1
|
Radiosensitization of HSF-1 Knockdown Lung Cancer Cells by Low Concentrations of Hsp90 Inhibitor NVP-AUY922. Cells 2019; 8:cells8101166. [PMID: 31569342 PMCID: PMC6829369 DOI: 10.3390/cells8101166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 11/25/2022] Open
Abstract
The inhibition of heat shock protein 90 (Hsp90) a molecular chaperone for multiple oncogenic client proteins is considered as a promising approach to overcome radioresistance. Since most Hsp90 inhibitors activate HSF-1 that induces the transcription of cytoprotective and tumor-promoting stress proteins such as Hsp70 and Hsp27, a combined approach consisting of HSF-1 knockdown (k.d.) and Hsp90 inhibition was investigated. A specific HSF-1 k.d. was achieved in H1339 lung cancer cells using RNAi-Ready pSIRENRetroQ vectors with puromycin resistance. The Hsp90 inhibitor NVP-AUY922 was evaluated at low concentrations—ranging from 1–10 nM—in control and HSF-1 k.d. cells. Protein expression (i.e., Hsp27/Hsp70, HSF-1, pHSF-1, Akt, ß-actin) and transcriptional activity was assessed by western blot analysis and luciferase assays and radiosensitivity was measured by proliferation, apoptosis (Annexin V, active caspase 3), clonogenic cell survival, alkaline comet, γH2AX, 53BP1, and Rad51 foci assays. The k.d. of HSF-1 resulted in a significant reduction of basal and NVP-AUY922-induced Hsp70/Hsp27 expression levels. A combined approach consisting of HSF-1 k.d. and low concentrations of the Hsp90 inhibitor NVP-AUY922 reduces the Hsp90 client protein Akt and potentiates radiosensitization, which involves an impaired homologous recombination mediated by Rad51. Our findings are key for clinical applications of Hsp90 inhibitors with respect to adverse hepatotoxic effects.
Collapse
|
2
|
Karayazi Atici Ö, Urbanska A, Gopinathan SG, Boutillon F, Goffin V, Shemanko CS. ATM Is Required for the Prolactin-Induced HSP90-Mediated Increase in Cellular Viability and Clonogenic Growth After DNA Damage. Endocrinology 2018; 159:907-930. [PMID: 29186352 DOI: 10.1210/en.2017-00652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023]
Abstract
Prolactin (PRL) acts as a survival factor for breast cancer cells, but the PRL signaling pathway and the mechanism are unknown. Previously, we identified the master chaperone, heat shock protein 90 (HSP90) α, as a prolactin-Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5 (STAT5) target gene involved in survival, and here we investigated the role of HSP90 in the mechanism of PRL-induced viability in response to DNA damage. The ataxia-telangiectasia mutated kinase (ATM) protein plays a critical role in the cellular response to double-strand DNA damage. We observed that PRL increased viability of breast cancer cells treated with doxorubicin or etoposide. The increase in cellular resistance is specific to the PRL receptor, because the PRL receptor antagonist, Δ1-9-G129R-hPRL, prevented the increase in viability. Two different HSP90 inhibitors, 17-allylamino-17-demethoxygeldanamycin and BIIB021, reduced the PRL-mediated increase in cell viability of doxorubicin-treated cells and led to a decrease in JAK2, ATM, and phosphorylated ATM protein levels. Inhibitors of JAK2 (G6) and ATM (KU55933) abolished the PRL-mediated increase in cell viability of DNA-damaged cells, supporting the involvement of each, as well as the crosstalk of ATM with the PRL pathway in the context of DNA damage. Drug synergism was detected between the ATM inhibitor (KU55933) and doxorubicin and between the HSP90 inhibitor (BIIB021) and doxorubicin. Short interfering RNA directed against ATM prevented the PRL-mediated increase in cell survival in two-dimensional cell culture, three-dimensional collagen gel cultures, and clonogenic cell survival, after doxorubicin treatment. Our results indicate that ATM contributes to the PRL-JAK2-STAT5-HSP90 pathway in mediating cellular resistance to DNA-damaging agents.
Collapse
Affiliation(s)
- Ödül Karayazi Atici
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Anna Urbanska
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sesha Gopal Gopinathan
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Florence Boutillon
- Inserm U1151, Institut Necker Enfants Malades, Team "PRL/GH Pathophysiology," Faculty of Medicine Paris Descartes, Sorbonne Paris Cité, Paris cedex 14, France
| | - Vincent Goffin
- Inserm U1151, Institut Necker Enfants Malades, Team "PRL/GH Pathophysiology," Faculty of Medicine Paris Descartes, Sorbonne Paris Cité, Paris cedex 14, France
| | - Carrie S Shemanko
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Khairy Abd M, Abu-Bakr H A. Radiosensitizing Efficacy of Diosmin- Hesperidin Complex Against Ehrlich Solid Carcinoma in Mice, A Potential Role of Histone Deacetylase and Pro-angiogenic Chaperones Targeting. INTERNATIONAL JOURNAL OF CANCER RESEARCH 2017; 13:59-70. [DOI: 10.3923/ijcr.2017.59.70] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
4
|
Kudryavtsev VA, Khokhlova AV, Mosina VA, Selivanova EI, Kabakov AE. Induction of Hsp70 in tumor cells treated with inhibitors of the Hsp90 activity: A predictive marker and promising target for radiosensitization. PLoS One 2017; 12:e0173640. [PMID: 28291803 PMCID: PMC5349677 DOI: 10.1371/journal.pone.0173640] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/23/2017] [Indexed: 01/03/2023] Open
Abstract
We studied a role of the inducible heat shock protein 70 (Hsp70) in cellular response to radiosensitizing treatments with inhibitors of the heat shock protein 90 (Hsp90) chaperone activity. Cell lines derived from solid tumors of different origin were treated with the Hsp90 inhibitors (17AAG, geldanamycin, radicicol, NVP-AUY922) or/and γ-photon radiation. For comparison, human cells of the non-cancerous origin were subjected to the same treatments. We found that the Hsp90 inhibitors yielded considerable radiosensitization only when they cause early and pronounced Hsp70 induction; moreover, a magnitude of radiosensitization was positively correlated with the level of Hsp70 induction. The quantification of Hsp70 levels in Hsp90 inhibitor-treated normal and cancer cells enabled to predict which of them will be susceptible to any Hsp90-inhibiting radiosensitizer as well as what concentrations of the inhibitors ensure the preferential cytotoxicity in the irradiated tumors without aggravating radiation damage to adjacent normal tissues. Importantly, the Hsp70 induction in the Hsp90 inhibitor-treated cancer cells appears to be their protective response that alleviates the tumor-sensitizing effects of the Hsp90 inactivation. Combination of the Hsp70-inducing inhibitors of Hsp90 with known inhibitors of the Hsp induction such as quercetin, triptolide, KNK437, NZ28 prevented up-regulation of Hsp70 in the cancer cells thereby increasing their post-radiation apoptotic/necrotic death and decreasing their post-radiation viability/clonogenicity. Similarly, co-treatment with the two inhibitors conferred the enhanced radiosensitization of proliferating rather than quiescent human vascular endothelial cells which may be used for suppressing the tumor-stimulated angiogenesis. Thus, the easily immunodetectable Hsp70 induction can be a useful marker for predicting effects of Hsp90-inhibiting radiosensitizers on tumors and normal tissues exposed to ionizing radiation. Moreover, targeting the Hsp70 induction in Hsp90 inhibitor-treated cancer cells and tumor vasculature cells may beneficially enhance the radiosensitizing effect.
Collapse
Affiliation(s)
- Vladimir A. Kudryavtsev
- Department of Radiation Biochemistry, A. Tsyb Medical Radiological Research Center, Obninsk, Russia
| | - Anna V. Khokhlova
- Department of Radiation Biochemistry, A. Tsyb Medical Radiological Research Center, Obninsk, Russia
| | - Vera A. Mosina
- Department of Radiation Biochemistry, A. Tsyb Medical Radiological Research Center, Obninsk, Russia
| | - Elena I. Selivanova
- Department of Radiation Biochemistry, A. Tsyb Medical Radiological Research Center, Obninsk, Russia
| | - Alexander E. Kabakov
- Department of Radiation Biochemistry, A. Tsyb Medical Radiological Research Center, Obninsk, Russia
- * E-mail:
| |
Collapse
|
5
|
Targeting the heat shock response in combination with radiotherapy: Sensitizing cancer cells to irradiation-induced cell death and heating up their immunogenicity. Cancer Lett 2015; 368:209-29. [DOI: 10.1016/j.canlet.2015.02.047] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/22/2015] [Accepted: 02/26/2015] [Indexed: 12/16/2022]
|
6
|
A high content clonogenic survival drug screen identifies mek inhibitors as potent radiation sensitizers for KRAS mutant non-small-cell lung cancer. J Thorac Oncol 2015; 9:965-973. [PMID: 24922006 DOI: 10.1097/jto.0000000000000199] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Traditional clonogenic survival and high throughput colorimetric assays are inadequate as drug screens to identify novel radiation sensitizers. We developed a method that we call the high content clonogenic survival assay (HCSA) that will allow screening of drug libraries to identify candidate radiation sensitizers. METHODS Drug screen using HCSA was done in 96 well plates. After drug treatment, irradiation, and incubation, colonies were stained with crystal violet and imaged on the INCell 6000 (GE Health). Colonies achieving 50 or more cells were enumerated using the INCell Developer image analysis software. A proof-of-principle screen was done on the KRAS mutant lung cancer cell line H460 and a Custom Clinical Collection (146 compounds). RESULTS Multiple drugs of the same class were found to be radiation sensitizers and levels of potency seemed to reflect the clinical relevance of these drugs. For instance, several PARP inhibitors were identified as good radiation sensitizers in the HCSA screen. However, there were also a few PARP inhibitors not found to be sensitizing that have either not made it into clinical development, or in the case of BSI-201, was proven to not even be a PARP inhibitor. We discovered that inhibitors of pathways downstream of activated mutant KRAS (PI3K, AKT, mTOR, and MEK1/2) sensitized H460 cells to radiation. Furthermore, the potent MEK1/2 inhibitor tramenitib selectively enhanced radiation effects in KRAS mutant but not wild-type lung cancer cells. CONCLUSIONS Drug screening for novel radiation sensitizers is feasible using the HCSA approach. This is an enabling technology that will help accelerate the discovery of novel radiosensitizers for clinical testing.
Collapse
|
7
|
Haase MG, Geyer P, Fitze G, Baretton GB. Down-regulation of heat shock protein HSP90ab1 in radiation-damaged lung cells other than mast cells. J Histochem Cytochem 2014; 62:355-68. [PMID: 24670792 DOI: 10.1369/0022155414529133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ionizing radiation (IR) leads to fibrosing alveolitis (FA) after a lag period of several weeks to months. In a rat model, FA starts at 8 weeks after IR. Before that, at 5.5 weeks after IR, the transcription factors Sp1 (stimulating protein 1) and AP-1 (activator protein 1) are inactivated. To find genes/proteins that were down-regulated at that time, differentially expressed genes were identified in a subtractive cDNA library and verified by quantitative RT-PCR (reverse transcriptase polymerase chain reaction), western blotting and immunohistochemistry (IH). The mRNA of the molecular chaperone HSP90AB1 (heat shock protein 90 kDa alpha, class B member 1) was down-regulated 5.5 weeks after IR. Later, when FA manifested, HSP90ab1 protein was down-regulated by more than 90% in lung cells with the exception of mast cells. In most mast cells of the normal lung, both HSP90ab1 and HSP70, another major HSP, show a very low level of expression. HSP70 was massively up-regulated in all mast cells three months after irradiation whereas HSP90AB1 was up-regulated only in a portion of mast cells. The strong changes in the expression of central molecular chaperones may contribute to the well-known disturbance of cellular functions in radiation-damaged lung tissue.
Collapse
Affiliation(s)
- Michael G Haase
- Department of Pediatric Surgery (MGH, GF), University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | | | | | | |
Collapse
|
8
|
Orth M, Lauber K, Niyazi M, Friedl AA, Li M, Maihöfer C, Schüttrumpf L, Ernst A, Niemöller OM, Belka C. Current concepts in clinical radiation oncology. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:1-29. [PMID: 24141602 PMCID: PMC3935099 DOI: 10.1007/s00411-013-0497-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 10/05/2013] [Indexed: 05/04/2023]
Abstract
Based on its potent capacity to induce tumor cell death and to abrogate clonogenic survival, radiotherapy is a key part of multimodal cancer treatment approaches. Numerous clinical trials have documented the clear correlation between improved local control and increased overall survival. However, despite all progress, the efficacy of radiation-based treatment approaches is still limited by different technological, biological, and clinical constraints. In principle, the following major issues can be distinguished: (1) The intrinsic radiation resistance of several tumors is higher than that of the surrounding normal tissue, (2) the true patho-anatomical borders of tumors or areas at risk are not perfectly identifiable, (3) the treatment volume cannot be adjusted properly during a given treatment series, and (4) the individual heterogeneity in terms of tumor and normal tissue responses toward irradiation is immense. At present, research efforts in radiation oncology follow three major tracks, in order to address these limitations: (1) implementation of molecularly targeted agents and 'omics'-based screening and stratification procedures, (2) improvement of treatment planning, imaging, and accuracy of dose application, and (3) clinical implementation of other types of radiation, including protons and heavy ions. Several of these strategies have already revealed promising improvements with regard to clinical outcome. Nevertheless, many open questions remain with individualization of treatment approaches being a key problem. In the present review, the current status of radiation-based cancer treatment with particular focus on novel aspects and developments that will influence the field of radiation oncology in the near future is summarized and discussed.
Collapse
Affiliation(s)
- Michael Orth
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Kirsten Lauber
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Maximilian Niyazi
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Anna A. Friedl
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Minglun Li
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Cornelius Maihöfer
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Lars Schüttrumpf
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Anne Ernst
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Olivier M. Niemöller
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
- Present Address: Clinic for Radiation Oncology, St. Elisabeth Hospital Ravensburg, Ravensburg, Germany
| | - Claus Belka
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
9
|
Segawa T, Fujii Y, Tanaka A, Bando SI, Okayasu R, Ohnishi K, Kubota N. Radiosensitization of human lung cancer cells by the novel purine-scaffold Hsp90 inhibitor, PU-H71. Int J Mol Med 2013; 33:559-64. [PMID: 24366006 DOI: 10.3892/ijmm.2013.1594] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/13/2013] [Indexed: 11/05/2022] Open
Abstract
The molecular chaperone heat shock protein 90 (Hsp90) is involved in the maturation and stabilization of a wide range of oncogenic client proteins for oncogenesis and malignant cell proliferation, which renders this protein a promising target in the development of cancer therapeutics. PU-H71 is a purine-scaffold Hsp90 inhibitor with less toxicity in normal cells than in cancer cells. In this study, we examined the in vitro radiosensitizing activity and molecular mechanisms of action of PU-H71 in human lung cancer cell lines. PU-H71 enhanced the sensitivity of the SQ-5 and A549 cancer cells to radiation. When the cancer cells were pre-treated with PU-H71, the repair of DNA double-strand breaks (DSBs) was markedly inhibited after irradiation compared with the cells that were not pre-treated with PU-H71, as evaluated by counting the foci of phosphorylated histone H2AX (γ-H2AX). We further demonstrated that post-irradiation, PU-H71 inhibited Rad51 foci formation, a critical protein for the homologous recombination pathway of DNA DSB repair. These data indicate that targeting Hsp90 with PU-H71 may be novel therapeutic strategy for radioresistant carcinomas.
Collapse
Affiliation(s)
- Tatsuya Segawa
- Department of Radiological Sciences, Center for Humanity and Arts, Ibaraki Prefectural University of Health Sciences, Ami-machi, Inashiki-gun, Ibaraki 300-0394, Japan
| | - Yoshihiro Fujii
- Department of Radiological Sciences, Center for Humanity and Arts, Ibaraki Prefectural University of Health Sciences, Ami-machi, Inashiki-gun, Ibaraki 300-0394, Japan
| | - Aya Tanaka
- Department of Radiological Sciences, Center for Humanity and Arts, Ibaraki Prefectural University of Health Sciences, Ami-machi, Inashiki-gun, Ibaraki 300-0394, Japan
| | - Shin-Ichi Bando
- Department of Biology, Center for Humanity and Arts, Ibaraki Prefectural University of Health Sciences, Ami-machi, Inashiki-gun, Ibaraki 300-0394, Japan
| | - Ryuichi Okayasu
- Heavy-ion Radiobiology Group, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555, Japan
| | - Ken Ohnishi
- Department of Biology, Center for Humanity and Arts, Ibaraki Prefectural University of Health Sciences, Ami-machi, Inashiki-gun, Ibaraki 300-0394, Japan
| | - Nobuo Kubota
- Department of Radiological Sciences, Center for Humanity and Arts, Ibaraki Prefectural University of Health Sciences, Ami-machi, Inashiki-gun, Ibaraki 300-0394, Japan
| |
Collapse
|
10
|
Inhibition of Hsp90 and 70 sensitizes melanoma cells to hyperthermia using ferromagnetic particles with a low Curie temperature. Int J Clin Oncol 2013; 19:722-30. [PMID: 23949287 DOI: 10.1007/s10147-013-0606-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/24/2013] [Indexed: 11/27/2022]
Abstract
BACKGROUND Heat shock protein (Hsp) 90 is a key regulator of various oncogene products and cell-signaling molecules, while Hsp70 protects against heat-induced apoptosis. We previously described a system in which hyperthermia was produced using thermosensitive ferromagnetic particles (FMPs) with a Curie temperature (T c) of 43 °C to mediate automatic temperature control, and demonstrated its antitumor effect in a mouse melanoma model. In the present study, the antitumor effects of combining Hsp90 inhibitor (17DMAG) and Hsp70 inhibitor (quercetin) with FMP-mediated hyperthermia were examined. METHODS Expressions of Hsp90/70 and Akt were evaluated using Western blotting in vitro. In an in vivo study, melanoma cells were subcutaneously injected into the backs of C57BL/6 mice. FMPs were then injected into the resultant tumors, and the mice were divided into groups treated with quercetin and/or 17DMAG with/without hyperthermia. When exposed to a magnetic field, the temperature of tissues containing FMPs increased and stabilized at the T c. The TUNEL method was used to determine whether hyperthermia induced apoptosis within tumors. RESULTS In the group pretreated with hyperthermia + quercetin + 17DMAG, Akt expression was reduced in vitro, the incidence of apoptosis within tumors was greater, and tumor growth was significantly suppressed 20 days after FMP injection in vivo, compared with other treatment groups. The survival rates among tumor-bearing mice observed for a period of 40 days were significantly higher in the hyperthermia + quercetin + 17DMAG group. CONCLUSION Combining Hsp90/70 inhibition with hyperthermia appears to increase their antitumor effects. Thus, the combination of FMP-mediated, self-regulating hyperthermia with Hsp90/70 inhibition has important implications for cancer treatment.
Collapse
|
11
|
Molecularly targeted agents as radiosensitizers in cancer therapy--focus on prostate cancer. Int J Mol Sci 2013; 14:14800-32. [PMID: 23863691 PMCID: PMC3742274 DOI: 10.3390/ijms140714800] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/27/2013] [Accepted: 06/27/2013] [Indexed: 12/12/2022] Open
Abstract
As our understanding of the molecular pathways driving tumorigenesis improves and more druggable targets are identified, we have witnessed a concomitant increase in the development and production of novel molecularly targeted agents. Radiotherapy is commonly used in the treatment of various malignancies with a prominent role in the care of prostate cancer patients, and efforts to improve the therapeutic ratio of radiation by technologic and pharmacologic means have led to important advances in cancer care. One promising approach is to combine molecularly targeted systemic agents with radiotherapy to improve tumor response rates and likelihood of durable control. This review first explores the limitations of preclinical studies as well as barriers to successful implementation of clinical trials with radiosensitizers. Special considerations related to and recommendations for the design of preclinical studies and clinical trials involving molecularly targeted agents combined with radiotherapy are provided. We then apply these concepts by reviewing a representative set of targeted therapies that show promise as radiosensitizers in the treatment of prostate cancer.
Collapse
|
12
|
Gandhi N, Wild AT, Chettiar ST, Aziz K, Kato Y, Gajula RP, Williams RD, Cades JA, Annadanam A, Song D, Zhang Y, Hales RK, Herman JM, Armour E, DeWeese TL, Schaeffer EM, Tran PT. Novel Hsp90 inhibitor NVP-AUY922 radiosensitizes prostate cancer cells. Cancer Biol Ther 2013; 14:347-56. [PMID: 23358469 DOI: 10.4161/cbt.23626] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Outcomes for poor-risk localized prostate cancers treated with radiation are still insufficient. Targeting the "non-oncogene" addiction or stress response machinery is an appealing strategy for cancer therapeutics. Heat-shock-protein-90 (Hsp90), an integral member of this machinery, is a molecular chaperone required for energy-driven stabilization and selective degradation of misfolded "client" proteins, that is commonly overexpressed in tumor cells. Hsp90 client proteins include critical components of pathways implicated in prostate cancer cell survival and radioresistance, such as androgen receptor signaling and the PI3K-Akt-mTOR pathway. We examined the effects of a novel non-geldanamycin Hsp90 inhibitor, AUY922, combined with radiation (RT) on two prostate cancer cell lines, Myc-CaP and PC3, using in vitro assays for clonogenic survival, apoptosis, cell cycle distribution, γ-H2AX foci kinetics and client protein expression in pathways important for prostate cancer survival and radioresistance. We then evaluated tumor growth delay and effects of the combined treatment (RT-AUY922) on the PI3K-Akt-mTOR and AR pathways in a hind-flank tumor graft model. We observed that AUY922 caused supra-additive radiosensitization in both cell lines at low nanomolar doses with enhancement ratios between 1.4-1.7 (p < 0.01). RT-AUY922 increased apoptotic cell death compared with either therapy alone, induced G 2-M arrest and produced marked changes in client protein expression. These results were confirmed in vivo, where RT-AUY922 combination therapy produced supra-additive tumor growth delay compared with either therapy by itself in Myc-CaP and PC3 tumor grafts (both p < 0.0001). Our data suggest that combined RT-AUY922 therapy exhibits promising activity against prostate cancer cells, which should be investigated in clinical studies.
Collapse
Affiliation(s)
- Nishant Gandhi
- Department of Radiation Oncology & Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zaidi S, McLaughlin M, Bhide SA, Eccles SA, Workman P, Nutting CM, Huddart RA, Harrington KJ. The HSP90 inhibitor NVP-AUY922 radiosensitizes by abrogation of homologous recombination resulting in mitotic entry with unresolved DNA damage. PLoS One 2012; 7:e35436. [PMID: 22523597 PMCID: PMC3327673 DOI: 10.1371/journal.pone.0035436] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 03/16/2012] [Indexed: 12/27/2022] Open
Abstract
Background Heat shock protein 90 (HSP90) is a molecular chaperone responsible for the conformational maintenance of a number of client proteins that play key roles in cell cycle arrest, DNA damage repair and apoptosis following radiation. HSP90 inhibitors exhibit antitumor activity by modulating the stabilisation and activation of HSP90 client proteins. We sought to evaluate NVP-AUY922, the most potent HSP90 inhibitor yet reported, in preclinical radiosensitization studies. Principal Findings NVP-AUY922 potently radiosensitized cells in vitro at low nanomolar concentrations with a concurrent depletion of radioresistance-linked client proteins. Radiosensitization by NVP-AUY922 was verified for the first time in vivo in a human head and neck squamous cell carcinoma xenograft model in athymic mice, as measured by delayed tumor growth and increased surrogate end-point survival (p = <0.0001). NVP-AUY922 was shown to ubiquitously inhibit resolution of dsDNA damage repair correlating to delayed Rad51 foci formation in all cell lines tested. Additionally, NVP-AUY922 induced a stalled mitotic phenotype, in a cell line-dependent manner, in HeLa and HN5 cell lines irrespective of radiation exposure. Cell cycle analysis indicated that NVP-AUY922 induced aberrant mitotic entry in all cell lines tested in the presence of radiation-induced DNA damage due to ubiquitous CHK1 depletion, but resultant downstream cell cycle effects were cell line dependent. Conclusions These results identify NVP-AUY922 as the most potent HSP90-mediated radiosensitizer yet reported in vitro, and for the first time validate it in a clinically relevant in vivo model. Mechanistic analysis at clinically achievable concentrations demonstrated that radiosensitization is mediated by the combinatorial inhibition of cell growth and survival pathways, ubiquitous delay in Rad51-mediated homologous recombination and CHK1-mediated G2/M arrest, but that the contribution of cell cycle perturbation to radiosensitization may be cell line specific.
Collapse
Affiliation(s)
- Shane Zaidi
- Targeted Therapy Team, Institute of Cancer Research, Chester Beatty Laboratories, London, United Kingdom
| | - Martin McLaughlin
- Targeted Therapy Team, Institute of Cancer Research, Chester Beatty Laboratories, London, United Kingdom
- * E-mail:
| | - Shreerang A. Bhide
- Targeted Therapy Team, Institute of Cancer Research, Chester Beatty Laboratories, London, United Kingdom
| | - Suzanne A. Eccles
- Tumour Biology and Metastasis Team, Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Haddow Laboratories, Sutton, Surrey, United Kingdom
| | - Paul Workman
- Signal Transduction and Molecular Pharmacology Team, Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Haddow Laboratories, Sutton, Surrey, United Kingdom
| | | | | | - Kevin J. Harrington
- Targeted Therapy Team, Institute of Cancer Research, Chester Beatty Laboratories, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| |
Collapse
|
14
|
Oommen D, Prise KM. KNK437, abrogates hypoxia-induced radioresistance by dual targeting of the AKT and HIF-1α survival pathways. Biochem Biophys Res Commun 2012; 421:538-43. [PMID: 22521642 DOI: 10.1016/j.bbrc.2012.04.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 04/08/2012] [Indexed: 01/12/2023]
Abstract
KNK437 is a benzylidene lactam compound known to inhibit stress-induced synthesis of heat shock proteins (HSPs). HSPs promote radioresistance and play a major role in stabilizing hypoxia inducible factor-1α (HIF-1α). HIF-1α is widely responsible for tumor resistance to radiation under hypoxic conditions. We hypothesized that KNK437 sensitizes cancer cells to radiation and overrides hypoxia-induced radioresistance via destabilizing HIF-1α. Treatment of human cancer cells MDA-MB-231 and T98G with KNK437 sensitized them to ionizing radiation (IR). Surprisingly, IR did not induce HSPs in these cell lines. As hypothesized, KNK437 abrogated the accumulation of HIF-1α in hypoxic cells. However, there was no induction of HSPs under hypoxic conditions. Moreover, the proteosome inhibitor MG132 did not restore HIF-1α levels in KNK437-treated cells. This suggested that the absence of HIF-1α in hypoxic cells was not due to the enhanced protein degradation. HIF-1α is mainly regulated at the level of post-transcription and AKT is known to modulate the translation of HIF-1α mRNA. Interestingly, pre-treatment of cells with KNK437 inhibited AKT signaling. Furthermore, down regulation of AKT by siRNA abrogated HIF-1α levels under hypoxia. Interestingly, KNK437 reduced cell survival in hypoxic conditions and inhibited hypoxia-induced resistance to radiation. Taken together, these data suggest that KNK437 is an effective radiosensitizer that targets multiple pro-survival stress response pathways.
Collapse
Affiliation(s)
- Deepu Oommen
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom.
| | | |
Collapse
|
15
|
Quanz M, Herbette A, Sayarath M, de Koning L, Dubois T, Sun JS, Dutreix M. Heat shock protein 90α (Hsp90α) is phosphorylated in response to DNA damage and accumulates in repair foci. J Biol Chem 2012; 287:8803-15. [PMID: 22270370 DOI: 10.1074/jbc.m111.320887] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
DNA damage triggers a complex signaling cascade involving a multitude of phosphorylation events. We found that the threonine 7 (Thr-7) residue of heat shock protein 90α (Hsp90α) was phosphorylated immediately after DNA damage. The phosphorylated Hsp90α then accumulated at sites of DNA double strand breaks and formed repair foci with slow kinetics, matching the repair kinetics of complex DNA damage. The phosphorylation of Hsp90α was dependent on phosphatidylinositol 3-kinase-like kinases, including the DNA-dependent protein kinase (DNA-PK) in particular. DNA-PK plays an essential role in the repair of DNA double strand breaks by nonhomologous end-joining and in the signaling of DNA damage. It is also present in the cytoplasm of the cell and has been suggested to play a role in cytoplasmic signaling pathways. Using stabilized double-stranded DNA molecules to activate DNA-PK, we showed that an active DNA-PK complex could be assembled in the cytoplasm, resulting in phosphorylation of the cytoplasmic pool of Hsp90α. In vivo, reverse phase protein array data for tumors revealed that basal levels of Thr-7-phosphorylated Hsp90α were correlated with phosphorylated histone H2AX levels. The Thr-7 phosphorylation of the ubiquitously produced and secreted Hsp90α may therefore serve as a surrogate biomarker of DNA damage. These findings shed light on the interplay between central DNA repair enzymes and an essential molecular chaperone.
Collapse
Affiliation(s)
- Maria Quanz
- Institut Curie, CNRS UMR3347, INSERM U1021, Université Paris-Sud 11, Centre Universitaire, Orsay, France.
| | | | | | | | | | | | | |
Collapse
|
16
|
Kabakov AE, Kudryavtsev VA, Makarova YM. Inhibitors of heat shock protein 90 activity: A novel class of tumor radiosensitizers. Biophysics (Nagoya-shi) 2011. [DOI: 10.1134/s0006350911020126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
17
|
Ekman S, Bergqvist M, Tell R, Bergström S, Lennartsson J. Hsp90 as a therapeutic target in patients with oesophageal carcinoma. Expert Opin Ther Targets 2010; 14:317-28. [DOI: 10.1517/14728221003621278] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Yin X, Zhang H, Lundgren K, Wilson L, Burrows F, Shores CG. BIIB021, a novel Hsp90 inhibitor, sensitizes head and neck squamous cell carcinoma to radiotherapy. Int J Cancer 2010; 126:1216-25. [PMID: 19662650 DOI: 10.1002/ijc.24815] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone that promotes the conformational maturation of numerous client proteins, many of which play critical roles in tumor cell growth and survival. The ansamycin-based Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) is currently in Phase III clinical testing. However, 17-AAG is difficult to formulate and associated with dose-limited toxicity issues. A fully synthetic and bioavailable Hsp90 inhibitor, BIIB021, was evaluated for antitumor activity in a variety of head and neck squamous cell carcinoma (HNSCC) cell lines and HNSCC xenograft models, either as a single agent or in combination with fractionated radiation and the results were compared with that of 17-AAG. BIIB021 showed strong antitumor activity, comparable with, and in certain instances, superior to 17-AAG. BIIB021 enhanced the in vitro radiosensitivity of HNSCCA cell lines with a corresponding reduction in the expression of key radioresponsive proteins, increased apoptotic cells and enhance G2 arrest. In xenograft studies, BIIB021 exhibited a strong antitumor effect outperforming 17-AAG, either as a single agent and or in combination with radiation, thereby improved the efficacy of radiation. These results suggest that this synthetic and bioavailable Hsp90 inhibitor affects multiple pathways involved in tumor development and progression in the HNSCC setting and may represent a better strategy for the treatment of HNSCC patients, either as a monotherapy or a radiosensitizer. Furthermore, it also demonstrates the benefits of using preclinical models of chemosensitization to radiotherapy to explore clinically relevant radiation dosing schemes.
Collapse
Affiliation(s)
- Xiaoying Yin
- University of North Carolina, Department of Otolaryngology/Head & Neck Surgery, Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
19
|
Noguchi M, Hirayama R, Druzhinin S, Okayasu R. Enhanced radiation-induced cell killing by Herbimycin A pre-treatment. Radiat Phys Chem Oxf Engl 1993 2009. [DOI: 10.1016/j.radphyschem.2009.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Kabakov AE, Kudryavtsev VA, Gabai VL. Hsp90 inhibitors as promising agents for radiotherapy. J Mol Med (Berl) 2009; 88:241-7. [PMID: 19946660 DOI: 10.1007/s00109-009-0562-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 10/08/2009] [Accepted: 11/03/2009] [Indexed: 01/09/2023]
Abstract
The 90-kD heat shock protein (Hsp90) is an abundant molecular chaperone catalyzing maturation and activation of client proteins. A number of the Hsp90 client proteins are components of cancer cell-associated signaling pathways that ensure unlimited growth of tumors and their resistance to chemotherapy and radiotherapy. Upon inhibition of the Hsp90 chaperone function, such client proteins are destabilized and degraded which disrupts multiple pathways essential for tumor cell survival; hence, pharmacological Hsp90 inhibitors could be applied in anticancer therapy. Several Hsp90-inhibiting compounds are currently tested in preclinical or phase I-III clinical trials as single anticancer agents or in combination with conventional drugs and radiation. The present review summarizes the data characterizing Hsp90 inhibitors as agents that sensitize human tumors to irradiation which may improve the outcome of radiotherapy. We also discuss molecular mechanisms of the Hsp90 inhibition-induced radiosensitization and its selectivity toward cancer cells.
Collapse
Affiliation(s)
- Alexander E Kabakov
- Department of Radiation Biochemistry, Medical Radiology Research Center, Obninsk, Russia.
| | | | | |
Collapse
|
21
|
Immormino RM, Metzger LE, Reardon PN, Dollins DE, Blagg BS, Gewirth DT. Different poses for ligand and chaperone in inhibitor-bound Hsp90 and GRP94: implications for paralog-specific drug design. J Mol Biol 2009; 388:1033-42. [PMID: 19361515 PMCID: PMC2692672 DOI: 10.1016/j.jmb.2009.03.071] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 03/30/2009] [Indexed: 11/15/2022]
Abstract
Hsp90 chaperones contain an N-terminal ATP binding site that has been effectively targeted by competitive inhibitors. Despite the myriad of inhibitors, none to date have been designed to bind specifically to just one of the four mammalian Hsp90 paralogs, which are cytoplasmic Hsp90alpha and beta, endoplasmic reticulum GRP94, and mitochondrial Trap-1. Given that each of the Hsp90 paralogs is responsible for chaperoning a distinct set of client proteins, specific targeting of one Hsp90 paralog may result in higher efficacy and therapeutic control. Specific inhibitors may also help elucidate the biochemical roles of each Hsp90 paralog. Here, we present side-by-side comparisons of the structures of yeast Hsp90 and mammalian GRP94, bound to the pan-Hsp90 inhibitors geldanamycin (Gdm) and radamide. These structures reveal paralog-specific differences in the Hsp90 and GRP94 conformations in response to Gdm binding. We also report significant variation in the pose and disparate binding affinities for the Gdm-radicicol chimera radamide when bound to the two paralogs, which may be exploited in the design of paralog-specific inhibitors.
Collapse
Affiliation(s)
- Robert M. Immormino
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Louis E. Metzger
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Patrick N. Reardon
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - D. Eric Dollins
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Brian S.J. Blagg
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, 4070 Malott Lawrence, Kansas 66045 USA
| | - Daniel T. Gewirth
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
| |
Collapse
|
22
|
Ito A, Saito H, Mitobe K, Minamiya Y, Takahashi N, Maruyama K, Motoyama S, Katayose Y, Ogawa JI. Inhibition of heat shock protein 90 sensitizes melanoma cells to thermosensitive ferromagnetic particle-mediated hyperthermia with low Curie temperature. Cancer Sci 2009; 100:558-64. [PMID: 19154416 PMCID: PMC11159285 DOI: 10.1111/j.1349-7006.2008.01072.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Heat shock protein (Hsp) 90 is a key regulator of a variety of oncogene products and cell-signaling molecules, and the therapeutic benefit of its inhibition in combination with radiation or chemotherapy has been investigated. In addition, hyperthermia has been used for many years to treat various malignant tumors. We previously described a system in which hyperthermia was induced using thermosensitive ferromagnetic particles (FMP) with a Curie temperature (Tc = 43 degrees C) low enough to mediate automatic temperature control, and demonstrated its antitumor effect in a mouse melanoma model. In the present study, we examined the antitumor effects of combining a Hsp90 inhibitor (geldanamycin; GA) with FMP-mediated hyperthermia. In cultured B16 melanoma cells, GA exerted an antitumor effect by increasing the cells' susceptibility to hyperthermia and reducing expression of Akt. In an in vivo study, melanoma cells were subcutaneously injected into the backs of C57BL/6 mice. FMP were then injected into the resultant tumors, and the mice were divided into four groups: group I, no treatment (control); group II, one hyperthermia treatment; group III, GA alone; and group IV, GA with hyperthermia. When exposed to a magnetic field, the temperature of tissues containing FMP increased and stabilized at the Tc. In group IV, complete regression of tumors was observed in five of nine mice (56%), whereas no tumor regression was seen in groups I-III. Our findings suggest that inhibition of Hsp90 with hyperthermia increases its antitumor effect. Thus, the combination of FMP-mediated, self-regulating hyperthermia with Hsp90 inhibition has important implications for the treatment of cancer.
Collapse
Affiliation(s)
- Aki Ito
- Department of Surgery, Akita University, Hondo, Akita City, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Koll TT, Feis SS, Wright MH, Teniola MM, Richardson MM, Robles AI, Bradsher J, Capala J, Varticovski L. HSP90 inhibitor, DMAG, synergizes with radiation of lung cancer cells by interfering with base excision and ATM-mediated DNA repair. Mol Cancer Ther 2008; 7:1985-92. [PMID: 18645008 PMCID: PMC2671002 DOI: 10.1158/1535-7163.mct-07-2104] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inhibition of heat shock protein 90 (HSP90) leads to inappropriate processing of proteins involved in cell survival pathways. We found that HSP90 inhibitor, 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (DMAG), is synergistic with radiation for non-small cell lung cancer cell lines, NCI-H460 and A549. To establish the optimal schedule for this combination, cells were radiated before, after, or simultaneously with DMAG, and survival was scored by clonogenic assay. The sequence of DMAG administration was critical for synergy with radiation, and pretreatment for 16 h led to maximal synergy. Similar radiosensitization was observed in isogenic cells in which expression of wild-type p53 was silenced by RNA interference, although p53 loss rendered cells overall less radiosensitive. The mechanistic basis for synergy was studied by Western blotting, cell cycle analysis, alkaline comet assay, and direct measurement of the activities of key base excision repair enzymes. Regardless of schedule of administration, DMAG led to degradation of proteins involved in activation of cell survival pathways after radiation, which did not explain the differences in the schedule of administration observed in clonogenic assays. In addition to previously reported decrease in activation of ATM, pretreatment with DMAG blocked activation of base excision repair machinery and activity of key enzymes, apurinic/apyrimidinic endonuclease, and DNA polymerase-beta. Similarly, pretreatment with specific apurinic/apyrimidinic endonuclease inhibitor, CRT0044876, reproduced the effects of DMAG. Thus, administration of HSP90 inhibitors before radiation is critical for optimizing their use as radiosensitizers.
Collapse
Affiliation(s)
- Thuy T. Koll
- Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bethesda, Maryland
- Creighton University Medical School, Omaha, Nebraska
| | - Steven S. Feis
- Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bethesda, Maryland
| | - Mollie H. Wright
- Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bethesda, Maryland
| | - Modupe M. Teniola
- Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bethesda, Maryland
| | - Mekel M. Richardson
- Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bethesda, Maryland
| | - Ana I. Robles
- Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bethesda, Maryland
| | - John Bradsher
- Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jacek Capala
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Lyuba Varticovski
- Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bethesda, Maryland
| |
Collapse
|
24
|
Tsuboi K, Moritake T, Tsuchida Y, Tokuuye K, Matsumura A, Ando K. Cell cycle checkpoint and apoptosis induction in glioblastoma cells and fibroblasts irradiated with carbon beam. JOURNAL OF RADIATION RESEARCH 2007; 48:317-25. [PMID: 17548940 DOI: 10.1269/jrr.06081] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This study was conducted in order to evaluate the cytotoxicity of high linear-energy-transfer (LET) ionizing radiation (IR) on glioblastoma cells and fibroblasts using different modes of cell inactivation assays. Two human glioblastoma cell lines with or without p53-mutation, and fibroblasts were used as materials. Gamma rays and 290 MeV/u carbon beams with LET values of 20, 40, 80 keV/mum were used. To evaluate cell inactivation, we used colony formation assay, morphological detection of apoptosis, and flow-cytometry. Serial expressions of p53 and p21 were analyzed by immunoblotting. High-LET IR reduced the reproductive potency of these cells to identical levels in spite of differences in gamma-sensitivity, and yield of cell death correlated to LET values. A p53-wild-type glioblastoma cell line demonstrated a higher yield of apoptosis than other cell lines, whereas fibroblasts hardly displayed any cell death indicating senescence-like growth arrest even after high LET IR. A p53-mutant tumor cell line demonstrated very low yield of cell death with prominent G2/M arrest. Results of radiosensitivity differ according to what mode of cell inactivation is selected. While fibroblasts depend on G1 block after IR, G2/M blocks may play crucial roles in the radioresistance of p53-mutant glioblastoma cells.
Collapse
Affiliation(s)
- Koji Tsuboi
- Proton Medical Research Center, Doctoral Program in Advanced Biomedical Applications, Graduate School of Comprehensive Human Sciences, University of Tsukuba.
| | | | | | | | | | | |
Collapse
|
25
|
Teimourian S, Jalal R, Sohrabpour M, Goliaei B. Down-regulation of Hsp27 radiosensitizes human prostate cancer cells. Int J Urol 2006; 13:1221-5. [PMID: 16984557 DOI: 10.1111/j.1442-2042.2006.01483.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM In this study, we examined whether human Hsp27 is involved in the radiation sensitization induced by gamma radiation in cultured human prostate cancer cells. METHODS We transfected DU145 cells with full length Hsp27 antisense cDNA to obtain viable cell lines which expressed reduced Hsp27. Selected individual clones were subjected to western blot analyses to confirm reduced expression of Hsp27. RESULTS Hsp27 belongs to a family of abundant and ubiquitous stress proteins, the small heat shock proteins. It has been shown that Hsp27 can inhibit apoptosis both in a caspase-dependent and independent manner. Colony assays showed that the cells engineered to express reduced Hsp27 levels had a significantly increased sensitivity to gamma radiation compared with control cells that were transfected with the vector alone. However, there was also a significant difference in viability of cells with reduced Hsp27 levels and control cells 72 h after gamma-irradiation. CONCLUSIONS Our results suggest the possible application of antisense Hsp27 cDNA or other methods to reduce Hsp27 expression as a radiation sensitizer in radiation oncology.
Collapse
Affiliation(s)
- Shahram Teimourian
- Laboratory of Biophysics and Molecular Biology, Institute of Biophysics and Biochemistry, University of Tehran, Iran
| | | | | | | |
Collapse
|
26
|
Immormino RM, Kang Y, Chiosis G, Gewirth DT. Structural and quantum chemical studies of 8-aryl-sulfanyl adenine class Hsp90 inhibitors. J Med Chem 2006; 49:4953-60. [PMID: 16884307 DOI: 10.1021/jm060297x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hsp90 chaperones play a critical role in modulating the activity of many cell signaling proteins and are an attractive target for anti-cancer therapeutics. We report here the structures of the water soluble 8-aryl-sulfanyl adenine class Hsp90 inhibitors, 1 (PU-H71) and 2 (PU-H64), in complex with the N-terminal domain of human Hsp90alpha. The conformation of 1 when bound to Hsp90 differs from previously reported 8-aryl adenine Hsp90 inhibitors including 3 (PU24FCl). While the binding mode for 3 places the 2'-halide of the 8-aryl group on top of the adenine ring, for 1 and 2, we show that the 2'-halide is rotated approximately 180 degrees away. This difference explains the opposing trends in Hsp90 inhibitory activity for the 2'-halo derivatives of the 3',4',5'-trimethoxy series where Cl > Br > I compared to the 4',5'-methylenedioxy series where I > Br > Cl. We also present quantum chemical calculations of 2 and its analogues that illuminate their basis for Hsp90 inhibition. The calculated conformation of 2 agreed well with the crystallographically observed conformations of 1 and 2. The predictive nature of the calculations has allowed the exploration of additional derivatives based on the 8-aryl adenine scaffold.
Collapse
Affiliation(s)
- Robert M Immormino
- Hauptman-Woodward Medical Research Institute, Buffalo, New York 14203, USA
| | | | | | | |
Collapse
|
27
|
Machida H, Nakajima S, Shikano N, Nishio J, Okada S, Asayama M, Shirai M, Kubota N. Heat shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin potentiates the radiation response of tumor cells grown as monolayer cultures and spheroids by inducing apoptosis. Cancer Sci 2005; 96:911-7. [PMID: 16367912 PMCID: PMC11158278 DOI: 10.1111/j.1349-7006.2005.00125.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Activation of the PI3K-Akt pathway is known to induce tumor radioresistance. In the current study, we examined the ability of 17AAG, which decreases the levels of Hsp90 client proteins including components of the PI3K-Akt pathway, to sensitize radioresistant human squamous cell carcinoma cells to X-irradiation. Human squamous cell carcinoma cell lines (SQ20B, SCC61 and SCC13) were incubated for 16 h at 37 degrees C in medium containing 17AAG. Radiation sensitivity was determined by clonogenic assays, and protein levels were examined by western blotting. Apoptosis was determined in monolayer cells by AO/EB double staining and in spheroids using the TdT-mediated dUTP nick end labeling assay. 17AAG (0.2 microM) enhanced the radiosensitivity more effectively in radioresistant SQ20B and SCC13 cells than in radiosensitive SCC61 cells. However, in all three cell lines, 17AAG increased radiation-induced apoptosis by reducing the expression of EGFR and ErbB-2 and inhibiting the phosphorylation of Akt. Furthermore, 17AAG (1 microM) sensitized SQ20B spheroids to radiation, and inhibition of Akt activation by 17AAG increased radiation-induced apoptosis in spheroids. The findings suggest that 17AAG effectively sensitizes radioresistant cells to radiation by inhibiting the PI3K-Akt pathway. Targeting the PI3K-Akt pathway with 17AAG could be a useful strategy for radiosensitization of carcinomas.
Collapse
Affiliation(s)
- Hikaru Machida
- Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Amimachi, Inashiki-gun, Ibaraki 300-0394, Japan
| | | | | | | | | | | | | | | |
Collapse
|