1
|
Souri Z, Ahmadieh H. Exploring the connection between HLA class I and class II genotypes and diabetic retinopathy: A comprehensive review of experimental evidence. Exp Eye Res 2024; 248:110112. [PMID: 39326775 DOI: 10.1016/j.exer.2024.110112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Diabetic retinopathy (DR) is a microvascular complication associated with diabetes mellitus (DM). During the course of the disease, high blood glucose levels induce damage to the vasculature of the retina and promote neovascularization. Although numerous environmental risk factors have been associated with the emergence of DR, the role of genetics should not be underestimated. The human leukocyte antigen (HLA) plays a significant role in the regulation of the immune system. DR exhibits significant heterogeneity among patients, with differences in how the disease presents and progresses over time. The HLA gene, characterized by its extensive genetic variation, largely contributes to this diverse spectrum. Differences in HLA allele frequencies among healthy people, diabetic patients without retinopathy, and diabetic patients with different stages of retinopathy highlight the need for proper management of the disease. This comprehensive review outlines the current understanding of the relationship between HLA class I and class II variants and DR, shedding light on their potential significance as early onset indicators, prognostic indicators, and important risk factors for the development of this retinal condition.
Collapse
Affiliation(s)
- Zahra Souri
- Department of Cell and Molecular Biology and Microbiology, Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Choe YH, Jo MG, Kim BG, Lee S, Lee B, Kim SH, Seong H, Yoo WS, Kim M, Lee DK, Kim SJ, Yun SP, Kim M. The autoimmune response induced by α-synuclein peptides drives neuronal cell death and glial cell activation. J Autoimmun 2024; 147:103256. [PMID: 38788538 DOI: 10.1016/j.jaut.2024.103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder associated with the loss of dopaminergic neurons and neuroinflammation. Recent studies have identified a role of T cells in the pathogenesis of PD. Additionally, these studies suggested that α-synuclein (α-Syn) is related to abnormal T-cell responses and may act as an epitope and trigger autoimmune T-cell responses. However, it is unclear whether the α-Syn-mediated autoimmune response occurs and whether it is related to neuronal cell death and glial cell activation. In this study, we investigated the autoimmune T-cell response induced by α-Syn peptides and evaluated the neurotoxic effect of the α-Syn peptide-mediated autoimmune response. The immunization of mice with α-Syn peptides resulted in enhanced autoimmune responses, such as the peptide recall response, polarization toward Th1/Th17 cells, and regulatory T cell imbalance. Furthermore, the α-Syn autoimmune response led to the death of primary neurons cocultured with splenocytes. Treatment with conditioned media from α-Syn peptide-immunized splenocytes induced microglia and toxic A1-type astrocyte activation. Taken together, our results provide evidence of the potential role of the α-Syn-initiated autoimmune response and its contribution to neuronal cell death and glial cell activation.
Collapse
Affiliation(s)
- Yong-Ho Choe
- Division of Rheumatology. Department of Internal Medicine, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea; Lillehei Heart Institute and Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis 55414, MN, United States; Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Gi Jo
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Bo Gyu Kim
- Division of Rheumatology. Department of Internal Medicine, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Sangwon Lee
- Division of Rheumatology. Department of Internal Medicine, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Bina Lee
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Seon-Hee Kim
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Hyemin Seong
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Ophthalmology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Woong-Sun Yoo
- Department of Ophthalmology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Minkyeong Kim
- Department of Neurology, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
| | - Dong-Kun Lee
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Physiology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Seong Jae Kim
- Department of Ophthalmology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea.
| | - Mingyo Kim
- Division of Rheumatology. Department of Internal Medicine, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Internal Medicine, College of Medicine, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea.
| |
Collapse
|
3
|
Welsh RA, Song N, Park CS, Peske JD, Sadegh-Nasseri S. H2-O deficiency promotes regulatory T cell differentiation and CD4 T cell hyperactivity. Front Immunol 2024; 14:1304798. [PMID: 38250071 PMCID: PMC10796743 DOI: 10.3389/fimmu.2023.1304798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Regulatory T cells (Treg) are crucial immune modulators, yet the exact mechanism of thymic Treg development remains controversial. Here, we present the first direct evidence for H2-O, an MHC class II peptide editing molecular chaperon, on selection of thymic Tregs. We identified that lack of H2-O in the thymic medulla promotes thymic Treg development and leads to an increased peripheral Treg frequency. Single-cell RNA-sequencing (scRNA-seq) analysis of splenic CD4 T cells revealed not only an enrichment of effector-like Tregs, but also activated CD4 T cells in the absence of H2-O. Our data support two concepts; a) lack of H2-O expression in the thymic medulla creates an environment permissive to Treg development and, b) that loss of H2-O drives increased basal auto-stimulation of CD4 T cells. These findings can help in better understanding of predispositions to autoimmunity and design of therapeutics for treatment of autoimmune diseases.
Collapse
|
4
|
Song N, Welsh RA, Sadegh-Nasseri S. Proper development of long-lived memory CD4 T cells requires HLA-DO function. Front Immunol 2023; 14:1277609. [PMID: 37908352 PMCID: PMC10613709 DOI: 10.3389/fimmu.2023.1277609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction HLA-DO (DO) is an accessory protein that binds DM for trafficking to MIIC and has peptide editing functions. DO is mainly expressed in thymic medulla and B cells. Using biochemical experiments, our lab has discovered that DO has differential effects on editing peptides of different sequences: DO increases binding of DM-resistant peptides and reduces the binding of DM-sensitive peptides to the HLA-DR1 molecules. In a separate line of work, we have established that appropriate densities of antigen presentation by B cells during the contraction phase of an infection, induces quiescence in antigen experienced CD4 T cells, as they differentiate into memory T cells. This quiescence phenotype helps memory CD4 T cell survival and promotes effective memory responses to secondary Ag challenge. Methods Based on our mechanistic understanding of DO function, it would be expected that if the immunodominant epitope of antigen is DM-resistant, presentation of decreased densities of pMHCII by B cells would lead to faulty development of memory CD4 T cells in the absence of DO. We explored the effects of DO on development of memory CD4 T cells and B cells utilizing two model antigens, H5N1-Flu Ag bearing DM-resistant, and OVA protein, which has a DM-sensitive immunodominant epitope and four mouse strains including two DO-deficient Tg mice. Using Tetramers and multiple antibodies against markers of memory CD4 T cells and B cells, we tracked memory development. Results We found that immunized DR1+DO-KO mice had fewer CD4 memory T cells and memory B cells as compared to the DR1+DO-WT counterpart and had compromised recall responses. Conversely, OVA specific memory responses elicited in HA immunized DR1+DO-KO mice were normal. Conclusion These results demonstrate that in the absence of DO, the presentation of cognate foreign antigens in the DO-KO mice is altered and can impact the proper development of memory cells. These findings provide new insights on vaccination design leading to better immune memory responses.
Collapse
|
5
|
Welsh RA, Song N, Park CS, Peske JD, Sadegh-Nasseri S. H2-O deficiency promotes regulatory T cell differentiation and CD4 T cell hyperactivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553240. [PMID: 37645777 PMCID: PMC10462011 DOI: 10.1101/2023.08.14.553240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Regulatory T cells (Treg) are crucial immune modulators, yet the exact mechanism of thymic Treg development remains controversial. Here, we present the first direct evidence for H2-O, an MHC class II peptide editing molecular chaperon, on selection of thymic Tregs. We provide evidence that lack of H2-O in the thymic medulla promotes thymic Treg development and leads to an increased peripheral Treg frequency. Single-cell RNA-sequencing (scRNA-seq) analysis of splenic CD4 T cells revealed not only of an enrichment of effector-like Tregs but also of activated CD4 T cells in the absence of H2-O. Our data support two concepts; a) lack of H2-O expression in the thymic medulla creates an environment permissive to Treg development and, b) that loss of H2-O drives increased basal auto-stimulation of CD4 T cells. These findings can help in better understanding of predispositions to autoimmunity and design of therapeutics for treatment of autoimmune diseases.
Collapse
|
6
|
Sun H, Lu Z, Xuan G, Liu N, Wang T, Liu Y, Lan M, Xu J, Feng Y, Xu S, Lu Y, Sun B, Zhang J, Zhang X, Sun Y, Yang S, Zhang Y, Zhang Y, Cheng L, Jiang D, Yang K. Integrative Analysis of HTNV Glycoprotein Derived MHC II Epitopes by In Silico Prediction and Experimental Validation. Front Cell Infect Microbiol 2021; 11:671694. [PMID: 34350130 PMCID: PMC8326763 DOI: 10.3389/fcimb.2021.671694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/21/2021] [Indexed: 12/02/2022] Open
Abstract
Hantaan virus (HTNV), the causative pathogen of hemorrhagic fever with renal syndrome (HFRS), is a negative RNA virus belonging to the Orthohantaviridae family. HTNV envelope glycoprotein (GP), encoded by the genomic medium segment, is immunogenic and is therefore a promising vaccine candidate. Major histocompatibility complex class I (MHC-I) epitopes derived from HTNV has been extensively studied, but little is known of MHC-II epitopes. In silico predictions based on four databases indicated that the full-length HTNV GP has 1121 15-mer epitopes, of which 289 had a high score for binding to the human and murine MHC-II superfamily. It found that epitope ILTVLKFIANIFHTS could potentially bind most MHC-II molecules covering human and murine haplotypes. Dominant epitopes were validated by enzyme-linked immunospot assay of splenocytes from immunized mice; 6 of 10 epitopes supported the predictions including TATYSIVGPANAKVP, TKTLVIGQCIYTITS, FSLLPGVAHSIAVEL, CETYKELKAHGVSCP, CGLYLDRLKPVGSAY, and NLGENPCKIGLQTSS. Conservation analysis of dominant epitopes revealed host–virus interactions without geographic stratification, thus meeting the requirements of candidate vaccines for large-population prophylaxis. These findings provide insight into hantavirus antigenicity and suggest that vaccines targeting MHC-II could provide immune protection in large population to complement symptomatic therapies for the treatment of HFRS.
Collapse
Affiliation(s)
- Hao Sun
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
| | - Zhenhua Lu
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China.,Department of Epidemiology, Public Health School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
| | - Guoyun Xuan
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
| | - Ning Liu
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
| | - Tianhu Wang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
| | - Yang Liu
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
| | - Mingfu Lan
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
| | - Jiahao Xu
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
| | - Yuancai Feng
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
| | - Shuang Xu
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
| | - Yuchen Lu
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
| | - Baozeng Sun
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
| | - Jinpeng Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China.,Department of Surgery, Jinling Hospital, Nanjing, China
| | - Xiyang Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
| | - Yuanjie Sun
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
| | - Shuya Yang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
| | - Yun Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
| | - Yusi Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
| | - Linfeng Cheng
- Department of Microbiology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
| | - Dongbo Jiang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
| | - Kun Yang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
| |
Collapse
|
7
|
Welsh RA, Sadegh-Nasseri S. The love and hate relationship of HLA-DM/DO in the selection of immunodominant epitopes. Curr Opin Immunol 2020; 64:117-123. [PMID: 32599219 PMCID: PMC7762731 DOI: 10.1016/j.coi.2020.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022]
Abstract
Successful activation of CD4 T cells is centered around the ability of antigen presenting cells to successfully process, select Class II immunodominant epitopes from exogenous antigens and to present it to cognate T cells. To achieve this, newly synthesized MHC-II molecules are transferred to a specialized compartment which contain both exogenous antigens and the Class II processing machinery. Here in a process known as 'editing,' the Class II accessory molecule DM (HLA-DM human; murine H2-M) facilitates the loading and selection of exogenous peptides to MHC class II molecules thereby assuring proper selection of immunodominant epitopes. A second Class II accessory molecule, DO (HLA-DO human; murine H2-O), mainly present in B cells and thymic epithelium also contributes to the selection of immunodominant epitopes. Yet, despite a wealth of mechanistic insights into how DM functions, understanding the contributions of DO to epitope selection has proven to be highly challenging. In this review, we have attempted to discuss published in vitro and in vivo data during the past three years with insights into the biology of DO.
Collapse
Affiliation(s)
- Robin A Welsh
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Scheherazade Sadegh-Nasseri
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
8
|
Cathepsin L promotes secretory IgA response by participating in antigen presentation pathways during Mycoplasma Hyopneumoniae infection. PLoS One 2019; 14:e0215408. [PMID: 30986254 PMCID: PMC6464228 DOI: 10.1371/journal.pone.0215408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/01/2019] [Indexed: 12/28/2022] Open
Abstract
Cathepsin L (CTSL) has been proved to help contain leishmaniasis and mycoplasma infection in mice by supporting cellular immune responses, but the regulatory functions of CTSL on mucosal immune responses haven't been tested and remain undefined. Here, we investigated the effects of CTSL on SIgA responses and invariant chain (Ii) degradations in the co-cultured swine dendritic cells (DCs) and B cells system in vitro. When the cells system were transfected with vector CTSL-GFP or incubated with recombinant CTSL (rCTSL) before they were infected with Mycoplasma hyopneumoniae (M.hp), SIgA significantly increased and Ii chain was degraded into smaller intermediates, while SIgA decreased when CTSL was knockdown or inhibited with E64. To confirm the SIgA responses promoted by CTSL contribute to the resistance to mycoplasma pneumonia, pigs injected with rCTSL before they were challenged with M.hp, showed milder clinical symptoms and histopathological damage of lungs, less mycoplasma burden together with higher secretion of SIgA, percentages of CD4+ T cells and level of MHC II molecules comparing with the group without rCTSL. Collectively, these results suggested that rCTSL could provide effective protection for piglets against mycoplasma pneumonia by enhancing M.hp-specific mucosal immune responses through its role in antigen presentation by processing the invariant chain.
Collapse
|
9
|
Abstract
Major histocompatibility class I (MHC-I) molecules bind peptides derived from cellular synthesis and display them at the cell surface for recognition by receptors on T lymphocytes (TCR) or natural killer (NK) cells. Such recognition provides a crucial step in autoimmunity, identification of bacterial and viral pathogens, and anti-tumor responses. Understanding the mechanism by which such antigenic peptides in the ER are loaded and exchanged for higher affinity peptides onto MHC molecules has recently been clarified by cryo-EM and X-ray studies of the multimolecular peptide loading complex (PLC) and a unimolecular tapasin-like chaperone designated TAPBPR. Insights from these structural studies and complementary solution NMR experiments provide a basis for understanding mechanisms related to immune antigen presentation.
Collapse
|
10
|
Baranov MV, Bianchi F, Schirmacher A, van Aart MAC, Maassen S, Muntjewerff EM, Dingjan I, Ter Beest M, Verdoes M, Keyser SGL, Bertozzi CR, Diederichsen U, van den Bogaart G. The Phosphoinositide Kinase PIKfyve Promotes Cathepsin-S-Mediated Major Histocompatibility Complex Class II Antigen Presentation. iScience 2018; 11:160-177. [PMID: 30612035 PMCID: PMC6319320 DOI: 10.1016/j.isci.2018.12.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/28/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023] Open
Abstract
Antigen presentation to T cells in major histocompatibility complex class II (MHC class II) requires the conversion of early endo/phagosomes into lysosomes by a process called maturation. Maturation is driven by the phosphoinositide kinase PIKfyve. Blocking PIKfyve activity by small molecule inhibitors caused a delay in the conversion of phagosomes into lysosomes and in phagosomal acidification, whereas production of reactive oxygen species (ROS) increased. Elevated ROS resulted in reduced activity of cathepsin S and B, but not X, causing a proteolytic defect of MHC class II chaperone invariant chain Ii processing. We developed a novel universal MHC class II presentation assay based on a bio-orthogonal "clickable" antigen and showed that MHC class II presentation was disrupted by the inhibition of PIKfyve, which in turn resulted in reduced activation of CD4+ T cells. Our results demonstrate a key role of PIKfyve in the processing and presentation of antigens, which should be taken into consideration when targeting PIKfyve in autoimmune disease and cancer.
Collapse
Affiliation(s)
- Maksim V Baranov
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands
| | - Frans Bianchi
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands; Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands
| | - Anastasiya Schirmacher
- Institute of Organic and Biomolecular Chemistry, Georg-August-University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Melissa A C van Aart
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands
| | - Sjors Maassen
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands; Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands
| | - Elke M Muntjewerff
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands
| | - Ilse Dingjan
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands
| | - Martin Ter Beest
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands
| | - Martijn Verdoes
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands
| | | | - Carolyn R Bertozzi
- Department of Chemistry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Ulf Diederichsen
- Institute of Organic and Biomolecular Chemistry, Georg-August-University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands; Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands.
| |
Collapse
|
11
|
Schneidman-Duhovny D, Khuri N, Dong GQ, Winter MB, Shifrut E, Friedman N, Craik CS, Pratt KP, Paz P, Aswad F, Sali A. Predicting CD4 T-cell epitopes based on antigen cleavage, MHCII presentation, and TCR recognition. PLoS One 2018; 13:e0206654. [PMID: 30399156 PMCID: PMC6219782 DOI: 10.1371/journal.pone.0206654] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 10/17/2018] [Indexed: 12/16/2022] Open
Abstract
Accurate predictions of T-cell epitopes would be useful for designing vaccines, immunotherapies for cancer and autoimmune diseases, and improved protein therapies. The humoral immune response involves uptake of antigens by antigen presenting cells (APCs), APC processing and presentation of peptides on MHC class II (pMHCII), and T-cell receptor (TCR) recognition of pMHCII complexes. Most in silico methods predict only peptide-MHCII binding, resulting in significant over-prediction of CD4 T-cell epitopes. We present a method, ITCell, for prediction of T-cell epitopes within an input protein antigen sequence for given MHCII and TCR sequences. The method integrates information about three stages of the immune response pathway: antigen cleavage, MHCII presentation, and TCR recognition. First, antigen cleavage sites are predicted based on the cleavage profiles of cathepsins S, B, and H. Second, for each 12-mer peptide in the antigen sequence we predict whether it will bind to a given MHCII, based on the scores of modeled peptide-MHCII complexes. Third, we predict whether or not any of the top scoring peptide-MHCII complexes can bind to a given TCR, based on the scores of modeled ternary peptide-MHCII-TCR complexes and the distribution of predicted cleavage sites. Our benchmarks consist of epitope predictions generated by this algorithm, checked against 20 peptide-MHCII-TCR crystal structures, as well as epitope predictions for four peptide-MHCII-TCR complexes with known epitopes and TCR sequences but without crystal structures. ITCell successfully identified the correct epitopes as one of the 20 top scoring peptides for 22 of 24 benchmark cases. To validate the method using a clinically relevant application, we utilized five factor VIII-specific TCR sequences from hemophilia A subjects who developed an immune response to factor VIII replacement therapy. The known HLA-DR1-restricted factor VIII epitope was among the six top-scoring factor VIII peptides predicted by ITCall to bind HLA-DR1 and all five TCRs. Our integrative approach is more accurate than current single-stage epitope prediction algorithms applied to the same benchmarks. It is freely available as a web server (http://salilab.org/itcell).
Collapse
Affiliation(s)
- Dina Schneidman-Duhovny
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States of America
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States of America
- * E-mail: (AS); (DS); (PP); (FA)
| | - Natalia Khuri
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States of America
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States of America
- Graduate Group in Biophysics, University of California at San Francisco, San Francisco, CA, United States of America
| | - Guang Qiang Dong
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States of America
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States of America
| | - Michael B. Winter
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States of America
| | - Eric Shifrut
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Nir Friedman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States of America
- California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, San Francisco, CA, United States of America
| | - Kathleen P. Pratt
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Pedro Paz
- Bayer HealthCare, San Francisco, CA, United States of America
- * E-mail: (AS); (DS); (PP); (FA)
| | - Fred Aswad
- Bayer HealthCare, San Francisco, CA, United States of America
- * E-mail: (AS); (DS); (PP); (FA)
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States of America
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States of America
- Graduate Group in Biophysics, University of California at San Francisco, San Francisco, CA, United States of America
- * E-mail: (AS); (DS); (PP); (FA)
| |
Collapse
|
12
|
Ramarathinam SH, Croft NP, Illing PT, Faridi P, Purcell AW. Employing proteomics in the study of antigen presentation: an update. Expert Rev Proteomics 2018; 15:637-645. [PMID: 30080115 DOI: 10.1080/14789450.2018.1509000] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Our immune system discriminates self from non-self by examining the peptide cargo of human leukocyte antigen (HLA) molecules displayed on the cell surface. Successful recognition of HLA-bound non-self peptides can induce T cell responses leading to, for example, the destruction of infected cells. Today, largely due to advances in technology, we have an unprecedented capability to identify the nature of these presented peptides and unravel the true complexity of antigen presentation. Areas covered: In addition to conventional linear peptides, HLA molecules also present post-translationally modified sequences comprising a wealth of chemical and structural modifications, including a novel class of noncontiguous spliced peptides. This review focuses on these emerging themes in antigen presentation and how mass spectrometry in particular has contributed to a new view of the antigenic landscape that is presented to the immune system. Expert Commentary: Advances in the sensitivity of mass spectrometers and use of hybrid fragmentation technologies will provide more information-rich spectra of HLA bound peptides leading to more definitive identification of T cell epitopes. Coupled with improvements in sample preparation and new informatics workflows, studies will access novel classes of peptide antigen and allow interrogation of rare and clinically relevant samples.
Collapse
Affiliation(s)
- Sri H Ramarathinam
- a Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute , Monash University , Clayton , VIC , Australia
| | - Nathan P Croft
- a Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute , Monash University , Clayton , VIC , Australia
| | - Patricia T Illing
- a Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute , Monash University , Clayton , VIC , Australia
| | - Pouya Faridi
- a Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute , Monash University , Clayton , VIC , Australia
| | - Anthony W Purcell
- a Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute , Monash University , Clayton , VIC , Australia
| |
Collapse
|
13
|
Gfeller D, Bassani-Sternberg M. Predicting Antigen Presentation-What Could We Learn From a Million Peptides? Front Immunol 2018; 9:1716. [PMID: 30090105 PMCID: PMC6068240 DOI: 10.3389/fimmu.2018.01716] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/12/2018] [Indexed: 12/30/2022] Open
Abstract
Antigen presentation lies at the heart of immune recognition of infected or malignant cells. For this reason, important efforts have been made to predict which peptides are more likely to bind and be presented by the human leukocyte antigen (HLA) complex at the surface of cells. These predictions have become even more important with the advent of next-generation sequencing technologies that enable researchers and clinicians to rapidly determine the sequences of pathogens (and their multiple variants) or identify non-synonymous genetic alterations in cancer cells. Here, we review recent advances in predicting HLA binding and antigen presentation in human cells. We argue that the very large amount of high-quality mass spectrometry data of eluted (mainly self) HLA ligands generated in the last few years provides unprecedented opportunities to improve our ability to predict antigen presentation and learn new properties of HLA molecules, as demonstrated in many recent studies of naturally presented HLA-I ligands. Although major challenges still lie on the road toward the ultimate goal of predicting immunogenicity, these experimental and computational developments will facilitate screening of putative epitopes, which may eventually help decipher the rules governing T cell recognition.
Collapse
Affiliation(s)
- David Gfeller
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Koblischke M, Stiasny K, Aberle SW, Malafa S, Tsouchnikas G, Schwaiger J, Kundi M, Heinz FX, Aberle JH. Structural Influence on the Dominance of Virus-Specific CD4 T Cell Epitopes in Zika Virus Infection. Front Immunol 2018; 9:1196. [PMID: 29899743 PMCID: PMC5989350 DOI: 10.3389/fimmu.2018.01196] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/14/2018] [Indexed: 12/30/2022] Open
Abstract
Zika virus (ZIKV) has recently caused explosive outbreaks in Pacific islands, South- and Central America. Like with other flaviviruses, protective immunity is strongly dependent on potently neutralizing antibodies (Abs) directed against the viral envelope protein E. Such Ab formation is promoted by CD4 T cells through direct interaction with B cells that present epitopes derived from E or other structural proteins of the virus. Here, we examined the extent and epitope dominance of CD4 T cell responses to capsid (C) and envelope proteins in Zika patients. All patients developed ZIKV-specific CD4 T cell responses, with substantial contributions of C and E. In both proteins, immunodominant epitopes clustered at sites that are structurally conserved among flaviviruses but have highly variable sequences, suggesting a strong impact of protein structural features on immunodominant CD4 T cell responses. Our data are particularly relevant for designing flavivirus vaccines and their evaluation in T cell assays and provide insights into the importance of viral protein structure for epitope selection and antigenicity.
Collapse
Affiliation(s)
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | | - Stefan Malafa
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | | - Julia Schwaiger
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Michael Kundi
- Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Franz X. Heinz
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Judith H. Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Kim A, Boronina TN, Cole RN, Darrah E, Sadegh-Nasseri S. Distorted Immunodominance by Linker Sequences or other Epitopes from a Second Protein Antigen During Antigen-Processing. Sci Rep 2017; 7:46418. [PMID: 28422163 PMCID: PMC5396073 DOI: 10.1038/srep46418] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/15/2017] [Indexed: 11/09/2022] Open
Abstract
The immune system focuses on and responds to very few representative immunodominant epitopes from pathogenic insults. However, due to the complexity of the antigen processing, understanding the parameters that lead to immunodominance has proved difficult. In an attempt to uncover the determinants of immunodominance among several dominant epitopes, we utilized a cell free antigen processing system and allowed the system to identify the hierarchies among potential determinants. We then tested the results in vivo; in mice and in human. We report here, that immunodominance of known sequences in a given protein can change if two or more proteins are being processed and presented simultaneously. Surprisingly, we find that new spacer/tag sequences commonly added to proteins for purification purposes can distort the capture of the physiological immunodominant epitopes. We warn against adding tags and spacers to candidate vaccines, or recommend cleaving it off before using for vaccination.
Collapse
Affiliation(s)
- AeRyon Kim
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tatiana N Boronina
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert N Cole
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Erika Darrah
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | |
Collapse
|
16
|
Krogman A, Tilahun A, David CS, Chowdhary VR, Alexander MP, Rajagopalan G. HLA-DR polymorphisms influence in vivo responses to staphylococcal toxic shock syndrome toxin-1 in a transgenic mouse model. HLA 2016; 89:20-28. [PMID: 27863161 DOI: 10.1111/tan.12930] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/06/2016] [Accepted: 10/22/2016] [Indexed: 12/11/2022]
Abstract
Toxic shock syndrome toxin-1 (TSST-1) is a potent superantigen produced by Staphylococcus aureus. In addition to menstrual and nonmenstrual toxic shock syndromes, TSST-1 is also implicated in the immunopathogenesis of pneumonia, infective endocarditis, neonatal exanthematous disease, and atopic dermatitis among others. Superantigens first bind to major histocompatibility complex (MHC) class II molecules and then activate a large proportion of T cells by cross-linking their T cell receptor. As binding to MHC class II molecules is a critical step in the robust activation of the immune system by TSST-1 and other superantigens, polymorphic variations between different HLA-DR alleles could potentially influence the magnitude of immune activation and immunopathology caused by TSST-1. As TSST-1 is highly toxic to humans and given that multiple variations of alleles of HLA-DR and HLA-DQ are expressed in each individual, it is difficult to determine how HLA-DR polymorphisms quantitatively and qualitatively impact immune activation caused by TSST-1 in humans. However, such investigations can be conducted on transgenic mice lacking all endogenous MHC class II molecules and expressing specific HLA class II alleles. Therefore, transgenic mice expressing different HLA-DRB1 alleles (HLA-DRB1*15:01, HLA-DRB1*15:02, HLA-DRB1*03:01, HLA-DRB1*04:01), and sharing HLA-A1*01:01 chain, were systemically challenged with purified TSST-1 and multiple immune parameters were assessed. Among the HLA-DR alleles, mice expressing HLA-DRB1*15:01 allele elicited a significantly higher serum cytokine/chemokine response; greater splenic T cell expansion and most severe organ pathology. Our study highlights the potential utility of human leukocyte antigen (HLA) transgenic mice in understanding the impact of HLA polymorphisms on the outcomes of diseases caused by TSST-1 and other superantigens.
Collapse
Affiliation(s)
- A Krogman
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - A Tilahun
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - C S David
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - V R Chowdhary
- Division of Rheumatology, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - M P Alexander
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - G Rajagopalan
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Division of Infectious Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|