1
|
Sharma MK, Imamichi S, Fukuchi M, Samarth RM, Tomita M, Matsumoto Y. In cellulo phosphorylation of XRCC4 Ser320 by DNA-PK induced by DNA damage. JOURNAL OF RADIATION RESEARCH 2016; 57:115-20. [PMID: 26666690 PMCID: PMC4795952 DOI: 10.1093/jrr/rrv086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/14/2015] [Accepted: 10/25/2015] [Indexed: 05/24/2023]
Abstract
XRCC4 is a protein associated with DNA Ligase IV, which is thought to join two DNA ends at the final step of DNA double-strand break repair through non-homologous end joining. In response to treatment with ionizing radiation or DNA damaging agents, XRCC4 undergoes DNA-PK-dependent phosphorylation. Furthermore, Ser260 and Ser320 (or Ser318 in alternatively spliced form) of XRCC4 were identified as the major phosphorylation sites by purified DNA-PK in vitro through mass spectrometry. However, it has not been clear whether these sites are phosphorylated in vivo in response to DNA damage. In the present study, we generated an antibody that reacts with XRCC4 phosphorylated at Ser320 and examined in cellulo phosphorylation status of XRCC4 Ser320. The phosphorylation of XRCC4 Ser320 was induced by γ-ray irradiation and treatment with Zeocin. The phosphorylation of XRCC4 Ser320 was detected even after 1 Gy irradiation and increased in a manner dependent on radiation dose. The phosphorylation was observed immediately after irradiation and remained mostly unchanged for up to 4 h. The phosphorylation was inhibited by DNA-PK inhibitor NU7441 and was undetectable in DNA-PKcs-deficient cells, indicating that the phosphorylation was mainly mediated by DNA-PK. These results suggested potential usefulness of the phosphorylation status of XRCC4 Ser320 as an indicator of DNA-PK functionality in living cells.
Collapse
Affiliation(s)
- Mukesh Kumar Sharma
- Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, N1-30 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan Department of Zoology, R.R. Government College, Alwar 301001, India
| | - Shoji Imamichi
- Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, N1-30 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Mikoto Fukuchi
- Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, N1-30 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ravindra Mahadeo Samarth
- Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, N1-30 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan Department of Research, Bhopal Memorial Hospital & Research Centre, Department of Health Research, Raisen Bypass Road, Bhopal 462038, India National Institute for Research in Environmental Health, Indian Council of Medical Research, Kamla Nehru Hospital Building, Gandhi Medical College Campus, Bhopal 462001, India
| | - Masanori Tomita
- Radiation Safety Research Center, Central Research Institute of Electric Power Industry, Tokyo 201-8511, Japan
| | - Yoshihisa Matsumoto
- Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, N1-30 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
2
|
Urushihara Y, Kobayashi J, Matsumoto Y, Komatsu K, Oda S, Mitani H. DNA-PK inhibition causes a low level of H2AX phosphorylation and homologous recombination repair in Medaka (Oryzias latipes) cells. Biochem Biophys Res Commun 2012; 429:131-6. [PMID: 23142596 DOI: 10.1016/j.bbrc.2012.10.128] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 10/27/2012] [Indexed: 01/03/2023]
Abstract
Nonhomologous end joining (NHEJ) and homologous recombination (HR) are known as DNA double-strand break (DSB) repair pathways. It has been reported that DNA-PK, a member of PI3 kinase family, promotes NHEJ and aberrant DNA-PK causes NHEJ deficiency. However, in this study, we demonstrate that a wild-type cell line treated with DNA-PK inhibitor and a mutant cell line with dysfunctional DNA-PK showed decreased HR efficiency in fish cells (Medaka, Oryzias latipes). Previously, we reported that the radiation-sensitive mutant RIC1 strain has a defect in the Histone H2AX phosphorylation after γ-irradiation. Here, we showed that a DNA-PK inhibitor, NU7026, treatment resulted in significant reduction in the number of γH2AX foci after γ-irradiation in wild-type cells, but had no significant effect in RIC1 cells. In addition, RIC1 cells showed significantly lower levels of DNA-PK kinase activity compared with wild-type cells. We investigated NHEJ and HR efficiency after induction of DSBs. Wild-type cells treated with NU7026 and RIC1 cells showed decreased HR efficiency. These results indicated that aberrant DNA-PK causes the reduction in the number of γH2AX foci and HR efficiency in RIC1 cells. We performed phosphorylated DNA-PKcs (Thr2609) and 53BP1 focus assay after γ-irradiation. RIC1 cells showed significant reduction in the number of phosphorylated DNA-PKcs foci and no deference in the number of 53BP1 foci compared with wild-type cells. These results suggest that low level of DNA-PK activity causes aberrant DNA-PKcs autophosphorylation in RIC1 cells. It is known that 53BP1 is involved in both DNA-PK dependent and independent NHEJ. Therefore we suggest that DNA-PK independent NHEJ repair DSBs under the condition of decreased DNA-PK activity, which causes reduction of HR efficiency.
Collapse
Affiliation(s)
- Yusuke Urushihara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | | | | | | | | | | |
Collapse
|
3
|
Umeda N, Matsumoto Y, Yin HL, Tomita M, Enomoto A, Morita A, Mizukoshi T, Sakai K, Hosoi Y, Suzuki N. Difference in the heat sensitivity of DNA‐dependent protein kinase activity among mouse, hamster and human cells. Int J Radiat Biol 2009; 79:671-80. [PMID: 14555350 DOI: 10.1080/09553000310001596959] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE To examine the heat sensitivity of DNA-dependent protein kinase (DNA-PK) activity in a variety of cultured mouse, hamster and human cell lines. MATERIALS AND METHODS Eight cell lines, which have been routinely used in our laboratory, were examined. Cells were heated at 44.0 +/- 0.05 degrees C and DNA-PK activity was measured by a DNA-pull-down assay followed by gel-electrophoresis. Cellular sensitivity to hyperthermia and/or X-ray was evaluated by a colony formation assay. RESULTS In mouse FSA1233 and FM3A cells, DNA-PK activity dropped to 15-16% of unheated control after 20 min of heating. In Chinese hamster V79 and CHO-K1 cells, kinase activity did not change appreciably after 20 min treatment but decreased to 60-70 and 22-23% after 40 or 60 min treatment, respectively. However, even after 180 min treatment, DNA-PK activity remained almost intact in human MOLT-4, MKN45 and A7 cells, and decreased only slightly in U937 cells. Hyperthermic radiosensitization was seen even in human cells but, as a trend, it was small compared with rodent cells. CONCLUSIONS The heat sensitivity of DNA-PK was clearly different among mouse, hamster and human cells. The results suggested a possibility that the role of DNA-PK inactivation in hyperthermic radiosensitization might be variable, depending on cells, and would reinforce the warning that the direct extrapolation of data from rodent cells might lead to overestimation of the effectiveness of hyperthermia on human cancer.
Collapse
Affiliation(s)
- N Umeda
- Department of Radiation Oncology, Graduate School of Medicine, University of Tokya, Hongo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Tokuzumi S, Hori M, Monobe M, Hosoi Y, Kojima S. Effect of Nitric Oxide on γ-Ray-Induced Micronucleus Frequency in RAW264.7 Cells. Radiat Res 2005; 164:723-32. [PMID: 16296878 DOI: 10.1667/rr3471.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The effect of low-dose nitric oxide (NO) on gamma-ray-induced micronucleus (MN) frequency was investigated in RAW264.7 cells. Treatment of RAW264.7 cells with 0.25 mM sodium nitroprusside (SNP), a chemical NO donor, reduced the frequency of micronuclei induced by 5 Gy gamma rays by 43 to 45% between 3 and 12 h post-treatment. This effect was blocked by carboxy-PTIO, suggesting that NO may play a role in the reduction of radiation-induced MN frequency. To examine possible mechanisms underlying this effect, we first looked at changes in the antioxidant system after SNP treatment. A significant increase in intracellular glutathione (GSH) was seen in SNP-treated cells between 3 and 12 h post-treatment. Depletion of GSH with buthionine sulfoximine (BSO) increased the gamma-ray-induced increase in MN frequency. Detailed studies using various inducers of intracellular GSH suggested that GSH induction has a partial role in the reducing effect of NO on the gamma-ray-induced MN frequency. Next, the effect of NO on DNA repair and replication systems was examined. Wortmannin, an inhibitor of DNA-dependent protein kinase (DNA-PK), dose-dependently inhibited the reducing effect of NO, while caffeine, an inhibitor of ATM kinase and ATR kinase, did not. DNA-PK activity was increased by NO treatment. Etoposide, a topoisomerase II inhibitor, dose-dependently blocked the effect of NO in reducing the gamma-ray-induced MN frequency. These results suggest that the mechanisms of the effect of NO on the gamma-ray-induced MN frequency include elevation of GSH and up-regulation of DNA-PK activity for repairing double-strand breaks. NO may act as a signal for repair systems, e.g. for nonhomologous recombination and for the replication system in S phase, to reduce the MN frequency.
Collapse
Affiliation(s)
- Sachiko Tokuzumi
- Department of Radiation Bioscience, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda-shi, Chiba 278-8510, Japan
| | | | | | | | | |
Collapse
|
5
|
Someya M, Sakata KI, Matsumoto Y, Yamamoto H, Monobe M, Ikeda H, Ando K, Hosoi Y, Suzuki N, Hareyama M. The association of DNA-dependent protein kinase activity with chromosomal instability and risk of cancer. Carcinogenesis 2005; 27:117-22. [PMID: 16000400 DOI: 10.1093/carcin/bgi175] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The DNA double-strand breaks (DSBs) repair pathway has been implicated in maintaining genomic integrity via suppression of chromosomal rearrangements. DNA-dependent protein kinase (DNA-PK) has an important role with DNA DSBs repair. In this study, 93 of untreated cancer patients and 41 of cancer-free healthy volunteers were enrolled. Peripheral blood was collected, separated and centrifuged; DNA-PK activity was measured by DNA-pull-down assay. The expressions of DNA-PKcs, Ku70 and Ku86 were examined by RT-PCR assay and western blotting. Chromosomal aberrations were examined by cytogenetic methods. DNA-PK activities of peripheral blood lymphocytes (PBL) in patients with uterine cervix or breast cancer were significantly lower than those in normal volunteers. Age and smoking had no association with DNA-PK activity, whereas DNA-PK activity and the expression of Ku70, Ku86 and DNA-PKcs in RT-PCR were interrelated. A similar tendency was seen in western blot assay but less clear than in RT-PCR. Therefore, the association between DNA-PK activity and expression of DNA-PK in protein level could not be concluded. The frequency of chromosome aberration, such as dicentric chromosomes and excess fragment increased as the DNA-PK activity decreased. In conclusion, DNA-PK activity is associated with chromosomal instability. DNA-PK activity in PBL is associated with risk of breast and uterine cervix cancer. DNA-PK activity in PBL can be used to select individuals for whom an examination should be performed because of their increased susceptibility to breast and uterine cervix cancer.
Collapse
Affiliation(s)
- Masanori Someya
- Department of Radiology, Sapporo Medical University, School of Medicine, Hokkaido, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Watanabe F, Shinohara KI, Teraoka H, Komatsu K, Tatsumi K, Suzuki F, Imai T, Sagara M, Tsuji H, Ogiu T. Involvement of DNA-dependent protein kinase in down-regulation of cell cycle progression. Int J Biochem Cell Biol 2003; 35:432-40. [PMID: 12565705 DOI: 10.1016/s1357-2725(02)00268-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The catalytic polypeptide of DNA-dependent protein kinase (p470) is encoded by the gene responsible for murine severe combined immunodeficiency (SCID) devoid of DNA double-strand break repair and V(D)J recombination. Here, we have characterized the role of p470 in cell proliferation using SCID mice and the cell lines. In accord with DNA histogram patterns, SCID cell lines (SD/SD-eA and SC3VA2) expressing extremely low level of DNA-PK activity grew faster than a normal mouse cell line (CB/CB-eB) and SC3VA2 complemented with human p470 gene (RD13B2). In regenerating liver after partial hepatectomy, de novo DNA synthesis determined by [(3)H]thymidine incorporation started at 30h in C.B-17/Icr-SCID (SCID) mice and at around 36h in C.B-17/Icr (C.B-17) mice. Compared with normal cells, SCID cells contained slightly higher levels of transcripts of cyclin A, cyclin E, B-Myb and dihydrofolate reductase, which are regulated by E2F-1. E2F-1 playing a key role in G1- to S-phase progression was phosphorylated in vitro by DNA-PK. Importantly, the E2F-1 promoter transcriptional activity in SCID cell lines (SD/SD-eA and SC3VA2) was 4-5-fold higher than that in CB/CB-eB and RD13B2. These results suggest that p470 is involved in down-regulation of cell cycle progression through E2F-1-responsible genes.
Collapse
Affiliation(s)
- Fumiaki Watanabe
- Department of Pathological Biochemistry, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, 101-0062, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Mori N, Matsumoto Y, Okumoto M, Suzuki N, Yamate J. Variations in Prkdc encoding the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) and susceptibility to radiation-induced apoptosis and lymphomagenesis. Oncogene 2001; 20:3609-19. [PMID: 11439324 DOI: 10.1038/sj.onc.1204497] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2001] [Revised: 03/23/2001] [Accepted: 04/02/2001] [Indexed: 11/09/2022]
Abstract
DNA double-strand breaks (DSBs) induced by ionizing radiation enforce cells to die, if unrepaired; while if misrepaired, DSBs may cause malignant transformation. The DSB repair system predominant in mammals requires DNA-dependent protein kinase (DNA-PK). Previously, we identified the apoptosis susceptibility gene Radiation-induced apoptosis 1 (Rapop1) on mouse chromosome 16. The STS/A (STS) allele at Rapop1 leads to decreased sensitivity to apoptosis in the BALB/cHeA (BALB/c) background. In the present study, we established Rapop1 congenic strains C.S-R1 and C.S-R1L, which contain the STS genome in a 0.45 cM interval critical for Rapop1 in common in the BALB/c background. Within the segment critical for Rapop1, Prkdc encoding the catalytic subunit of DNA-PK (DNA-PKcs) was assigned. Two variations T6,418C and G11,530A, which induce amino acid substitutions C2,140R downstream from the putative leucine zipper motif and V3,844M near the kinase domain, respectively, were found between BALB/c and STS for Prkdc. The majority of inbred strains such as C57BL/6J carried the STS allele at Prkdc; a few strains including 129/SvJ and C.B17 carried the BALB/c allele. DNA-PK activity as well as DNA-PKcs expression was profoundly diminished in BALB/c and 129/SvJ mice as compared with C57BL/6 and C.S-R1 mice. In the crosses (C.S-R1 x BALB/c)F(1) x 129/SvJ and (C.S-R1 x BALB/c)F(1) x C.B17, enhanced apoptosis occurred in the absence of the wild-type allele at Prkdc. C.S-R1 and C.S-R1L were both less sensitive to radiation lymphomagenesis than BALB/c. Our study provides strong evidence for Prkdc as a candidate for Rapop1 and a susceptibility gene for radiation lymphomagenesis as well.
Collapse
Affiliation(s)
- N Mori
- Department of Applied Bioscience, Research Institute for Advanced Science and Technology Osaka 599-8570, Japan.
| | | | | | | | | |
Collapse
|
8
|
Matsumoto Y, Suzuki N, Namba N, Umeda N, Ma XJ, Morita A, Tomita M, Enomoto A, Serizawa S, Hirano K, Sakaia K, Yasuda H, Hosoi Y. Cleavage and phosphorylation of XRCC4 protein induced by X-irradiation. FEBS Lett 2000; 478:67-71. [PMID: 10922471 DOI: 10.1016/s0014-5793(00)01800-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We report the p35 and p60 forms of XRCC4 protein, appearing in human leukemia MOLT-4 or U937 cells following X-irradiation or hyperthermia. p35 appeared in conjunction with the cleavage of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and the fragmentation of internucleosomal DNA, and was suppressed by Ac-DEVD-CHO. p35 was also produced in vitro by treating MOLT-4 cell lysate with recombinant caspases, suggesting that p35 was a caspase-cleaved fragment of XRCC4 in apoptotic cell death. p60 was sensitive to treatment with phosphatase or wortmannin and was undetectable in M059J cells deficient in DNA-PKcs. However, p60 was found in ataxia-telangiectasia cells after irradiation. These results indicated p60 as a phosphorylated form of XRCC4, requiring DNA-PKcs but not ataxia-telangiectasia mutated (ATM).
Collapse
Affiliation(s)
- Y Matsumoto
- Department of Radiation Oncology, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|