de Bosis Square 15, 00197 Rome, Italy
- Correspondence: ; Tel.: +39-3343176709
| | - Giovanni Fiorilli
- Department of Medicine and Health Sciences, University of Molise, v. De Sanctis 1, 86100 Campobasso, Italy
| | - Enzo Iuliano
- Department of Theoretical and Applied Sciences, eCampus University, 22060 Novedrate, Italy
| |
Collapse
|
41
|
García-Hidalgo MC, González J, Benítez ID, Carmona P, Santisteve S, Pérez-Pons M, Moncusí-Moix A, Gort-Paniello C, Rodríguez-Jara F, Molinero M, Belmonte T, Torres G, Labarca G, Nova-Lamperti E, Caballero J, Bermejo-Martin JF, Ceccato A, Fernández-Barat L, Ferrer R, Garcia-Gasulla D, Menéndez R, Motos A, Peñuelas O, Riera J, Torres A, Barbé F, de Gonzalo-Calvo D. Identification of circulating microRNA profiles associated with pulmonary function and radiologic features in survivors of SARS-CoV-2-induced ARDS. Emerg Microbes Infect 2022; 11:1537-1549. [PMID: 35603455 PMCID: PMC9176679 DOI: 10.1080/22221751.2022.2081615] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is a limited understanding of the pathophysiology of postacute pulmonary sequelae in severe COVID-19. The aim of current study was to define the circulating microRNA (miRNA) profiles associated with pulmonary function and radiologic features in survivors of SARS-CoV-2-induced ARDS. The study included patients who developed ARDS secondary to SARS-CoV-2 infection (n = 167) and a group of infected patients who did not develop ARDS (n = 33). Patients were evaluated 3 months after hospital discharge. The follow-up included a complete pulmonary evaluation and chest computed tomography. Plasma miRNA profiling was performed using RT-qPCR. Random forest was used to construct miRNA signatures associated with lung diffusing capacity for carbon monoxide (DLCO) and total severity score (TSS). Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses were conducted. DLCO < 80% predicted was observed in 81.8% of the patients. TSS showed a median [P25;P75] of 5 [2;8]. The miRNA model associated with DLCO comprised miR-17-5p, miR-27a-3p, miR-126-3p, miR-146a-5p and miR-495-3p. Concerning radiologic features, a miRNA signature composed by miR-9-5p, miR-21-5p, miR-24-3p and miR-221-3p correlated with TSS values. These associations were not observed in the non-ARDS group. KEGG pathway and GO enrichment analyses provided evidence of molecular mechanisms related not only to profibrotic or anti-inflammatory states but also to cell death, immune response, hypoxia, vascularization, coagulation and viral infection. In conclusion, diffusing capacity and radiological features in survivors from SARS-CoV-2-induced ARDS are associated with specific miRNA profiles. These findings provide novel insights into the possible molecular pathways underlying the pathogenesis of pulmonary sequelae. Trial registration:ClinicalTrials.gov identifier: NCT04457505.. Trial registration:ISRCTN.org identifier: ISRCTN16865246..
Collapse
Affiliation(s)
- María C García-Hidalgo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain.,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Jessica González
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain.,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Iván D Benítez
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain.,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Paola Carmona
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Sally Santisteve
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Manel Pérez-Pons
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain.,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Anna Moncusí-Moix
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain.,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Clara Gort-Paniello
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain.,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Fátima Rodríguez-Jara
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Marta Molinero
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain.,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Thalia Belmonte
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain.,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Gerard Torres
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain.,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Gonzalo Labarca
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepcion, Concepcion, Chile.,Internal Medicine Unit, Complejo Asistencial Dr. Víctor Ríos Ruiz, Los Ángeles, Chile
| | - Estefania Nova-Lamperti
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepcion, Concepcion, Chile
| | - Jesús Caballero
- Grup de Recerca Medicina Intensiva, Intensive Care Department Hospital Universitari Arnau de Vilanova, IRBLleida, Lleida, Spain
| | - Jesús F Bermejo-Martin
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain.,Hospital Universitario Río Hortega de Valladolid, Valladolid, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Adrián Ceccato
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Laia Fernández-Barat
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain.,Servei de Pneumologia, Hospital Clinic, Universitat de Barcelona; IDIBAPS, Barcelona, Spain
| | - Ricard Ferrer
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain.,Intensive Care Department, Vall d'Hebron Hospital Universitari. SODIR Research Group, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | | | - Rosario Menéndez
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain.,Pulmonology Service, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Ana Motos
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain.,Servei de Pneumologia, Hospital Clinic, Universitat de Barcelona; IDIBAPS, Barcelona, Spain
| | - Oscar Peñuelas
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain.,Hospital Universitario de Getafe, Madrid, Spain
| | - Jordi Riera
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain.,Intensive Care Department, Vall d'Hebron Hospital Universitari. SODIR Research Group, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Antoni Torres
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain.,Pneumology Department, Clinic Institute of Thorax (ICT), Hospital Clinic of Barcelona - Insitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) - ICREA, University of Barcelona (UB), Barcelona, Spain
| | - Ferran Barbé
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain.,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain.,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | -
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| |
Collapse
|
42
|
High Prevalence of Long-COVID Among Kidney Transplant Recipients: A Longitudinal Cohort Study. Transplantation 2022; 106:2408-2415. [PMID: 36228200 PMCID: PMC9696768 DOI: 10.1097/tp.0000000000004359] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Kidney transplant recipients are at a higher risk to develop more severe clinical forms of coronavirus disease 2019 (COVID-19), perhaps increasing the risk of presenting its long-term clinical complications, labeled as Long-COVID. METHODS This single-center, observational, prospective study included adult kidney transplant recipients with COVID-19 confirmed by reverse transcription polymerase chain reaction between March 20, 2020, and May 31, 2021, who were alive and with functioning graft 3 mo after the onset of symptoms. The prevalence of Long-COVID was investigated by a phone survey using a structured questionnaire of organic symptoms. Adjusted multivariable logistic regression models were used to investigate independent risk factors. RESULTS Of 1741 patients who developed COVID-19, 465 died, and 37 returned to dialysis. Of the 1239 eligible patients, 780 (63%) answered the survey during the window period. The mean age was 48 ± 12 y, 41% were women, and the mean time from transplantation was 8 ± 6 y. During acute illness, 45% needed hospitalization. Long-COVID was identified in 214 (27%) of the subjects, with body aches being the most prevalent symptom (44%). Of 233 who provided working status, 17% did not return to work within 3 mo. No baseline characteristics or infection-related variables predicted Long-COVID; actually, the number of symptoms in the acute illness was the only independent risk factor identified (hazard ratio, 1.12; 95% confidence interval, 1.02-1.22). CONCLUSION In this cohort of kidney transplant recipients, Long-COVID was prevalent and associated with a reduced return to work. The burden of acute phase symptoms was the only risk factor associated with Long-COVID.
Collapse
|
43
|
Castanares-Zapatero D, Chalon P, Kohn L, Dauvrin M, Detollenaere J, Maertens de Noordhout C, Primus-de Jong C, Cleemput I, Van den Heede K. Pathophysiology and mechanism of long COVID: a comprehensive review. Ann Med 2022; 54:1473-1487. [PMID: 35594336 PMCID: PMC9132392 DOI: 10.1080/07853890.2022.2076901] [Citation(s) in RCA: 322] [Impact Index Per Article: 107.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/12/2022] [Accepted: 05/07/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND After almost 2 years of fighting against SARS-CoV-2 pandemic, the number of patients enduring persistent symptoms long after acute infection is a matter of concern. This set of symptoms was referred to as "long COVID", and it was defined more recently as "Post COVID-19 condition" by the World health Organization (WHO). Although studies have revealed that long COVID can manifest whatever the severity of inaugural illness, the underlying pathophysiology is still enigmatic. AIM To conduct a comprehensive review to address the putative pathophysiology underlying the persisting symptoms of long COVID. METHOD We searched 11 bibliographic databases (Cochrane Library, JBI EBP Database, Medline, Embase, PsycInfo, CINHAL, Ovid Nursing Database, Journals@Ovid, SciLit, EuropePMC, and CoronaCentral). We selected studies that put forward hypotheses on the pathophysiology, as well as those that encompassed long COVID patients in their research investigation. RESULTS A total of 98 articles were included in the systematic review, 54 of which exclusively addressed hypotheses on pathophysiology, while 44 involved COVID patients. Studies that included patients displayed heterogeneity with respect to the severity of initial illness, timing of analysis, or presence of a control group. Although long COVID likely results from long-term organ damage due to acute-phase infection, specific mechanisms following the initial illness could contribute to the later symptoms possibly affecting many organs. As such, autonomic nervous system damage could account for many symptoms without clear evidence of organ damage. Immune dysregulation, auto-immunity, endothelial dysfunction, occult viral persistence, as well as coagulation activation are the main underlying pathophysiological mechanisms so far. CONCLUSION Evidence on why persistent symptoms occur is still limited, and available studies are heterogeneous. Apart from long-term organ damage, many hints suggest that specific mechanisms following acute illness could be involved in long COVID symptoms. KEY MESSAGESLong-COVID is a multisystem disease that develops regardless of the initial disease severity. Its clinical spectrum comprises a wide range of symptoms.The mechanisms underlying its pathophysiology are still unclear. Although organ damage from the acute infection phase likely accounts for symptoms, specific long-lasting inflammatory mechanisms have been proposed, as well.Existing studies involving Long-COVID patients are highly heterogeneous, as they include patients with various COVID-19 severity levels and different time frame analysis, as well.
Collapse
Affiliation(s)
- D. Castanares-Zapatero
- Centre Administratif du Botanique, Belgian Health Care Knowledge Centre (KCE), Brussels, Belgium
| | - P. Chalon
- Centre Administratif du Botanique, Belgian Health Care Knowledge Centre (KCE), Brussels, Belgium
| | - L. Kohn
- Centre Administratif du Botanique, Belgian Health Care Knowledge Centre (KCE), Brussels, Belgium
| | - M. Dauvrin
- Centre Administratif du Botanique, Belgian Health Care Knowledge Centre (KCE), Brussels, Belgium
| | - J. Detollenaere
- Centre Administratif du Botanique, Belgian Health Care Knowledge Centre (KCE), Brussels, Belgium
| | - C. Maertens de Noordhout
- Centre Administratif du Botanique, Belgian Health Care Knowledge Centre (KCE), Brussels, Belgium
| | - C. Primus-de Jong
- Centre Administratif du Botanique, Belgian Health Care Knowledge Centre (KCE), Brussels, Belgium
| | - I. Cleemput
- Centre Administratif du Botanique, Belgian Health Care Knowledge Centre (KCE), Brussels, Belgium
| | - K. Van den Heede
- Centre Administratif du Botanique, Belgian Health Care Knowledge Centre (KCE), Brussels, Belgium
| |
Collapse
|
44
|
MR Imaging for the Evaluation of Diffuse Lung Disease. Radiol Clin North Am 2022; 60:1021-1032. [DOI: 10.1016/j.rcl.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Captur G, Moon JC, Topriceanu CC, Joy G, Swadling L, Hallqvist J, Doykov I, Patel N, Spiewak J, Baldwin T, Hamblin M, Menacho K, Fontana M, Treibel TA, Manisty C, O'Brien B, Gibbons JM, Pade C, Brooks T, Altmann DM, Boyton RJ, McKnight Á, Maini MK, Noursadeghi M, Mills K, Heywood WE. Plasma proteomic signature predicts who will get persistent symptoms following SARS-CoV-2 infection. EBioMedicine 2022; 85:104293. [PMID: 36182629 PMCID: PMC9515404 DOI: 10.1016/j.ebiom.2022.104293] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/27/2022] [Accepted: 09/16/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The majority of those infected by ancestral Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) during the UK first wave (starting March 2020) did not require hospitalisation. Most had a short-lived mild or asymptomatic infection, while others had symptoms that persisted for weeks or months. We hypothesized that the plasma proteome at the time of first infection would reflect differences in the inflammatory response that linked to symptom severity and duration. METHODS We performed a nested longitudinal case-control study and targeted analysis of the plasma proteome of 156 healthcare workers (HCW) with and without lab confirmed SARS-CoV-2 infection. Targeted proteomic multiple-reaction monitoring analysis of 91 pre-selected proteins was undertaken in uninfected healthcare workers at baseline, and in infected healthcare workers serially, from 1 week prior to 6 weeks after their first confirmed SARS-CoV-2 infection. Symptom severity and antibody responses were also tracked. Questionnaires at 6 and 12 months collected data on persistent symptoms. FINDINGS Within this cohort (median age 39 years, interquartile range 30-47 years), 54 healthcare workers (44% male) had PCR or antibody confirmed infection, with the remaining 102 (38% male) serving as uninfected controls. Following the first confirmed SARS-CoV-2 infection, perturbation of the plasma proteome persisted for up to 6 weeks, tracking symptom severity and antibody responses. Differentially abundant proteins were mostly coordinated around lipid, atherosclerosis and cholesterol metabolism pathways, complement and coagulation cascades, autophagy, and lysosomal function. The proteomic profile at the time of seroconversion associated with persistent symptoms out to 12 months. Data are available via ProteomeXchange with identifier PXD036590. INTERPRETATION Our findings show that non-severe SARS-CoV-2 infection perturbs the plasma proteome for at least 6 weeks. The plasma proteomic signature at the time of seroconversion has the potential to identify which individuals are more likely to suffer from persistent symptoms related to SARS-CoV-2 infection. FUNDING INFORMATION The COVIDsortium is supported by funding donated by individuals, charitable Trusts, and corporations including Goldman Sachs, Citadel and Citadel Securities, The Guy Foundation, GW Pharmaceuticals, Kusuma Trust, and Jagclif Charitable Trust, and enabled by Barts Charity with support from University College London Hospitals (UCLH) Charity. This work was additionally supported by the Translational Mass Spectrometry Research Group and the Biomedical Research Center (BRC) at Great Ormond Street Hospital.
Collapse
Affiliation(s)
- Gabriella Captur
- UCL MRC Unit for Lifelong Health and Ageing, 33 Bedford Place, London WC1B 5JU, UK; Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; The Royal Free Hospital, Center for Inherited Heart Muscle Conditions, Cardiology Department, Pond Street, Hampstead, London NW3 2QG, UK
| | - James C Moon
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St Bartholomew's Hospital, West Smithfield, London EC1A 7BE, UK
| | - Constantin-Cristian Topriceanu
- UCL MRC Unit for Lifelong Health and Ageing, 33 Bedford Place, London WC1B 5JU, UK; Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK
| | - George Joy
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St Bartholomew's Hospital, West Smithfield, London EC1A 7BE, UK
| | - Leo Swadling
- Division of Infection and Immunity, University College London, London WC1E 6JF, UK
| | - Jenny Hallqvist
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK
| | - Ivan Doykov
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK
| | - Nina Patel
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK
| | - Justyna Spiewak
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK
| | - Tomas Baldwin
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK
| | - Matt Hamblin
- Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St Bartholomew's Hospital, West Smithfield, London EC1A 7BE, UK
| | - Katia Menacho
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St Bartholomew's Hospital, West Smithfield, London EC1A 7BE, UK
| | - Marianna Fontana
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; The Royal Free Hospital, Cardiac MRI Unit, Pond Street, Hampstead, London NW3 2QG, UK
| | - Thomas A Treibel
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St Bartholomew's Hospital, West Smithfield, London EC1A 7BE, UK
| | - Charlotte Manisty
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St Bartholomew's Hospital, West Smithfield, London EC1A 7BE, UK
| | - Ben O'Brien
- Department of Perioperative Medicine, St. Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK; Department of Cardiac Anesthesiology and Intensive Care Medicine, German Heart Center, Augustenburger Platz 1, 13353 Berlin, Germany; Department of Cardiac Anesthesiology and Intensive Care Medicine, Charité Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Outcomes Research Consortium, Department of Outcomes Research, The Cleveland Clinic, 9500 Euclid Ave P77, Cleveland, OH 44195, USA
| | - Joseph M Gibbons
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Corrina Pade
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Tim Brooks
- National Infection Service, Public Health England, Porton Down, UK
| | - Daniel M Altmann
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Rosemary J Boyton
- Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK; Lung Division, Royal Brompton Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Áine McKnight
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Mala K Maini
- Division of Infection and Immunity, University College London, London WC1E 6JF, UK
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London WC1E 6JF, UK
| | - Kevin Mills
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK
| | - Wendy E Heywood
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
46
|
Erectile dysfunction after COVID-19 recovery: A follow-up study. PLoS One 2022; 17:e0276429. [PMID: 36264947 PMCID: PMC9584530 DOI: 10.1371/journal.pone.0276429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Objectives Several studies confirm multiple complications after COVID-19 infection, including men’s sexual health, which is caused by both physical and psychological factors. However, studies focusing on long-term effects among recovered patients are still lacking. Therefore, we aimed to investigate the erectile function at three months after COVID-19 recovery along with its predicting factors. Methods We enrolled all COVID-19 male patients, who were hospitalized from May to July 2021, and declared to be sexually active within the previous two weeks. Demographic data, mental health status, and erectile function were collected at baseline and prospectively recollected three months after hospital discharge. To determine changes between baseline and the follow-up, a generalized linear mixed effect model (GLMM) was used. Also, logistic regression analysis was used to identify the associating factors of erectile dysfunction (ED) at three months. Results One hundred fifty-three men with COVID-19 participated. Using GLMM, ED prevalence at three months after recovery was 50.3%, which was significantly lower compared with ED prevalence at baseline (64.7%, P = 0.002). Declination of prevalence of major depression and anxiety disorder was found, but only major depression reached statistical significance (major depression 13.7% vs. 1.4%, P < 0.001, anxiety disorder 5.2% vs. 2.8% P = 0.22). Logistic regression, adjusted for BMI, medical comorbidities, and self-reported normal morning erection, showed a significant association between ED at three months and age above 40 years and diagnosis of major depression with adjusted OR of 2.65, 95% CI 1.17–6.01, P = 0.02 and 8.93, 95% CI 2.28–34.9, P = 0.002, respectively. Conclusion Our study showed a high ED prevalence during the third month of recovery from COVID-19. The predicting factors of persistent ED were age over 40 years and diagnosis of major depression during acute infection.
Collapse
|
47
|
Inchingolo AD, Malcangi G, Ceci S, Patano A, Corriero A, Azzollini D, Marinelli G, Coloccia G, Piras F, Barile G, Settanni V, Mancini A, De Leonardis N, Garofoli G, Palmieri G, Isacco CG, Rapone B, Jones M, Bordea IR, Tartaglia GM, Scarano A, Lorusso F, Macchia L, Larocca AMV, Tafuri S, Migliore G, Brienza N, Dipalma G, Inchingolo F. Antispike Immunoglobulin-G (IgG) Titer Response of SARS-CoV-2 mRNA-Vaccine (BNT162b2): A Monitoring Study on Healthcare Workers. Biomedicines 2022; 10:2402. [PMID: 36289664 PMCID: PMC9598246 DOI: 10.3390/biomedicines10102402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 04/11/2024] Open
Abstract
The secretion of IgG SARS-CoV-2 antispike antibodies after vaccination with BNT162b2 and the protection represent the response of the human organism to the viral vector symptomatic infections. The aim of the present investigation was to evaluate the immune reaction in health workers of the Polyclinic of Bari to identify the relationship of antispike titers with blood type, sex, age, and comorbidities. This prospective observational study (RENAISSANCE) had as its primary endpoint the assessment of serologic response to BNT162b2 at three blood titers: the first at 60 days after the second dose (3 February 2021); the second titer at 75 days after the first titer; and the third titer at 130 days after the second titer. Out of 230 enrolled staff members, all responded excellently to the mRna Pfizer (BNT162b) vaccine. Only one patient, 40 days after the second dose (3 February 2021), was positive on the swab control performed on 15 March 2021, although completely asymptomatic, and was negative on the subsequent molecular swab performed on 30 March 2021. All the patients responded to the mRNA Pfizer (BNT162b) vaccine with an antispike IgG level above 500 BAU/mL at the first antispike protein essay (60 days after the second dose on 3 April 2021); at the second titer (75 days after the first titer on 20 June 2021), 4 (1.7% of 230 enrolled) patients showed an antispike IgG level under 500 BAU/mL; at the third titer (130 days after the second titer on 30 June 2021, which means 9 months after the second dose), 37 (16.1% of 230 enrolled) patients showed an antispike IgG level under 500 BAU/mL. The data analysis demonstrated that patients belonging to blood group 0, regardless of their rhesus factor, showed the strongest level of antibodies compared to the other groups. No dependency was found between low antibodies level and sex or age. Molecular swab controls were performed every 15th of the month continuously. However, the enrolled patients' activity was at high risk because they carried out medical activities such as dental and surgical as well with droplets of water vaporized by the effect of turbines, piezosurgery. The vaccination campaign among health workers of the Policlinico of the University of Bari "Aldo Moro" led to an excellent serological response and the complete absence of COVID-19 incident cases, so the antibody response was excellent. The COVID-19 vaccine booster shot should be administered after 9 months and not without prompt antispike titer detection to assess if any sign of waning immunity is present in that specific patient.
Collapse
Affiliation(s)
- Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Sabino Ceci
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Assunta Patano
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Alberto Corriero
- Department of Interdisciplinary Medicine, Intensive Care Unit Section, Aldo Moro University, 70121 Bari, Italy
| | - Daniela Azzollini
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Grazia Marinelli
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giovanni Coloccia
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Fabio Piras
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giuseppe Barile
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Vito Settanni
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Nicole De Leonardis
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Grazia Garofoli
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giulia Palmieri
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Ciro Gargiulo Isacco
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Biagio Rapone
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Megan Jones
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Gianluca Martino Tartaglia
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Luigi Macchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Angela Maria Vittoria Larocca
- Hygiene Complex Operating Unit, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Place Giulio Cesare, 11, 70124 Bari, Italy
| | - Silvio Tafuri
- Department of Biomedical Science and Human Oncology, University of Bari, 70121 Bari, Italy
| | | | - Nicola Brienza
- Department of Interdisciplinary Medicine, Intensive Care Unit Section, Aldo Moro University, 70121 Bari, Italy
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
48
|
Pinto MD, Downs CA, Huang Y, El-Azab SA, Ramrakhiani NS, Barisano A, Yu L, Taylor K, Esperanca A, Abrahim HL, Hughes T, Herrera MG, Rahamani AM, Dutt N, Chakraborty R, Mendiola C, Lambert N. A distinct symptom pattern emerges for COVID-19 long-haul: a nationwide study. Sci Rep 2022; 12:15905. [PMID: 36151129 PMCID: PMC9508141 DOI: 10.1038/s41598-022-20214-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 09/09/2022] [Indexed: 11/09/2022] Open
Abstract
Long-haul COVID-19, also called post-acute sequelae of SARS-CoV-2 (PASC), is a new illness caused by SARS-CoV-2 infection and characterized by the persistence of symptoms. The purpose of this cross-sectional study was to identify a distinct and significant temporal pattern of PASC symptoms (symptom type and onset) among a nationwide sample of PASC survivors (n = 5652). The sample was randomly sorted into two independent samples for exploratory (EFA) and confirmatory factor analyses (CFA). Five factors emerged from the EFA: (1) cold and flu-like symptoms, (2) change in smell and/or taste, (3) dyspnea and chest pain, (4) cognitive and visual problems, and (5) cardiac symptoms. The CFA had excellent model fit (x2 = 513.721, df = 207, p < 0.01, TLI = 0.952, CFI = 0.964, RMSEA = 0.024). These findings demonstrate a novel symptom pattern for PASC. These findings can enable nurses in the identification of at-risk patients and facilitate early, systematic symptom management strategies for PASC.
Collapse
Affiliation(s)
- Melissa D Pinto
- Sue & Bill Gross School of Nursing, University of California Irvine, Irvine, CA, USA.
| | | | - Yong Huang
- Department of Computer Science, Donald Bren School of Information and Computer Science, University of California Irvine, Irvine, CA, USA
| | - Sarah A El-Azab
- Department of Health Management and Policy, University of Michigan, Lansing, MI, USA
| | | | | | - Lu Yu
- School of Labor and Employment Relations, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Kaitlyn Taylor
- Lambert Health Lab, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alvaro Esperanca
- Electrical and Computer Engineering Department, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Heather L Abrahim
- Sue & Bill Gross School of Nursing, University of California Irvine, Irvine, CA, USA
| | - Thomas Hughes
- Sue & Bill Gross School of Nursing, University of California Irvine, Irvine, CA, USA
| | - Maria Giraldo Herrera
- Sue & Bill Gross School of Nursing, University of California Irvine, Irvine, CA, USA
| | - Amir M Rahamani
- Sue & Bill Gross School of Nursing, University of California Irvine, Irvine, CA, USA
- Department of Computer Science, Donald Bren School of Information and Computer Science, University of California Irvine, Irvine, CA, USA
| | - Nikil Dutt
- Department of Computer Science, Donald Bren School of Information and Computer Science, University of California Irvine, Irvine, CA, USA
| | - Rana Chakraborty
- Division of Infectious Disease, Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Christian Mendiola
- School of Engineering and Technology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Natalie Lambert
- Department of Biostatistics and Health Data Sciences, Indiana University School of Medicine, Indianapolis, USA
| |
Collapse
|
49
|
Strati A, Zavridou M, Paraskevis D, Magiorkinis G, Sapounas S, Lagiou P, Thomaidis NS, Lianidou ES. Development and Analytical Validation of a One-Step Five-Plex RT-ddPCR Assay for the Quantification of SARS-CoV-2 Transcripts in Clinical Samples. Anal Chem 2022; 94:12314-12322. [PMID: 35960711 PMCID: PMC9397566 DOI: 10.1021/acs.analchem.2c00868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022]
Abstract
Highly sensitive methodologies for SARS-CoV-2 detection are essential for the control of COVID-19 pandemic. We developed and analytically validated a highly sensitive and specific five-plex one-step RT-ddPCR assay for SARS-CoV-2. We first designed in-silico novel primers and probes for the simultaneous absolute quantification of three different regions of the nucleoprotein (N) gene of SARS-CoV-2 (N1, N2, N3), a synthetic RNA as an external control (RNA-EC), and Beta-2-Microglobulin (B2M) as an endogenous RNA internal control (RNA-IC). The developed assay was analytically validated using synthetic DNA and RNA calibrator standards and then was applied to 100 clinical specimens previously analyzed with a commercially available CE-IVD RT-qPCR assay. The analytical validation of the developed assay resulted in very good performance characteristics in terms of analytical sensitivity, linearity, analytical specificity, and reproducibility and recovery rates even at very low viral concentrations. The simultaneous absolute quantification of the RNA-EC and RNA-IC provides the necessary metrics for quality control assessment. Direct comparison of the developed one-step five-plex RT-ddPCR assay with a CE-IVD RT-qPCR kit revealed a very high concordance and a higher sensitivity [concordance: 99/100 (99.0%, Spearman's correlation coefficient: -0.850, p < 0.001)]. The developed assay is highly sensitive, specific, and reproducible and has a broad linear dynamic range, providing absolute quantification of SARS-COV-2 transcripts. The inclusion of two RNA quality controls, an external and an internal, is highly important for standardization of SARS-COV-2 molecular testing in clinical and wastewater samples.
Collapse
Affiliation(s)
- Areti Strati
- Lab of Analytical Chemistry, Department of Chemistry,
National and Kapodistrian University of Athens, 15771 Athens,
Greece
| | - Martha Zavridou
- Lab of Analytical Chemistry, Department of Chemistry,
National and Kapodistrian University of Athens, 15771 Athens,
Greece
| | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical
Statistics, Medical School, National and Kapodistrian University of
Athens, 11527 Athens, Greece
| | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical
Statistics, Medical School, National and Kapodistrian University of
Athens, 11527 Athens, Greece
| | | | - Pagona Lagiou
- Department of Hygiene, Epidemiology and Medical
Statistics, Medical School, National and Kapodistrian University of
Athens, 11527 Athens, Greece
| | - Nikolaos S. Thomaidis
- Lab of Analytical Chemistry, Department of Chemistry,
National and Kapodistrian University of Athens, 15771 Athens,
Greece
| | - Evi S. Lianidou
- Lab of Analytical Chemistry, Department of Chemistry,
National and Kapodistrian University of Athens, 15771 Athens,
Greece
| |
Collapse
|
50
|
Pfaff ER, Madlock-Brown C, Baratta JM, Bhatia A, Davis H, Girvin A, Hill E, Kelly L, Kostka K, Loomba J, McMurry JA, Wong R, Bennett TD, Moffitt R, Chute CG, Haendel M, The N3C Consortium, The RECOVER Consortium. Coding Long COVID: Characterizing a new disease through an ICD-10 lens. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.04.18.22273968. [PMID: 36093345 PMCID: PMC9460974 DOI: 10.1101/2022.04.18.22273968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background Naming a newly discovered disease is a difficult process; in the context of the COVID-19 pandemic and the existence of post-acute sequelae of SARS-CoV-2 infection (PASC), which includes Long COVID, it has proven especially challenging. Disease definitions and assignment of a diagnosis code are often asynchronous and iterative. The clinical definition and our understanding of the underlying mechanisms of Long COVID are still in flux, and the deployment of an ICD-10-CM code for Long COVID in the US took nearly two years after patients had begun to describe their condition. Here we leverage the largest publicly available HIPAA-limited dataset about patients with COVID-19 in the US to examine the heterogeneity of adoption and use of U09.9, the ICD-10-CM code for "Post COVID-19 condition, unspecified." Methods We undertook a number of analyses to characterize the N3C population with a U09.9 diagnosis code ( n = 21,072), including assessing person-level demographics and a number of area-level social determinants of health; diagnoses commonly co-occurring with U09.9, clustered using the Louvain algorithm; and quantifying medications and procedures recorded within 60 days of U09.9 diagnosis. We stratified all analyses by age group in order to discern differing patterns of care across the lifespan. Results We established the diagnoses most commonly co-occurring with U09.9, and algorithmically clustered them into four major categories: cardiopulmonary, neurological, gastrointestinal, and comorbid conditions. Importantly, we discovered that the population of patients diagnosed with U09.9 is demographically skewed toward female, White, non-Hispanic individuals, as well as individuals living in areas with low poverty, high education, and high access to medical care. Our results also include a characterization of common procedures and medications associated with U09.9-coded patients. Conclusions This work offers insight into potential subtypes and current practice patterns around Long COVID, and speaks to the existence of disparities in the diagnosis of patients with Long COVID. This latter finding in particular requires further research and urgent remediation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Liz Kelly
- University of North Carolina at Chapel Hill
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|