1
|
Romero-Muñoz M, Pérez-Jiménez M. Optimizing Brassica oleracea L. Breeding Through Somatic Hybridization Using Cytoplasmic Male Sterility (CMS) Lines: From Protoplast Isolation to Plantlet Regeneration. PLANTS (BASEL, SWITZERLAND) 2024; 13:3247. [PMID: 39599456 PMCID: PMC11598112 DOI: 10.3390/plants13223247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
The Brassica oleracea L. species embrace important horticultural crops, such as broccoli, cauliflower, and cabbage, which are highly valued for their beneficial nutritional effects. However, the complexity of flower emasculation in these species has forced breeders to adopt biotechnological approaches such as somatic hybridization to ease hybrid seed production. Protoplasts entail a versatile tool in plant biotechnology, supporting breeding strategies that involve genome editing and hybridization. This review discusses the use of somatic hybridization in B. oleracea L. as a biotechnological method for developing fusion products with desirable agronomic traits, particularly cytoplasmic male sterile (CMS) condition. These CMS lines are critical for implementing a cost-effective, efficient, and reliable system for producing F1 hybrids. We present recent studies on CMS systems in B. oleracea L. crops, providing an overview of established models that explain the mechanisms of CMS and fertility restoration. Additionally, we emphasize key insights gained from protoplast fusion applied to B. oleracea L. breeding. Key steps including pre-treatments of donor plants, the main tissues used as sources of parental protoplasts, methods for obtaining somatic hybrids and cybrids, and the importance of establishing a reliable plant regeneration method are discussed. Finally, the review explores the incorporation of genome editing technologies, such as CRISPR-Cas9, to introduce multiple agronomic traits in Brassica species. This combination of advanced biotechnological tools holds significant promise for enhancing B. oleracea breeding programs in the actual climate change context.
Collapse
Affiliation(s)
- Miriam Romero-Muñoz
- Department of Biotechnology, Genomic and Plant Breeding, Institute for Agroenvironmental Research and Development of Murcia (IMIDA), c/Mayor s/n, E-30150 Murcia, Spain;
| | | |
Collapse
|
2
|
Segawa T, Kumazawa R, Tamiru-Oli M, Hanano T, Hara M, Nishikawa M, Saiga S, Takata M, Ito M, Imamura T, Takagi H. An NGS approach for the identification of precise homoeologous recombination sites between A and C genomes in Brassica genus. BREEDING SCIENCE 2024; 74:324-336. [PMID: 39872320 PMCID: PMC11769586 DOI: 10.1270/jsbbs.23090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/25/2024] [Indexed: 01/30/2025]
Abstract
The introgression of heterologous genomes through interspecific hybridization offers a great opportunity to expand the gene pool of crops, thereby broadening the traits that can be targeted for improvement. The introgression of C genomic regions carrying desirable traits from Brassica napus (AACC) into the diploid B. rapa (AA) via homoeologous recombination (HR) has been commonly used. However, the precise identification of HR sites remains a significant challenge, limiting the practical application of genome introgression via HR in breeding programs. Here, we developed an indicator named 'Dosage-score' from the coverage depth of next-generation sequencing reads. Then, Dosage-score analysis applied to both in BC1F1 individuals obtained by backcrossing B. rapa to F1 progeny (B. rapa × B. napus) and in the parental lines, and successfully identified the precise HR sites resulting from F1 meiosis as well as those that were native in the parental B. napus genome. Additionally, we introgressed the C6 segment from HR identified by Dosage-score analysis into B. rapa genome background, revealing gene expression on the added segment without noticeable phenotypic change. The identification of HR by Dosage-score analysis will contribute to the expansion of the gene pool for breeding by introgression of heterologous genomes in Brassica crops.
Collapse
Affiliation(s)
- Tenta Segawa
- Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Riki Kumazawa
- Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Muluneh Tamiru-Oli
- Department of Animal, Plant and Soil Sciences, La Trobe University, 5 Ring Road, Bundoora, VIC 3086, Australia
| | - Tetsuyuki Hanano
- Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Makishi Hara
- Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Minami Nishikawa
- Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Sorachi Saiga
- Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Marina Takata
- Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Masaki Ito
- Kanazawa University, School of Biological Science and Technology, College of Science and Engineering, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Tomohiro Imamura
- Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Hiroki Takagi
- Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| |
Collapse
|
3
|
Mehraj H, Takahashi S, Miyaji N, Akter A, Suzuki Y, Seki M, Dennis ES, Fujimoto R. Characterization of Histone H3 Lysine 4 and 36 Tri-methylation in Brassica rapa L. FRONTIERS IN PLANT SCIENCE 2021; 12:659634. [PMID: 34163501 PMCID: PMC8215614 DOI: 10.3389/fpls.2021.659634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/08/2021] [Indexed: 05/10/2023]
Abstract
Covalent modifications of histone proteins act as epigenetic regulators of gene expression. We report the distribution of two active histone marks (H3K4me3 and H3K36me3) in 14-day leaves in two lines of Brassica rapa L. by chromatin immunoprecipitation sequencing. Both lines were enriched with H3K4me3 and H3K36me3 marks at the transcription start site, and the transcription level of a gene was associated with the level of H3K4me3 and H3K36me3. H3K4me3- and H3K36me3-marked genes showed low tissue-specific gene expression, and genes with both H3K4me3 and H3K36me3 had a high level of expression and were constitutively expressed. Bivalent active and repressive histone modifications such as H3K4me3 and H3K27me3 marks or antagonistic coexistence of H3K36me3 and H3K27me3 marks were observed in some genes. Expression may be susceptible to changes by abiotic and biotic stresses in genes having both H3K4me3 and H3K27me3 marks. We showed that the presence of H3K36me3 marks was associated with different gene expression levels or tissue specificity between paralogous paired genes, suggesting that H3K36me3 might be involved in subfunctionalization of the subgenomes.
Collapse
Affiliation(s)
- Hasan Mehraj
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | | | - Naomi Miyaji
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Ayasha Akter
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Department of Horticulture, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Yutaka Suzuki
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Motoaki Seki
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- RIKEN Cluster for Pioneering Research, Saitama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Elizabeth S. Dennis
- CSIRO Agriculture and Food, Canberra, ACT, Australia
- School of Life Sciences, Faculty of Science University of Technology, Sydney, NSW, Australia
| | - Ryo Fujimoto
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- *Correspondence: Ryo Fujimoto,
| |
Collapse
|
4
|
Akter A, Takahashi S, Deng W, Shea DJ, Itabashi E, Shimizu M, Miyaji N, Osabe K, Nishida N, Suzuki Y, Helliwell CA, Seki M, Peacock WJ, Dennis ES, Fujimoto R. The histone modification H3 lysine 27 tri-methylation has conserved gene regulatory roles in the triplicated genome of Brassica rapa L. DNA Res 2020; 26:433-443. [PMID: 31622476 PMCID: PMC6796510 DOI: 10.1093/dnares/dsz021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/30/2019] [Indexed: 01/08/2023] Open
Abstract
Brassica rapa L. is an important vegetable and oilseed crop. We investigated the distribution of the histone mark tri-methylation of H3K27 (H3K27me3) in B. rapa and its role in the control of gene expression at two stages of development (2-day cotyledons and 14-day leaves) and among paralogs in the triplicated genome. H3K27me3 has a similar distribution in two inbred lines, while there was variation of H3K27me3 sites between tissues. Sites that are specific to 2-day cotyledons have increased transcriptional activity, and low levels of H3K27me3 in the gene body region. In 14-day leaves, levels of H3K27me3 were associated with decreased gene expression. In the triplicated genome, H3K27me3 is associated with paralogs that have tissue-specific expression. Even though B. rapa and Arabidopsis thaliana are not closely related within the Brassicaceae, there is conservation of H3K27me3-marked sites in the two species. Both B. rapa and A. thaliana require vernalization for floral initiation with FLC being the major controlling locus. In all four BrFLC paralogs, low-temperature treatment increases H3K27me3 at the proximal nucleation site reducing BrFLC expression. Following return to normal temperature growth conditions, H3K27me3 spreads along all four BrFLC paralogs providing stable repression of the gene.
Collapse
Affiliation(s)
- Ayasha Akter
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Satoshi Takahashi
- Center for Sustainable Resource Science, RIKEN, Yokohama, Kanagawa, Japan
| | - Weiwei Deng
- Centre for Crop and Disease Management (CCDM), School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Daniel J Shea
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Etsuko Itabashi
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Motoki Shimizu
- Department of Genomics and Breeding, Iwate Biotechnology Research Center, Narita, Kitakami, Iwate, Japan
| | - Naomi Miyaji
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Kenji Osabe
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Namiko Nishida
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Yutaka Suzuki
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | | | - Motoaki Seki
- Center for Sustainable Resource Science, RIKEN, Yokohama, Kanagawa, Japan.,Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan.,Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - William James Peacock
- Agriculture and Food, CSIRO, Canberra, ACT, Australia.,Department of Life Sciences, University of Technology, Sydney, Broadway, NSW, Australia
| | - Elizabeth S Dennis
- Agriculture and Food, CSIRO, Canberra, ACT, Australia.,Department of Life Sciences, University of Technology, Sydney, Broadway, NSW, Australia
| | - Ryo Fujimoto
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
5
|
Sato M, Shimizu M, Shea DJ, Hoque M, Kawanabe T, Miyaji N, Fujimoto R, Fukai E, Okazaki K. Allele specific DNA marker for fusarium resistance gene FocBo1 in Brassica oleracea. BREEDING SCIENCE 2019; 69:308-315. [PMID: 31481840 PMCID: PMC6711725 DOI: 10.1270/jsbbs.18156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/26/2019] [Indexed: 06/10/2023]
Abstract
The fusarium yellows resistance (YR) gene FocBo1 was previously identified and the DNA markers were developed to assist the breeding of YR cultivars in Brassica oleracea. However, the further analysis revealed discrepancies between the phenotypes and the genotypes predicted by those DNA markers in cabbage commercial cultivars. Since this discrepancy seemed to be due to unknown susceptible alleles of focbo1, we sequenced the gene in 19 accessions to determine the sequence variations between alleles and found that there were two resistant FocBo1 alleles and six susceptible alleles in the investigated population. The newly designed PCR markers detected three mutations in the susceptible alleles that generate premature termination codons. These were shown to accurately distinguish resistant and susceptible alleles in more than 200 accessions of B. oleracea inbred lines and cultivars. The study revealed that the locus is represented by 37.2% resistant and 62.8% susceptible alleles within seventy-eight commercial cultivars. Structural analysis of the gene revealed that a part of the allelic variation comes from intragenic recombination between alleles. Our results enable a more precise prediction of the phenotype by marker assisted selection, promoting the production of YR cultivars in B. oleracea.
Collapse
Affiliation(s)
- Maho Sato
- Laboratory of Plant breeding, Graduate School of Science and Technology, Niigata University,
2-8050 Ikarashi, Nishi-ku, Niigata 950-2181,
Japan
- Kakegewa Research Center, Sakata Seed Corporation,
1743-2 Yoshioka, Kakegawa, Shizuoka 436-0115,
Japan
| | - Motoki Shimizu
- Iwate Biotechnology Research Center,
22-174-4 Narita, Kitakami, Iwate 024-0003,
Japan
| | - Daniel J. Shea
- Laboratory of Plant breeding, Graduate School of Science and Technology, Niigata University,
2-8050 Ikarashi, Nishi-ku, Niigata 950-2181,
Japan
| | - Mozammel Hoque
- Laboratory of Plant breeding, Graduate School of Science and Technology, Niigata University,
2-8050 Ikarashi, Nishi-ku, Niigata 950-2181,
Japan
- Faculty of Agriculture, Sylhet Agricultural University,
Sylhet-3100,
Bangladesh
| | | | - Naomi Miyaji
- Graduate School of Agricultural Science, Kobe University,
Rokkodai, Nada-ku, Kobe, Hyogo 657-8501,
Japan
| | - Ryo Fujimoto
- Graduate School of Agricultural Science, Kobe University,
Rokkodai, Nada-ku, Kobe, Hyogo 657-8501,
Japan
| | - Eigo Fukai
- Laboratory of Plant breeding, Graduate School of Science and Technology, Niigata University,
2-8050 Ikarashi, Nishi-ku, Niigata 950-2181,
Japan
| | - Keiichi Okazaki
- Laboratory of Plant breeding, Graduate School of Science and Technology, Niigata University,
2-8050 Ikarashi, Nishi-ku, Niigata 950-2181,
Japan
| |
Collapse
|
6
|
Leijten W, Koes R, Roobeek I, Frugis G. Translating Flowering Time From Arabidopsis thaliana to Brassicaceae and Asteraceae Crop Species. PLANTS 2018; 7:plants7040111. [PMID: 30558374 PMCID: PMC6313873 DOI: 10.3390/plants7040111] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/07/2018] [Accepted: 12/13/2018] [Indexed: 12/31/2022]
Abstract
Flowering and seed set are essential for plant species to survive, hence plants need to adapt to highly variable environments to flower in the most favorable conditions. Endogenous cues such as plant age and hormones coordinate with the environmental cues like temperature and day length to determine optimal time for the transition from vegetative to reproductive growth. In a breeding context, controlling flowering time would help to speed up the production of new hybrids and produce high yield throughout the year. The flowering time genetic network is extensively studied in the plant model species Arabidopsis thaliana, however this knowledge is still limited in most crops. This article reviews evidence of conservation and divergence of flowering time regulation in A. thaliana with its related crop species in the Brassicaceae and with more distant vegetable crops within the Asteraceae family. Despite the overall conservation of most flowering time pathways in these families, many genes controlling this trait remain elusive, and the function of most Arabidopsis homologs in these crops are yet to be determined. However, the knowledge gathered so far in both model and crop species can be already exploited in vegetable crop breeding for flowering time control.
Collapse
Affiliation(s)
- Willeke Leijten
- ENZA Zaden Research & Development B.V., Haling 1E, 1602 DB Enkhuizen, The Netherlands.
| | - Ronald Koes
- Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | - Ilja Roobeek
- ENZA Zaden Research & Development B.V., Haling 1E, 1602 DB Enkhuizen, The Netherlands.
| | - Giovanna Frugis
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300 ⁻ 00015, Monterotondo Scalo, Roma, Italy.
| |
Collapse
|