1
|
Soltani Khaboushan A, Zafari R, Sabahi M, Khorasanizadeh M, Dabbagh Ohadi MA, Flouty O, Ranjan M, Slavin KV. Focused ultrasound for treatment of epilepsy: a systematic review and meta-analysis of preclinical and clinical studies. Neurosurg Rev 2024; 47:839. [PMID: 39521750 DOI: 10.1007/s10143-024-03078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/28/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Various preclinical and clinical studies have demonstrated the neuromodulatory and ablative effects of focused ultrasound (FUS). However, the safety and efficacy of FUS in clinical settings for treating epilepsy have not been well established. This study aims to provide a systematic review of all preclinical and clinical studies that have used FUS for the treatment of epilepsy. A systematic search was conducted using Scopus, Web of Science, PubMed, and Embase databases. All preclinical and clinical studies reporting outcomes of FUS in the treatment of epilepsy were included in the systematic review. Random-effect meta-analysis was performed to determine safety in clinical studies and seizure activity reduction in preclinical studies. A total of 24 articles were included in the study. Meta-analysis demonstrated that adverse events occurred in 13% (95% CI = 2-57%) of patients with epilepsy who underwent FUS. The frequency of adverse events was higher with the use of FUS for lesioning (36%, 95% CI = 4-88%) in comparison to neuromodulation (5%, 95% CI = 0-71%), although this difference was not significant (P = 0.31). Three-level meta-analysis in preclinical studies demonstrated a reduced spike rate in neuromodulating FUS compared to the control group (P = 0.02). According to this systematic review and meta-analysis, FUS can be considered a safe and feasible approach for treating epileptic seizures, especially in drug-resistant patients. While the efficacy of FUS has been demonstrated in several preclinical studies, further research is necessary to confirm its effectiveness in clinical practice and to determine the adverse events.
Collapse
Affiliation(s)
- Alireza Soltani Khaboushan
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neurosurgery, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasa Zafari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadmahdi Sabahi
- Department of Neurological Surgery, Pauline Braathen Neurological Centre, Cleveland Clinic Florida, Weston, FL, USA
| | - MirHojjat Khorasanizadeh
- Department of Neurosurgery, Mount Sinai Hospital, Icahn School of Medicine, New York City, NY, USA
| | - Mohammad Amin Dabbagh Ohadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neurosurgery, Tehran University of Medical Sciences, Tehran, Iran
| | - Oliver Flouty
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Manish Ranjan
- Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Konstantin V Slavin
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Song Z, Huang G, Huang H. The ultrasonic-assisted enzymatic extraction, characteristics and antioxidant activities of lychee nuclear polysaccharide. ULTRASONICS SONOCHEMISTRY 2024; 110:107038. [PMID: 39180869 PMCID: PMC11386491 DOI: 10.1016/j.ultsonch.2024.107038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
A response surface methodology (RSM) and one-factor method were established to investigate the optimum conditions for the extraction of lychee nuclear polysaccharides (LSP) by ultrasonic-assisted pectinase. The content of basic components in polysaccharides was determined. The antioxidant activity was well determined and compared the differences in the activities of the polysaccharides extracted by water extraction (LSP-HW) and those extracted at ultrasound-assisted enzyme (LSP-UAE). The activity of lychee nuclear polysaccharide increased with the increase of concentration. The anti-hydroxyl radical and anti-lipid peroxidation abilities of lychee nuclear polysaccharide were more excellent, and LSP-HW was slightly better than LSP-UAE in terms of activity, but the difference was not significant. In terms of solubility; LSP-HW without deproteinization was the best, followed by LSP-UAE, and the worst was LSP-UAE after deproteinization. The higher the glycoprotein content, the better the solubility of its polysaccharide. Compared with the existing extraction methods, this experiment greatly improved the extraction rate of lychee nuclear polysaccharides and further enriched the antioxidant activities of polysaccharides.
Collapse
Affiliation(s)
- Zongyan Song
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China.
| | - Hualiang Huang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Wuhan Institute of Technology, Wuhan 430074, China.
| |
Collapse
|
3
|
Xu H, Liu Z, Du M, Chen Z. Progression in low-intensity ultrasound-induced tumor radiosensitization. Cancer Med 2024; 13:e7332. [PMID: 38967145 PMCID: PMC11224918 DOI: 10.1002/cam4.7332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Radiotherapy (RT) is a widely utilized tumor treatment approach, while a significant obstacle in this treatment modality is the radioresistance exhibited by tumor cells. To enhance the effectiveness of RT, scientists have explored radiosensitization approaches, including the use of radiosensitizers and physical stimuli. Nevertheless, several approaches have exhibited disappointing results including adverse effects and limited efficacy. A safer and more effective method of radiosensitization involves low-intensity ultrasound (LIUS), which selectively targets tumor tissue and enhances the efficacy of radiation therapy. METHODS This review summarized the tumor radioresistance reasons and explored LIUS potential radiosensitization mechanisms. Moreover, it covered diverse LIUS application strategies in radiosensitization, including the use of LIUS alone, ultrasound-targeted intravascular microbubble destruction, ultrasound-mediated targeted radiosensitizers delivery, and sonodynamic therapy. Lastly, the review presented the limitations and prospects of employing LIUS-RT combined therapy in clinical settings, emphasizing the need to connect research findings with practical applications. RESULTS AND CONCLUSION LIUS employs cost-effective equipment to foster tumor radiosensitization, curtail radiation exposure, and elevate the quality of life for patients. This efficacy is attributed to LIUS's ability to utilize thermal, cavitation, and mechanical effects to overcome tumor cell resistance to RT. Multiple experimental analyses have underscored the effectiveness of LIUS in inducing tumor radiosensitization using diverse strategies. While initial studies have shown promising results, conducting more comprehensive clinical trials is crucial to confirm its safety and effectiveness in real-world situations.
Collapse
Affiliation(s)
- Haonan Xu
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical SchoolUniversity of South ChinaChangshaHunan ProvinceChina
- Institute of Medical Imaging, Hengyang Medical School, University of South ChinaHengyangHunan ProvinceChina
| | - Zichao Liu
- Institute of Medical Imaging, Hengyang Medical School, University of South ChinaHengyangHunan ProvinceChina
- The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical SchoolUniversity of South ChinaChangshaHunan ProvinceChina
| | - Meng Du
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical SchoolUniversity of South ChinaChangshaHunan ProvinceChina
- Institute of Medical Imaging, Hengyang Medical School, University of South ChinaHengyangHunan ProvinceChina
| | - Zhiyi Chen
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical SchoolUniversity of South ChinaChangshaHunan ProvinceChina
- Institute of Medical Imaging, Hengyang Medical School, University of South ChinaHengyangHunan ProvinceChina
| |
Collapse
|
4
|
Hu S, Zhang X, Melzer A, Landgraf L. Ultrasound-induced cavitation renders prostate cancer cells susceptible to hyperthermia: Analysis of potential cellular and molecular mechanisms. Front Genet 2023; 14:1122758. [PMID: 37152995 PMCID: PMC10154534 DOI: 10.3389/fgene.2023.1122758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/21/2023] [Indexed: 05/09/2023] Open
Abstract
Background: Focused ultrasound (FUS) has become an important non-invasive therapy for prostate tumor ablation via thermal effects in the clinic. The cavitation effect induced by FUS is applied for histotripsy, support drug delivery, and the induction of blood vessel destruction for cancer therapy. Numerous studies report that cavitation-induced sonoporation could provoke multiple anti-proliferative effects on cancer cells. Therefore, cavitation alone or in combination with thermal treatment is of great interest but research in this field is inadequate. Methods: Human prostate cancer cells (LNCap and PC-3) were exposed to 40 s cavitation using a FUS system, followed by water bath hyperthermia (HT). The clonogenic assay, WST-1 assay, and Transwell® invasion assay, respectively, were used to assess cancer cell clonogenic survival, metabolic activity, and invasion potential. Fluorescence microscopy using propidium iodide (PI) as a probe of cell membrane integrity was used to identify sonoporation. The H2A.X assay and Nicoletti test were conducted in the mechanism investigation to detect DNA double-strand breaks (DSBs) and cell cycle arrest. Immunofluorescence microscopy and flow cytometry were performed to determine the distribution and expression of 5α-reductase (SRD5A). Results: Short FUS shots with cavitation (FUS-Cav) in combination with HT resulted in, respectively, a 2.2, 2.3, and 2.8-fold decrease (LNCap) and a 2.0, 1.5, and 1.6-fold decrease (PC-3) in the clonogenic survival, cell invasiveness and metabolic activity of prostate cancer cells when compared to HT alone. FUS-Cav immediately induced sonoporation in 61.7% of LNCap cells, and the combination treatment led to a 1.4 (LNCap) and 1.6-fold (PC-3) increase in the number of DSBs compared to HT alone. Meanwhile, the combination therapy resulted in 26.68% of LNCap and 31.70% of PC-3 with cell cycle arrest in the Sub-G1 phase and 35.37% of PC-3 with cell cycle arrest in the G2/M phase. Additionally, the treatment of FUS-Cav combined with HT block the androgen receptor (AR) signal pathway by reducing the relative Type I 5α-reductase (SRD5A1) level to 38.28 ± 3.76% in LNCap cells, and decreasing the relative Type III 5α-reductase 3 (SRD5A3) level to 22.87 ± 4.88% in PC-3 cells, in contrast, the relative SRD5A level in untreated groups was set to 100%. Conclusion: FUS-induced cavitation increases the effects of HT by interrupting cancer cell membranes, inducing the DSBs and cell cycle arrest, and blocking the AR signal pathway of the prostate cancer cells, with the potential to be a promising adjuvant therapy in prostate cancer treatment.
Collapse
Affiliation(s)
- Shaonan Hu
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Leipzig, Germany
| | - Xinrui Zhang
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Leipzig, Germany
| | - Andreas Melzer
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Leipzig, Germany
- Institute for Medical Science and Technology (IMSaT), University of Dundee, Dundee, United Kingdom
| | - Lisa Landgraf
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Leipzig, Germany
| |
Collapse
|
5
|
Ostasevicius V, Jurenas V, Mikuckyte S, Vezys J, Stankevicius E, Bubulis A, Venslauskas M, Kizauskiene L. Development of a Low-Frequency Piezoelectric Ultrasonic Transducer for Biological Tissue Sonication. SENSORS (BASEL, SWITZERLAND) 2023; 23:3608. [PMID: 37050668 PMCID: PMC10098853 DOI: 10.3390/s23073608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
The safety of ultrasound exposure is very important for a patient's well-being. High-frequency (1-10 MHz) ultrasound waves are highly absorbed by biological tissue and have limited therapeutic effects on internal organs. This article presents the results of the development and application of a low-frequency (20-100 kHz) ultrasonic transducer for sonication of biological tissues. Using the methodology of digital twins, consisting of virtual and physical twins, an ultrasonic transducer has been developed that emits a focused ultrasound signal that penetrates into deeper biological tissues. For this purpose, the ring-shaped end surface of this transducer is excited not only by the main longitudinal vibrational mode, which is typical of the flat end surface transducers used to date, but also by higher mode radial vibrations. The virtual twin simulation shows that the acoustic signal emitted by the ring-shaped transducer, which is excited by a higher vibrational mode, is concentrated into a narrower and more precise acoustic wave that penetrates deeper into the biological tissue and affects only the part of the body to be treated, but not the whole body.
Collapse
Affiliation(s)
- Vytautas Ostasevicius
- Institute of Mechatronics, Kaunas University of Technology, Studentu Street 56, LT-51424 Kaunas, Lithuania
| | - Vytautas Jurenas
- Institute of Mechatronics, Kaunas University of Technology, Studentu Street 56, LT-51424 Kaunas, Lithuania
| | - Sandra Mikuckyte
- Institute of Mechatronics, Kaunas University of Technology, Studentu Street 56, LT-51424 Kaunas, Lithuania
| | - Joris Vezys
- Department of Mechanical Engineering, Kaunas University of Technology, Studentu Street 50, LT-51368 Kaunas, Lithuania
| | - Edgaras Stankevicius
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, A. Mickevicius Street 9, LT-44307 Kaunas, Lithuania
| | - Algimantas Bubulis
- Institute of Mechatronics, Kaunas University of Technology, Studentu Street 56, LT-51424 Kaunas, Lithuania
| | - Mantas Venslauskas
- Institute of Mechatronics, Kaunas University of Technology, Studentu Street 56, LT-51424 Kaunas, Lithuania
| | - Laura Kizauskiene
- Department of Computer Sciences, Kaunas University of Technology, Studentu Street 50, LT-51368 Kaunas, Lithuania
| |
Collapse
|
6
|
Iacoponi F, Cafarelli A, Fontana F, Pratellesi T, Dumont E, Barravecchia I, Angeloni D, Ricotti L. Optimal low-intensity pulsed ultrasound stimulation for promoting anti-inflammatory effects in macrophages. APL Bioeng 2023; 7:016114. [PMID: 36968453 PMCID: PMC10036142 DOI: 10.1063/5.0137881] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/24/2023] [Indexed: 03/24/2023] Open
Abstract
In this paper, we stimulated M1-like macrophages (obtained from U937 cells) with low-intensity pulsed ultrasound (LIPUS) to lower pro-inflammatory cytokine production. A systematic screening of different frequencies, intensities, duty cycles, and exposure times was performed. The optimal stimulation conditions leading to a marked decrease in the release of inflammatory cytokines were determined to be 38 kHz, 250 mW/cm2, 20%, and 90 min, respectively. Using these parameters, we verified that up to 72 h LIPUS did not affect cell viability, resulting in an increase in metabolic activity and in a reduction of reactive oxygen species (ROS) production. Moreover, we found that two mechanosensitive ion channels (PIEZO1 and TRPV1) were involved in the LIPUS-mediated cytokine release modulation. We also assessed the role of the nuclear factor κB (NF-κB) signaling pathway and observed an enhancement of actin polymerization. Finally, transcriptomic data suggested that the bioeffects of LIPUS treatment occur through the modulation of p38 MAPK signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Ivana Barravecchia
- Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | | | | |
Collapse
|
7
|
Qin H, Du L, Luo Z, He Z, Wang Q, Chen S, Zhu YL. The therapeutic effects of low-intensity pulsed ultrasound in musculoskeletal soft tissue injuries: Focusing on the molecular mechanism. Front Bioeng Biotechnol 2022; 10:1080430. [PMID: 36588943 PMCID: PMC9800839 DOI: 10.3389/fbioe.2022.1080430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Musculoskeletal soft tissue injuries are very common and usually occur during both sporting and everyday activities. The intervention of adjuvant therapies to promote tissue regeneration is of great importance to improving people's quality of life and extending their productive lives. Though many studies have focused on the positive results and effectiveness of the LIPUS on soft tissue, the molecular mechanisms standing behind LIPUS effects are much less explored and reported, especially the intracellular signaling pathways. We incorporated all research on LIPUS in soft tissue diseases since 2005 and summarized studies that uncovered the intracellular molecular mechanism. This review will also provide the latest evidence-based research progress in this field and suggest research directions for future experiments.
Collapse
Affiliation(s)
- Haocheng Qin
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Liang Du
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhong He
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing Wang
- Department of Orthopedics, Kunshan Hospital of Chinese Medicine, Suzhou, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu-Lian Zhu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Duan X, Lo SY, Lee JCY, Wan JMF, Yu ACH. Sonoporation of Immune Cells: Heterogeneous Impact on Lymphocytes, Monocytes and Granulocytes. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1268-1281. [PMID: 35461725 DOI: 10.1016/j.ultrasmedbio.2022.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Microbubble-mediated ultrasound (MB-US) can be used to realize sonoporation and, in turn, facilitate the transfection of leukocytes in the immune system. Nevertheless, the bio-effects that can be induced by MB-US exposure on leukocytes have not been adequately studied, particularly for different leukocyte lineage subsets with distinct cytological characteristics. Here, we describe how that same set of MB-US exposure conditions would induce heterogeneous bio-effects on the three main leukocyte subsets: lymphocytes, monocytes and granulocytes. MB-US exposure was delivered by applying 1-MHz pulsed ultrasound (0.50-MPa peak negative pressure, 10% duty cycle, 30-s exposure period) in the presence of microbubbles (1:1 cell-to-bubble ratio); sonoporated and non-viable leukocytes were respectively labeled using calcein and propidium iodide. Flow cytometry was then performed to classify leukocytes into their corresponding subsets and to analyze each subset's post-exposure viability, sonoporation rate, uptake characteristics and morphology. Results revealed that, when subjected to MB-US exposure, granulocytes experienced the highest loss of viability (64.0 ± 11.0%) and the lowest sonoporation rate (6.3 ± 2.5%), despite maintaining their size and granularity. In contrast, lymphocytes exhibited the lowest loss of viability (20.9 ± 7.0%), while monocytes had the highest sonoporation rate (24.1 ± 13.6%). For these two sonoporated leukocyte subsets, their cell size and granularity were found to be reduced. Also, they exhibited graded levels of calcein uptake, whereas sonoporated granulocytes achieved only mild calcein uptake. These heterogeneous bio-effects should be accounted for when using MB-US and sonoporation in immunomodulation applications.
Collapse
Affiliation(s)
- Xinxing Duan
- Schlegel Research Institute for Aging and Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada; School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shun Yu Lo
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jetty C Y Lee
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jennifer M F Wan
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Alfred C H Yu
- Schlegel Research Institute for Aging and Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
9
|
Bhargawa B, Sharma V, Ganesh MR, Cavalieri F, Ashokkumar M, Neppolian B, Sundaramurthy A. Lysozyme microspheres incorporated with anisotropic gold nanorods for ultrasound activated drug delivery. ULTRASONICS SONOCHEMISTRY 2022; 86:106016. [PMID: 35525092 PMCID: PMC9079700 DOI: 10.1016/j.ultsonch.2022.106016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 05/30/2023]
Abstract
We report on the fabrication of lysozyme microspheres (LyMs) incorporated with gold nanorods (NRs) as a distinctive approach for the encapsulation and release of an anticancer drug, 5-Fluorouracil (5-FU). LyMs with an average size of 4.0 ± 1.0 µm were prepared by a sonochemical method and characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier-transform infrared spectroscopy (FTIR). The LyMs were examined using hydrophobic (nile red) as well as hydrophilic (trypan blue) dyes under confocal laser scanning microscopy (CLSM) to obtain information about the preferential distribution of fluorescent molecules. Notably, the fluorescent molecules were accumulated in the inner lining of LyMs as the core was occupied with air. The encapsulation efficiency of 5-FU for LyMs-NR was found to be ∼64%. The drug release from control LyMs as well as LyMs incorporated with NRs was investigated under the influence of ultrasound (US) at 200 kHz. The total release for control LyMs and LyMs incorporated with gold NRs was found to be ∼70 and 95% after 1 h, respectively. The density difference caused by NR incorporation on the shell played a key role in rupturing the LyMs-NR under US irradiation. Furthermore, 5-FU loaded LyMs-NR exhibited excellent anti-cancer activity against the THP-1 cell line (∼90% cell death) when irradiated with US of 200 kHz. The enhanced anti-cancer activity of LyMs-NR was caused by the transfer of released 5-FU molecules from bulk to the interior of the cell via temporary pores formed on the surface of cancer cells, i.e., sonoporation. Thus, LyMs-NR demonstrated here has a high potential for use as carriers in the field of drug delivery, bio-imaging and therapy.
Collapse
Affiliation(s)
- Bharat Bhargawa
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Varsha Sharma
- Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Munuswamy-Ramanujam Ganesh
- Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | | | | | - Bernaurdshaw Neppolian
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, India.
| | - Anandhakumar Sundaramurthy
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, India.
| |
Collapse
|
10
|
Furusawa Y, Kondo T, Tachibana K, Feril LB. Ultrasound-Induced DNA Damage and Cellular Response: Historical Review, Mechanisms Analysis, and Therapeutic Implications. Radiat Res 2022; 197:662-672. [PMID: 35275998 DOI: 10.1667/rade-21-00140.1.s1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/22/2022] [Indexed: 11/03/2022]
Abstract
The biological effects of ultrasound may be classified into thermal and nonthermal mechanisms. The nonthermal effects may be further classified into cavitational and noncavitational mechanisms. DNA damage induced by ultrasound is considered to be related to nonthermal cavitations. For this aspect, many in vitro studies on DNA have been conducted for evaluating the safety of diagnostic ultrasound, particularly in fetal imaging. Technological advancement in detecting DNA damage both in vitro and in vivo have elucidated the mechanism of DNA damage formation and their cellular response. Damage to DNA, and the residual damages after DNA repair are implicated in the biological effects. Here, we discuss the historical evidence of ultrasound on DNA damage and the mechanism of DNA damage formation both in vitro and in vivo, compared with those induced by ionizing radiation. We also offer a commentary on the safety of ultrasound over X-ray-based imaging. Also, understanding the various mechanisms involved in the bioeffects of ultrasound will lead us to alternative strategies for use of ultrasound for therapy.
Collapse
Affiliation(s)
- Yukihiro Furusawa
- Department of Liberal Arts and Sciences, Toyama Prefecture University, Toyama 939-0398, Japan
| | - Takashi Kondo
- Department of Radiological Sciences Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Katsuro Tachibana
- Department of Anatomy. Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Loreto B Feril
- Department of Anatomy. Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| |
Collapse
|
11
|
Beyazal Celiker F, Tümkaya L, Mercantepe T, Zengin E, Beyazal M, Turan A, Beyazal Polat H, Topal Suzan Z, Yılmaz A. The effects of long-term doppler ultrasound exposure in the prenatal period on renal tissue physiology in rats. Electromagn Biol Med 2022; 41:121-128. [DOI: 10.1080/15368378.2022.2028633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Fatma Beyazal Celiker
- Department of Radiology, Faculty of Medicine, University of Recep Tayyip Erdogan, Rize, Turkey
| | - Levent Tümkaya
- Department of Histology and Embryology, Faculty of Medicine, University of Recep Tayyip Erdogan, Rize, Turkey
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, University of Recep Tayyip Erdogan, Rize, Turkey
| | - Ertan Zengin
- Department of Radiology, Faculty of Medicine, University of Recep Tayyip Erdogan, Rize, Turkey
| | - Mehmet Beyazal
- Department of Radiology, Faculty of Medicine, University of Recep Tayyip Erdogan, Rize, Turkey
| | - Arzu Turan
- Department of Radiology, Faculty of Medicine, University of Recep Tayyip Erdogan, Rize, Turkey
| | - Hatice Beyazal Polat
- Department of Internal Medicine, Faculty of Medicine, University of Recep Tayyip Erdogan, Rize, Turkey
| | - Zehra Topal Suzan
- Department of Histology and Embryology, Faculty of Medicine, University of Recep Tayyip Erdogan, Rize, Turkey
| | - Adnan Yılmaz
- Department of Biochemistry, Faculty of Medicine, University of Recep Tayyip Erdogan, Rize, Turkey
| |
Collapse
|
12
|
Fontana F, Iberite F, Cafarelli A, Aliperta A, Baldi G, Gabusi E, Dolzani P, Cristino S, Lisignoli G, Pratellesi T, Dumont E, Ricotti L. Development and validation of low-intensity pulsed ultrasound systems for highly controlled in vitro cell stimulation. ULTRASONICS 2021; 116:106495. [PMID: 34186322 DOI: 10.1016/j.ultras.2021.106495] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/25/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
This work aims to describe the development and validation of two low-intensity pulsed ultrasound stimulation systems able to control the dose delivered to the biological target. Transducer characterization was performed in terms of pressure field shape and intensity, for a high-frequency range (500 kHz to 5 MHz) and for a low-frequency value (38 kHz). This allowed defining the distance, on the beam axis, at which biological samples should be placed during stimulation and to exactly know the intensity at the target. Carefully designed retaining systems were developed, for hosting biological samples. Sealing tests proved their impermeability to external contaminants. The assembly/de-assembly time of the systems resulted ~3 min. Time-domain acoustic simulations allowed to precisely estimate the ultrasound beam within the biological sample chamber, thus enabling the possibility to precisely control the pressure to be transmitted to the biological target, by modulating the transducer's input voltage. Biological in vitro tests were also carried out, demonstrating the sterility of the system and the absence of toxic and inflammatory effects on growing cells after multiple immersions in water, over seven days.
Collapse
Affiliation(s)
- F Fontana
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127 Pisa, Italy; Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
| | - F Iberite
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127 Pisa, Italy; Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
| | - A Cafarelli
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127 Pisa, Italy; Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
| | - A Aliperta
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127 Pisa, Italy; Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
| | - G Baldi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127 Pisa, Italy; Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
| | - E Gabusi
- IRCCS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, 40136 Bologna, Italy.
| | - P Dolzani
- IRCCS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, 40136 Bologna, Italy.
| | - S Cristino
- Dipartimento Scienze Biologiche, Geologiche e Ambientali (BiGeA), Università di Bologna, 40126 Bologna, Italy.
| | - G Lisignoli
- IRCCS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, 40136 Bologna, Italy.
| | | | - E Dumont
- Image Guided Therapy, 33600 Pessac, France.
| | - L Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127 Pisa, Italy; Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
| |
Collapse
|
13
|
Low-intensity ultrasound inhibits melanoma cell proliferation in vitro and tumor growth in vivo. J Med Ultrason (2001) 2021; 48:451-461. [PMID: 34453238 DOI: 10.1007/s10396-021-01131-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE To determine the effect of low-intensity ultrasound on cancer cell proliferation in vitro and tumor growth in vivo. METHODS In vitro, several cancer cell lines were exposed to low-intensity ultrasound at 0.11 W/cm2 for 2 min. Of the cell lines screened, melanoma C32 is one of the cell lines that showed sensitivity to growth inhibition by ultrasound and was therefore used in succeeding experiments. In vivo, under the same ultrasound conditions used in vitro, C32 tumors in mice were exposed to ultrasound daily for 2 weeks, and the tumor volumes were monitored weekly using sonography. RESULTS In vitro, C32 cell growth was inhibited, attaining 43.2% inhibition on the 3rd day. In vivo, tumor growth was significantly inhibited, with the treated tumors exhibiting 2.7-fold slowed tumor growth vs. untreated tumors at week 2. Such inhibition was not associated with increased cell death. Several genes related to the cell cycle and proliferation were among those significantly regulated. CONCLUSION These findings highlight the potential of low-intensity ultrasound to inhibit tumor growth in a noninvasive, safe, and easy-to-administer way. In addition, this may suggest that the mechanical stress induced by ultrasound on C32 cells may have affected the intrinsic biomolecular mechanism related to the cell growth of this particular cell line. Further research is needed to identify which of the regulated genes played key roles in growth inhibition.
Collapse
|
14
|
Zhang M, Li B, Liu Y, Tang R, Lang Y, Huang Q, He J. Different Modes of Low-Frequency Focused Ultrasound-Mediated Attenuation of Epilepsy Based on the Topological Theory. MICROMACHINES 2021; 12:mi12081001. [PMID: 34442623 PMCID: PMC8399944 DOI: 10.3390/mi12081001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 01/17/2023]
Abstract
Epilepsy is common brain dysfunction, where abnormal synchronized activities can be observed across multiple brain regions. Low-frequency focused pulsed ultrasound has been proven to modulate the epileptic brain network. In this study, we used two modes of low-intensity focused ultrasound (pulsed-wave and continuous-wave) to sonicate the brains of KA-induced epileptic rats, analyzed the EEG functional brain connections to explore their respective effect on the epileptic brain network, and discuss the mechanism of ultrasound neuromodulation. By comparing the brain network characteristics before and after sonication, we found that two modes of ultrasound both significantly affected the functional brain network, especially in the low-frequency band below 12 Hz. After two modes of sonication, the power spectral density of the EEG signals and the connection strength of the brain network were significantly reduced, but there was no significant difference between the two modes. Our results indicated that the ultrasound neuromodulation could effectively regulate the epileptic brain connections. The ultrasound-mediated attenuation of epilepsy was independent of modes of ultrasound.
Collapse
Affiliation(s)
- Minjian Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (M.Z.); (B.L.); (Y.L.); (Q.H.)
| | - Bo Li
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (M.Z.); (B.L.); (Y.L.); (Q.H.)
| | - Yafei Liu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (M.Z.); (B.L.); (Y.L.); (Q.H.)
| | - Rongyu Tang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China; (R.T.); (Y.L.)
| | - Yiran Lang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China; (R.T.); (Y.L.)
| | - Qiang Huang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (M.Z.); (B.L.); (Y.L.); (Q.H.)
| | - Jiping He
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (M.Z.); (B.L.); (Y.L.); (Q.H.)
- Correspondence: ; Tel.: +86-010-68917396
| |
Collapse
|
15
|
Shi J, Fu C, Su X, Feng S, Wang S. Ultrasound-Stimulated Microbubbles Inhibit Aggressive Phenotypes and Promotes Radiosensitivity of esophageal squamous cell carcinoma. Bioengineered 2021; 12:3000-3013. [PMID: 34180353 PMCID: PMC8806926 DOI: 10.1080/21655979.2021.1931641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ultrasound (US) is reported to improve the delivery efficiency of drugs loading onto large nanoparticles due to the sonoporation effect. Microbubbles (MBs) can be used as contrast agents of US expanding and contracting under low-amplitude US pressure waves. Ultrasound-stimulated microbubbles (USMBs) therapy is a promising option for the treatment of various cancers as a radiosensitizer. However, its role in esophageal squamous cell carcinoma (ESCC) remains unknown. In our study, human ESCC cell lines (KYSE-410, KYSE-1140) were treated with radiation solely, US alone, or radiation in combination with US or USMBs. The migration and invasion abilities of ESCC cells were examined by wound healing and Transwell assays. ESCC cell apoptosis was assessed using flow cytometry analysis and TUNEL assays. The levels of proteins associated with cell apoptosis and angiogenesis were measured by western blot analysis. A tube formation assay was performed to detect the ESCC cell angiogenesis. We found that USMBs at high levels most effectively most efficiently enhanced the effect of radiation, and significant changes in the viability (48%-51%), proliferation (1%), migration (63%-71%), invasion (52%) and cell apoptosis (31%-50%) of ESCC cells were observed compared with the control group in vitro. The ESCC angiogenesis was inhibited by US or radiation treatment and further inhibited by a combination of radiation and US or USMBs. USMBs at high levels most effectively enhanced the inhibitory effect of radiotherapy on ESCC cell apoptosis. Overall, USMBs enhanced the radiosensitivity of esophageal squamous cell carcinoma cells.Graphical abstractUSMBs treatment enhanced the anti-tumor effect of radiation on ESCC cell proliferation, migration, invasion, angiogenesis and apoptosis in vitro.1USMBs enhance the radiation-induced inhibition on ESCC cell growth2USMBs promote the radiation effect on ESCC cell apoptosis3USMBs enhance radiation-caused suppression on ESCC cell migration and invasion4USMBs enhance the suppression of radiation on ESCC angiogenesis[Figure: see text].
Collapse
Affiliation(s)
- Jinjun Shi
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing Jiangsu, China
| | - Chenchun Fu
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xiangyu Su
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Shicheng Feng
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Sheng Wang
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Uddin SMZ, Komatsu DE, Motyka T, Petterson S. Low-Intensity Continuous Ultrasound Therapies—A Systematic Review of Current State-of-the-Art and Future Perspectives. J Clin Med 2021; 10:2698. [PMID: 34207333 PMCID: PMC8235587 DOI: 10.3390/jcm10122698] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 01/02/2023] Open
Abstract
Therapeutic ultrasound has been studied for over seven decades for different medical applications. The versatility of ultrasound applications are highly dependent on the frequency, intensity, duration, duty cycle, power, wavelength, and form. In this review article, we will focus on low-intensity continuous ultrasound (LICUS). LICUS has been well-studied for numerous clinical disorders, including tissue regeneration, pain management, neuromodulation, thrombosis, and cancer treatment. PubMed and Google Scholar databases were used to conduct a comprehensive review of all research studying the application of LICUS in pre-clinical and clinical studies. The review includes articles that specify intensity and duty cycle (continuous). Any studies that did not identify these parameters or used high-intensity and pulsed ultrasound were not included in the review. The literature review shows the vast implication of LICUS in many medical fields at the pre-clinical and clinical levels. Its applications depend on variables such as frequency, intensity, duration, and type of medical disorder. Overall, these studies show that LICUS has significant promise, but conflicting data remain regarding the parameters used, and further studies are required to fully realize the potential benefits of LICUS.
Collapse
Affiliation(s)
- Sardar M. Z. Uddin
- Department of Orthopaedics and Rehabilitation, Stony Brook University, Stony Brook, NY 11794, USA;
| | - David E. Komatsu
- Department of Orthopaedics and Rehabilitation, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Thomas Motyka
- Department of Osteopathic Manipulative Medicine, Campbell University, Buies Creek, NC 27506, USA;
| | | |
Collapse
|
17
|
Lopez W, Nguyen N, Cao J, Eddow C, Shung KK, Lee NS, Chow MSS. Ultrasound Therapy, Chemotherapy and Their Combination for Prostate Cancer. Technol Cancer Res Treat 2021; 20:15330338211011965. [PMID: 34013821 PMCID: PMC8141993 DOI: 10.1177/15330338211011965] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Prostate cancer is the second leading cause of cancer death in men. Its current treatment includes various physical and chemical approaches for the localized and advanced prostate cancer [e.g. metastatic castrate resistant prostate cancer (mCRPC)]. Although many new drugs are now available for prostate cancer, none is suitable for local treatment that can reduce adverse effects often associated with the current physical treatment. Of the drugs approved by FDA for mCRPC, the best mean improvement in overall survival is only about 4.8 months. Therefore, there is a need for improved treatment approaches for prostate cancer, especially drug-resistant cancer. Ultrasound therapy represents a useful new physical approach for the drug-resistant cancer treatment by facilitating the entry of the related chemotherapy drug into the target cancer cells. There are two versions of ultrasound: High Intensity Focused Ultrasound (HIFU) and Low Intensity Pulsed Ultrasound (LIPUS). HIFU has been a promising treatment option for prostate cancer due to its noninvasiveness and various biological effects on cancer tissue. It has been approved for the treatment of cancer and in recent years there have been numerous findings suggesting HIFU can reduce cancer cell viability and possibly reverse the spread of cancerous tumors. LIPUS is currently being studied as an alternative treatment option for prostate cancer. Preliminary studies have found LIPUS to reduce cancer cell viability without the side effects seen in HIFU. Reversible cell membrane damage caused by LIPUS could allow increased uptake of anticancer drugs, enhancing cytotoxicity and death of cancer cells. In this way, a low dose of anticancer drug is more effective toward cancer cells while there is less damage to normal cells. The combination of LIPUS with certain chemotherapeutic agents can be an exciting physical-chemical combination therapy for prostate cancer. This review will focus on this topic as well as the clinical use of HIFU to provide an understanding of their current use and future potential role for prostate cancer therapy.
Collapse
Affiliation(s)
- William Lopez
- College of Biomedical Sciences, College of Health Sciences, College of Osteopathic Medicine of the Pacific and College of Pharmacy, 6645Western University of Health Sciences, Pomona, CA, USA
| | - Nhu Nguyen
- College of Biomedical Sciences, College of Health Sciences, College of Osteopathic Medicine of the Pacific and College of Pharmacy, 6645Western University of Health Sciences, Pomona, CA, USA
| | - Jessica Cao
- College of Biomedical Sciences, College of Health Sciences, College of Osteopathic Medicine of the Pacific and College of Pharmacy, 6645Western University of Health Sciences, Pomona, CA, USA
| | - Christine Eddow
- College of Biomedical Sciences, College of Health Sciences, College of Osteopathic Medicine of the Pacific and College of Pharmacy, 6645Western University of Health Sciences, Pomona, CA, USA
| | - K Kirk Shung
- Department of Biomedical Engineering, 5116University of Southern California, Los Angeles, CA, USA
| | - Nan Sook Lee
- Department of Biomedical Engineering, 5116University of Southern California, Los Angeles, CA, USA
| | - Mosses S S Chow
- College of Biomedical Sciences, College of Health Sciences, College of Osteopathic Medicine of the Pacific and College of Pharmacy, 6645Western University of Health Sciences, Pomona, CA, USA
| |
Collapse
|
18
|
Joiner JB, Pylayeva-Gupta Y, Dayton PA. Focused Ultrasound for Immunomodulation of the Tumor Microenvironment. THE JOURNAL OF IMMUNOLOGY 2021; 205:2327-2341. [PMID: 33077668 DOI: 10.4049/jimmunol.1901430] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
Focused ultrasound (FUS) has recently emerged as a modulator of the tumor microenvironment, paving the way for FUS to become a safe yet formidable cancer treatment option. Several mechanisms have been proposed for the role of FUS in facilitating immune responses and overcoming drug delivery barriers. However, with the wide variety of FUS parameters used in diverse tumor types, it is challenging to pinpoint FUS specifications that may elicit the desired antitumor response. To clarify FUS bioeffects, we summarize four mechanisms of action, including thermal ablation, hyperthermia/thermal stress, mechanical perturbation, and histotripsy, each inducing unique vascular and immunological effects. Notable tumor responses to FUS include enhanced vascular permeability, increased T cell infiltration, and tumor growth suppression. In this review, we have categorized and reviewed recent methods of using therapeutic ultrasound to elicit an antitumor immune response with examples that reveal specific solutions and challenges in this new research area.
Collapse
Affiliation(s)
- Jordan B Joiner
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Yuliya Pylayeva-Gupta
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; .,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Paul A Dayton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; .,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and.,Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599
| |
Collapse
|
19
|
Duan X, Zhou Q, Wan JMF, Yu ACH. Sonoporation generates downstream cellular impact after membrane resealing. Sci Rep 2021; 11:5161. [PMID: 33664315 PMCID: PMC7933147 DOI: 10.1038/s41598-021-84341-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 02/15/2021] [Indexed: 11/29/2022] Open
Abstract
Sonoporation via microbubble-mediated ultrasound exposure has shown potential in drug and gene delivery. However, there is a general lack of mechanistic knowledge on sonoporation-induced cellular impact after membrane resealing, and this issue has made it challenging to apply sonoporation efficiently in practice. Here, we present new evidence on how sonoporation, without endangering immediate cell viability, may disrupt downstream cellular hemostasis in ways that are distinguished from the bioeffects observed in other sonicated and unsonoporated cells. Sonoporation was realized on HL-60 leukemia cells by delivering pulsed ultrasound (1 MHz frequency, 0.50 MPa peak negative pressure; 10% duty cycle; 30 s exposure period; 29.1 J/cm2 acoustic energy density) in the presence of lipid-shelled microbubbles (1:1 cell-to-bubble ratio). Results showed that 54.6% of sonoporated cells, despite remaining initially viable, underwent apoptosis or necrosis at 24 h after sonoporation. Anti-proliferation behavior was also observed in sonoporated cells as their subpopulation size was reduced by 43.8% over 24 h. Preceding these cytotoxic events, the percentages of sonoporated cells in different cell cycle phases were found to be altered by 12 h after exposure. As well, for sonoporated cells, their expressions of cytoprotective genes in the heat shock protein-70 (HSP-70) family were upregulated by at least 4.1 fold at 3 h after exposure. Taken altogether, these findings indicate that sonoporated cells attempted to restore homeostasis after membrane resealing, but many of them ultimately failed to recover. Such mechanistic knowledge should be taken into account to devise more efficient sonoporation-mediated therapeutic protocols.
Collapse
Affiliation(s)
- Xinxing Duan
- Schlegel Research Institute for Aging & Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada.,School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Qian Zhou
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Jennifer M F Wan
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| | - Alfred C H Yu
- Schlegel Research Institute for Aging & Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
20
|
Celiker M, Beyazal Celiker F, Tumkaya L, Oghan F, Ozgur A, Mercantepe T, Terzi S, Beyazal M, Turan A, Cinar S, Zengin E, Demir E, Dursun E. Effects of long-term Doppler ultrasound exposure on cochlea and cochlear nucleus in prenatal period in an experimental model. J Matern Fetal Neonatal Med 2021; 35:5117-5124. [PMID: 33615966 DOI: 10.1080/14767058.2021.1875431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND New generation Doppler ultrasonography (DUSG) application effects on cochlea and cochlear nucleus (CN) are unclear. We aimed to investigate the effects of new generation DUSG application at different frequencies in prenatal period on cochlea and CN in rats. OBJECTIVE Twenty-four pregnant female rats were divided into three groups (n = 8). Group 1 was the control group and was not subjected to any treatment. Group 2 was determined as the USG every day (USGED) treatment group. Group 2 has received DUSG application every day from the 4th to 18th day (20 min/15 per day). Group 3 has received DUSG application as "2 days/one dose as every other day application" (USG2D1) from the 4th to 18th day (20 min/8 every other day). Twenty-four female rats were sacrificed in 21 days. Also, 24 pups were sacrificed after two days. First day after born, the cochlear activities of the right ears of all pups were examined using DPOAEs. Second day, neural tissues from CN were evaluated histopathologically and immunohistochemically. RESULTS There was no any statistical difference between the groups in respect of histopathologically. USGED group showed mild caspase-3 positive neurons and glial cells. However, there was no significant difference between the USGED and other groups (p>.05). Similarly, the rats applied with USG2D1 had mild caspase-3 expression, but no significant difference between the USG2D1 and other groups (p>.05). Differences in DPOAE amplitudes, and therefore in cochlear activity, between the groups were revealed. The decrease in cochlear activity between the groups involved frequencies at 2, 8, 16, and 32 kHz (p<.05). CONCLUSIONS Multiple administration of new generation DUSG to pregnant rats has not shown harmful effects on the cochlear neural tissue. High frequencies are more sensitive in cochlea to apply DUSG.
Collapse
Affiliation(s)
- Metin Celiker
- Department of Otorhinolaryngology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Fatma Beyazal Celiker
- Department of Radiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Levent Tumkaya
- Department of Histology-Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Fatih Oghan
- Department of Otorhinolaryngology, Faculty of Medicine, Kutahya Saglik Bilimleri University, Kutahya, Turkey
| | - Abdulkadir Ozgur
- Department of Otorhinolaryngology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Tolga Mercantepe
- Department of Histology-Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Suat Terzi
- Department of Otorhinolaryngology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Mehmet Beyazal
- Department of Radiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Arzu Turan
- Department of Radiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Seda Cinar
- Department of Histology-Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Ertan Zengin
- Department of Radiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Emine Demir
- Department of Radiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Engin Dursun
- Department of Otorhinolaryngology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
21
|
Omar MM, Hasan OA, Zaki RM, Eleraky NE. Externally Triggered Novel Rapid-Release Sonosensitive Folate-Modified Liposomes for Gemcitabine: Development and Characteristics. Int J Nanomedicine 2021; 16:683-700. [PMID: 33536754 PMCID: PMC7850458 DOI: 10.2147/ijn.s266676] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/10/2020] [Indexed: 01/07/2023] Open
Abstract
PURPOSE To develop an externally triggered rapid-release targeted system for treating ovarian cancer, gemcitabine (GMC) was entrapped into sonosensitive (SoS) folate (Fo)-modified liposomes (LPs). METHODS GMC-loaded LPs (GMC LPs), GMC-loaded Fo-targeted LPs (GMC-Fo LPs), and GMC-loaded Fo-targeted SoS LPs (GMC-SoS Fo LPs) were prepared utilizing a film-hydration technique and evaluated based on particle size, ζ-potential, and percentage entrapped drug. Cellular uptake of the fluorescent delivery systems in Fo-expressing ovarian cancer cells was quantified using flow cytometry. Finally, tumor-targeting ability, in vivo evaluation, and pharmacokinetic studies were performed. RESULTS GMC LPs, GMC-Fo LPs, and GMC-SoS Fo LPs were successfully prepared, with sizes of <120.3±2.4 nm, 39.7 mV ζ-potential, and 86.3%±1.84% entrapped drug. Cellular uptake of GMC-SoS Fo LPs improved 6.51-fold over GMC LPs (under ultrasonic irradiation - p<0.05). However, cellular uptake of GMC-Fo LPs improved just 1.24-fold over GMC LPs (p>0.05). Biodistribution study showed that of GMC concentration in tumors treated with GMC-SoS-Fo LPs (with ultrasound) improved 2.89-fold that of free GMC (p<0.05). In vivo, GMC-SoS Fo LPs showed the highest antiproliferative and antitumor action on ovarian cancer. CONCLUSION These findings showed that externally triggered rapid-release SoS Fo-modified LPs are a promising system for delivering rapid-release drugs into tumors.
Collapse
Affiliation(s)
- Mahmoud M Omar
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Deraya University, Minia, 61768, Egypt
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy,Sohag University, Sohag, 82524, Egypt
| | - Omiya Ali Hasan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Deraya University, Minia, 61768, Egypt
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy,Sohag University, Sohag, 82524, Egypt
| | - Randa Mohammed Zaki
- Department of Pharmaceutics, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nermin E Eleraky
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
22
|
Perrucini PDDO, Oliveira RFD, Medeiros FBPD, Bertin LD, Pires-Oliveira DADA, Frederico RCP. Ultrasonic therapy modulates the expression of genes related to neovascularization and inflammation in fibroblasts. FISIOTERAPIA EM MOVIMENTO 2021. [DOI: 10.1590/fm.2021.34112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract Introduction: In the rehabilitation of musculoskeletal injuries, ultrasound is widely used in clinical practice. Objective: To evaluate the effects of pulsed ultrasonic therapy on the viability and modulation of genes involved in inflammation (IL-6) and neovascularization (VEGF) processes of L929 fibroblast cells. Methods: For irradiation with ultrasound the cells were subdivided into groups: G1 (without irradiation), G2 (0.3 W/cm2-20%) and G3 (0.6 W/cm2-20%), with periods of treatment at 24, 48 and 72 hours. The cell viability assay was analyzed by the MTT method and gene modulation was analyzed by RT-qPCR method. Results: After the comparative analysis between groups, only G2 and G3 (48-hour) presented statistically significant differences in relation to the control. In relation to the gene expression, the selection of the groups analyzed was delimited according to the comparative analysis of the values obtained by the MTT test. After the achievement of RT-qPCR, it could be observed that in G2 the amount of VEGF gene transcripts increased by 1.125-fold compared to endogenous controls, and increased 1.388-fold in G3. The IL-6 gene, on the other hand, had its transcripts reduced in both G2 (5.64x10-9) and G3 (1.91x10-6). Conclusion: Pulsed ultrasound in L929 fibroblasts showed a significant biostimulatory effect in the 48-hour period, with increased cell viability, and the same effect in the modulation of gene expression related the neovascularization and inflammation, mediating the acceleration of the tissue repair cascade.
Collapse
|
23
|
Gonçalves WLS, Rodrigues AN, Chaves R, Gouvea SA. Hypotension and Bradycardia Produced by Transthoracic Application of Low-Intensity Ultrasound Therapy in Hearts of Healthy Rats - A Preclinical Study. Braz J Cardiovasc Surg 2020; 35:824-830. [PMID: 33118749 PMCID: PMC7598988 DOI: 10.21470/1678-9741-2019-0255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Objective To investigate the cardiovascular effects produced by transthoracic application of low-intensity pulsed ultrasound therapy (LIPUST). Methods Three-month-old male Wistar rats (± 300 g, N=16) were randomly allocated in two groups, namely SHAM (control group, faked procedures) and UST (animals treated with LIPUST). These animals, under anesthesia, were instrumented (femoral artery and vein catheterization) for hemodynamic recordings (mean blood pressure [MBP], heart rate [HR]) and blood biochemical profile (lipids, creatine kinase-myocardial band [CK-MB]). Then, LIPUST (spatial average-temporal average [ISATA] 1-MHz, power 0.1 to 1.2 W/cm2, pulsed 2:8 ms, cycle at 30%, for three minutes) was applied to animals from the UST group, externally to their thorax. SHAM animals were equally manipulated, but without application of ultrasound energy. After the hemodynamic and biochemical measurements, animals were sacrificed, and their hearts were mounted in a Langendorff apparatus for coronary reactivity evaluation. Standard histology techniques were employed to analyze the hearts. Results LIPUST application caused statistically significant reductions in MBP (92±4 vs. 106±1 mmHg) and HR (345±14 vs. 380±17 rpm) when compared with SHAM procedures. UST rats exhibited higher CK-MB levels (318±55 vs. 198±26 U/dL) and lower plasma triglycerides levels (38±7 vs. 70±10 mg/dL) than SHAM animals. Coronary reactivity was not significantly changed by LIPUST. Cardiac histopathology showed an increase in capillary permeability in treated animals when compared with SHAM animals. Conclusion Noninvasive LIPUST induces significant metabolic and hemodynamic changes, including intensity-dependent bradycardia and hypotension, indicating a possible therapeutic effect for cardiac events.
Collapse
Affiliation(s)
- Washington Luiz Silva Gonçalves
- Universidade Santa Úrsula - USU Laboratório de Inovações Tecnológicas no Ensino em Saúde - LITES Botafogo RJ Brasil Laboratório de Inovações Tecnológicas no Ensino em Saúde - LITES, Universidade Santa Úrsula - USU, Botafogo, RJ, Brasil.,Universidade Federal do Espírito Santo - UFES Programa de Pós-Graduação em Ciências Fisiológicas Departamento de Ciências Fisiológicas Vitória ES Brasil Departamento de Ciências Fisiológicas, Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil
| | - Anabel Nunes Rodrigues
- Universidade Federal do Espírito Santo - UFES Programa de Pós-Graduação em Ciências Fisiológicas Departamento de Ciências Fisiológicas Vitória ES Brasil Departamento de Ciências Fisiológicas, Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil
| | - Rodrigo Chaves
- Universidade Santa Úrsula - USU Laboratório de Inovações Tecnológicas no Ensino em Saúde - LITES Botafogo RJ Brasil Laboratório de Inovações Tecnológicas no Ensino em Saúde - LITES, Universidade Santa Úrsula - USU, Botafogo, RJ, Brasil
| | - Sonia Alves Gouvea
- Universidade Federal do Espírito Santo - UFES Programa de Pós-Graduação em Ciências Fisiológicas Departamento de Ciências Fisiológicas Vitória ES Brasil Departamento de Ciências Fisiológicas, Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil
| |
Collapse
|
24
|
Katiyar A, Osborn J, DasBanerjee M, Zhang LG, Sarkar K, Sarker KP. Inhibition of Human Breast Cancer Cell Proliferation by Low-Intensity Ultrasound Stimulation. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2020; 39:2043-2052. [PMID: 32352188 DOI: 10.1002/jum.15312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/17/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVES Cancer is characterized by uncontrolled cell proliferation, which makes novel therapies highly desired. In this study, the effects of near-field low-intensity pulsed ultrasound (LIPUS) stimulation on T47D human breast cancer cell and healthy immortalized MCF-12A breast epithelial cell proliferation were investigated in monolayer cultures. METHODS A customized ultrasound (US) exposure setup was used for the variation of key US parameters: intensity, excitation duration, and duty cycle. Cell proliferation was quantified by 5-bromo-2'-deoxyuridine and alamarBlue assays after LIPUS excitation. RESULTS At a 20% duty cycle and 10-minute excitation period, we varied LIPUS intensity from to 100 mW/cm2 (spatial-average temporal-average) to find a gradual decrease in T47D cell proliferation, the decrease being strongest at 100 mW/cm2 . In contrast, healthy MCF-12A breast cells showed an increase in proliferation when exposed to the same conditions. Above a 60% duty cycle, T47D cell proliferation decreased drastically. Effects of continuous wave US stimulation were further explored by varying the intensity and excitation period. CONCLUSIONS These experiments concluded that, irrespective of the waveform (pulsed or continuous), LIPUS stimulation could inhibit the proliferation of T47D breast cancer cells, whereas the same behavior was not observed in healthy cells. The study demonstrates the beneficial bioeffects of LIPUS on breast cancer cells and offers the possibility of developing novel US-mediated cancer therapy.
Collapse
Affiliation(s)
- Amit Katiyar
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| | - Jenna Osborn
- Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC, USA
| | - Malaya DasBanerjee
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC, USA
| | - Kausik Sarkar
- Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC, USA
| | - Krishna Pada Sarker
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
25
|
Sun X, Guo L, Shang M, Shi D, Liang P, Jing X, Meng D, Liu X, Zhou X, Zhao Y, Li J. Ultrasound Mediated Destruction of LMW-HA-Loaded and Folate-Conjugated Nanobubble for TAM Targeting and Reeducation. Int J Nanomedicine 2020; 15:1967-1981. [PMID: 32273697 PMCID: PMC7102913 DOI: 10.2147/ijn.s238587] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose To synthesize and evaluate a novel folate-conjugated ultrasonic nanobubble (HA-FOL-NB) loading low-molecular-weight hyaluronic acid (LMW-HA) for specific tumor-associated macrophages (TAMs) targeting and reeducation. Methods The characteristics, cytotoxicity, contrast-enhanced ultrasound imaging (CEUS), and targeting ability to TAMs of HA-FOL-NBs were investigated. The TAMs reprogramming function of HA-FOL-NBs combining ultrasound targeted nanobubble destruction was assessed as well. Results HA-FOL-NBs (about 342 nm) showed remarkable contrast enhancement images, and higher targeting ability due to the folate to folate receptor interactions. Combined with ultrasound targeted nanobubble destruction, HA-FOL-NBs could specifically deliver LMW-HA into TAMs, thus exhibited stronger reeducation effect compared with free LMW-HA. Conclusion These folate-conjugated and LMW-HA-loaded nanobubbles, with targeted CEUS imaging and TAMs reeducation, are expected to be a potential approach for tumor therapy based on TAMs, especially folate receptor-positive ones.
Collapse
Affiliation(s)
- Xiao Sun
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Lu Guo
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Mengmeng Shang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Dandan Shi
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Ping Liang
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xuanxuan Jing
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Dong Meng
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Xinxin Liu
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Xiaoying Zhou
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Yading Zhao
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Jie Li
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| |
Collapse
|
26
|
Kim KH, Im HW, Karmacharya MB, Kim S, Min BH, Park SR, Choi BH. Low-intensity ultrasound attenuates paw edema formation and decreases vascular permeability induced by carrageenan injection in rats. JOURNAL OF INFLAMMATION-LONDON 2020; 17:7. [PMID: 32082083 PMCID: PMC7020343 DOI: 10.1186/s12950-020-0235-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/22/2020] [Indexed: 11/10/2022]
Abstract
Background Therapeutic potential of low-intensity ultrasound (LIUS) has become evident in various musculoskeletal diseases. We have previously shown that LIUS has an inhibitory effect on local edema in various diseases including the arthritis and brain injury. In this study, we examined whether LIUS can attenuate paw edema formation vis-à-vis vascular permeability and inflammation in rats induced by carrageenan. LIUS with a frequency of 1 MHz and the intensities of 50, 100, or 200 mW/cm2 were exposed on rat paws for 10 min immediately after carrageenan injection. Results Carrageenan injection induced paw edema which was peaked at 6 h and gradually decreased nearly to the initial baseline value after 72 h. LIUS showed a significant reduction of paw edema formation at 2 and 6 h at all intensities tested. The highest reduction was observed at the intensity of 50 mW/cm2. Histological analyses confirmed that LIUS clearly decreased the carrageenan-induced swelling of interstitial space under the paw skin and infiltration of polymorphonuclear leukocytes. Moreover, Evans Blue extravasation analyses exhibited a significant decreases of vascular permeability by LIUS. Finally, immunohistochemical staining showed that expression of pro-inflammatory proteins, namely, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) induced by carrageenan injection was reduced back to the normal level after LIUS stimulation. Conclusions These results provide a new supporting evidence for LIUS as a therapeutic alternative for the treatment of edema in inflammatory diseases such as cellulitis.
Collapse
Affiliation(s)
- Kil Hwan Kim
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Hyeon-Woo Im
- 2Department of Physiology and Biophysics, Inha University College of Medicine, 100 Inha-ro, Nam-gu, Incheon, 22212 Republic of Korea
| | - Mrigendra Bir Karmacharya
- 3Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Sejong Kim
- 4Department of Biomedical Sciences, Inha University College of Medicine, 100 Inha-ro, Nam-gu, Incheon, 22212 Republic of Korea
| | - Byoung-Hyun Min
- 5Department of Orthopaedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - So Ra Park
- 2Department of Physiology and Biophysics, Inha University College of Medicine, 100 Inha-ro, Nam-gu, Incheon, 22212 Republic of Korea
| | - Byung Hyune Choi
- 4Department of Biomedical Sciences, Inha University College of Medicine, 100 Inha-ro, Nam-gu, Incheon, 22212 Republic of Korea
| |
Collapse
|
27
|
Effects of Ultrasound Processing on Physicochemical Parameters, Antioxidants, and Color Quality of Bayberry Juice. J FOOD QUALITY 2019. [DOI: 10.1155/2019/7917419] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Effects of ultrasound on physicochemical parameters, ascorbic acid, anthocyanins, polymeric color (PC), 5-hydroxymethylfurfural (HMF), browning degree (BD), color, and superoxide dismutase (SOD) activity of bayberry juice were investigated. Treatments were carried out at amplitude levels from 20 to 100% of total input power (600 W) at 20 kHz for 2–10 min. The results showed that no notable differences in pH, total soluble solids, titratable acidity, and yellowness b∗ values were found in ultrasound-treated samples. The HMF, PC, BD, and L∗ values of bayberry juice obviously increased with enhancing ultrasonic intensity and treatment time. The ascorbic acid exhibited no notable changes after ultrasound treatment at lower intensity levels for short time, while anthocyanins showed an increasing tendency. With increasing ultrasonic intensity and time, antioxidants gradually decreased. Furthermore, the SOD activity apparently increased at short-time treatment and then decreased with ultrasound processing extension.
Collapse
|
28
|
Xu W, Zhang X, Hu X, Zhiyi C, Huang P. Translational Prospects of ultrasound-mediated tumor immunotherapy: Preclinical advances and safety considerations. Cancer Lett 2019; 460:86-95. [DOI: 10.1016/j.canlet.2019.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022]
|
29
|
Anti-Inflammatory and Healing Effects of Pulsed Ultrasound Therapy on Fibroblasts. Am J Phys Med Rehabil 2019; 99:19-25. [DOI: 10.1097/phm.0000000000001265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Fontana F, Iberite F, Morchi L, Pratellesi T, Cafarelli A, Ricotti L. Highly controlled and usable system for Low-Intensity Pulsed Ultrasound Stimulation of Cells. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2019:2513-2516. [PMID: 31946408 DOI: 10.1109/embc.2019.8857772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This work aims to describe the design and development of an in vitro highly controlled ultrasonic stimulation system able to guarantee, at the same time, high usability and full sterility of the tested samples. After creating the first prototype of an ultrasound-transparent three-chambers culture well, sealing tests were conducted to prove its impermeability to external contaminants and in vitro tests were carried out to verify the usability of this system for ultrasonic stimulation of cells in vitro. No statistically significant differences were found between control and tested samples during sealing tests, thus demonstrating optimal sealing ability towards external contaminants. Furthermore, the thin polystyrene membrane used to guarantee US-transparency guaranteed a good adhesion and viability of both human fibroblasts and induced pluripotent stem cells.
Collapse
|
31
|
Hsieh YL, Chen HY, Yang CC. Early Intervention with Therapeutic Low-Intensity Pulsed Ultrasound in Halting the Progression of Post-traumatic Osteoarthritis in a Rat Model. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2637-2645. [PMID: 30262135 DOI: 10.1016/j.ultrasmedbio.2018.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 05/30/2018] [Accepted: 08/12/2018] [Indexed: 06/08/2023]
Abstract
Anterior cruciate ligament (ACL) and meniscus injuries are highly correlated with post-traumatic knee osteoarthritis (PTOA). The aim of this study was to examine whether early intervention with low-intensity pulsed ultrasound (LIPUS) at an intensity of 0.1 W/cm2 helps delay PTOA progression. A PTOA model was established by ACL transection and meniscectomy in male Sprague-Dawley rats. LIPUS intervention (1.0 MHz, 0.1 W/cm2) started on the third day after surgery and continued for 4 consecutive wk. Histopathological analyses and immunoassays of collagen type II and matrix metallopeptidase 13 in joints were conducted. Results indicated that compared with the sham treatment, LIPUS significantly reduced Mankin scores, inflammatory cells and matrix metallopeptidase 13 expression and increased collagen type II expression in rats with PTOA (p < 0.05). Early intervention with LIPUS has beneficial effects on delaying cartilage degradation by reducing synovial inflammation and matrix metallopeptidase 13 expression, as well as enhancing collagen type II expression in cartilage.
Collapse
Affiliation(s)
- Yueh-Ling Hsieh
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan.
| | - Han-Yu Chen
- Department of Physical Therapy, Hung-Kuang University, Taichung, Taiwan
| | - Chen-Chia Yang
- Kao-An Physical Medicine and Rehabilitation Clinic, Taichung, Taiwan
| |
Collapse
|
32
|
Suehiro S, Ohnishi T, Yamashita D, Kohno S, Inoue A, Nishikawa M, Ohue S, Tanaka J, Kunieda T. Enhancement of antitumor activity by using 5-ALA-mediated sonodynamic therapy to induce apoptosis in malignant gliomas: significance of high-intensity focused ultrasound on 5-ALA-SDT in a mouse glioma model. J Neurosurg 2018; 129:1416-1428. [PMID: 29350596 DOI: 10.3171/2017.6.jns162398] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 06/05/2017] [Indexed: 01/29/2023]
Abstract
OBJECTIVEHigh invasiveness of malignant gliomas frequently causes early local recurrence of the tumor, resulting in extremely poor outcome. To control such recurrence, novel therapies targeted toward infiltrating glioma cells around the tumor border are required. Here, the authors investigated the antitumor activity of sonodynamic therapy (SDT) combined with a sonosensitizer, 5-aminolevulinic acid (5-ALA), on malignant gliomas to explore the possibility for clinical use of 5-ALA-mediated SDT (5-ALA-SDT).METHODSIn vitro cytotoxicity of 5-ALA-SDT was evaluated in U87 and U251 glioma cells and in U251Oct-3/4 glioma stemlike cells. Treatment-related apoptosis was analyzed using flow cytometry and TUNEL staining. Intracellular reactive oxygen species (ROS) were measured and the role of ROS in treatment-related cytotoxicity was examined by analysis of the effect of pretreatment with the radical scavenger edaravone. Effects of 5-ALA-SDT with high-intensity focused ultrasound (HIFU) on tumor growth, survival of glioma-transplanted mice, and histological features of the mouse brains were investigated.RESULTSThe 5-ALA-SDT inhibited cell growth and changed cell morphology, inducing cell shrinkage, vacuolization, and swelling. Flow cytometric analysis and TUNEL staining indicated that 5-ALA-SDT induced apoptotic cell death in all gliomas. The 5-ALA-SDT generated significantly higher ROS than in the control group, and inhibition of ROS generation by edaravone completely eliminated the cytotoxic effects of 5-ALA-SDT. In the in vivo study, 5-ALA-SDT with HIFU greatly prolonged survival of the tumor-bearing mice compared with that of the control group (p < 0.05). Histologically, 5-ALA-SDT produced mainly necrosis of the tumor tissue in the focus area and induced apoptosis of the tumor cells in the perifocus area around the target of the HIFU-irradiated field. The proliferative activity of the entire tumor was markedly decreased. Normal brain tissues around the ultrasonic irradiation field of HIFU remained intact.CONCLUSIONSThe 5-ALA-SDT was cytotoxic toward malignant gliomas. Generation of ROS by the SDT was thought to promote apoptosis of glioma cells. The 5-ALA-SDT with HIFU induced tumor necrosis in the focus area and apoptosis in the perifocus area of the HIFU-irradiated field, whereas the surrounding brain tissue remained normal, resulting in longer survival of the HIFU-treated mice compared with that of untreated mice. These results suggest that 5-ALA-SDT with HIFU may present a less invasive and tumor-specific therapy, not only for a tumor mass but also for infiltrating tumor cells in malignant gliomas.
Collapse
Affiliation(s)
| | - Takanori Ohnishi
- 4Department of Neurosurgery, Washoukai Sadamoto Hospital, Matsuyama, Ehime, Japan
| | | | | | | | | | - Shiro Ohue
- 2Department of Neurosurgery, Ehime Prefectural Central Hospital, Matsuyama; and
| | - Junya Tanaka
- 3Molecular and Cellular Physiology, Ehime University Graduate School of Medicine, Toon
| | | |
Collapse
|
33
|
Influence of various intensities of 528 Hz sound-wave in production of testosterone in rat's brain and analysis of behavioral changes. Genes Genomics 2018; 41:201-211. [PMID: 30414050 DOI: 10.1007/s13258-018-0753-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 10/11/2018] [Indexed: 10/27/2022]
Abstract
Testosterone is a nuclear androgen receptor ligand that controls multiple pathways in brain. In addition to the active biosynthesis of steroids in classic steroidogenic organs such as gonads, adrenals and placenta, testosterone also produced in astrocyte cells of brain. Testosterone and its level must be regulated in brain; because, it directly and indirectly affects memory and several key behavioral characteristics. The significance of sound waves on key enzymes that regulate levels of testosterone in brain has not been investigated. The aim of our study was to examine physical stress of such as sound on induction behavioral changes in animal models. According to the current study, sound waves with 528 Hz frequency in 100 dB intensity induce testosterone production in brain by enhancing StAR and SF-1 and reducing P450 aromatase gene expression. Frequency of 528 Hz also reduces total concentration of reactive oxidative species in brain tissue. Prolonged exposure to this sound wave showed reduction of anxiety related behaviors in rats. The results reveal that reduced anxiety is related to increased concentration of testosterone in brain. This study may lead to ascertain a possible therapy in which sounds may be utilized to reduce anxiety in individual.
Collapse
|
34
|
Paniagua-Martínez I, Mulet A, García-Alvarado MA, Benedito J. Inactivation of the microbiota and effect on the quality attributes of pineapple juice using a continuous flow ultrasound-assisted supercritical carbon dioxide system. FOOD SCI TECHNOL INT 2018; 24:547-554. [DOI: 10.1177/1082013218774694] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Supercritical carbon dioxide inactivation technology represents a promising nonthermal processing method, as it causes minimum impact on the nutritional food properties. The aim of this study was to analyze the combined effect of supercritical carbon dioxide and high-power ultrasound on the inactivation of natural microbiota and the quality attributes of pineapple juice treated in a continuous flow system. Different juice residence times (3.06–4.6 min), at 100 bar and 31.5 ℃, were used. The results indicated that the microbiota inactivation was complete and the differences obtained in the quality attributes (2.2% for pH, 4.8% for °Brix, 2% for vitamin C) were minimal. During storage, microorganisms were not able to recover and the vitamin C decrease could be limited to 8.2% after four weeks. The results demonstrated that the supercritical carbon dioxide–high-power ultrasound technique could be an excellent alternative for the cold pasteurization of pineapple juice.
Collapse
Affiliation(s)
- I Paniagua-Martínez
- Food Technology Department, Universitat Politècnica de València, Valencia, Spain
- Facultad de Bioanálisis, Universidad Veracruzana, Veracruz, México
| | - A Mulet
- Food Technology Department, Universitat Politècnica de València, Valencia, Spain
| | - MA García-Alvarado
- Chemical and Biochemical Engineering Department, Instituto Tecnológico de Veracruz, Veracruz, Mexico
| | - J Benedito
- Food Technology Department, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
35
|
Canela VC, Crivelaro CN, Ferla LZ, Pelozo GM, Azevedo J, Liebano RE, Nogueira C, Guidi RM, Grecco C, Sant’Ana E. Synergistic effects of Combined Therapy: nonfocused ultrasound plus Aussie current for noninvasive body contouring. Clin Cosmet Investig Dermatol 2018; 11:203-212. [PMID: 29731654 PMCID: PMC5927144 DOI: 10.2147/ccid.s157782] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND OBJECTIVES Nowadays, there are several noninvasive technologies being used for improving of body contouring. The objectives of this pilot study were to verify the effectiveness of the Heccus® device, emphasizing the synergism between nonfocused ultrasound plus Aussie current in the improvement of body contour, and to determine if the association of this therapy with whole-body vibration exercises can have additional positive effects in the results of the treatments. SUBJECTS AND METHODS Twenty healthy women aged 20-40 years participated in the study. Ten patients received Combined Therapy treatment (G1) and the other 10 participants received Combined Therapy with additional vibratory platform treatment (G2). Anthropometric and standardized photography analysis, ultrasonography, cutometry and self-adminestered questionnaires of tolerance and satisfaction levels with the treatment were used. RESULTS Compared with baseline values, reduction of fat thickness was observed by ultrasonography in the posterior thigh area in the G1 group (P<0.05) and in the buttocks (P<0.05) and the posterior thigh areas (P<0.05) in the G2. All the treated areas in both groups showed reduction in cellulite degree in the buttocks, G1 (P<0.05) and G2 (P<0.05), and in posterior thigh areas, G1 (P<0.05) and G2 (P<0.05). Optimal improvement of skin firmness (G1, P<0.0001; G2, P=0.0034) in the treated areas was observed in both groups. CONCLUSION We conclude that the synergistic effects of the Combined Therapy (nonfocused ultrasound plus Aussie current) might be a good option with noninvasive body contouring treatment for improving the aspect of the cellulite, skin firmness and localized fat. If used in association with the whole-body vibratory platform, the results can be better, especially in the treatment of localized fat. Further studies with larger sample size should be performed to confirm these results.
Collapse
Affiliation(s)
| | | | | | | | - Juliana Azevedo
- CDE Medical Imaging Department, Brazilian College of Radiology (CBR), Amparo, SP, Brazil
| | - Richard Eloin Liebano
- Department of Physiotherapy, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Caroline Nogueira
- Research, Development and Innovation Department, Ibramed Research Group (IRG), IBRAMED, Amparo, SP, Brazil
- Biomedical Engineering Department, Faculty of Electrical Engineering and Computing, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Renata Michelini Guidi
- Research, Development and Innovation Department, Ibramed Research Group (IRG), IBRAMED, Amparo, SP, Brazil
- Biomedical Engineering Department, Faculty of Electrical Engineering and Computing, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Clóvis Grecco
- Research, Development and Innovation Department, Ibramed Research Group (IRG), IBRAMED, Amparo, SP, Brazil
| | - Estela Sant’Ana
- Research, Development and Innovation Department, Ibramed Research Group (IRG), IBRAMED, Amparo, SP, Brazil
| |
Collapse
|
36
|
Ultrasound-triggered PLGA microparticle destruction and degradation for controlled delivery of local cytotoxicity and drug release. Int J Biol Macromol 2017; 106:1211-1217. [PMID: 28851638 DOI: 10.1016/j.ijbiomac.2017.08.125] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 08/15/2017] [Accepted: 08/22/2017] [Indexed: 11/21/2022]
Abstract
In this study, we investigated the low intensity ultrasound (US)-controlled delivery of local cytotoxicity and drug release via induced destruction and degradation of microparticles (MPs) made of poly(lactic-co-glycolic acid) (PLGA). This study was conducted in vitro with potential application towards tumor treatment in conjunction with direct injection. MPs, either loaded with or without doxorubicin (DOX), were prepared using a double-emulsion solvent-evaporation technique. First, the MPs were exposed to US with duty cycle (DC)-modulation. The destruction and degradation of MPs were evaluated using light and scanning electron microscopy. Second, the effects of US-mediated destruction/degradation of MPs on the local cytotoxicity as well as DOX release were evaluated. US-triggered MP destruction/degradation significantly enhanced nearby cell death and DOX release. These affects occurred in proportion to the DC. Our findings indicate that controlled cytotoxicity and DOX release by US could be useful in developing the minimally invasive therapeutic applications for tumor treatment.
Collapse
|
37
|
Salgarella AR, Cafarelli A, Ricotti L, Capineri L, Dario P, Menciassi A. Optimal Ultrasound Exposure Conditions for Maximizing C2C12 Muscle Cell Proliferation and Differentiation. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1452-1465. [PMID: 28433437 DOI: 10.1016/j.ultrasmedbio.2017.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 02/27/2017] [Accepted: 03/06/2017] [Indexed: 05/07/2023]
Abstract
Described here is an in vitro systematic investigation of the effects on C2C12 myoblasts of exposure to finely controlled and repeatable low-intensity pulsed ultrasound of different frequencies (500 kHz, 1 MHz, 3 MHz and 5 MHz) and different intensities (250, 500 and 1000 mW/cm2). An in-house stimulation system and an ultrasound-transparent cell culture well minimized reflections and attenuations, allowing precise control of ultrasound delivery. Results indicated that a 3 MHz stimulation at 1 W/cm2 intensity maximized cell proliferation in comparison with the other exposure conditions and untreated controls. In contrast, cell differentiation and the consequent formation of multinucleated myotubes were maximized by 1 MHz stimulation at 500 mW/cm2 intensity. The highly controlled exposure conditions employed allowed precise correlation of the ultrasound delivery to the bio-effects produced, thus overcoming the inconsistency of some results available in the literature and contributing to the potential of ultrasound treatment for muscle therapy and regeneration.
Collapse
Affiliation(s)
| | - Andrea Cafarelli
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera (Pisa), Italy
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera (Pisa), Italy
| | - Lorenzo Capineri
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Paolo Dario
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera (Pisa), Italy
| | - Arianna Menciassi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera (Pisa), Italy
| |
Collapse
|
38
|
Izadifar Z, Babyn P, Chapman D. Mechanical and Biological Effects of Ultrasound: A Review of Present Knowledge. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1085-1104. [PMID: 28342566 DOI: 10.1016/j.ultrasmedbio.2017.01.023] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 05/12/2023]
Abstract
Ultrasound is widely used for medical diagnosis and increasingly for therapeutic purposes. An understanding of the bio-effects of sonography is important for clinicians and scientists working in the field because permanent damage to biological tissues can occur at high levels of exposure. Here the underlying principles of thermal mechanisms and the physical interactions of ultrasound with biological tissues are reviewed. Adverse health effects derived from cellular studies, animal studies and clinical reports are reviewed to provide insight into the in vitro and in vivo bio-effects of ultrasound.
Collapse
Affiliation(s)
- Zahra Izadifar
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Paul Babyn
- Department of Medical Imaging, Royal University Hospital, University of Saskatchewan and Saskatoon Health Region, Saskatoon, Saskatchewan, Canada
| | - Dean Chapman
- Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
39
|
Tumor ablation using low-intensity ultrasound and sound excitable drug. J Control Release 2017; 258:67-72. [PMID: 28499816 DOI: 10.1016/j.jconrel.2017.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 04/11/2017] [Accepted: 05/09/2017] [Indexed: 12/23/2022]
Abstract
The cell membrane is a semi-fluid container that defines the boundary of cells, and provides an enclosed environment for vital biological processes. A sound excitable drug (SED) that is non-cytotoxic to cells is developed to disrupt the plasma membrane under gentle ultrasound insonation, 1MHz, 1W/cm2. The frequency and power density of insonation are within the physical therapy and medical imaging windows; thus the applied ultrasound is safe and not harmful to tissues. The insertion of SEDs into the plasma membrane is not toxic to cells; however, the intruding SEDs weaken the membrane's integrity. Under insonation, the ultrasound energy destabilized the SED disrupted membranes, resulting in membrane rupture and eventual cell death. In a xenograft breast tumor model, the SED alone or the ultrasound alone caused little adverse effects to tumor tissue, while the combined treatment triggered necrosis with a brief local insonation of 3min. The described sono-membrane rupture therapy could be a safe alternative to the currently used high-energy tissue ablation technology, which uses X-rays, gamma rays, electron beams, protons, or high-intensity focused ultrasound.
Collapse
|
40
|
Wu SK, Chiang CF, Hsu YH, Liou HC, Fu WM, Lin WL. Pulsed-wave low-dose ultrasound hyperthermia selectively enhances nanodrug delivery and improves antitumor efficacy for brain metastasis of breast cancer. ULTRASONICS SONOCHEMISTRY 2017; 36:198-205. [PMID: 28069201 DOI: 10.1016/j.ultsonch.2016.11.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/25/2016] [Accepted: 11/26/2016] [Indexed: 06/06/2023]
Abstract
The clinical application of chemotherapeutics for brain tumors remains a challenge due to limitation of blood-brain barrier/blood-tumor barrier (BBB/BTB). In this study, we investigated the effects of low-dose focused ultrasound hyperthermia (UH) on the delivery and therapeutic efficacy of pegylated liposomal doxorubicin (PLD) for brain metastasis of breast cancer. Murine breast cancer cells (4T1-luc2) expressing firefly luciferase were implanted into mouse striatum as a brain tumor model. The mice were intravenously injected with PLD with/without transcranial pulsed-wave/continuous-wave UH (pUH/cUH) treatment on day-6 after tumor implantation. pUH (frequency: 500kHz, PRF: 1000Hz, duty cycle: 50%) was conducted under equal acoustic power (2.2-Watt) and sonication duration (10-min) as cUH. The amounts of doxorubicin accumulated in the normal brain and tumor tissues were measured with fluorometry. The tumor growth responses for the control, pUH, PLD, PLD+cUH, and PLD+pUH groups were evaluated with IVIS. The PLD distribution and cell apoptosis were assessed with immunofluorescence staining. The results showed that pUH significantly enhanced the PLD delivery into brain tumors and the tumor growth was further inhibited by PLD+pUH without damaging the sonicated normal brain tissues. This indicates that low-dose transcranial pUH is a promising method to selectively enhance nanodrug delivery and improve the brain tumor treatment.
Collapse
Affiliation(s)
- Sheng-Kai Wu
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Chi-Feng Chiang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Yu-Hone Hsu
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Department of Neurosurgery, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Houng-Chi Liou
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Mei Fu
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Win-Li Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan.
| |
Collapse
|
41
|
Experimental Verification of Modeled Thermal Distribution Produced by a Piston Source in Physiotherapy Ultrasound. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5484735. [PMID: 27999801 PMCID: PMC5141556 DOI: 10.1155/2016/5484735] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/23/2016] [Indexed: 11/17/2022]
Abstract
Objectives. To present a quantitative comparison of thermal patterns produced by the piston-in-a-baffle approach with those generated by a physiotherapy ultrasonic device and to show the dependency among thermal patterns and acoustic intensity distributions. Methods. The finite element (FE) method was used to model an ideal acoustic field and the produced thermal pattern to be compared with the experimental acoustic and temperature distributions produced by a real ultrasonic applicator. A thermal model using the measured acoustic profile as input is also presented for comparison. Temperature measurements were carried out with thermocouples inserted in muscle phantom. The insertion place of thermocouples was monitored with ultrasound imaging. Results. Modeled and measured thermal profiles were compared within the first 10 cm of depth. The ideal acoustic field did not adequately represent the measured field having different temperature profiles (errors 10% to 20%). Experimental field was concentrated near the transducer producing a region with higher temperatures, while the modeled ideal temperature was linearly distributed along the depth. The error was reduced to 7% when introducing the measured acoustic field as the input variable in the FE temperature modeling. Conclusions. Temperature distributions are strongly related to the acoustic field distributions.
Collapse
|
42
|
Tomadoni B, Cassani L, Ponce A, Moreira M, Agüero M. Optimization of ultrasound, vanillin and pomegranate extract treatment for shelf-stable unpasteurized strawberry juice. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.05.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
43
|
Ivone M, Pappalettere C, Watanabe A, Tachibana K. Study of cellular response induced by low intensity ultrasound frequency sweep pattern on myelomonocytic lymphoma U937 cells. J Ultrasound 2016; 19:167-74. [PMID: 27635161 DOI: 10.1007/s40477-016-0199-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/11/2016] [Indexed: 12/15/2022] Open
Abstract
PURPOSE This study will analyze the mechanical effects (immediate lysis) and biological effects (cell survival, apoptosis, cell cycle) on U937 cells subjected to different sonication conditions with increasing and decreasing frequencies and burst rate (number of burst of a repeating signal in a specific time unit), in order to determine the best conditions of sonication to produce high mortality, apoptosis and inhibition of hyperproliferation. METHOD Cells are been stressed by pulse wave ultrasounds with increasing and decreasing frequencies between 400 and 620 kHz, at burst rates of 0.5, 10, 50 Hz and 50 % duty cycle (percentage of one period in which a signal is active), ultrasound intensities (spatial average-temporal peak) 0.045 and 0.09 W/cm(2). The sonication durations were 90 and 180 s. RESULTS The decreasing mode was found to be better than the increasing mode for 10 and 50 Hz burst rates, while at 0.5 Hz the increasing mode gave better results for the time of 180 s. For 10 Hz burst rate, decreasing frequency, 180 s, 0.09 W/cm(2), 20 % survival rate was found; after 6-h incubation, cells showed 13 % of early apoptosis and 11 % of late apoptosis. For these conditions of sonication, the hyperproliferation of cells was inhibited. CONCLUSION Survival rate decreases for increasing intensity and duration with each burst rate. The best performance is decreasing mode in a range between 620 and 400 kHz, duty cycle 50 %, burst rate 10 Hz. In these conditions after 180 s duration, the average survival rate is 20 %, the survived cells manifest apoptosis after 6-h incubation and hyperproliferation is prevented. The results seem to lead toward a non-invasive and effective purging of leukemic cells.
Collapse
Affiliation(s)
- Mariantonietta Ivone
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Viale Japigia 182, 70126 Bari, Italy
| | - Carmine Pappalettere
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Viale Japigia 182, 70126 Bari, Italy
| | - Akiko Watanabe
- Department of Anatomy, Fukuoka University, School of Medicine, 7-45-1 Nanakuma, Fukuoka, 814-0180 Japan
| | - Katsuro Tachibana
- Department of Anatomy, Fukuoka University, School of Medicine, 7-45-1 Nanakuma, Fukuoka, 814-0180 Japan
| |
Collapse
|
44
|
Ye Q, Meng C, Shen Y, Ji J, Wang X, Zhou S, Jia L, Wang Y. Caveolin-1 Mediates Low-Intensity Ultrasound-Induced Apoptosis via Downregulation of Signal Transducer and Activator of Transcription 3 Phosphorylation in Laryngeal Carcinoma Cells. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:2253-2260. [PMID: 27289429 DOI: 10.1016/j.ultrasmedbio.2016.04.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 06/06/2023]
Abstract
Low-intensity ultrasound therapy has been found to be a potential tool in the management of malignant tumors in recent years. However, the molecular mechanism underlying low-intensity ultrasound-induced apoptosis is still not clear. In this study, we investigated the effects of low-intensity ultrasound-induced apoptosis in HEp-2 cells. We found that low-intensity ultrasound significantly induced apoptosis, and the expression level of caveolin-1 (Cav-1) was dramatically increased after ultrasound treatment of HEp-2 cells. After inhibiting the expression level of Cav-1 using siRNA transfection, we found that the cellular apoptosis induced by low-intensity ultrasound was significantly suppressed. In addition, inhibition of Cav-1 expression promoted phosphorylation of signal transducer and activator of transcription 3 (STAT3), suggesting that the STAT3 signaling pathway was involved in low-intensity ultrasound-induced apoptosis via Cav-1 regulation. Our results indicate that Cav-1/STAT3 signaling pathway may mediate low-intensity ultrasound-induced apoptosis, and this technology could potentially be used clinically for the treatment of cancers.
Collapse
Affiliation(s)
- Qingsheng Ye
- Medical Ultrasonic Engineering Department, Institute of Biomedical Engineering Chinese Academy of Medical Sciences, Tianjin, China
| | - Cuida Meng
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yannan Shen
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, China
| | - Jianjun Ji
- Medical Ultrasonic Engineering Department, Institute of Biomedical Engineering Chinese Academy of Medical Sciences, Tianjin, China
| | - Xiaochun Wang
- Medical Ultrasonic Engineering Department, Institute of Biomedical Engineering Chinese Academy of Medical Sciences, Tianjin, China
| | - Sheng Zhou
- Medical Ultrasonic Engineering Department, Institute of Biomedical Engineering Chinese Academy of Medical Sciences, Tianjin, China
| | - Lili Jia
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, China.
| | - Yanqun Wang
- Medical Ultrasonic Engineering Department, Institute of Biomedical Engineering Chinese Academy of Medical Sciences, Tianjin, China.
| |
Collapse
|
45
|
Rehman MU, Jawaid P, Uchiyama H, Kondo T. Comparison of free radicals formation induced by cold atmospheric plasma, ultrasound, and ionizing radiation. Arch Biochem Biophys 2016; 605:19-25. [DOI: 10.1016/j.abb.2016.04.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/10/2016] [Accepted: 04/11/2016] [Indexed: 12/20/2022]
|
46
|
Mehrpour M, Shakeri-Zadeh A, Basir P, Jamei B, Ghaheri H, Shiran MB. Effects of Low-Intensity Continuous Ultrasound on Hematological Parameters of Rats. J Biomed Phys Eng 2016; 6:195-200. [PMID: 27853727 PMCID: PMC5106552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 04/05/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Low intensity ultrasound (US) has some well-known bio-effects which are of great importance to be considered. Objective: We conducted the present study to investigate the effects of low intensity continuous ultrasound on blood cells count in rat. METHODS Rats were anesthetized and blood samples were collected before US exposure. Then, they were exposed to US with nominal intensity of 0.2 W/cm2 at frequency of 3 MHz for a period of 10 minutes and this protocol was repeated for 7 days. Twenty four hours after the last US exposure, secondary blood samples were collected and the changes in blood parameters were evaluated. RESULTS Analysis revealed that platelets, hematocrit (HCT) and hemoglobin (HGB) were significantly different between experimental and sham groups but no difference between sham and control groups was observed. The results show that HCT and HGB of exposed rats were significantly reduced. Conclusion: This study shows that low intensity US may lead to side effects for hematological parameters such as reduction in the levels of HGB and HCT.
Collapse
Affiliation(s)
- M Mehrpour
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran ; Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - A Shakeri-Zadeh
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - P Basir
- Medical Students' Research Committee, Faculty of medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - B Jamei
- Department of Basic Sciences, Faculty of Allied Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - H Ghaheri
- Department of Vascular Surgery, Isfahan University of Medical Sciences, Isfahan, Iran
| | - M B Shiran
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran ; Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
47
|
Qin P, Xu L, Han T, Du L, Yu ACH. Effect of non-acoustic parameters on heterogeneous sonoporation mediated by single-pulse ultrasound and microbubbles. ULTRASONICS SONOCHEMISTRY 2016; 31:107-115. [PMID: 26964929 DOI: 10.1016/j.ultsonch.2015.12.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/13/2015] [Accepted: 12/01/2015] [Indexed: 06/05/2023]
Abstract
Sonoporation-transient plasma membrane perforation elicited by the interaction of ultrasound waves with microbubbles--has shown great potential for drug delivery and gene therapy. However, the heterogeneity of sonoporation introduces complexities and challenges in the realization of controllable and predictable drug delivery. The aim of this investigation was to understand how non-acoustic parameters (bubble related and bubble-cell interaction parameters) affect sonoporation. Using a customized ultrasound-exposure and fluorescence-imaging platform, we observed sonoporation dynamics at the single-cell level and quantified exogenous molecular uptake levels to characterize the degree of sonoporation. Sonovue microbubbles were introduced to passively regulate microbubble-to-cell distance and number, and bubble size. 1 MHz ultrasound with 10-cycle pulse duration and 0.6 MPa peak negative pressure were applied to trigger the inertial collapse of microbubbles. Our data revealed the impact of non-acoustic parameters on the heterogeneity of sonoporation. (i) The localized collapse of relatively small bubbles (diameter, D<5.5 μm) led to predictable sonoporation, the degree of which depended on the bubble-to-cell distance (d). No sonoporation was observed when d/D>1, whereas reversible sonoporation occurred when d/D<1. (ii) Large bubbles (D>5.5 μm) exhibited translational movement over large distances, resulting in unpredictable sonoporation. Translation towards the cell surface led to variable reversible sonoporation or irreversible sonoporation, and translation away from the cell caused either no or reversible sonoporation. (iii) The number of bubbles correlated positively with the degree of sonoporation when D<5.5 μm and d/D<1. Localized collapse of two to three bubbles mainly resulted in reversible sonoporation, whereas irreversible sonoporation was more likely following the collapse of four or more bubbles. These findings offer useful insight into the relationship between non-acoustic parameters and the degree of sonoporation.
Collapse
Affiliation(s)
- Peng Qin
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Lin Xu
- National Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tao Han
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lianfang Du
- Department of Ultrasound, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Alfred C H Yu
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
48
|
Song H, Liang W, Xu S, Li Z, Chen Z, Cui W, Zhou J, Wang Q, Liu F, Fan W. A novel role for integrin-linked kinase in periodic mechanical stress-mediated ERK1/2 mitogenic signaling in rat chondrocytes. Cell Biol Int 2016; 40:832-9. [PMID: 27154044 DOI: 10.1002/cbin.10622] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/03/2016] [Indexed: 12/14/2022]
Abstract
In recent years, a variety of studies have been performed to investigate the cellular responses of periodic mechanical stress on chondrocytes. Integrin β1-mediated ERK1/2 activation was proven to be indispensable in periodic mechanical stress-induced chondrocyte proliferation and matrix synthesis. However, other signal proteins responsible for the mitogenesis of chondrocytes under periodic mechanical stress remain incompletely understood. In the current investigation, we probed the roles of integrin-linked kinase (ILK) signaling in periodic mechanical stress-induced chondrocyte proliferation and matrix synthesis. We found that upon periodic mechanical stress induction, ILK activity increased significantly. Depletion of ILK with targeted shRNA strongly inhibited periodic mechanical stress-induced chondrocyte proliferation and matrix synthesis. In addition, pretreatment with a blocking antibody against integrin β1 resulted in a remarkable decrease in ILK activity in cells exposed to periodic mechanical stress. Furthermore, inhibition of ILK with its target shRNA significantly suppressed ERK1/2 activation in relation to periodic mechanical stress. Based on the above results, we identified ILK as a crucial regulator involved in the integrin β1-ERK1/2 signal cascade responsible for periodic mechanical stress-induced chondrocyte proliferation and matrix synthesis.
Collapse
Affiliation(s)
- Huanghe Song
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guang Zhou Road, Nanjing, 210029, China
| | - Wenwei Liang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guang Zhou Road, Nanjing, 210029, China
| | - Shun Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guang Zhou Road, Nanjing, 210029, China
| | - Zeng Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guang Zhou Road, Nanjing, 210029, China
| | - Zhefeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guang Zhou Road, Nanjing, 210029, China
| | - Weiding Cui
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guang Zhou Road, Nanjing, 210029, China
| | - Jinchun Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guang Zhou Road, Nanjing, 210029, China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guang Zhou Road, Nanjing, 210029, China
| | - Feng Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guang Zhou Road, Nanjing, 210029, China
| | - Weimin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guang Zhou Road, Nanjing, 210029, China
| |
Collapse
|
49
|
Suzuki R, Oda Y, Omata D, Nishiie N, Koshima R, Shiono Y, Sawaguchi Y, Unga J, Naoi T, Negishi Y, Kawakami S, Hashida M, Maruyama K. Tumor growth suppression by the combination of nanobubbles and ultrasound. Cancer Sci 2016; 107:217-23. [PMID: 26707839 PMCID: PMC4814255 DOI: 10.1111/cas.12867] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 12/03/2015] [Accepted: 12/17/2015] [Indexed: 12/13/2022] Open
Abstract
We previously developed novel liposomal nanobubbles (Bubble liposomes [BL]) that oscillate and collapse in an ultrasound field, generating heat and shock waves. We aimed to investigate the feasibility of cancer therapy using the combination of BL and ultrasound. In addition, we investigated the anti-tumor mechanism of this cancer therapy. Colon-26 cells were inoculated into the flank of BALB/c mice to induce tumors. After 8 days, BL or saline was intratumorally injected, followed by transdermal ultrasound exposure of tumor tissue (1 MHz, 0-4 W/cm2 , 2 min). The anti-tumor effects were evaluated by histology (necrosis) and tumor growth. In vivo cell depletion assays were performed to identify the immune cells responsible for anti-tumor effects. Tumor temperatures were significantly higher when treated with BL + ultrasound than ultrasound alone. Intratumoral BL caused extensive tissue necrosis at 3-4 W/cm2 of ultrasound exposure. In addition, BL + ultrasound significantly suppressed tumor growth at 2-4 W/cm2 . In vivo depletion of CD8+ T cells (not NK or CD4+ T cells) completely blocked the effect of BL + ultrasound on tumor growth. These data suggest that CD8+ T cells play a critical role in tumor growth suppression. Finally, we concluded that BL + ultrasound, which can prime the anti-tumor cellular immune system, may be an effective hyperthermia strategy for cancer treatment.
Collapse
Affiliation(s)
- Ryo Suzuki
- Laboratory of Drug Delivery System, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Yusuke Oda
- Laboratory of Drug Delivery System, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Daiki Omata
- Laboratory of Drug Delivery System, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Norihito Nishiie
- Laboratory of Drug Delivery System, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Risa Koshima
- Laboratory of Drug Delivery System, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Yasuyuki Shiono
- Laboratory of Drug Delivery System, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | | | - Johan Unga
- Laboratory of Drug Delivery System, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Tomoyuki Naoi
- Laboratory of Drug Delivery System, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Shigeru Kawakami
- Department of Pharmaceutical Informatics, Department of Clinical Pharmacy, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mitsuru Hashida
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.,Institute of Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Kazuo Maruyama
- Laboratory of Drug Delivery System, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| |
Collapse
|
50
|
Ren ST, Shen S, He XY, Liao YR, Sun PF, Wang B, Zhao WB, Han SP, Wang YL, Tian T. The Effect of Docetaxel-Loaded Micro-Bubbles Combined with Low-Frequency Ultrasound in H22 Hepatocellular Carcinoma-Bearing Mice. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:549-560. [PMID: 26651601 DOI: 10.1016/j.ultrasmedbio.2015.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/18/2015] [Accepted: 10/14/2015] [Indexed: 06/05/2023]
Abstract
A novel lipid micro-bubble (MB) loaded with docetaxel (DOC-MB) was investigated in a previous study. However, its anti-tumor effects and mechanism of action in combination with low-frequency ultrasound (LFUS) in vivo are still unclear. DOC-MBs containing 5.0 mg of DOC were prepared by lyophilization with modification via ultrasonic emulsification. Then, the effects of DOC-MBs combined with LFUS on tumor growth, proliferating cell nuclear antigen (PCNA) expression and cell apoptosis, as well as local DOC delivery, were investigated in H22 hepatocellular carcinoma (HCC)-bearing mice. Compared with the previously prepared DOC-MBs (1.6 mg of DOC loaded), the encapsulation efficiency (81.2% ± 3.89%) and concentration ([7.94 ± 0.04] × 10(9) bubbles/mL) of the DOC-MBs containing 5.0 mg of DOC were higher, but the bubble size (1.368 ± 0.004 μm) was smaller. After treatment with the DOC-MBs and LFUS, the H22 HCC growth inhibition rate was significantly increased, PCNA expression in tumor tissue was significantly inhibited and local release of DOC was induced. In conclusion, new DOC-MBs containing 5.0 mg of DOC were successfully prepared with a high encapsulation efficiency and superior bubble size and concentration, and their combination with LFUS significantly enhanced the anti-tumor effect of DOC in H22 HCC-bearing mice by inhibiting tumor cell proliferation and increasing local drug delivery.
Collapse
Affiliation(s)
- Shu-Ting Ren
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.
| | - Shu Shen
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China; Second Division of In Vitro Diagnostic Reagents, National Institute of Food and Drug Control, Beijing, China
| | - Xin-Ying He
- Department of Pathology, Xi'an Medical University, Xi'an, China
| | - Yi-Ran Liao
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Peng-Fei Sun
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Bing Wang
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China; Therapeutic Vaccines Engineering Center of Shaanxi Province, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wen-Bao Zhao
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Shui-Ping Han
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yi-Li Wang
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China; Institute of Cancer Research, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Tian Tian
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|