1
|
Yang L, Lei L, Wang J, Zheng H, Xin W, Liu H, Zou D. qCTB7 positively regulates cold tolerance at booting stage in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:135. [PMID: 37222778 DOI: 10.1007/s00122-023-04388-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/12/2023] [Indexed: 05/25/2023]
Abstract
KEY MESSAGE LOC_Os07g07690 on qCTB7 is associated with cold tolerance at the booting stage in rice, and analysis of transgenic plants demonstrated that qCTB7 influenced cold tolerance by altering the morphology and cytoarchitecture of anthers and pollen. Cold tolerance at the booting stage (CTB) in rice can significantly affect yield in high-latitude regions. Although several CTB genes have been isolated, their ability to induce cold tolerance is insufficient to ensure adequate rice yields in cold regions at high latitudes. Here, we identified the PHD-finger domain-containing protein gene qCTB7 using QTL-seq and linkage analysis through systematic measurement of CTB differences and the spike fertility of the Longjing31 and Longdao3 cultivars, resulting in the derivation of 1570 F2 progeny under cold stress. We then characterized the function of qCTB7 in rice. It was found that overexpression of qCTB7 promoted CTB and the same yield as Longdao3 under normal growing conditions while the phenotype of qctb7 knockout showed anther and pollen failure under cold stress. When subjected to cold stress, the germination of qctb7 pollen on the stigma was reduced, resulting in lower spike fertility. These findings indicate that qCTB7 regulates the appearance, morphology, and cytoarchitecture of the anthers and pollen. Three SNPs in the promoter region and coding region of qCTB7 were identified as recognition signals for CTB in rice and could assist breeding efforts to improve cold tolerance for rice production in high latitudes.
Collapse
Affiliation(s)
- Luomiao Yang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Lei Lei
- Institute of Crop Cultivation and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Jingguo Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Hongliang Zheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Wei Xin
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Hualong Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.
| | - Detang Zou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
2
|
Wu B, Chen S, Cheng S, Li C, Li S, Chen J, Zha W, Liu K, Xu H, Li P, Shi S, Yang G, Chen Z, Liu K, You A, Zhou L. Transcriptome Analysis Revealed the Dynamic and Rapid Transcriptional Reprogramming Involved in Cold Stress and Related Core Genes in the Rice Seedling Stage. Int J Mol Sci 2023; 24:ijms24031914. [PMID: 36768236 PMCID: PMC9916315 DOI: 10.3390/ijms24031914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Cold damage is one of the most important environmental factors influencing crop growth, development, and production. In this study, we generated a pair of near-isogenic lines (NILs), Towada and ZL31, and Towada showed more cold sensitivity than ZL31 in the rice seedling stage. To explore the transcriptional regulation mechanism and the reason for phenotypic divergence of the two lines in response to cold stress, an in-depth comparative transcriptome study under cold stress was carried out. Our analysis uncovered that rapid and high-amplitude transcriptional reprogramming occurred in the early stage of cold treatment. GO enrichment and KEGG pathway analysis indicated that genes of the response to stress, environmental adaptation, signal transduction, metabolism, photosynthesis, and the MAPK signaling pathway might form the main part of the engine for transcriptional reprogramming in response to cold stress. Furthermore, we identified four core genes, OsWRKY24, OsCAT2, OsJAZ9, and OsRR6, that were potential candidates affecting the cold sensitivity of Towada and ZL31. Genome re-sequencing analysis between the two lines revealed that only OsWRKY24 contained sequence variations which may change its transcript abundance. Our study not only provides novel insights into the cold-related transcriptional reprogramming process, but also highlights the potential candidates involved in cold stress.
Collapse
Affiliation(s)
- Bian Wu
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Siyuan Chen
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shiyuan Cheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Changyan Li
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Sanhe Li
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Junxiao Chen
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Wenjun Zha
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Kai Liu
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Huashan Xu
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Peide Li
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Shaojie Shi
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Guocai Yang
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhijun Chen
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Kai Liu
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Aiqing You
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Correspondence: (A.Y.); (L.Z.)
| | - Lei Zhou
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Correspondence: (A.Y.); (L.Z.)
| |
Collapse
|
3
|
He N, Zhan G, Huang F, Abou-Elwafa SF, Yang D. Fine Mapping and Cloning of a Major QTL qph12, Which Simultaneously Affects the Plant Height, Panicle Length, Spikelet Number and Yield in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:878558. [PMID: 35693171 PMCID: PMC9187155 DOI: 10.3389/fpls.2022.878558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Plant height is one of the most important agronomical traits in rice (Oryza sativa L.). Introducing the semidwarf rice in the 1960s significantly enhanced the rice yield potential in Asia. Implementing near-isogenic lines (NILs) is the most powerful tool for the identification and fine mapping of quantitative trait loci (QTLs). In this study, 176 NILs were produced from the crossing and back-crossing of two rice cultivars. Specifically, the indica rice cultivar Jiafuzhan served as a recipient, and the restorer japonica cultivar Hui1586 served as a donor. Using the 176 NILs, we identified a novel major QTL for reduced plant height in the NIL36 line. The qph12 QTL was mapped to a 31 kb genomic region between the indel markers Indel12-29 and Indel12-31. The rice genome annotation indicated the presence of three candidate genes in this genomic region. Through gene prediction and cDNA sequencing, we confirmed that LOC_Os12g40890 (qPH12) is the target gene in the NIL36 line. Further analysis showed that the qph12 QTL is caused by a 1 bp deletion in the first exon that resulted in premature termination of the qPH12. Knockout experiments showed that the qph12 QTL is responsible for the reduced plant height phenotype of the NIL36 line. Although the qph12 gene from the NIL36 line showed a shorter panicle length, fewer spikelets per panicle and a lower plant grain yield, the plant also exhibited a lower plant height. Taken together, our results revealed that the qph12 have good specific application prospects in future rice breeding.
Collapse
Affiliation(s)
- Niqing He
- Rice Research Institute, Fujian High Quality Rice Research and Development Center, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Guanping Zhan
- Rice Research Institute, Fujian High Quality Rice Research and Development Center, Fujian Academy of Agricultural Sciences, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fenghuang Huang
- Rice Research Institute, Fujian High Quality Rice Research and Development Center, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | | | - Dewei Yang
- Rice Research Institute, Fujian High Quality Rice Research and Development Center, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
4
|
Fernandes T, Melo F, Vieira MB, Lourenço TF, Pucciariello C, Saibo NJM, Abreu IA, Oliveira MM. Screening for Abiotic Stress Response in Rice. Methods Mol Biol 2022; 2494:161-194. [PMID: 35467207 DOI: 10.1007/978-1-0716-2297-1_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rice (Oryza sativa L.) is the staple food for over half of the world population. However, most rice varieties are severely injured by abiotic stresses, with strong social and economic impacts. Understanding rice responses to stress may guide breeding for more tolerant varieties. However, the lack of consistency in the design of the stress experiments described in the literature limits comparative studies and output assessments. The use of identical setups is the only way to generate comparable data. This chapter comprises three sections, describing the experimental conditions established at the Genomics of Plant Stress (GPlantS) unit of ITQB NOVA to assess the response of rice plants to different abiotic stresses-high salinity, cold, drought, simulated drought, and submergence-and their recovery capacity when intended. All sections include a detailed description of the materials and methodology and useful notes gathered from our team experience. We use seedlings since rice plants at this stage show high sensitivity to abiotic stresses. For the salt, cold, and simulated drought (PEG, polyethylene glycol) stress assays, we grow rice seedlings in a hydroponic system, while for the drought assay, plants are grown in soil and subjected to water withholding. For submergence, we use water-filled Magenta boxes. All setups enable visual score determination and are suitable for sample collection during stress imposition and also recovery. The proposed methodologies are affordable and straightforward to implement in most labs, allowing the discrimination of several rice genotypes at the molecular and phenotypic levels.
Collapse
Affiliation(s)
- Telma Fernandes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress Unit, Oeiras, Portugal
| | - Fredilson Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress Unit, Oeiras, Portugal
| | - Maria Beatriz Vieira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress Unit, Oeiras, Portugal
| | - Tiago F Lourenço
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress Unit, Oeiras, Portugal
| | - Chiara Pucciariello
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Nelson J M Saibo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress Unit, Oeiras, Portugal
| | - Isabel A Abreu
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress Unit, Oeiras, Portugal
| | - M Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress Unit, Oeiras, Portugal.
| |
Collapse
|
5
|
Yang L, Lei L, Li P, Wang J, Wang C, Yang F, Chen J, Liu H, Zheng H, Xin W, Zou D. Identification of Candidate Genes Conferring Cold Tolerance to Rice ( Oryza sativa L.) at the Bud-Bursting Stage Using Bulk Segregant Analysis Sequencing and Linkage Mapping. FRONTIERS IN PLANT SCIENCE 2021; 12:647239. [PMID: 33790929 PMCID: PMC8006307 DOI: 10.3389/fpls.2021.647239] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/22/2021] [Indexed: 05/29/2023]
Abstract
Low-temperature tolerance during the bud-bursting stage is an important characteristic of direct-seeded rice. The identification of cold-tolerance quantitative trait loci (QTL) in species that can stably tolerate cold environments is crucial for the molecular breeding of rice with such traits. In our study, high-throughput QTL-sequencing analyses were performed in a 460-individual F2 : 3 mapping population to identify the major QTL genomic regions governing cold tolerance at the bud-bursting (CTBB) stage in rice. A novel major QTL, qCTBB9, which controls seed survival rate (SR) under low-temperature conditions of 5°C/9 days, was mapped on the 5.40-Mb interval on chromosome 9. Twenty-six non-synonymous single-nucleotide polymorphism (nSNP) markers were designed for the qCTBB9 region based on re-sequencing data and local QTL mapping conducted using traditional linkage analysis. We mapped qCTBB9 to a 483.87-kb region containing 58 annotated genes, among which six predicted genes contained nine nSNP loci. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis revealed that only Os09g0444200 was strongly induced by cold stress. Haplotype analysis further confirmed that the SNP 1,654,225 bp in the Os09g0444200 coding region plays a key role in regulating the cold tolerance of rice. These results suggest that Os09g0444200 is a potential candidate for qCTBB9. Our results are of great significance to explore the genetic mechanism of rice CTBB and to improve the cold tolerance of rice varieties by marker-assisted selection.
Collapse
|
6
|
Zhang M, Ye J, Xu Q, Feng Y, Yuan X, Yu H, Wang Y, Wei X, Yang Y. Genome-wide association study of cold tolerance of Chinese indica rice varieties at the bud burst stage. PLANT CELL REPORTS 2018; 37:529-539. [PMID: 29322237 DOI: 10.1007/s00299-017-2247-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/28/2017] [Indexed: 05/14/2023]
Abstract
A region containing three genes on chromosome 1 of indica rice was associated with cold tolerance at the bud burst stage; these results may be useful for breeding cold-tolerant lines. Low temperature at the bud burst stage is one of the major abiotic stresses limiting rice growth, especially in regions where rice seeds are sown directly. In this study, we investigated cold tolerance of rice at the bud burst stage and conducted a genome-wide association study (GWAS) based on the 5K rice array of 249 indica rice varieties widely distributed in China. We improved the method to assess cold tolerance at the bud burst stage in indica rice, and used severity of damage (SD) and seed survival rate (SR) as the cold-tolerant indices. Population structure analysis demonstrated that the Chinese indica panel was divided into three subgroups. In total, 47 significant single-nucleotide polymorphism (SNP) loci associated with SD and SR, were detected by association mapping based on mixed linear model. Because some loci overlapped between SD and SR, the loci contained 13 genome intervals and most of them have been reported previously. A major QTL for cold tolerance on chromosome 1 at the position of 31.6 Mb, explaining 13.2% of phenotypic variation, was selected for further analysis. Through LD decay, GO enrichment, RNA-seq data, and gene expression pattern analyses, we identified three genes (LOC_Os01g55510, LOC_Os01g55350 and LOC_Os01g55560) that were differentially expressed between cold-tolerant and cold-sensitive varieties, suggesting they may be candidate genes for cold tolerance. Together, our results provide a new method to assess cold tolerance in indica rice, and establish the foundation for isolating genes related to cold tolerance that could be used in rice breeding.
Collapse
Affiliation(s)
- Mengchen Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Jing Ye
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Qun Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yue Feng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Xiaoping Yuan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Hanyong Yu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yiping Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Xinghua Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China.
| | - Yaolong Yang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China.
| |
Collapse
|
7
|
Li J, Pan Y, Guo H, Zhou L, Yang S, Zhang Z, Yang J, Zhang H, Li J, Zeng Y, Li Z. Fine mapping of QTL qCTB10-2 that confers cold tolerance at the booting stage in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:157-166. [PMID: 29032400 DOI: 10.1007/s00122-017-2992-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 08/30/2017] [Indexed: 06/07/2023]
Abstract
The QTL qCTB10 - 2 controlling cold tolerance at the booting stage in rice was delimited to a 132.5 kb region containing 17 candidate genes and 4 genes were cold-inducible. Low temperature at the booting stage is a major abiotic stress-limiting rice production. Although some QTL for cold tolerance in rice have been reported, fine mapping of those QTL effective at the booting stage is few. Here, the near-isogenic line ZL31-2, selected from a BC7F2 population derived from a cross between cold-tolerant variety Kunmingxiaobaigu (KMXBG) and the cold-sensitive variety Towada, was used to map a QTL on chromosome 10 for cold tolerance at the booting stage. Using BC7F3 and BC7F4 populations, we firstly confirmed qCTB10-2 and gained confidence that it could be fine mapped. QTL qCTB10-2 explained 13.9 and 15.9% of the phenotypic variances in those two generations, respectively. Using homozygous recombinants screened from larger BC7F4 and BC7F5 populations, qCTB10-2 was delimited to a 132.5 kb region between markers RM25121 and MM0568. 17 putative predicted genes were located in the region and only 5 were predicted to encode expressed proteins. Expression patterns of these five genes demonstrated that, except for constant expression of LOC_Os10g11820, LOC_Os10g11730, LOC_Os10g11770, and LOC_Os10g11810 were highly induced by cold stress in ZL31-2 compared to Towada, while LOC_Os10g11750 showed little difference. Our results provide a basis for identifying the genes underlying qCTB10-2 and indicate that markers linked to the qCTB10-2 locus can be used to improve the cold tolerance of rice at the booting stage by marker-assisted selection.
Collapse
Affiliation(s)
- Jilong Li
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yinghua Pan
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Haifeng Guo
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Lei Zhou
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Shuming Yang
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Zhanying Zhang
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jiazhen Yang
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Hongliang Zhang
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jinjie Li
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yawen Zeng
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China.
| | - Zichao Li
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Jha UC, Bohra A, Jha R. Breeding approaches and genomics technologies to increase crop yield under low-temperature stress. PLANT CELL REPORTS 2017; 36:1-35. [PMID: 27878342 DOI: 10.1007/s00299-016-2073-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/04/2016] [Indexed: 05/11/2023]
Abstract
Improved knowledge about plant cold stress tolerance offered by modern omics technologies will greatly inform future crop improvement strategies that aim to breed cultivars yielding substantially high under low-temperature conditions. Alarmingly rising temperature extremities present a substantial impediment to the projected target of 70% more food production by 2050. Low-temperature (LT) stress severely constrains crop production worldwide, thereby demanding an urgent yet sustainable solution. Considerable research progress has been achieved on this front. Here, we review the crucial cellular and metabolic alterations in plants that follow LT stress along with the signal transduction and the regulatory network describing the plant cold tolerance. The significance of plant genetic resources to expand the genetic base of breeding programmes with regard to cold tolerance is highlighted. Also, the genetic architecture of cold tolerance trait as elucidated by conventional QTL mapping and genome-wide association mapping is described. Further, global expression profiling techniques including RNA-Seq along with diverse omics platforms are briefly discussed to better understand the underlying mechanism and prioritize the candidate gene (s) for downstream applications. These latest additions to breeders' toolbox hold immense potential to support plant breeding schemes that seek development of LT-tolerant cultivars. High-yielding cultivars endowed with greater cold tolerance are urgently required to sustain the crop yield under conditions severely challenged by low-temperature.
Collapse
Affiliation(s)
- Uday Chand Jha
- Indian Institute of Pulses Research, Kanpur, 208024, India.
| | - Abhishek Bohra
- Indian Institute of Pulses Research, Kanpur, 208024, India.
| | - Rintu Jha
- Indian Institute of Pulses Research, Kanpur, 208024, India
| |
Collapse
|
9
|
Endo T, Chiba B, Wagatsuma K, Saeki K, Ando T, Shomura A, Mizubayashi T, Ueda T, Yamamoto T, Nishio T. Detection of QTLs for cold tolerance of rice cultivar 'Kuchum' and effect of QTL pyramiding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:631-40. [PMID: 26747044 DOI: 10.1007/s00122-015-2654-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/11/2015] [Indexed: 05/03/2023]
Abstract
A QTL for cold tolerance at the booting stage of rice cultivar 'Kuchum' was detected and delimited into a 1.36 Mb region, and a cold-tolerant line was developed by QTL pyramiding. Low temperature in summer causes pollen sterility in rice, resulting in a serious loss of yield. The second most widely grown rice cultivar in Japan, 'Hitomebore', has been developed as a cultivar highly tolerant to low temperature at the booting stage. However, even 'Hitomebore' exhibits sterility at a temperature lower than 18.5 °C. Further improvement of cold tolerance of rice is required. In the present study, QTLs for cold tolerance in a Bhutanese rice variety, 'Kuchum', were analyzed using backcrossed progenies and a major QTL, named qCT-4, was detected on chromosome 4. Evaluating cold tolerance of seven types of near isogenic lines having 'Kuchum' alleles around qCT-4 with a 'Hitomebore' genetic background, qCT-4 was delimited to a region of ca. 1.36 Mb between DNA markers 9_1 and 10_13. Homozygous 'Kuchum' alleles at qCT-4 showed an effect of increasing seed fertility by ca. 10 % under cold-water treatment. Near isogenic lines of 'Hitomebore' having 'Silewah' alleles of Ctb1 and Ctb2 and a 'Hokkai PL9' allele of qCTB8 did not exhibit higher cold tolerance than that of 'Hitomebore'. On the other hand, a qLTB3 allele derived from a Chinese cultivar 'Lijiangxintuanheigu' increased cold tolerance of 'Hitomebore', and pyramiding of the qCT-4 allele and the qLTB3 allele further increased seed fertility under cold-water treatment. Since NILs of 'Hitomebore' with the 'Kuchum' allele of qCT-4 were highly similar to 'Hitomebore' in other agronomic traits, the qCT-4 allele is considered to be useful for developing a cold-tolerant cultivar.
Collapse
Affiliation(s)
- Takashi Endo
- Miyagi Prefectural Furukawa Agricultural Experiment Station, Osaki, Miyagi, 989-6227, Japan
| | - Bunya Chiba
- Miyagi Prefectural Furukawa Agricultural Experiment Station, Osaki, Miyagi, 989-6227, Japan
- Miyagi Pref. Northern Regional Promotion Office Kurihara Regional Office, Fujiki,Tsukidate, Kurihara, Miyagi, 987-2251, Japan
| | - Kensuke Wagatsuma
- Miyagi Prefectural Furukawa Agricultural Experiment Station, Osaki, Miyagi, 989-6227, Japan
- Earthquake Reconstruction and Planning Department, Miyagi Prefectural Office, Honcho, Aoba-ku, Sendai, Miyagi, 980-8570, Japan
| | - Kenichi Saeki
- Miyagi Prefectural Furukawa Agricultural Experiment Station, Osaki, Miyagi, 989-6227, Japan
| | - Tsuyu Ando
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602, Japan
| | - Ayahiko Shomura
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602, Japan
| | - Tatsumi Mizubayashi
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602, Japan
| | - Tadamasa Ueda
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602, Japan
| | - Toshio Yamamoto
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602, Japan
| | - Takeshi Nishio
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, Miyagi, 981-8555, Japan.
| |
Collapse
|
10
|
Almeida DM, Almadanim MC, Lourenço T, Abreu IA, Saibo NJM, Oliveira MM. Screening for Abiotic Stress Tolerance in Rice: Salt, Cold, and Drought. Methods Mol Biol 2016; 1398:155-82. [PMID: 26867623 DOI: 10.1007/978-1-4939-3356-3_14] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rice (Oryza sativa) is the primary source of food for more than half of the world population. Most rice varieties are severely injured by abiotic stresses, with strong social and economic impact. Understanding rice responses to stress may help breeding for more tolerant varieties. However, papers dealing with stress experiments often describe very different experimental designs, thus making comparisons difficult. The use of identical setups is the only way to generate comparable data. This chapter is organized into three sections, describing the experimental conditions established at the Genomics of Plant Stress (GPlantS) unit of ITQB to assess the response of rice plants to three different abiotic stresses--high salinity, cold stress, and drought. All sections include a detailed description of the materials and methodology, as well as useful notes gathered from the GPlantS team's experience. We use rice seedlings as plants at this stage show high sensitivity to abiotic stresses. For the salt and cold stress assays we use hydroponic cultures, while for the drought assay plants are grown in soil and subjected to water withholding. All setups enable visual score determination and are suitable for sample collection along the imposition of stress. The proposed methodologies are simple and affordable to implement in most labs, allowing the discrimination of several rice genotypes at the molecular and phenotypic level.
Collapse
Affiliation(s)
- Diego M Almeida
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress Unit, Av. da República, 2780-157, Oeiras, Portugal
- IBET, Apartado 12, 2781-901, Oeiras, Portugal
| | - M Cecília Almadanim
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress Unit, Av. da República, 2780-157, Oeiras, Portugal
- IBET, Apartado 12, 2781-901, Oeiras, Portugal
| | - Tiago Lourenço
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress Unit, Av. da República, 2780-157, Oeiras, Portugal
- IBET, Apartado 12, 2781-901, Oeiras, Portugal
| | - Isabel A Abreu
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress Unit, Av. da República, 2780-157, Oeiras, Portugal
- IBET, Apartado 12, 2781-901, Oeiras, Portugal
| | - Nelson J M Saibo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress Unit, Av. da República, 2780-157, Oeiras, Portugal
- IBET, Apartado 12, 2781-901, Oeiras, Portugal
| | - M Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress Unit, Av. da República, 2780-157, Oeiras, Portugal.
- IBET, Apartado 12, 2781-901, Oeiras, Portugal.
| |
Collapse
|
11
|
Yang D, Ye X, Zheng X, Cheng C, Ye N, Huang F. Development and Evaluation of Chromosome Segment Substitution Lines Carrying Overlapping Chromosome Segments of the Whole Wild Rice Genome. FRONTIERS IN PLANT SCIENCE 2016; 7:1737. [PMID: 27933072 PMCID: PMC5121215 DOI: 10.3389/fpls.2016.01737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/04/2016] [Indexed: 05/04/2023]
Abstract
Common wild rice (Oryza rufipogon Griff.) represents an important resource for rice improvement. Genetic populations provide the basis for a wide range of genetic and genomic studies. In particular, chromosome segment substitution lines (CSSLs) are most powerful tools for the detection and precise mapping of quantitative trait loci (QTLs). In this study, 146 CSSLs were produced; they were derived from the crossing and back-crossing of two rice cultivars: Dongnanihui 810 (Oryza sativa L.), an indica rice cultivar as the recipient, and ZhangPu wild rice, a wild rice cultivar as the donor. First, a physical map of the 146 CSSLs was constructed using 149 molecular markers. Based on this map, the total size of the 147 substituted segments in the population was 1145.65 Mb, or 3.04 times that of the rice genome. To further facilitate gene mapping, heterozygous chromosome segment substitution lines (HCSSLs) were also produced, which were heterozygous in the target regions. Second, a physical map of the 244 HCSSLs was produced using 149 molecular markers. Based on this map, the total length of substituted segments in the HCSSLs was 1683.75 Mb, or 4.47 times the total length of the rice genome. Third, using the 146 CSSLs, two QTLs for plant height, and one major QTL for apiculus coloration were identified. Using the two populations of HCSSLs, the qPa-6-2 gene was precisely mapped to an 88 kb region. These CSSLs and HCSSLs may, therefore, provide powerful tools for future whole genome large-scale gene discovery in wild rice, providing a foundation enabling the development of new rice varieties. This research will also facilitate fine mapping and cloning of quantitative trait genes, providing for the development of superior rice varieties.
Collapse
|
12
|
Zhang Q, Chen Q, Wang S, Hong Y, Wang Z. Rice and cold stress: methods for its evaluation and summary of cold tolerance-related quantitative trait loci. RICE (NEW YORK, N.Y.) 2014; 7:24. [PMID: 25279026 PMCID: PMC4182278 DOI: 10.1186/s12284-014-0024-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/09/2014] [Indexed: 05/03/2023]
Abstract
Cold stress adversely affects rice (Oryza sativa L.) growth and productivity, and has so far determined its geographical distribution. Dissecting cold stress-mediated physiological changes and understanding their genetic causes will facilitate the breeding of rice for cold tolerance. Here, we review recent progress in research on cold stress-mediated physiological traits and metabolites, and indicate their roles in the cold-response network and cold-tolerance evaluation. We also discuss criteria for evaluating cold tolerance and evaluate the scope and shortcomings of each application. Moreover, we summarize research on quantitative trait loci (QTL) related to cold stress at the germination, seedling, and reproductive stages that should provide useful information to accelerate progress in breeding cold-tolerant rice.
Collapse
Affiliation(s)
- Qi Zhang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Biological Science and Technology, College of Agronomy, Hunan Agricultural University, Changsha 410128, Hunan, China
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Qiuhong Chen
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Biological Science and Technology, College of Agronomy, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Shaoling Wang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Biological Science and Technology, College of Agronomy, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Yahui Hong
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Biological Science and Technology, College of Agronomy, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Zhilong Wang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Biological Science and Technology, College of Agronomy, Hunan Agricultural University, Changsha 410128, Hunan, China
| |
Collapse
|