1
|
Anwar T, Qureshi H, Siddiqi EH, Ullah N, Naseem MT, Soufan W. Synergistic effects of gibberellic acid, biochar, and rhizobacteria on wheat growth under heavy metal and drought stress. BMC PLANT BIOLOGY 2024; 24:1168. [PMID: 39639195 PMCID: PMC11619631 DOI: 10.1186/s12870-024-05833-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
Wheat (Triticum aestivum L.), a vital crop constituting approximately 20% of global caloric intake, faces significant threats from heavy metal contamination, particularly cadmium (Cd) and chromium (Cr), along with drought stress, jeopardizing global food security. This study aimed to investigate the combined effects of these stressors and the potential of plant growth enhancers such as gibberellic acid (GA3), biochar (BC), and rhizobacteria to improve wheat growth. Conducted in a controlled greenhouse environment at The Islamia University of Bahawalpur, the experiment utilized a completely randomized design with three replications across 72 pots, each filled with clay loam soil. The experimental layout included 24 treatment combinations involving cadmium stress (6 mg/kg), chromium stress (300 and 600 mg/kg), drought stress simulated at -0.8 MPa soil water potential, and various applications of GA3 (200 mg L- 1) and biochar (0.6% and 0.9% w/w). Seedlings of T. aestivum cv. Dilkash-21, treated with Agrobacterium fabrum, showed significant growth metrics, with root lengths of 9.36 cm under 6 mg/kg Cd stress compared to 5.53 cm in controls. The treatment also increased shoot and root fresh weights by 24.7% and 22.5%, respectively, while chlorophyll content peaked at 2.26 mg/g under 6 mg/kg Cd. Additionally, electrolyte leakage decreased to 10.5%, and the vigor index improved to 1586.05 under Cd stress. These findings indicate that utilizing GA3 and biochar can mitigate the adverse effects of environmental stressors on wheat. Future research should focus on the underlying mechanisms of these treatments and explore their application in field conditions to further enhance wheat productivity and resilience against environmental stress.
Collapse
Affiliation(s)
- Tauseef Anwar
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Huma Qureshi
- Department of Botany, University of Chakwal, Chakwal, 48800, Pakistan.
| | - Ejaz Hussain Siddiqi
- Institute of Biological Sciences, Gomal University, D. I. Khan-29220, Khyber Pakhtunkhwa, Pakistan
| | - Naimat Ullah
- Department of Electronic Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Muhammad Tahir Naseem
- Department of Electronic Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Walid Soufan
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
2
|
Yang H, Bai C, Ai X, Yu H, Xu Z, Wang J, Kuai J, Zhao J, Wang B, Zhou G. Conversion of lipids into carbohydrates rescues energy insufficiency in rapeseed germination under waterlogging stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14576. [PMID: 39400914 DOI: 10.1111/ppl.14576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/05/2024] [Indexed: 10/15/2024]
Abstract
Waterlogging stress, particularly during seed germination, significantly affects plant growth and development. However, the physiological and molecular mechanisms underlying waterlogging stress responses during rapeseed germination remain unclear. In this study, two rapeseed cultivars, Xiangzayou518 (waterlogging-sensitive) and Dadi199 (waterlogging-tolerant), were used to explore the physiological mechanisms underlying rapeseed response to waterlogging stress during germination. Our results showed that waterlogging significantly decreased the emergence percentage and seedling growth rate. During the radicle elongation period (from 48 to 96 h post-germination), the most sensitive period to waterlogging during germination, sugar content, and glycolysis efficiency were significantly decreased, but anaerobic fermentation was enhanced. In tolerant cultivars, when the energy supply was insufficient, the conversion efficiency of lipids into sugar increased, and the activities of isocitrate lyase, malate synthase, and fructose-1, 6-diphosphatase were enhanced by 11.63, 19.06, and 20.37%, respectively, at 72 h post-germination under waterlogging stress. Transcriptome data showed that the differentially expressed genes were significantly enriched in glucose and lipid metabolism pathways when comparing waterlogged stress and normal conditions. These results indicate that waterlogging affects seed germination in rapeseed by inhibiting carbohydrate metabolism, and the conversion capacity of lipids into sugar under waterlogging stress was stronger in tolerant cultivars than in sensitive cultivars, thus rescuing the insufficient energy supply in seed germination and seedling growth. This study reveals the physiological mechanism of rapeseed response to waterlogging stress during seed germination and provides a valuable reference for improving waterlogging tolerance.
Collapse
Affiliation(s)
- Haiyun Yang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Chenyang Bai
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Xueying Ai
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
- Shenyang Agricultural University, Shenyang, China
| | - Haiqiu Yu
- Shenyang Agricultural University, Shenyang, China
| | - Zhenghua Xu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Jie Kuai
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Jie Zhao
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Bo Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Guangsheng Zhou
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
3
|
Lin L, Lin J, Zhou M, Yuan Y, Li Z. Lipid remodelling and the conversion of lipids into sugars associated with tolerance to cadmium toxicity during white clover seed germination. PHYSIOLOGIA PLANTARUM 2024; 176:e14433. [PMID: 38994561 DOI: 10.1111/ppl.14433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
Cadmium (Cd) is a leading environmental issue worldwide. The current study was conducted to investigate Cd tolerance of 10 commercial white clover (Trifolium repens) cultivars during seed germination and to further explore differences in lipid remodelling, glycometabolism, and the conversion of lipids into sugars contributing to Cd tolerance in the early phase of seedling establishment as well as the accumulation of Cd in seedlings and mature plants. The results show that Cd stress significantly reduced seed germination of 10 cultivars. Compared to Cd-sensitive Sulky, Cd-tolerant Pixie accelerated amylolysis to produce more glucose, fructose, and sucrose by maintaining higher amylase and sucrase activities under Cd stress. Pixie maintained higher contents of various lipids, higher DGDG/MGDG ratio, and lower unsaturation levels of lipids, which could be beneficial to membrane stability and integrity as well as signal transduction in cells after being subjected to Cd stress. In addition, Pixie upregulated expression levels of key genes (TrACX1, TrACX4, TrSDP6, and TrPCK1) involved in the conversion of lipids into sugars for early seedling establishment under Cd stress. These findings indicate that lipid remodelling, enhanced glycometabolism, and accelerated conversion of lipids into sugars are important adaptive strategies for white clover seed germination and subsequent seedling establishment under Cd stress. In addition, Pixie not only accumulated more Cd in seedlings and mature plants than Sulky but also had significantly better growth and phytoremediation efficiency under Cd stress. Pixie could be used as a suitable and critical germplasm for the rehabilitation and re-establishment of Cd-contaminated areas.
Collapse
Affiliation(s)
- Long Lin
- Department of Turf Science and Engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Junnan Lin
- Department of Turf Science and Engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Min Zhou
- Department of Turf Science and Engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yan Yuan
- Department of Turf Science and Engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhou Li
- Department of Turf Science and Engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Wang J, Zhou M, Zhang H, Liu X, Zhang W, Wang Q, Jia Q, Xu D, Chen H, Su C. A genome-wide association analysis for salt tolerance during the soybean germination stage and development of KASP markers. FRONTIERS IN PLANT SCIENCE 2024; 15:1352465. [PMID: 38384759 PMCID: PMC10879362 DOI: 10.3389/fpls.2024.1352465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/12/2024] [Indexed: 02/23/2024]
Abstract
Salt stress poses a significant challenge to crop productivity, and understanding the genetic basis of salt tolerance is paramount for breeding resilient soybean varieties. In this study, a soybean natural population was evaluated for salt tolerance during the germination stage, focusing on key germination traits, including germination rate (GR), germination energy (GE), and germination index (GI). It was seen that under salt stress, obvious inhibitions were found on these traits, with GR, GE, and GI diminishing by 32% to 54% when compared to normal conditions. These traits displayed a coefficient of variation (31.81% to 50.6%) and a substantial generalized heritability (63.87% to 86.48%). Through GWAS, a total of 1841 significant single-nucleotide polymorphisms (SNPs) were identified to be associated with these traits, distributed across chromosome 2, 5, 6, and 20. Leveraging these significant association loci, 12 candidate genes were identified to be associated with essential functions in coordinating cellular responses, regulating osmotic stress, mitigating oxidative stress, clearing reactive oxygen species (ROS), and facilitating heavy metal ion transport - all of which are pivotal for plant development and stress tolerance. To validate the candidate genes, quantitative real-time polymerase chain reaction (qRT-PCR) analysis was conducted, revealing three highly expressed genes (Glyma.02G067700, Glyma.02G068900, and Glyma.02G070000) that play pivotal roles in plant growth, development, and osmoregulation. In addition, based on these SNPs related with salt tolerance, KASP (Kompetitive Allele-Specific PCR)markers were successfully designed to genotype soybean accessions. These findings provide insight into the genetic base of soybean salt tolerance and candidate genes for enhancing soybean breeding programs in this study.
Collapse
Affiliation(s)
- Junyan Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Miaomiao Zhou
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hongmei Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaoqing Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wei Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qiong Wang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qianru Jia
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Donghe Xu
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
| | - Huatao Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Zhongshan Biological Breeding Laboratory (ZSBBL), Nanjing, China
| | - Chengfu Su
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
5
|
Guan RX, Guo XY, Qu Y, Zhang ZW, Bao LG, Ye RY, Chang RZ, Qiu LJ. Salt Tolerance in Soybeans: Focus on Screening Methods and Genetics. PLANTS (BASEL, SWITZERLAND) 2023; 13:97. [PMID: 38202405 PMCID: PMC10780708 DOI: 10.3390/plants13010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/25/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
Salinity greatly affects the production of soybeans in arid and semi-arid lands around the world. The responses of soybeans to salt stress at germination, emergence, and other seedling stages have been evaluated in multitudes of studies over the past decades. Considerable salt-tolerant accessions have been identified. The association between salt tolerance responses during early and later growth stages may not be as significant as expected. Genetic analysis has confirmed that salt tolerance is distinctly tied to specific soybean developmental stages. Our understanding of salt tolerance mechanisms in soybeans is increasing due to the identification of key salt tolerance genes. In this review, we focus on the methods of soybean salt tolerance screening, progress in forward genetics, potential mechanisms involved in salt tolerance, and the importance of translating laboratory findings into field experiments via marker-assisted pyramiding or genetic engineering approaches, and ultimately developing salt-tolerant soybean varieties that produce high and stable yields. Progress has been made in the past decades, and new technologies will help mine novel salt tolerance genes and translate the mechanism of salt tolerance into new varieties via effective routes.
Collapse
Affiliation(s)
- Rong-Xia Guan
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Key Lab of Soybean Biology, Ministry of Agriculture, State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.-Y.G.); (Z.-W.Z.); (R.-Z.C.)
| | - Xiao-Yang Guo
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Key Lab of Soybean Biology, Ministry of Agriculture, State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.-Y.G.); (Z.-W.Z.); (R.-Z.C.)
| | - Yue Qu
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia;
| | - Zheng-Wei Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Key Lab of Soybean Biology, Ministry of Agriculture, State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.-Y.G.); (Z.-W.Z.); (R.-Z.C.)
| | - Li-Gao Bao
- Agriculture and Animal Husbandry Technology Promotion Center of Inner Mongolia Autonomous Region, Hohhot 010018, China;
| | - Rui-Yun Ye
- The Economic Development Center of China State Farm, Beijing 100122, China;
| | - Ru-Zhen Chang
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Key Lab of Soybean Biology, Ministry of Agriculture, State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.-Y.G.); (Z.-W.Z.); (R.-Z.C.)
| | - Li-Juan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Key Lab of Soybean Biology, Ministry of Agriculture, State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.-Y.G.); (Z.-W.Z.); (R.-Z.C.)
| |
Collapse
|
6
|
Wang X, Komatsu S. Subcellular Proteomics to Elucidate Soybean Response to Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2865. [PMID: 37571018 PMCID: PMC10421527 DOI: 10.3390/plants12152865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
Climate change jeopardizes soybean production by declining seed yield and quality. In this review, the morphophysiological alterations of soybean in response to abiotic stress are summarized, followed by illustrations of cellular metabolisms and regulatory mechanisms to organellar stress based on subcellular proteomics. This highlights the communications associated with reactive oxygen species scavenging, molecular chaperones, and phytohormone signals among subcellular compartments. Given the complexity of climate change and the limitations of plants in coping with multiple abiotic stresses, a generic response to environmental constraints is proposed between calcium and abscisic acid signals in subcellular organelles. This review summarizes the findings of subcellular proteomics in stressed soybean and discusses the future prospects of subcellular proteomics for promoting the improvement of climate-tolerant crops.
Collapse
Affiliation(s)
- Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China;
| | - Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| |
Collapse
|
7
|
Rasheed A, Raza A, Jie H, Mahmood A, Ma Y, Zhao L, Xing H, Li L, Hassan MU, Qari SH, Jie Y. Molecular Tools and Their Applications in Developing Salt-Tolerant Soybean (Glycine max L.) Cultivars. Bioengineering (Basel) 2022; 9:bioengineering9100495. [PMID: 36290463 PMCID: PMC9598088 DOI: 10.3390/bioengineering9100495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 01/18/2023] Open
Abstract
Abiotic stresses are one of the significant threats to soybean (Glycine max L.) growth and yields worldwide. Soybean has a crucial role in the global food supply chain and food security and contributes the main protein share compared to other crops. Hence, there is a vast scientific saddle on soybean researchers to develop tolerant genotypes to meet the growing need of food for the huge population. A large portion of cultivated land is damaged by salinity stress, and the situation worsens yearly. In past years, many attempts have increased soybean resilience to salinity stress. Different molecular techniques such as quantitative trait loci mapping (QTL), genetic engineering, transcriptome, transcription factor analysis (TFs), CRISPR/Cas9, as well as other conventional methods are used for the breeding of salt-tolerant cultivars of soybean to safeguard its yield under changing environments. These powerful genetic tools ensure sustainable soybean yields, preserving genetic variability for future use. Only a few reports about a detailed overview of soybean salinity tolerance have been published. Therefore, this review focuses on a detailed overview of several molecular techniques for soybean salinity tolerance and draws a future research direction. Thus, the updated review will provide complete guidelines for researchers working on the genetic mechanism of salinity tolerance in soybean.
Collapse
Affiliation(s)
- Adnan Rasheed
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Ali Raza
- Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China
| | - Hongdong Jie
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Yushen Ma
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Long Zhao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Hucheng Xing
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Linlin Li
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China
| | - Sameer H. Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Yucheng Jie
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- Correspondence:
| |
Collapse
|
8
|
Zhang M, Cao J, Zhang T, Xu T, Yang L, Li X, Ji F, Gao Y, Ali S, Zhang Q, Zhu J, Xie L. A Putative Plasma Membrane Na +/H + Antiporter GmSOS1 Is Critical for Salt Stress Tolerance in Glycine max. FRONTIERS IN PLANT SCIENCE 2022; 13:870695. [PMID: 35651772 PMCID: PMC9149370 DOI: 10.3389/fpls.2022.870695] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/29/2022] [Indexed: 05/24/2023]
Abstract
Soybean (Glycine max) is a staple crop and a major source of vegetable protein and vegetable oil. The growth of soybean is dramatically inhibited by salt stress, especially by the excessive toxic Na+. Salt Overly Sensitive 1 (SOS1) is the only extensively characterized Na+ efflux transporter in multiple plant species so far. However, the role of GmSOS1 in soybean salt stress responses remains unclear. Herein, we created three gmsos1 mutants using the CRISPR-Cas9 system in soybean. We found a significant accumulation of Na+ in the roots of the gmsos1 mutants, resulting in the imbalance of Na+ and K+, which links to impaired Na+ efflux and increased K+ efflux in the roots of the gmsos1 mutants under salt stress. Compared to the wild type, our RNA-seq analysis revealed that the roots of the gmsos1-1 showed preferential up and downregulation of ion transporters under salt stress, supporting impaired stress detection or an inability to develop a comprehensive response to salinity in the gmsos1 mutants. Our findings indicate that the plasma membrane Na+/H+ exchanger GmSOS1 plays a critical role in soybean salt tolerance by maintaining Na+ homeostasis and provides evidence for molecular breeding to improve salt tolerance in soybean and other crops.
Collapse
Affiliation(s)
- Minghui Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Junfeng Cao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Tianxu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Tao Xu
- The Editorial Board of Journal of Forestry Research, Northeast Forestry University, Harbin, China
| | - Liyuan Yang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
- Laboratory Department, Qitaihe Center for Disease Control and Prevention, Qitaihe, China
| | - Xiaoyuan Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Fengdan Ji
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Yingxue Gao
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shahid Ali
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Qingzhu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jianhua Zhu
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, College Park, MD, United States
| | - Linan Xie
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
9
|
Huang Y, Mei G, Fu X, Wang Y, Ruan X, Cao D. Ultrasonic Waves Regulate Antioxidant Defense and Gluconeogenesis to Improve Germination From Naturally Aged Soybean Seeds. FRONTIERS IN PLANT SCIENCE 2022; 13:833858. [PMID: 35419018 PMCID: PMC8996252 DOI: 10.3389/fpls.2022.833858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Soybean seeds contain substantial triacylglycerols and fatty acids that are prone to oxidation during storage, contributing to the dramatic deterioration of seed vigor. This study reports an ultrasonic waves treatment (UWT), which is a physical method capable of promoting the germination ability of the aged soybean seeds by regulating the antioxidant defense and gluconeogenesis. Germination test revealed that UWT significantly increased the germination rate and seedlings' establishment of the soybean seeds stored for 12 months, although insignificantly impacting the vigor of fresh (stored for 1 month) and short-term stored (for 6 months) seeds. Further biochemical analysis revealed that UWT decreased the hydrogen peroxide (H2O2), O2⋅-, and malondialdehyde contents in the aged soybean seeds during early germination. Consistently, UWT prominently elevated the activities of superoxide dismutase, catalase, and acetaldehyde dehydrogenase, and also the corresponding gene expressions. Besides, the soluble sugar content of UWT was significantly higher than that of the untreated aged seeds. Analysis of enzyme activity showed UWT significantly upregulated the activities of several key enzymes in gluconeogenesis and the transcription levels of corresponding genes. Moreover, UWT enhanced the invertase activity within aged seeds, which was responsible for catalyzing sucrose hydrolysis for forming glucose and fructose. In summary, UWT improved germination and seedlings establishment of aged soybean seeds by regulating antioxidant defense and gluconeogenesis. This study expands the application of ultrasonication in agricultural production and further clarifies the physiological and molecular mechanisms of the aged seed germination, aiming to provide theoretical and practical guidance for seed quality and safety.
Collapse
Affiliation(s)
- Yutao Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Gaofu Mei
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xujun Fu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yang Wang
- The Key Laboratory of Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xiaoli Ruan
- Zhejiang Nongke Seed Co. Ltd., Hangzhou, China
| | - Dongdong Cao
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
10
|
Liao X, Shi M, Zhang W, Ye Q, Li Y, Feng X, Bhat JA, Kan G, Yu D. Association analysis of GmMAPKs and functional characterization of GmMMK1 to salt stress response in soybean. PHYSIOLOGIA PLANTARUM 2021; 173:2026-2040. [PMID: 34487378 DOI: 10.1111/ppl.13549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Salinity is one of the major abiotic constraints affecting the growth and yield of plants including soybean. In this context, the previous studies have documented the role of the mitogen-activated protein kinase (MAPK) cascade in the regulation of salt signaling in model plants. However, there is not a systematic analysis of salt-related MAPKs in soybean. Hence, in this study, we identified a total of 32 GmMAPKs via., genome-wide reanalysis of the MAPK family using the soybean genome v4.0. Based on the transcriptome datasets in the public database, we observed that GmMAPKs are induced by different abiotic stresses, especially salt stress. Furthermore, based on the candidate gene association mapping and haplotype analysis of the GmMAPKs, we identified a salt-related MAPK member, GmMMK1. GmMMK1 possesses significant sequence variations, which affect salt tolerance in soybean at the germination stage. Besides, the overexpression of the GmMMK1 in soybean hairy roots has a significant negative effect on the root growth, leading to increased sensitivity of the GmMMK1-OE plants to salt stress. Moreover, the heterologous expression of the GmMMK1 in Arabidopsis has been also observed to have a negative effect on the germination and root growth under salt stress. The transcriptome analysis and yeast two-hybrid screening showed that hormone signaling and the homeostasis of reactive oxygen species are involved in the GmMMK1 regulation network. In conclusion, the results of this work demonstrated that GmMMK1 is an important negative regulator of the salt stress response, and provides better insights for understanding the role of the MAPKs in soybean salt signaling.
Collapse
Affiliation(s)
- Xiliang Liao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Meiqi Shi
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Wei Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qian Ye
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Yali Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Javaid Akhter Bhat
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Guizhen Kan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Deyue Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
11
|
Jin T, Sun Y, Shan Z, He J, Wang N, Gai J, Li Y. Natural variation in the promoter of GsERD15B affects salt tolerance in soybean. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1155-1169. [PMID: 33368860 PMCID: PMC8196659 DOI: 10.1111/pbi.13536] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 05/24/2023]
Abstract
Salt stress has detrimental effects on crop growth and yield, and the area of salt-affected land is increasing. Soybean is a major source of vegetable protein, oil and feed, but considered as a salt-sensitive crop. Cultivated soybean (Glycine max) is domesticated from wild soybean (G. soja) but lost considerable amount of genetic diversity during the artificial selection. Therefore, it is important to exploit the gene pool of wild soybean. In this study, we identified 34 salt-tolerant accessions from wild soybean germplasm and found that a 7-bp insertion/deletion (InDel) in the promoter of GsERD15B (early responsive to dehydration 15B) significantly affects the salt tolerance of soybean. GsERD15B encodes a protein with transcriptional activation function and contains a PAM2 domain to mediate its interaction with poly(A)-binding (PAB) proteins. The 7-bp deletion in GsERD15B promoter enhanced the salt tolerance of soybean, with increased up-regulation of GsERD15B, two GmPAB genes, the known stress-related genes including GmABI1, GmABI2, GmbZIP1, GmP5CS, GmCAT4, GmPIP1:6, GmMYB84 and GmSOS1 in response to salt stress. We propose that natural variation in GsERD15B promoter affects soybean salt tolerance, and overexpression of GsERD15B enhanced salt tolerance probably by increasing the expression levels of genes related to ABA-signalling, proline content, catalase peroxidase, dehydration response and cation transport.
Collapse
Affiliation(s)
- Ting Jin
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNational Center for Soybean ImprovementKey Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Yangyang Sun
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNational Center for Soybean ImprovementKey Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Zhong Shan
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNational Center for Soybean ImprovementKey Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Jianbo He
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNational Center for Soybean ImprovementKey Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Ning Wang
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNational Center for Soybean ImprovementKey Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Junyi Gai
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNational Center for Soybean ImprovementKey Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Yan Li
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNational Center for Soybean ImprovementKey Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
12
|
Kamal MM, Erazo C, Tanino KK, Kawamura Y, Kasuga J, Laarveld B, Olkowski A, Uemura M. A single seed treatment mediated through reactive oxygen species increases germination, growth performance, and abiotic stress tolerance in Arabidopsis and rice. Biosci Biotechnol Biochem 2020; 84:2597-2608. [PMID: 32856556 DOI: 10.1080/09168451.2020.1808444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Hydroxyl radical (•OH) is considered to be the most damaging among reactive oxygen species. Although afew studies have reported on its effects on growth and stress adaptation of plants, no detailed studies have been performed using •OH in germination and early seedling growth under abiotic stresses. Here we report a single seed treatment with •OH on germination and seedling growth of Arabidopsis and rice under non-stressed (ambient) and various abiotic-stressed conditions (chilling, high temperature, heat, and salinity). The treatment resulted in faster seed germination and early seedling growth under non-stressed conditions, and, interestingly, these effects were more prominent under abiotic stresses. In addition, Arabidopsis seedlings from treated seeds showed faster root growth and developed more lateral roots. These results show apositive and potential practical use for •OH in model and crop plants for direct seeding in the field, as well as improvement of tolerance against emerging stresses. Abbreviations: AUC: area under curve; MGT: mean germination time; t50: time to reach 50% germination; U7525: time for uniform germination from 25% to 75%; ROS: reactive oxygen species; GSI: germination speed index; SI: stress index; DI: dormancy index.
Collapse
Affiliation(s)
- Md Mostafa Kamal
- United Graduate School of Agricultural Sciences, Iwate University , Morioka, Japan
| | - Carlos Erazo
- College of Agriculture and Bioresources, University of Saskatchewan , Saskatoon, Canada
| | - Karen K Tanino
- College of Agriculture and Bioresources, University of Saskatchewan , Saskatoon, Canada
| | - Yukio Kawamura
- United Graduate School of Agricultural Sciences, Iwate University , Morioka, Japan.,Department of Plant-bioscience, Faculty of Agriculture, Iwate University , Morioka, Japan
| | - Jun Kasuga
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine , Obihiro, Japan
| | - Bernard Laarveld
- College of Agriculture and Bioresources, University of Saskatchewan , Saskatoon, Canada
| | - Andrew Olkowski
- College of Agriculture and Bioresources, University of Saskatchewan , Saskatoon, Canada
| | - Matsuo Uemura
- United Graduate School of Agricultural Sciences, Iwate University , Morioka, Japan.,Department of Plant-bioscience, Faculty of Agriculture, Iwate University , Morioka, Japan
| |
Collapse
|
13
|
Yang F, Chen H, Liu C, Li L, Liu L, Han X, Wan Z, Sha A. Transcriptome profile analysis of two Vicia faba cultivars with contrasting salinity tolerance during seed germination. Sci Rep 2020; 10:7250. [PMID: 32350372 PMCID: PMC7190719 DOI: 10.1038/s41598-020-64288-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 04/10/2020] [Indexed: 11/09/2022] Open
Abstract
Faba bean (Vicia faba L.) is an important food legume crop. Salinity soils severely constrain the production of faba bean, however, the seed germination of faba bean, which is a vital plant growth stage, is sensitive to salinity. Planting improved varieties of faba bean, which exhibit salt tolerance in seed germination stage, is an optimal strategy for faba bean product. To investigate the genes dynamics during the seed germination stage under salinity, RNA-seq method was used to investigate genome-wide transcription profiles of two faba bean varieties with contrast salt-tolerance during the seed germination. A total of 4,486 differentially expressed genes (DEGs) were identified among the comparison of salt-tolerant variety Y134 and salt-sensitive variety Y078 treated with salinity or not. Of these, 1,410 candidate DEGs were identified as salt-stress response genes. Furthermore, 623 DEGs were identified as variety-specific response gene during seed germination at 16 h or 24 h with salt treatment. Based on the pathway enrichment according to the Kyoto Encyclopedia of Genes and Genomes database (KEGG), these DEGs involving in cell wall loosening (e.g., xyloglucan endotransglucosylase/hydrolase, chitinase, and expansin), hormone metabolism (e.g., LEA genes, genes associated with ABA or ethylene signal pathway), chromatin remodeling (e.g., chromatin structure proteins, LHP1), small interfering RNA pathway, etc., were significantly up-regulated in salt-tolerance variety with salt treatment, indicating that they play critical roles in regulation of seed germination. The results indicated that a clearer mechanism of gene regulation that regulates the seed germination responding to salinity in faba bean. These findings are helpful to increase the understanding of the salt tolerance mechanism of crops during seed germination, and provide valuable genetic resource for the breeding of salt-tolerant faba bean varieties in future.
Collapse
Affiliation(s)
- Fangwen Yang
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Center of Ecology and Agricultural Use of Wetland of Ministry of Education, Yangtze University, Jingzhou, P.R. China
| | - Hongwei Chen
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan, P.R. China
| | - Changyan Liu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan, P.R. China
| | - Li Li
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan, P.R. China
| | - Liangjun Liu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan, P.R. China
| | - Xuesong Han
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan, P.R. China
| | - Zhenghuang Wan
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan, P.R. China.
| | - Aihua Sha
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Center of Ecology and Agricultural Use of Wetland of Ministry of Education, Yangtze University, Jingzhou, P.R. China.
| |
Collapse
|
14
|
Jha UC, Bohra A, Jha R, Parida SK. Salinity stress response and 'omics' approaches for improving salinity stress tolerance in major grain legumes. PLANT CELL REPORTS 2019; 38:255-277. [PMID: 30637478 DOI: 10.1007/s00299-019-02374-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/04/2019] [Indexed: 05/21/2023]
Abstract
Sustaining yield gains of grain legume crops under growing salt-stressed conditions demands a thorough understanding of plant salinity response and more efficient breeding techniques that effectively integrate modern omics knowledge. Grain legume crops are important to global food security being an affordable source of dietary protein and essential mineral nutrients to human population, especially in the developing countries. The global productivity of grain legume crops is severely challenged by the salinity stress particularly in the face of changing climates coupled with injudicious use of irrigation water and improper agricultural land management. Plants adapt to sustain under salinity-challenged conditions through evoking complex molecular mechanisms. Elucidating the underlying complex mechanisms remains pivotal to our knowledge about plant salinity response. Improving salinity tolerance of plants demand enriching cultivated gene pool of grain legume crops through capitalizing on 'adaptive traits' that contribute to salinity stress tolerance. Here, we review the current progress in understanding the genetic makeup of salinity tolerance and highlight the role of germplasm resources and omics advances in improving salt tolerance of grain legumes. In parallel, scope of next generation phenotyping platforms that efficiently bridge the phenotyping-genotyping gap and latest research advances including epigenetics is also discussed in context to salt stress tolerance. Breeding salt-tolerant cultivars of grain legumes will require an integrated "omics-assisted" approach enabling accelerated improvement of salt-tolerance traits in crop breeding programs.
Collapse
Affiliation(s)
- Uday Chand Jha
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India.
| | - Abhishek Bohra
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India.
| | - Rintu Jha
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India
| | - Swarup Kumar Parida
- National Institute of Plant Genome Research (NIPGR), New Delhi, 110067, India
| |
Collapse
|
15
|
Zhang W, Liao X, Cui Y, Ma W, Zhang X, Du H, Ma Y, Ning L, Wang H, Huang F, Yang H, Kan G, Yu D. A cation diffusion facilitator, GmCDF1, negatively regulates salt tolerance in soybean. PLoS Genet 2019; 15:e1007798. [PMID: 30615606 PMCID: PMC6336350 DOI: 10.1371/journal.pgen.1007798] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 01/17/2019] [Accepted: 10/30/2018] [Indexed: 01/26/2023] Open
Abstract
Salt stress is one of the major abiotic factors that affect the metabolism, growth and development of plants, and soybean [Glycine max (L.) Merr.] germination is sensitive to salt stress. Thus, to ensure the successful establishment and productivity of soybeans in saline soil, the genetic mechanisms of salt tolerance at the soybean germination stage need to be explored. In this study, a population of 184 recombinant inbred lines (RILs) was utilized to map quantitative trait loci (QTLs) related to salt tolerance. A major QTL related to salt tolerance at the soybean germination stage named qST-8 was closely linked with the marker Sat_162 and detected on chromosome 8. Interestingly, a genome-wide association study (GWAS) identified several single nucleotide polymorphisms (SNPs) significantly associated with salt tolerance in the same genetic region on chromosome 8. Resequencing, bioinformatics and gene expression analyses were implemented to identify the candidate gene Glyma.08g102000, which belongs to the cation diffusion facilitator (CDF) family and was named GmCDF1. Overexpression and RNA interference of GmCDF1 in soybean hairy roots resulted in increased sensitivity and tolerance to salt stress, respectively. This report provides the first demonstration that GmCDF1 negatively regulates salt tolerance by maintaining K+-Na+ homeostasis in soybean. In addition, GmCDF1 affected the expression of two ion homeostasis-associated genes, salt overly sensitive 1 (GmSOS1) and Na+/H+ exchanger 1 (GmNHX1), in transgenic hairy roots. Moreover, a haplotype analysis detected ten haplotypes of GmCDF1 in 31 soybean genotypes. A candidate-gene association analysis showed that two SNPs in GmCDF1 were significantly associated with salt tolerance and that Hap1 was more sensitive to salt stress than Hap2. The results demonstrated that the expression level of GmCDF1 was negatively correlated with salt tolerance in the 31 soybean accessions (r = -0.56, P < 0.01). Taken together, these results not only indicate that GmCDF1 plays a negative role in soybean salt tolerance but also help elucidate the molecular mechanisms of salt tolerance and accelerate the breeding of salt-tolerant soybean.
Collapse
Affiliation(s)
- Wei Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Xiliang Liao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Yanmei Cui
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Weiyu Ma
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Xinnan Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Hongyang Du
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Yujie Ma
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Lihua Ning
- Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agriculture Sciences, Nanjing, China
| | - Hui Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Fang Huang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Hui Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Guizhen Kan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Deyue Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
16
|
Zhou W, Chen F, Zhao S, Yang C, Meng Y, Shuai H, Luo X, Dai Y, Yin H, Du J, Liu J, Fan G, Liu W, Yang W, Shu K. DA-6 promotes germination and seedling establishment from aged soybean seeds by mediating fatty acid metabolism and glycometabolism. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:101-114. [PMID: 29982626 PMCID: PMC6305204 DOI: 10.1093/jxb/ery247] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/27/2018] [Indexed: 05/17/2023]
Abstract
Soybean seeds contain higher concentrations of oil (triacylglycerol) and fatty acids than do cereal crop seeds, and the oxidation of these biomolecules during seed storage significantly shortens seed longevity and decreases germination ability. Here, we report that diethyl aminoethyl hexanoate (DA-6), a plant growth regulator, increases germination and seedling establishment from aged soybean seeds by increasing fatty acid metabolism and glycometabolism. Phenotypic analysis showed that DA-6 treatment markedly promoted germination and seedling establishment from naturally and artificially aged soybean seeds. Further analysis revealed that DA-6 increased the concentrations of soluble sugars during imbibition of aged soybean seeds. Consistently, the concentrations of several different fatty acids in DA-6-treated aged seeds were higher than those in untreated aged seeds. Subsequently, quantitative PCR analysis indicated that DA-6 induced the transcription of several key genes involved in the hydrolysis of triacylglycerol to sugars in aged soybean seeds. Furthermore, the activity of invertase in aged seeds, which catalyzes the hydrolysis of sucrose to form fructose and glucose, increased following DA-6 treatment. Taken together, DA-6 promotes germination and seedling establishment from aged soybean seeds by enhancing the hydrolysis of triacylglycerol and the conversion of fatty acids to sugars.
Collapse
Affiliation(s)
- Wenguan Zhou
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Feng Chen
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Sihua Zhao
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Caiqiong Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Yongjie Meng
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Haiwei Shuai
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Xiaofeng Luo
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Yujia Dai
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Han Yin
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Junbo Du
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Jiang Liu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Gaoqiong Fan
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Weiguo Liu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Wenyu Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Kai Shu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
17
|
Ravelombola W, Shi A, Weng Y, Mou B, Motes D, Clark J, Chen P, Srivastava V, Qin J, Dong L, Yang W, Bhattarai G, Sugihara Y. Association analysis of salt tolerance in cowpea (Vigna unguiculata (L.) Walp) at germination and seedling stages. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:79-91. [PMID: 28948303 DOI: 10.1007/s00122-017-2987-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/30/2017] [Indexed: 05/08/2023]
Abstract
This is the first report on association analysis of salt tolerance and identification of SNP markers associated with salt tolerance in cowpea. Cowpea (Vigna unguiculata (L.) Walp) is one of the most important cultivated legumes in Africa. The worldwide annual production in cowpea dry seed is 5.4 million metric tons. However, cowpea is unfavorably affected by salinity stress at germination and seedling stages, which is exacerbated by the effects of climate change. The lack of knowledge on the genetic underlying salt tolerance in cowpea limits the establishment of a breeding strategy for developing salt-tolerant cowpea cultivars. The objectives of this study were to conduct association mapping for salt tolerance at germination and seedling stages and to identify SNP markers associated with salt tolerance in cowpea. We analyzed the salt tolerance index of 116 and 155 cowpea accessions at germination and seedling stages, respectively. A total of 1049 SNPs postulated from genotyping-by-sequencing were used for association analysis. Population structure was inferred using Structure 2.3.4; K optimal was determined using Structure Harvester. TASSEL 5, GAPIT, and FarmCPU involving three models such as single marker regression, general linear model, and mixed linear model were used for the association study. Substantial variation in salt tolerance index for germination rate, plant height reduction, fresh and dry shoot biomass reduction, foliar leaf injury, and inhibition of the first trifoliate leaf was observed. The cowpea accessions were structured into two subpopulations. Three SNPs, Scaffold87490_622, Scaffold87490_630, and C35017374_128 were highly associated with salt tolerance at germination stage. Seven SNPs, Scaffold93827_270, Scaffold68489_600, Scaffold87490_633, Scaffold87490_640, Scaffold82042_3387, C35069468_1916, and Scaffold93942_1089 were found to be associated with salt tolerance at seedling stage. The SNP markers were consistent across the three models and could be used as a tool to select salt-tolerant lines for breeding improved cowpea tolerance to salinity.
Collapse
Affiliation(s)
- Waltram Ravelombola
- Department of Horticulture, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Ainong Shi
- Department of Horticulture, University of Arkansas, Fayetteville, AR, 72701, USA.
| | - Yuejin Weng
- Department of Horticulture, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Beiquan Mou
- Crop Improvement and Protection Research Unit, US Department of Agriculture, Agricultural Research Service (USDA-ARS), 1636 E. Alisal Street, Salinas, CA, 93905, USA
| | - Dennis Motes
- Vegetable Research Center, University of Arkansas, Alma, AR, 72921, USA
| | - John Clark
- Department of Horticulture, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Pengyin Chen
- Fisher Delta Research Center, College of Agriculture, Food and Natural Resources, University of Missouri, P.O. Box 160, 147 State Highway T, Portageville, MO, 63873, USA
| | - Vibha Srivastava
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Jun Qin
- Department of Horticulture, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Lingdi Dong
- Department of Horticulture, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Wei Yang
- Department of Horticulture, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Gehendra Bhattarai
- Department of Horticulture, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Yuichi Sugihara
- Department of Horticulture, University of Arkansas, Fayetteville, AR, 72701, USA
| |
Collapse
|
18
|
Wang Q, Sun G, Ren X, Wang J, Du B, Li C, Sun D. Detection of QTLs for seedling characteristics in barley (Hordeum vulgare L.) grown under hydroponic culture condition. BMC Genet 2017; 18:94. [PMID: 29115942 PMCID: PMC5678765 DOI: 10.1186/s12863-017-0562-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 10/30/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Seedling characteristics play significant roles in the growth and development of barley (Hordeum vulgare L.), including stable stand establishment, water and nutrients uptake, biotic resistance and abiotic stresses, and can influence yield and quality. However, the genetic mechanisms underlying seedling characteristics in barley are largely unknown and little research has been done. In the present work, 21 seedling-related characteristics are assessed in a barley double haploid (DH) population, grown under hydroponic conditions. Of them, leaf age (LAG), shoot height (SH), maximum root length (MRL), main root number (MRN) and seedling fresh weight (SFW) were investigated at the 13th, 20th, 27th, and 34th day after germination. The objectives were to identify quantitative trait loci (QTLs) underlying these seedling characteristics using a high-density linkage map and to reveal the QTL expression pattern by comparing the QTLs among four different seedling growth stages. RESULTS A total of 70 QTLs were distributed over all chromosomes except 4H, and, individually, accounted for 5.01%-77.78% of phenotypic variation. Out of the 70 detected QTLs, 23 showed a major effect on 14 seedling-related characteristics. Ten co-localized chromosomal regions on 2H (five regions), 3H (two regions) and 7H (three regions) involved 39 QTLs (55.71%), each simultaneously influenced more than one trait. Meanwhile, 9 co-localized genomic regions involving 22 QTLs for five seedling characteristics (LAG, SH, MRL, MRN and SFW) at the 13th, 20th, 27th and 34th day-old seedling were common for two or more growth stages of seedling. QTL in the vicinity of Vrs1 locus on chromosome 2H with the favorable alleles from Huadamai 6 was found to have the largest main effects on multiple seedling-related traits. CONCLUSIONS Six QTL cluster regions associated with 16 seedling-related characteristics were observed on chromosome 2H, 3H and 7H. The majority of the 29 regions identified for five seedling characteristics were selectively expressed at different developmental stages. The genetic effects of 9 consecutive expression regions displayed different developmental influences at different developmental stages. These findings enhanced our understanding of a genetic basis underlying seedling characteristics in barley. Some QTLs detected here could be used for marker-assisted selection (MAS) in barley breeding.
Collapse
Affiliation(s)
- Qifei Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Genlou Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- Biology Department, Saint Mary’s University, 923 Robie Street, Halifax, NS B3H 3C3 Canada
| | - Xifeng Ren
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jibin Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Binbin Du
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Chengdao Li
- Department of Agriculture & Food/Agricultural Research Western Australia, 3 Baron-Hay Court, South Perth, WA 6155 Australia
| | - Dongfa Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Collaborative Innovation Center for Grain Industry, Jingzhou, Hubei 434025 China
| |
Collapse
|
19
|
Shu K, Qi Y, Chen F, Meng Y, Luo X, Shuai H, Zhou W, Ding J, Du J, Liu J, Yang F, Wang Q, Liu W, Yong T, Wang X, Feng Y, Yang W. Salt Stress Represses Soybean Seed Germination by Negatively Regulating GA Biosynthesis While Positively Mediating ABA Biosynthesis. FRONTIERS IN PLANT SCIENCE 2017; 8:1372. [PMID: 28848576 PMCID: PMC5554363 DOI: 10.3389/fpls.2017.01372] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/24/2017] [Indexed: 05/20/2023]
Abstract
Soybean is an important and staple oilseed crop worldwide. Salinity stress has adverse effects on soybean development periods, especially on seed germination and post-germinative growth. Improving seed germination and emergence will have positive effects under salt stress conditions on agricultural production. Here we report that NaCl delays soybean seed germination by negatively regulating gibberellin (GA) while positively mediating abscisic acid (ABA) biogenesis, which leads to a decrease in the GA/ABA ratio. This study suggests that fluridone (FLUN), an ABA biogenesis inhibitor, might be a potential plant growth regulator that can promote soybean seed germination under saline stress. Different soybean cultivars, which possessed distinct genetic backgrounds, showed a similar repressed phenotype during seed germination under exogenous NaCl application. Biochemical analysis revealed that NaCl treatment led to high MDA (malondialdehyde) level during germination and the post-germinative growth stages. Furthermore, catalase, superoxide dismutase, and peroxidase activities also changed after NaCl treatment. Subsequent quantitative Real-Time Polymerase Chain Reaction analysis showed that the transcription levels of ABA and GA biogenesis and signaling genes were altered after NaCl treatment. In line with this, phytohormone measurement also revealed that NaCl considerably down-regulated active GA1, GA3, and GA4 levels, whereas the ABA content was up-regulated; and therefore ratios, such as GA1/ABA, GA3/ABA, and GA4/ABA, are decreased. Consistent with the hormonal quantification, FLUN partially rescued the delayed-germination phenotype caused by NaCl-treatment. Altogether, these results demonstrate that NaCl stress inhibits soybean seed germination by decreasing the GA/ABA ratio, and that FLUN might be a potential plant growth regulator that could promote soybean seed germination under salinity stress.
Collapse
Affiliation(s)
- Kai Shu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Sichuan Engineering Research Center for Crop Strip Intercropping System, Institute of Ecological Agriculture, Sichuan Agricultural UniversityChengdu, China
- *Correspondence: Kai Shu, Wenyu Yang,
| | - Ying Qi
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Sichuan Engineering Research Center for Crop Strip Intercropping System, Institute of Ecological Agriculture, Sichuan Agricultural UniversityChengdu, China
| | - Feng Chen
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Sichuan Engineering Research Center for Crop Strip Intercropping System, Institute of Ecological Agriculture, Sichuan Agricultural UniversityChengdu, China
| | - Yongjie Meng
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Sichuan Engineering Research Center for Crop Strip Intercropping System, Institute of Ecological Agriculture, Sichuan Agricultural UniversityChengdu, China
| | - Xiaofeng Luo
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Sichuan Engineering Research Center for Crop Strip Intercropping System, Institute of Ecological Agriculture, Sichuan Agricultural UniversityChengdu, China
| | - Haiwei Shuai
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Sichuan Engineering Research Center for Crop Strip Intercropping System, Institute of Ecological Agriculture, Sichuan Agricultural UniversityChengdu, China
| | - Wenguan Zhou
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Sichuan Engineering Research Center for Crop Strip Intercropping System, Institute of Ecological Agriculture, Sichuan Agricultural UniversityChengdu, China
| | - Jun Ding
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan UniversityWuhan, China
| | - Junbo Du
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Sichuan Engineering Research Center for Crop Strip Intercropping System, Institute of Ecological Agriculture, Sichuan Agricultural UniversityChengdu, China
| | - Jiang Liu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Sichuan Engineering Research Center for Crop Strip Intercropping System, Institute of Ecological Agriculture, Sichuan Agricultural UniversityChengdu, China
| | - Feng Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Sichuan Engineering Research Center for Crop Strip Intercropping System, Institute of Ecological Agriculture, Sichuan Agricultural UniversityChengdu, China
| | - Qiang Wang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Sichuan Engineering Research Center for Crop Strip Intercropping System, Institute of Ecological Agriculture, Sichuan Agricultural UniversityChengdu, China
| | - Weiguo Liu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Sichuan Engineering Research Center for Crop Strip Intercropping System, Institute of Ecological Agriculture, Sichuan Agricultural UniversityChengdu, China
| | - Taiwen Yong
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Sichuan Engineering Research Center for Crop Strip Intercropping System, Institute of Ecological Agriculture, Sichuan Agricultural UniversityChengdu, China
| | - Xiaochun Wang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Sichuan Engineering Research Center for Crop Strip Intercropping System, Institute of Ecological Agriculture, Sichuan Agricultural UniversityChengdu, China
| | - Yuqi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan UniversityWuhan, China
| | - Wenyu Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Sichuan Engineering Research Center for Crop Strip Intercropping System, Institute of Ecological Agriculture, Sichuan Agricultural UniversityChengdu, China
- *Correspondence: Kai Shu, Wenyu Yang,
| |
Collapse
|