1
|
Resjö S, Iqra, Kieu NP, Zahid MA, Lenman M, Andersson B, Andreasson E. Late blight field resistance in potatoes carrying Solanum americanum resistance genes (Rpi-amr3 and Rpi-amr1). GM CROPS & FOOD 2025; 16:263-271. [PMID: 40122136 PMCID: PMC11934159 DOI: 10.1080/21645698.2025.2479913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/25/2025]
Abstract
Potato (Solanum tuberosum L.) is an important global crop, but its production is severely impacted by late blight, caused by the pathogen Phytophthora infestans. The economic burden of this disease is significant, and current control strategies rely mainly on fungicides, which face increasing regulatory and environmental constraints. To address this challenge, potatoes with resistance genes from wild potato relatives offer a promising solution. This study evaluated field resistance to late blight in potato lines (Maris Piper) containing the Solanum americanum resistance genes Rpi-amr3 and Rpi-amr1 across three years (2018-2020) in Sweden. Field trials were conducted under natural infection conditions to assess disease resistance. Results showed that the transgenic lines conferred strong resistance to late blight compared to the susceptible control. However, slight late blight symptoms were observed in the transgenic lines. These results highlight the effectiveness of S. americanum resistance genes in providing strong resistance, and emphasize the potential of stacking multiple R genes, including these genes to maintain efficacy. This research supports the development of resistant potato varieties as a sustainable alternative to chemical control, promoting food security and environmentally friendly agriculture.
Collapse
Affiliation(s)
- Svante Resjö
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Iqra
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Nam P Kieu
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Muhammad Awais Zahid
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Marit Lenman
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Björn Andersson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
2
|
Masuelli RW, Cara N, Kozub PC. Unveiling the hidden codes: a review of variability and ecological epigenetics after 20 years of studies on potato. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:325-332. [PMID: 40016622 DOI: 10.1111/plb.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/15/2025] [Indexed: 03/01/2025]
Abstract
The cultivated potato Solanum tuberosum subsp. tuberosum L. retains an important reservoir of genetic diversity in its secondary gene pool. More than 100 wild species of potato, with ploidies from 2x to 6x, grow in the Americas. These species are adapted to contrasting environments, showing wide phenotypic diversity in leaf, floral, and tuber morphology. The taxonomic relationship among species is not clear, mainly due to little chromosomal differentiation and pervasive interspecific hybridization. This review summarizes data from more than 20 years of studies on genetic and epigenetic variability of potato species, highlighting the importance of epigenetic variability, hybridization, and polyploidization in the evolution and diversification of this group. The epigenetic diversity of these species remains poorly characterized. This review addresses the ecological implications of epigenetic variation, emphasizing its role in plant adaptation to changing environments. Finally, the study proposes a model that integrates epigenetic variability into the evolution of natural potato populations, highlighting its potential for rapid adaptation and phenotypic differentiation.
Collapse
Affiliation(s)
- R W Masuelli
- Instituto de Biología Agrícola de Mendoza, Facultad de Ciencias Agrarias, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - N Cara
- Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - P C Kozub
- Instituto de Biología Agrícola de Mendoza, Facultad de Ciencias Agrarias, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
3
|
Sturaro M. Carotenoids in Potato Tubers: A Bright Yellow Future Ahead. PLANTS (BASEL, SWITZERLAND) 2025; 14:272. [PMID: 39861622 PMCID: PMC11768161 DOI: 10.3390/plants14020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Carotenoids, the bright yellow, orange, and red pigments of many fruits and vegetables, are essential components of the human diet as bioactive compounds not synthesized in animals. As a staple crop potato has the potential to deliver substantial amounts of these nutraceuticals despite their lower concentration in tubers compared to edible organs of other plant species. Even small gains in tuber carotenoid levels could have a significant impact on the nutritional value of potatoes. This review will focus on the current status and future perspectives of carotenoid biofortification in potato with conventional breeding and biotechnological approaches. The high biodiversity of tuber carotenoid levels and composition is presented, with an emphasis on the under-exploited native germplasm that represents a wide reservoir of useful genetic variants to breed carotenoid-rich varieties. The following section describes the structural genes involved in carotenoid metabolism and storage known to have a major impact on carotenoid accumulation in potato, together with the strategies that harnessed their expression changes to increase tuber carotenoid content. Finally, the little information available on the regulation of carotenoid metabolism and the desirable future advances in potato carotenoid biofortification are discussed.
Collapse
Affiliation(s)
- Monica Sturaro
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, via Stezzano 24, 24126 Bergamo, Italy
| |
Collapse
|
4
|
Dong J, Li J, Zuo Y, Wang J, Chen Y, Tu W, Wang H, Li C, Shan Y, Wang Y, Song B, Cai X. Haplotype-resolved genome and mapping of freezing tolerance in the wild potato Solanum commersonii. HORTICULTURE RESEARCH 2024; 11:uhae181. [PMID: 39247882 PMCID: PMC11374536 DOI: 10.1093/hr/uhae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/01/2024] [Indexed: 09/10/2024]
Abstract
Solanum commersonii (2n = 2x = 24, 1EBN, Endosperm Balance Number), native to the southern regions of Brazil, Uruguay, and northeastern Argentina, is the first wild potato germplasm collected by botanists and exhibits a remarkable array of traits related to disease resistance and stress tolerance. In this study, we present a high-quality haplotype-resolved genome of S. commersonii. The two identified haplotypes demonstrate chromosome sizes of 706.48 and 711.55 Mb, respectively, with corresponding chromosome anchoring rates of 94.2 and 96.9%. Additionally, the contig N50 lengths are documented at 50.87 and 45.16 Mb. The gene annotation outcomes indicate that the haplotypes encompasses a gene count of 39 799 and 40 078, respectively. The genome contiguity, completeness, and accuracy assessments collectively indicate that the current assembly has produced a high-quality genome of S. commersonii. Evolutionary analysis revealed significant positive selection acting on certain disease resistance genes, stress response genes, and environmentally adaptive genes during the evolutionary process of S. commersonii. These genes may be related to the formation of diverse and superior germplasm resources in the wild potato species S. commersonii. Furthermore, we utilized a hybrid population of S. commersonii and S. verrucosum to conduct the mapping of potato freezing tolerance genes. By combining BSA-seq analysis with traditional QTL mapping, we successfully mapped the potato freezing tolerance genes to a specific region on Chr07, spanning 1.25 Mb, with a phenotypic contribution rate of 18.81%. In short, current research provides a haplotype-resolved reference genome of the diploid wild potato species S. commersonii and establishes a foundation for further cloning and unraveling the mechanisms underlying cold tolerance in potatoes.
Collapse
Affiliation(s)
- Jianke Dong
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| | - Jingwen Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| | - Yingtao Zuo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| | - Jin Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| | - Ye Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Tu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China
| | - Haibo Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China
| | - Chenxi Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| | - Yacheng Shan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| | - Botao Song
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| | - Xingkui Cai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Chan HTL, Chan KM, Abhreet-Kaur, Sam SW, Chan SW. A Review of the Pharmacological Effects of Solanum muricatum Fruit (Pepino Melon). Foods 2024; 13:2740. [PMID: 39272505 PMCID: PMC11394486 DOI: 10.3390/foods13172740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Solanaceae, commonly known as nightshade, is a diverse family of flowering plants comprising around 90 genera and an estimated 3000-4000 species. Solanaceae spp. and its various fruits, including pepino (Solanum muricatum), commonly known as pepino melon, are widely recognized by the public for their nutritional value and pharmacological effects. Pepino melon, in particular, is often enjoyed as a fresh dessert or salad due to its juicy flesh. Given its beneficial properties, the potential of pepino melon to be developed as a functional food has been extensively studied. This review aims to provide a comprehensive summary of the reported pharmacological effects of the active compounds found in pepino plant and melon. Among these compounds, polyphenols, notably quercetin, and vitamin C have demonstrated notable antioxidant properties such as scavenging free radicals, effectively protecting against free-radical damage. Moreover, these active ingredients provide pepino with anti-inflammatory properties by inhibiting the expression of proinflammatory cytokines and enzymes, thereby reducing nitric oxide production. Additionally, they have shown promise in selectively targeting cancer cells, exhibiting anti-cancer properties. Furthermore, the active compounds such as quercetin in pepino have been associated with anti-diabetic effects, improving insulin sensitivity and inhibiting insulin resistance. Overall, this review highlights the diverse and significant pharmacological effects of the active compounds found in pepino melon, emphasizing its potential as a valuable functional food.
Collapse
Affiliation(s)
- Hei-Tung Lydia Chan
- Department of Food and Health Science, Technological and Higher Education Institute of Hong Kong, Hong Kong
| | - Ka-Man Chan
- Department of Food and Health Science, Technological and Higher Education Institute of Hong Kong, Hong Kong
| | - Abhreet-Kaur
- Department of Food and Health Science, Technological and Higher Education Institute of Hong Kong, Hong Kong
| | - Sze-Wing Sam
- Department of Food and Health Science, Technological and Higher Education Institute of Hong Kong, Hong Kong
| | - Shun-Wan Chan
- Department of Food and Health Science, Technological and Higher Education Institute of Hong Kong, Hong Kong
| |
Collapse
|
6
|
Tuttle HK, Del Rio AH, Bamberg JB, Shannon LM. Potato soup: analysis of cultivated potato gene bank populations reveals high diversity and little structure. FRONTIERS IN PLANT SCIENCE 2024; 15:1429279. [PMID: 39091313 PMCID: PMC11291250 DOI: 10.3389/fpls.2024.1429279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
Cultivated potatoes are incredibly diverse, ranging from diploid to pentaploid and encompass four different species. They are adapted to disparate environments and conditions and carry unique alleles for resistance to pests and pathogens. Describing how diversity is partitioned within and among these populations is essential to understanding the potato genome and effectively utilizing landraces in breeding. This task is complicated by the difficulty of making comparisons across cytotypes and extensive admixture within section petota. We genotyped 730 accessions from the US Potato genebank including wild diploids and cultivated diploids and tetraploids using Genotype-by-sequencing. This data set allowed us to interrogate population structure and diversity as well as generate core subsets which will support breeders in efficiently screening genebank material for biotic and abiotic stress resistance alleles. We found that even controlling for ploidy, tetraploid material exhibited higher observed and expected heterozygosity than diploid accessions. In particular group chilotanum material was the most heterozygous and the only taxa not to exhibit any inbreeding. This may in part be because group chilotanum has a history of introgression not just from wild species, but landraces as well. All group chilotanum, exhibits introgression from group andigenum except clones from Southern South America near its origin, where the two groups are not highly differentiated. Moving north, we do not observe evidence for the same level of admixture back into group andigenum. This suggests that extensive history of admixture is a particular characteristic of chilotanum.
Collapse
Affiliation(s)
- Heather K. Tuttle
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, United States
| | - Alfonso H. Del Rio
- U.S. Department of Agriculture (USDA)/Agricultural Research Service, Potato Genebank, Sturgeon Bay, WI, United States
| | - John B. Bamberg
- U.S. Department of Agriculture (USDA)/Agricultural Research Service, Potato Genebank, Sturgeon Bay, WI, United States
| | - Laura M. Shannon
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
7
|
Berindean IV, Taoutaou A, Rida S, Ona AD, Stefan MF, Costin A, Racz I, Muntean L. Modern Breeding Strategies and Tools for Durable Late Blight Resistance in Potato. PLANTS (BASEL, SWITZERLAND) 2024; 13:1711. [PMID: 38931143 PMCID: PMC11207681 DOI: 10.3390/plants13121711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/08/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Cultivated potato (Solanum tuberosum) is a major crop worldwide. It occupies the second place after cereals (corn, rice, and wheat). This important crop is threatened by the Oomycete Phytophthora infestans, the agent of late blight disease. This pathogen was first encountered during the Irish famine during the 1840s and is a reemerging threat to potatoes. It is mainly controlled chemically by using fungicides, but due to health and environmental concerns, the best alternative is resistance. When there is no disease, no treatment is required. In this study, we present a summary of the ongoing efforts concerning resistance breeding of potato against this devastating pathogen, P. infestans. This work begins with the search for and selection of resistance genes, whether they are from within or from outside the species. The genetic methods developed to date for gene mining, such as effectoromics and GWAS, provide researchers with the ability to identify genes of interest more efficiently. Once identified, these genes are cloned using molecular markers (MAS or QRL) and can then be introduced into different cultivars using somatic hybridization or recombinant DNA technology. More innovative technologies have been developed lately, such as gene editing using the CRISPR system or gene silencing, by exploiting iRNA strategies that have emerged as promising tools for managing Phytophthora infestans, which can be employed. Also, gene pyramiding or gene stacking, which involves the accumulation of two or more R genes on the same individual plant, is an innovative method that has yielded many promising results. All these advances related to the development of molecular techniques for obtaining new potato cultivars resistant to P. infestans can contribute not only to reducing losses in agriculture but especially to ensuring food security and safety.
Collapse
Affiliation(s)
- Ioana Virginia Berindean
- Department of Crops Sciences: Genetics, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Manastur 3-5, 400372 Cluj-Napoca, Romania; (I.V.B.)
| | - Abdelmoumen Taoutaou
- Laboratoire de Phytopathologie et Biologie Moléculaire, Département de Botanique, École Nationale, Supérieure Agronomique, Avenue Pasteur (ENSA-ES 1603), Hassan Badi, El-Harrach, Algiers 16200, Algeria
| | - Soumeya Rida
- Département d’Agronomie, Faculté des Sciences de la Nature et de la Vie (SNV), Université Chadli Bendjedid, BP N°73, El Tarf 36000, Algeria
| | - Andreea Daniela Ona
- Department of Crops Sciences: Plant Breeding, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Manastur 3-5, 400372 Cluj-Napoca, Romania; (A.D.O.)
| | - Maria Floriana Stefan
- National Institute of Research and Development for Potato and Sugar Beet Braşov, Fundaturii Street 2, 500470 Braşov, Romania
| | - Alexandru Costin
- Department of Crops Sciences: Plant Breeding, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Manastur 3-5, 400372 Cluj-Napoca, Romania; (A.D.O.)
| | - Ionut Racz
- Department of Crops Sciences: Genetics, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Manastur 3-5, 400372 Cluj-Napoca, Romania; (I.V.B.)
| | - Leon Muntean
- Department of Crops Sciences: Plant Breeding, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Manastur 3-5, 400372 Cluj-Napoca, Romania; (A.D.O.)
| |
Collapse
|
8
|
Ferreira MV, Naranjo E, Denis N, Cobine P, De La Fuente L, Siri MI. Calcium modulation of bacterial wilt disease on potato. Appl Environ Microbiol 2024; 90:e0024224. [PMID: 38690890 PMCID: PMC11107177 DOI: 10.1128/aem.00242-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/22/2024] [Indexed: 05/03/2024] Open
Abstract
Ralstonia solanacearum species complex (RSSC) is a phytopathogenic bacterial group that causes bacterial wilt in several crops, being potato (Solanum tuberosum) one of the most important hosts. The relationship between the potato plant ionome (mineral and trace elements composition) and the resistance levels to this pathogen has not been addressed until now. Mineral content of xylem sap, roots, stems and leaves of potato genotypes with different levels of resistance to bacterial wilt was assessed in this work, revealing a positive correlation between divalent calcium (Ca) cation concentrations and genotype resistance. The aim of this study was to investigate the effect of Ca on bacterial wilt resistance, and on the growth and virulence of RSSC. Ca supplementation significantly decreased the growth rate of Ralstonia pseudosolanacearum GMI1000 in minimal medium and affected several virulence traits such as biofilm formation and twitching motility. We also incorporate for the first time the use of microfluidic chambers to follow the pathogen growth and biofilm formation in conditions mimicking the plant vascular system. By using this approach, a reduction in biofilm formation was observed when both, rich and minimal media, were supplemented with Ca. Assessment of the effect of Ca amendments on bacterial wilt progress in potato genotypes revealed a significant delay in disease progress, or a complete absence of wilting symptoms in the case of partially resistant genotypes. This work contributes to the understanding of Ca effect on virulence of this important pathogen and provides new strategies for an integrated control of bacterial wilt on potato. IMPORTANCE Ralstonia solanacearum species complex (RSSC) includes a diverse group of bacterial strains that cause bacterial wilt. This disease is difficult to control due to pathogen aggressiveness, persistence, wide range of hosts, and wide geographic distribution in tropical, subtropical, and temperate regions. RSSC causes considerable losses depending on the pathogen strain, host, soil type, environmental conditions, and cultural practices. In potato, losses of $19 billion per year have been estimated for this pathogen worldwide. In this study, we report for the first time the mineral composition found in xylem sap and plant tissues of potato germplasm with different levels of resistance to bacterial wilt. This study underscores the crucial role of calcium (Ca) concentration in the xylem sap and stem in relation to the resistance of different genotypes. Our in vitro experiments provide evidence of Ca's inhibitory effect on the growth, biofilm formation, and twitching movement of the model RSSC strain R. pseudosolanacearum GMI1000. This study introduces a novel element, the Ca concentration, which should be included into the integrated disease control management strategies for bacterial wilt in potatoes.
Collapse
Affiliation(s)
- María Virginia Ferreira
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Eber Naranjo
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Nicol Denis
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Paul Cobine
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - María Inés Siri
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
9
|
Çelik S. Gene expression analysis of potato drought-responsive genes under drought stress in potato ( Solanum tuberosum L.) cultivars. PeerJ 2024; 12:e17116. [PMID: 38525286 PMCID: PMC10960530 DOI: 10.7717/peerj.17116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
The potato (Solanum tuberosum L.), an important field crop consumed extensively worldwide, is adversely affected by abiotic stress factors especially drought. Therefore, it is vital to understand the genetic mechanism under drought stress to decrease loose of yield and quality . This trial aimed to screen drought-responsive gene expressions of potato and determine the drought-tolerant potato cultivar. The trial pattern is a completely randomized block design (CRBD) with four replications under greenhouse conditions. Four cultivars (Brooke, Orwell, Vr808, Shc909) were irrigated with four different water regimes (control and three stress conditions), and the gene expression levels of 10 potato genes were investigated. The stress treatments as follows: Control = 100% field capacity; slight drought = 75% field capacity; moderate drought = 50% field capacity, and severe drought 25% field capacity. To understand the gene expression under drought stress in potato genotypes, RT-qPCR analysis was performed and results showed that the genes most associated with drought tolerance were the StRD22 gene, MYB domain transcription factor, StERD7, Sucrose Synthase (SuSy), ABC Transporter, and StDHN1. The StHSP100 gene had the lowest genetic expression in all cultivars. Among the cultivars, the Orwell exhibited the highest expression of the StRD22 gene under drought stress. Overall, the cultivar with the highest gene expression was the Vr808, closely followed by the Brooke cultivar. As a result, it was determined that potato cultivars Orwell, Vr808, and Brooke could be used as parents in breeding programs to develop drought tolerant potato cultivars.
Collapse
Affiliation(s)
- Sadettin Çelik
- Genç Vocational School, Forestry Department, Bingol University, Bingol, Turkey
| |
Collapse
|
10
|
He W, Wang B, Huang M, Meng C, Wu J, Du J, Song B, Chen H. Screening for Resistance Resources against Bacterial Wilt in Wild Potato. PLANTS (BASEL, SWITZERLAND) 2024; 13:220. [PMID: 38256773 PMCID: PMC10819447 DOI: 10.3390/plants13020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024]
Abstract
Potato is an important crop, used not only for food production but also for various industrial applications. With the introduction of the potato as a staple food strategy, the potato industry in China has grown rapidly. However, issues related to bacterial wilt, exacerbated by factors such as seed potato transportation and continuous cropping, have become increasingly severe in the primary potato cultivation regions of China, leading to significant economic losses. The extensive genetic diversity of Ralstonia solanacearum (R. solanacearum), which is the pathogen of bacterial wilt, has led to a lack of highly resistant potato genetic resources. There is a need to identify and cultivate potato varieties with enhanced resistance to reduce the adverse impact of this disease on the industry. We screened 55 accessions of nine different wild potato species against the bacterial wilt pathogen R. solanacearum PO2-1, which was isolated from native potato plants and belongs to phylotype II. Three accessions of two species (ACL24-2, PNT880-3, and PNT204-23) were identified with high resistance phenotypes to the tested strains. We found these accessions also showed high resistance to different phylotype strains. Among them, only PNT880-3 was capable of flowering and possessed viable pollen, and it was diploid. Consistent with the high resistance, decreased growth of R. solanacearum was detected in PNT880-3. All these findings in our study reveal that the wild potato PNT880-3 was a valuable resistance source to bacterial wilt with breeding potential.
Collapse
Affiliation(s)
- Wenfeng He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; (W.H.); (B.W.)
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Bingsen Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; (W.H.); (B.W.)
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengshu Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; (W.H.); (B.W.)
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengzhen Meng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; (W.H.); (B.W.)
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiahui Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; (W.H.); (B.W.)
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Du
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; (W.H.); (B.W.)
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Botao Song
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; (W.H.); (B.W.)
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Huilan Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; (W.H.); (B.W.)
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
11
|
Han X, Yang R, Zhang L, Wei Q, Zhang Y, Wang Y, Shi Y. A Review of Potato Salt Tolerance. Int J Mol Sci 2023; 24:10726. [PMID: 37445900 DOI: 10.3390/ijms241310726] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/16/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Potato is the world's fourth largest food crop. Due to limited arable land and an ever-increasing demand for food from a growing population, it is critical to increase crop yields on existing acreage. Soil salinization is an increasing problem that dramatically impacts crop yields and restricts the growing area of potato. One possible solution to this problem is the development of salt-tolerant transgenic potato cultivars. In this work, we review the current potato planting distribution and the ways in which it overlaps with salinized land, in addition to covering the development and utilization of potato salt-tolerant cultivars. We also provide an overview of the current progress toward identifying potato salt tolerance genes and how they may be deployed to overcome the current challenges facing potato growers.
Collapse
Affiliation(s)
- Xue Han
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Ruijie Yang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Lili Zhang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Qiaorong Wei
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Yazhi Wang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Ying Shi
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
12
|
Wszelaczyńska E, Pobereżny J, Gościnna K, Szczepanek M, Tomaszewska-Sowa M, Lemańczyk G, Lisiecki K, Trawczyński C, Boguszewska-Mańkowska D, Pietraszko M. Determination of the effect of abiotic stress on the oxidative potential of edible potato tubers. Sci Rep 2023; 13:9999. [PMID: 37339999 DOI: 10.1038/s41598-023-35576-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/20/2023] [Indexed: 06/22/2023] Open
Abstract
Stress factors occurring during the growing season and potato storage, can negatively affect the quality of tubers, including an increased tendency to enzymatic darkening. Abiotic stress due to water shortage is a major factor limiting agricultural production. The purpose of the study was to determine the effect of cultivation technology based on the use of biostimulant, hydrogel and irrigation as well as storage on the propensity to darkening and the content of sugars and organic acids. The results show that genotypic and technological variability in interaction with growing season conditions had a significant (p < 0.05) effect on the oxidative potential (OP) of potato tubers. The Denar cultivar, compared to the 'Gardena', was characterized by a lower tendency to enzymatic darkening. Application of biostimulant and hydrogel generally contributed to lowering the oxidative potential of the tested cultivars. The application of anti-stress agents had no effect on organic acid content. The long-term storage caused an increase in the content of total sugars (TS) (22%), reducing sugars (RS) (49%), chlorogenic acid (ACH) (11%), and loss of ascorbic acid (AA) (6%) in the tubers which contributed to an increase in the oxidative potential of potato tubers (16%). The correlation coefficients obtained (p < 0.05) confirm the dependence of OP on the concentration of organic acids.
Collapse
Affiliation(s)
- Elżbieta Wszelaczyńska
- Institute of Agri-Foodstuff Commodity, Bydgoszcz University of Science and Technology, 7 Kaliskiego St., 85-796, Bydgoszcz, Poland.
| | - Jarosław Pobereżny
- Institute of Agri-Foodstuff Commodity, Bydgoszcz University of Science and Technology, 7 Kaliskiego St., 85-796, Bydgoszcz, Poland.
| | - Katarzyna Gościnna
- Institute of Agri-Foodstuff Commodity, Bydgoszcz University of Science and Technology, 7 Kaliskiego St., 85-796, Bydgoszcz, Poland
| | - Małgorzata Szczepanek
- Department of Agronomy, Bydgoszcz University of Science and Technology, 7 Kaliskiego St., 85-796, Bydgoszcz, Poland
| | - Magdalena Tomaszewska-Sowa
- Department of Agricultural Biotechnology, Bydgoszcz University of Science and Technology, 6 Bernardyńska St., 85-029, Bydgoszcz, Poland
| | - Grzegorz Lemańczyk
- Department of Biology and Plant Protection, Bydgoszcz University of Science and Technology, 7 Kaliskiego St., 85-796, Bydgoszcz, Poland
| | - Karol Lisiecki
- Department of Biology and Plant Protection, Bydgoszcz University of Science and Technology, 7 Kaliskiego St., 85-796, Bydgoszcz, Poland
| | - Cezary Trawczyński
- Potato Agronomy Department, Plant Breeding and Acclimatization Institute, National Research Institute, 05-140, Jadwisin, Poland
| | - Dominika Boguszewska-Mańkowska
- Potato Agronomy Department, Plant Breeding and Acclimatization Institute, National Research Institute, 05-140, Jadwisin, Poland
| | - Milena Pietraszko
- Potato Agronomy Department, Plant Breeding and Acclimatization Institute, National Research Institute, 05-140, Jadwisin, Poland
| |
Collapse
|
13
|
Jenderek MM, Ambruzs BD, Tanner JD, Bamberg JB. High regrowth of potato crop wild relative genotypes after cryogenic storage. Cryobiology 2023:S0011-2240(23)00028-7. [PMID: 36948379 DOI: 10.1016/j.cryobiol.2023.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/24/2023]
Abstract
Potatoes are consumed by millions of people and are the survival food in several countries. Cultivated varieties of potato (Solanum tubersosum L.) are results of selection and crossing of many wild species. Only 8-13% of wild potato species used for food are preserved by either in situ or ex situ methods. The U.S. National Potato Germplasm Collection maintains over 5900 accessions, of which 75% are crop wild relatives (CWR). The objective of the study was to investigate regrowth of cryogenically stored clonal propagules (shoot tips) of selected CWR accessions maintained in the collection. Sixty-nine accessions from 30 Solanum species and six accessions that are not yet assigned to a species were cryopreserved by a droplet vitrification method at the NLGRP. The post cryopreservation regrowth varied from 40 to 100% (average 68%) but was not significantly different between the tested accessions. Regrowth of six accessions tested after 10 years of cryogenic storage was between 35 and 90% (average 66%) and was significantly different from their initial regrowth (average 87%); the largest viability loss was in S. condolleanum; but for the other five accessions the regrowth was between 45 and 90% (average 72%) and suggested at least 10 years of successful storage in LN was possible. Twelve potato wild species cryopreserved in this study were reported in literature as important for developing cultivated varieties for changed weather conditions.
Collapse
Affiliation(s)
- Maria M Jenderek
- USDA ARS, National Laboratory for Genetic Resources Preservation, Fort Collins, CO, 80521, USA.
| | - Barbara D Ambruzs
- USDA ARS, National Laboratory for Genetic Resources Preservation, Fort Collins, CO, 80521, USA
| | - Justin D Tanner
- USDA ARS, National Laboratory for Genetic Resources Preservation, Fort Collins, CO, 80521, USA
| | - John B Bamberg
- USDA ARS, U.S. Potato Genebank, Sturgeon Bay, WI, 54235, USA
| |
Collapse
|
14
|
Huang M, Tan X, Song B, Wang Y, Cheng D, Wang B, Chen H. Comparative genomic analysis of Ralstonia solanacearum reveals candidate avirulence effectors in HA4-1 triggering wild potato immunity. FRONTIERS IN PLANT SCIENCE 2023; 14:1075042. [PMID: 36909411 PMCID: PMC9997847 DOI: 10.3389/fpls.2023.1075042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Ralstonia solanacearum is the causal agent of potato bacterial wilt, a major potato bacterial disease. Among the pathogenicity determinants, the Type III Secretion System Effectors (T3Es) play a vital role in the interaction. Investigating the avirulent T3Es recognized by host resistance proteins is an effective method to uncover the resistance mechanism of potato against R. solanacearum. Two closely related R. solanacearum strains HA4-1 and HZAU091 were found to be avirulent and highly virulent to the wild potato Solanum albicans 28-1, respectively. The complete genome of HZAU091 was sequenced in this study. HZAU091 and HA4-1 shared over 99.9% nucleotide identity with each other. Comparing genomics of closely related strains provides deeper insights into the interaction between hosts and pathogens, especially the mechanism of virulence. The comparison of type III effector repertoires between HA4-1 and HZAU091 uncovered seven distinct effectors. Two predicted effectors RipA5 and the novel effector RipBS in HA4-1 could significantly reduce the virulence of HZAU091 when they were transformed into HZAU091. Furthermore, the pathogenicity assays of mutated strains HA4-1 ΔRipS6, HA4-1 ΔRipO1, HA4-1 ΔRipBS, and HA4-1 ΔHyp6 uncovered that the absence of these T3Es enhanced the HA4-1 virulence to wild potato S. albicans 28-1. This result indicated that these T3Es may be recognized by S. albicans 28-1 as avirulence proteins to trigger the resistance. In summary, this study provides a foundation to unravel the R. solanacearum-potato interaction and facilitates the development of resistance potato against bacterial wilt.
Collapse
Affiliation(s)
- Mengshu Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaodan Tan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests & Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Botao Song
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuqi Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dong Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Bingsen Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huilan Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
15
|
Sotomayor DA, Ellis D, Salas A, Gomez R, Sanchez RA, Carrillo F, Giron C, Quispe V, Manrique-Carpintero NC, Anglin NL, Zorrilla C. Collecting wild potato species ( Solanum sect. Petota) in Peru to enhance genetic representation and fill gaps in ex situ collections. FRONTIERS IN PLANT SCIENCE 2023; 14:1044718. [PMID: 36794213 PMCID: PMC9923048 DOI: 10.3389/fpls.2023.1044718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Crop wild relatives (CWRs) are important sources of novel genes, due to their high variability of response to biotic and abiotic stresses, which can be invaluable for crop genetic improvement programs. Recent studies have shown that CWRs are threatened by several factors, including changes in land-use and climate change. A large proportion of CWRs are underrepresented in genebanks, making it necessary to take action to ensure their long-term ex situ conservation. With this aim, 18 targeted collecting trips were conducted during 2017/2018 in the center of origin of potato (Solanum tuberosum L.), targeting 17 diverse ecological regions of Peru. This was the first comprehensive wild potato collection in Peru in at least 20 years and encompassed most of the unique habitats of potato CWRs in the country. A total of 322 wild potato accessions were collected as seed, tubers, and whole plants for ex situ storage and conservation. They belonged to 36 wild potato species including one accession of S. ayacuchense that was not conserved previously in any genebank. Most accessions required regeneration in the greenhouse prior to long-term conservation as seed. The collected accessions help reduce genetic gaps in ex situ conserved germplasm and will allow further research questions on potato genetic improvement and conservation strategies to be addressed. These potato CWRs are available by request for research, training, and breeding purposes under the terms of the International Treaty for Plant Genetic Resources for Food and Agriculture (ITPGRFA) from the Instituto Nacional de Innovacion Agraria (INIA) and the International Potato Center (CIP) in Lima-Peru.
Collapse
Affiliation(s)
- Diego A. Sotomayor
- Direccion de Recursos Geneticos y Biotecnologia, Instituto Nacional de Innovacion Agraria (INIA), Lima, Peru
- Facultad de Ciencias, Universidad Nacional Agraria La Molina (UNALM), Lima, Peru
| | - David Ellis
- Centro Internacional de la Papa (CIP), Lima, Peru
| | | | - Rene Gomez
- Centro Internacional de la Papa (CIP), Lima, Peru
| | - Rosa A. Sanchez
- Direccion de Recursos Geneticos y Biotecnologia, Instituto Nacional de Innovacion Agraria (INIA), Lima, Peru
- Facultad de Ciencias, Universidad Nacional Agraria La Molina (UNALM), Lima, Peru
| | - Fredesvinda Carrillo
- Direccion de Recursos Geneticos y Biotecnologia, Instituto Nacional de Innovacion Agraria (INIA), Lima, Peru
| | - Carolina Giron
- Direccion de Recursos Geneticos y Biotecnologia, Instituto Nacional de Innovacion Agraria (INIA), Lima, Peru
| | | | | | - Noelle L. Anglin
- Centro Internacional de la Papa (CIP), Lima, Peru
- USDA ARS Small Grains and Potato Germplasm Unit, Aberdeen, ID, United States
| | - Cinthya Zorrilla
- Direccion de Recursos Geneticos y Biotecnologia, Instituto Nacional de Innovacion Agraria (INIA), Lima, Peru
- International Atomic Energy Agency, Plant Breeding and Genetics Section, Joint FAO/IAEA Center of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| |
Collapse
|
16
|
Rogozina EV, Gurina AA, Chalaya NA, Zoteyeva NM, Kuznetsova MA, Beketova MP, Muratova OA, Sokolova EA, Drobyazina PE, Khavkin EE. Diversity of Late Blight Resistance Genes in the VIR Potato Collection. PLANTS (BASEL, SWITZERLAND) 2023; 12:273. [PMID: 36678985 PMCID: PMC9862067 DOI: 10.3390/plants12020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Late blight (LB) caused by the oomycete Phytophthora infestans (Mont.) de Bary is the greatest threat to potato production worldwide. Current potato breeding for LB resistance heavily depends on the introduction of new genes for resistance to P. infestans (Rpi genes). Such genes have been discovered in highly diverse wild, primitive, and cultivated species of tuber-bearing potatoes (Solanum L. section Petota Dumort.) and introgressed into the elite potato cultivars by hybridization and transgenic complementation. Unfortunately, even the most resistant potato varieties have been overcome by LB due to the arrival of new pathogen strains and their rapid evolution. Therefore, novel sources for germplasm enhancement comprising the broad-spectrum Rpi genes are in high demand with breeders who aim to provide durable LB resistance. The Genbank of the N.I. Vavilov Institute of Plant Genetic Resources (VIR) in St. Petersburg harbors one of the world's largest collections of potato and potato relatives. In this study, LB resistance was evaluated in a core selection representing 20 species of seven Petota series according to the Hawkes (1990) classification: Bulbocastana (Rydb.) Hawkes, Demissa Buk., Longipedicellata Buk., Maglia Bitt., Pinnatisecta (Rydb.) Hawkes, Tuberosa (Rydb.) Hawkes (wild and cultivated species), and Yungasensa Corr. LB resistance was assessed in 96 accessions representing 18 species in the laboratory test with detached leaves using a highly virulent and aggressive isolate of P. infestans. The Petota species notably differed in their LB resistance: S. bulbocastanum Dun., S. demissum Lindl., S. cardiophyllum Lindl., and S. berthaultii Hawkes stood out at a high frequency of resistant accessions (7-9 points on a 9-point scale). Well-established specific SCAR markers of ten Rpi genes-Rpi-R1, Rpi-R2/Rpi-blb3, Rpi-R3a, Rpi-R3b, Rpi-R8, Rpi-blb1/Rpi-sto1, Rpi-blb2, and Rpi-vnt1-were used to mine 117 accessions representing 20 species from seven Petota series. In particular, our evidence confirmed the diverse Rpi gene location in two American continents. The structural homologs of the Rpi-R2, Rpi-R3a, Rpi-R3b, and Rpi-R8 genes were found in the North American species other than S. demissum, the species that was the original source of these genes for early potato breeding, and in some cases, in the South American Tuberosa species. The Rpi-blb1/Rpi-sto1 orthologs from S. bulbocastanum and S. stoloniferum Schlechtd et Bché were restricted to genome B in the Mesoamerican series Bulbocastana, Pinnatisecta, and Longipedicellata. The structural homologs of the Rpi-vnt1 gene that were initially identified in the South American species S. venturii Hawkes and Hjert. were reported, for the first time, in the North American series of Petota species.
Collapse
Affiliation(s)
- Elena V. Rogozina
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia
| | - Alyona A. Gurina
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia
| | - Nadezhda A. Chalaya
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia
| | - Nadezhda M. Zoteyeva
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia
| | | | | | | | | | | | - Emil E. Khavkin
- Institute of Agricultural Biotechnology, Moscow 127550, Russia
| |
Collapse
|
17
|
Chincinska IA, Miklaszewska M, Sołtys-Kalina D. Recent advances and challenges in potato improvement using CRISPR/Cas genome editing. PLANTA 2022; 257:25. [PMID: 36562862 PMCID: PMC9789015 DOI: 10.1007/s00425-022-04054-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
MAIN CONCLUSION Genome editing using CRISPR/Cas technology improves the quality of potato as a food crop and enables its use as both a model plant in fundamental research and as a potential biofactory for producing valuable compounds for industrial applications. Potato (Solanum tuberosum L.) plays a significant role in ensuring global food and nutritional security. Tuber yield is negatively affected by biotic and abiotic stresses, and enzymatic browning and cold-induced sweetening significantly contribute to post-harvest quality losses. With the dual challenges of a growing population and a changing climate, potato enhancement is essential for its sustainable production. However, due to several characteristics of potato, including high levels of heterozygosity, tetrasomic inheritance, inbreeding depression, and self-incompatibility of diploid potato, conventional breeding practices are insufficient to achieve substantial trait improvement in tetraploid potato cultivars within a relatively short time. CRISPR/Cas-mediated genome editing has opened new possibilities to develop novel potato varieties with high commercialization potential. In this review, we summarize recent developments in optimizing CRISPR/Cas-based methods for potato genome editing, focusing on approaches addressing the challenging biology of this species. We also discuss the feasibility of obtaining transgene-free genome-edited potato varieties and explore different strategies to improve potato stress resistance, nutritional value, starch composition, and storage and processing characteristics. Altogether, this review provides insight into recent advances, possible bottlenecks, and future research directions in potato genome editing using CRISPR/Cas technology.
Collapse
Affiliation(s)
- Izabela Anna Chincinska
- Department of Plant Physiology and Biotechnology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Magdalena Miklaszewska
- Department of Functional and Evolutionary Ecology, Division of Molecular Systems Biology (MOSYS), Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Dorota Sołtys-Kalina
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland
| |
Collapse
|
18
|
Baldrich P, Liu A, Meyers BC, Fondong VN. An atlas of small RNAs from potato. PLANT DIRECT 2022; 6:e466. [PMID: 36530592 PMCID: PMC9751654 DOI: 10.1002/pld3.466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Small RNAs, including microRNAs (miRNAs), phased secondary small interfering RNAs (phasiRNA), and heterochromatic small interfering RNAs (hc-siRNA) are an essential component of gene regulation. To establish a broad potato small RNA atlas, we constructed an expression atlas of leaves, flowers, roots, and tubers of Desiree and Eva, which are commercially important potato (Solanum tuberosum) cultivars. All small RNAs identified were observed to be conserved between both cultivars, supporting the hypothesis that small RNAs have a low evolutionary rate and are mostly conserved between lineages. However, we also found that a few miRNAs showed differential accumulation between the two potato cultivars, and that hc-siRNAs have a tissue specific expression. We further identified dozens of reproductive and non-reproductive phasiRNAs originating from coding and noncoding regions that appeared to exhibit tissue-specific expression. Together, this study provides an extensive small RNA profiling of different potato tissues that might be used as a resource for future investigations.
Collapse
Affiliation(s)
| | - Alexander Liu
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
| | - Blake C. Meyers
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
- Division of Plant Science & TechnologyUniversity of Missouri‐ColumbiaColumbiaMissouriUSA
| | - Vincent N. Fondong
- Department of Biological SciencesDelaware State UniversityDoverDelawareUSA
| |
Collapse
|
19
|
Hu J, Mei M, Jin F, Xu J, Duan S, Bian C, Li G, Wang X, Jin L. Phenotypic variability and genetic diversity analysis of cultivated potatoes in China. FRONTIERS IN PLANT SCIENCE 2022; 13:954162. [PMID: 36212356 PMCID: PMC9541749 DOI: 10.3389/fpls.2022.954162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Phenotypic evaluation and molecular biotechnology are both important in the identification and utilization of crop germplasm resources. In this study, the phenotypic variation and genetic diversity of 149 main potato cultivars in China were investigated with 12 phenotypic traits and 24 SSR markers. The coefficient of variation of 12 phenotypic traits ranged from 12.11% to 156.93%. The results of SSR markers exhibited a relatively high level of genetic variation (Na =5.458 ± 1.499, Ne =3.300 ± 1.087, I =1.397 ± 0.298, Ho =0.797 ± 0.178, He = 0.660 ± 0.117, and PIC=0.702 ± 0.087). Population structure and phylogenetic tree analysis divided the varieties into three subgroups. The results indicated that ninety percent of the molecular variance was attributed to within-group differences, and the remaining 10% was attributed to variation among groups. Consistent with previous report, alleles of the STI032 marker were significantly associated with tuber starch content and growth period traits in the population. The results of this study could facilitate the utilization of potato germplasm resources, molecular genetic breeding and improvement.
Collapse
Affiliation(s)
- Jun Hu
- Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crops, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meng Mei
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Fang Jin
- National Agro-Tech Extension and Service Center, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing, China
| | - Jianfei Xu
- Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crops, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoguang Duan
- Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crops, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunsong Bian
- Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crops, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guangcun Li
- Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crops, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiyao Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Liping Jin
- Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crops, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
20
|
Cheng L, Yuan J, Yu B, Wang X, Wang Y, Zhang F. Leaf proteome reveals the alterations in photosynthesis and defense-related proteins between potato tetraploid cultivars and diploid wild species. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153779. [PMID: 35952453 DOI: 10.1016/j.jplph.2022.153779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Potato (Solanum tuberosum L.) as the important food crop worldwide has abundant morphological and genetic diversity. To understand the underlying molecular mechanisms determining phenotypic differences in wild species and cultivated potato, a comparative proteomics approach was applied to analyze leaf proteome alteration among three tetraploid cultivars and three diploid wild species using two-dimensional gel electrophoresis (2-DE). Quantitative image analysis showed a total of 47 protein spots with significantly altered abundance (>3-fold, P < 0.05), and 45 differentially abundant proteins were identified by MALDI-TOF/TOF MS. These proteins exhibited both the qualitative and quantitative changes. Most of them were involved in photosynthesis, cell defense and rescue, protein biosynthesis, which might exhibit the main differences between tetraploid cultivars and diploid wild species. The photosynthesis and protein biosynthesis-related proteins were up-regulated or only present in tetraploid cultivars, suggesting the higher photosynthetic efficiency and more newly synthesized peptides. It might contribute to some superior traits of tetraploid cultivars, such as larger leaf size, greater growth vigor, better tuber yield and quality. However, some cell defense and rescue-related proteins, especially the pathogenesis-related proteins and antioxidant enzymes, were up-regulated or only present in diploid wild species. It might be responsible for stronger resistance to diseases and pests or tolerance to environmental stresses in diploid wild species. This study would provide valuable information for the underlying molecular mechanisms of potato genetic diversity, and help in developing strategies for the utilization of wild species for potato improvement.
Collapse
Affiliation(s)
- Lixiang Cheng
- State Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Jianlong Yuan
- State Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Bin Yu
- State Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xiaoqing Wang
- State Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yuping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Feng Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, College of Agronomy, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
21
|
Paluchowska P, Śliwka J, Yin Z. Late blight resistance genes in potato breeding. PLANTA 2022; 255:127. [PMID: 35576021 PMCID: PMC9110483 DOI: 10.1007/s00425-022-03910-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
Using late blight resistance genes targeting conservative effectors of Phytophthora infestans and the constructing gene pyramids may lead to durable, broad-spectrum resistance, which could be accelerated through genetic engineering. Potato (Solanum tuberosum L.) is one of the most important food crops worldwide. In 2020, potato production was estimated to be more than 359 million tons according to the Food and Agriculture Organization (FAO). Potato is affected by many pathogens, among which Phytophthora infestans, causing late blight, is of the most economic importance. Crop protection against late blight requires intensive use of fungicides, which has an impact on the environment and humans. Therefore, new potato cultivars have been bred using resistance genes against P. infestans (Rpi genes) that originate from wild relatives of potato. Such programmes were initiated 100 years ago, but the process is complex and long. The development of genetic engineering techniques has enabled the direct transfer of resistance genes from potato wild species to cultivars and easier pyramiding of multiple Rpi genes, which potentially increases the durability and spectrum of potato resistance to rapidly evolving P. infestans strains. In this review, we summarize the current knowledge concerning Rpi genes. We also discuss the use of Rpi genes in breeding as well as their detection in existing potato cultivars. Last, we review new sources of Rpi genes and new methods used to identify them and discuss interactions between P. infestans and host.
Collapse
Affiliation(s)
- Paulina Paluchowska
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland.
| | - Jadwiga Śliwka
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland
| | - Zhimin Yin
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland
| |
Collapse
|
22
|
Genetic Diversity Trends in the Cultivated Potato: A Spatiotemporal Overview. BIOLOGY 2022; 11:biology11040604. [PMID: 35453803 PMCID: PMC9026384 DOI: 10.3390/biology11040604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/01/2022] [Accepted: 04/14/2022] [Indexed: 11/27/2022]
Abstract
Simple Summary Monitoring the change in genetic diversity over time and space in crop species is essential to facilitating further improvement. As the world’s most important tuber crop for human consumption, and an ideal candidate to help address global food security, the cultivated potato deserves in-depth study in this regard. In this overview, some aspects of spatiotemporal diversity assessment in the cultivated potato are examined with the aim of promoting appropriate strategies for breeding programs in line with challenges relating to sustainable crop production. Abstract We investigated the changes in genetic diversity over time and space of the cultivated potato (Solanum tuberosum L.) for the period pre-1800 to 2021. A substantial panel of 1219 potato varieties, belonging to different spatiotemporal groups, was examined using a set of 35 microsatellite markers (SSR). Genotypic data covering a total of 407 alleles was analyzed using both self-organizing map (SOM) and discriminant analysis of principal components (DAPC) de novo and a priori clustering methods, respectively. Data analysis based on different models of genetic structuring provided evidence of (1) at least two early lineages that have been maintained since their initial introduction from the Andes into Europe in the 16th century, followed by later ones coming from reintroduction events from the US in the mid-1800s; (2) a level of diversity that has gradually evolved throughout the studied time periods and areas, with the most modern variety groups encompassing most of the diversity found in earlier decades; (3) the emergence of new genetic groups within the current population due to increases in the use of germplasm enhancement practices using exotic germplasms. In addition, analysis revealed significant genetic differentiation both among and within the spatiotemporal groups of germplasm studied. Our results therefore highlight that no major genetic narrowing events have occurred within the cultivated potato over the past three centuries. On the contrary, the genetic base shows promising signs of improvement, thanks to extensive breeding work that is gaining momentum. This overview could be drawn on not only to understand better how past decisions have impacted the current genetic cultivated potato resources, but also to develop appropriate new strategies for breeding programs consistent with the socio-economic and sustainability challenges faced by agrifood systems.
Collapse
|
23
|
Gene Expression Analysis of Potato (Solanum tuberosum L.) Lipoxygenase Cascade and Oxylipin Signature under Abiotic Stress. PLANTS 2022; 11:plants11050683. [PMID: 35270153 PMCID: PMC8912661 DOI: 10.3390/plants11050683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022]
Abstract
The metabolism of polyunsaturated fatty acids through the lipoxygenase-catalyzed step and subsequent reactions is referred to as the lipoxygenase (LOX) pathway. The components of this system, such as jasmonates, are involved in growth, development and defense reactions of plants. In this report, we focus on dynamics of expression of different LOX pathway genes and activities of target enzymes with three abiotic stress factors: darkness, salinity and herbicide toxicity. To obtain a more complete picture, the expression profiles of marker genes for salicylic acid, abscisic acid, ethylene, auxin and gibberellin-dependent signaling systems under the same stresses were also analyzed. The gene expression in Solanum tuberosum plants was analyzed using qRT-PCR, and we found that the LOX-cascade-related genes responded to darkness, salinity and herbicide toxicity in different ways. We detected activation of a number of 9-LOX pathway genes; however, in contrast to studies associated with biotic stress (infection), the 9-divinyl ether synthase branch of the LOX cascade was inhibited under all three stresses. GC-MS analysis of the oxylipin profiles also showed the main activity of the 9-LOX-cascade-related enzymes after treatment with herbicide and darkness.
Collapse
|
24
|
Dufková H, Berka M, Greplová M, Shejbalová Š, Hampejsová R, Luklová M, Domkářová J, Novák J, Kopačka V, Brzobohatý B, Černý M. The Omics Hunt for Novel Molecular Markers of Resistance to Phytophthora infestans. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010061. [PMID: 35009065 PMCID: PMC8747139 DOI: 10.3390/plants11010061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 05/08/2023]
Abstract
Wild Solanum accessions are a treasured source of resistance against pathogens, including oomycete Phytophthora infestans, causing late blight disease. Here, Solanum pinnatisectum, Solanum tuberosum, and the somatic hybrid between these two lines were analyzed, representing resistant, susceptible, and moderately resistant genotypes, respectively. Proteome and metabolome analyses showed that the infection had the highest impact on leaves of the resistant plant and indicated, among others, an extensive remodeling of the leaf lipidome. The lipidome profiling confirmed an accumulation of glycerolipids, a depletion in the total pool of glycerophospholipids, and showed considerable differences between the lipidome composition of resistant and susceptible genotypes. The analysis of putative resistance markers pinpointed more than 100 molecules that positively correlated with resistance including phenolics and cysteamine, a compound with known antimicrobial activity. Putative resistance protein markers were targeted in an additional 12 genotypes with contrasting resistance to P. infestans. At least 27 proteins showed a negative correlation with the susceptibility including HSP70-2, endochitinase B, WPP domain-containing protein, and cyclase 3. In summary, these findings provide insights into molecular mechanisms of resistance against P. infestans and present novel targets for selective breeding.
Collapse
Affiliation(s)
- Hana Dufková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (H.D.); (M.B.); (Š.S.); (M.L.); (J.N.); (B.B.)
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (H.D.); (M.B.); (Š.S.); (M.L.); (J.N.); (B.B.)
| | - Marie Greplová
- Potato Research Institute, Ltd., 58001 Havlíčkův Brod, Czech Republic; (M.G.); (R.H.); (J.D.)
| | - Šarlota Shejbalová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (H.D.); (M.B.); (Š.S.); (M.L.); (J.N.); (B.B.)
| | - Romana Hampejsová
- Potato Research Institute, Ltd., 58001 Havlíčkův Brod, Czech Republic; (M.G.); (R.H.); (J.D.)
| | - Markéta Luklová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (H.D.); (M.B.); (Š.S.); (M.L.); (J.N.); (B.B.)
| | - Jaroslava Domkářová
- Potato Research Institute, Ltd., 58001 Havlíčkův Brod, Czech Republic; (M.G.); (R.H.); (J.D.)
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (H.D.); (M.B.); (Š.S.); (M.L.); (J.N.); (B.B.)
| | | | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (H.D.); (M.B.); (Š.S.); (M.L.); (J.N.); (B.B.)
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (H.D.); (M.B.); (Š.S.); (M.L.); (J.N.); (B.B.)
- Correspondence: ; Tel.: +42-0-545-133-37
| |
Collapse
|
25
|
Mora V, Ramasamy M, Damaj MB, Irigoyen S, Ancona V, Ibanez F, Avila CA, Mandadi KK. Potato Zebra Chip: An Overview of the Disease, Control Strategies, and Prospects. Front Microbiol 2021; 12:700663. [PMID: 34367101 PMCID: PMC8339554 DOI: 10.3389/fmicb.2021.700663] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/30/2021] [Indexed: 12/03/2022] Open
Abstract
Potato (Solanum tuberosum L.) is an important food crop worldwide. As the demand for fresh and processed potato products is increasing globally, there is a need to manage and control devastating diseases such as zebra chip (ZC). ZC disease causes major yield losses in many potato-growing regions and is associated with the fastidious, phloem-limited bacterium Candidatus Liberibacter solanacearum (CLso) that is vectored by the potato-tomato psyllid (Bactericera cockerelli Šulc). Current management measures for ZC disease mainly focus on chemical control and integrated pest management strategies of the psyllid vector to limit the spread of CLso, however, they add to the costs of potato production. Identification and deployment of CLso and/or the psyllid resistant cultivars, in combination with integrated pest management, may provide a sustainable long-term strategy to control ZC. In this review, we provide a brief overview of the ZC disease, epidemiology, current management strategies, and potential new approaches to manage ZC disease in the future.
Collapse
Affiliation(s)
- Victoria Mora
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Manikandan Ramasamy
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Mona B Damaj
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Sonia Irigoyen
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Veronica Ancona
- Department of Agriculture, Agribusiness, and Environmental Sciences, Citrus Center, Texas A&M University-Kingsville, Weslaco, TX, United States
| | - Freddy Ibanez
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States.,Department of Entomology, Minnie Bell Heep Center, Texas A&M University, College Station, TX, United States
| | - Carlos A Avila
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States.,Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Kranthi K Mandadi
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States.,Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
26
|
Ibañez VN, Kozub PC, González CV, Jerez DN, Masuelli RW, Berli FJ, Marfil CF. Response to water deficit of semi-desert wild potato Solanum kurtzianum genotypes collected from different altitudes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 308:110911. [PMID: 34034868 DOI: 10.1016/j.plantsci.2021.110911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Drought-sensitive crops are threatened as a consequence of limited available water due to climate change. The cultivated potato (Solanum tuberosum) is susceptible to drought and within its wild relative species, Solanum kurtzianum is the Argentinian wild potato species best adapted to arid conditions. However, its physiological responses to water deficit (WD) are still missing. Within the distribution of S. kurtzianum, genotypes could be adapted to differential precipitation regimes. The aim of this work was to evaluate responses of three S. kurtzianum genotypes collected at 1100 (G1), 1900 (G2) and 2100 m a.s.l. (G3) to moderate and severe WD. Treatments were imposed since flowering and lasted 36 days. Yield components, morpho-physiological and biochemical responses; and phenotypic plasticity were evaluated. The three genotypes presented mechanisms to tolerate both WD treatments. G1 presented the lowest yield reduction under moderate WD, mainly through a rapid stomatal closure and a modest vegetative growth. The differences among genotypes suggest that local adaptation is taking place within its natural habitat. Also, G2 presented environmentally induced shifts in plasticity for stomatal length and carotenoids, suggesting that phenotypic plasticity has a role in acclimation of plants to WD until selection works.
Collapse
Affiliation(s)
- Verónica Noé Ibañez
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Alte. Brown 500, M5505, Chacras de Coria, Mendoza, Argentina.
| | - Perla Carolina Kozub
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Alte. Brown 500, M5505, Chacras de Coria, Mendoza, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown 500, M5505, Chacras de Coria, Mendoza, Argentina
| | - Carina Verónica González
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Alte. Brown 500, M5505, Chacras de Coria, Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Contreras 1300, Mendoza, Argentina
| | - Damián Nicolás Jerez
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Alte. Brown 500, M5505, Chacras de Coria, Mendoza, Argentina
| | - Ricardo Williams Masuelli
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Alte. Brown 500, M5505, Chacras de Coria, Mendoza, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown 500, M5505, Chacras de Coria, Mendoza, Argentina
| | - Federico Javier Berli
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Alte. Brown 500, M5505, Chacras de Coria, Mendoza, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown 500, M5505, Chacras de Coria, Mendoza, Argentina
| | - Carlos Federico Marfil
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Alte. Brown 500, M5505, Chacras de Coria, Mendoza, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown 500, M5505, Chacras de Coria, Mendoza, Argentina
| |
Collapse
|
27
|
Niño Á, Del Toro FJ, Tenllado F, Canto T, Franco-Lara L. Molecular insights on potato yellow vein crinivirus infections in the highlands of Colombia. J Gen Virol 2021; 102. [PMID: 34097597 DOI: 10.1099/jgv.0.001604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Potato yellow vein virus (PYVV) was detected in potatoes grown in the Central highlands, north of Bogotá (~3000 m altitude), Colombia. At this altitude viral whitefly vectors are largely absent, but infection persists because of the use of uncertified tubers. Plants with typical PYVV-induced yellowing symptoms, as well as with atypical yellowing or non-symptomatic symptoms were sampled at three separate geographical locations. PYVV presence was assessed by RT-PCR, and several plants were subjected to high-throughput sequencing (HTS) of their small RNA (sRNA) populations. Complete or almost complete sequences of four PYVV isolates were thus reconstructed, all from symptomatic plants. Three viral isolates infected plants singly, while the fourth co-infected the plant together with a potyvirus. Relative proportions of sRNAs to each of the three crinivirus genomic RNAs were found to remain comparable among the four infections. Genomic regions were identified as hotspots of sRNA formation, or as regions that poorly induced sRNAs. Furthermore, PYVV titres in the mixed versus single infections remained comparable, indicating an absence of synergistic/antagonistic effects of the potyvirus on the accumulation of PYVV. Daughter plants raised in the greenhouse from tubers of the infected, field-sampled plants displayed mild PYVV infection symptoms that disappeared with time, demonstrating the occurrence of recovery and asymptomatic infection phenotypes in this pathosystem.
Collapse
Affiliation(s)
- Ángela Niño
- Faculty of Basic and Applied Sciences, Universidad Militar Nueva Granada, Km 2 via Cajicá-Zipaquirá, Cajicá, Cundinamarca, Colombia
| | - Francisco J Del Toro
- Department of Microbial and Plant Biotechnology, Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Francisco Tenllado
- Department of Microbial and Plant Biotechnology, Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Tomás Canto
- Department of Microbial and Plant Biotechnology, Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Liliana Franco-Lara
- Faculty of Basic and Applied Sciences, Universidad Militar Nueva Granada, Km 2 via Cajicá-Zipaquirá, Cajicá, Cundinamarca, Colombia
| |
Collapse
|
28
|
Lee KJ, Sebastin R, Cho GT, Yoon M, Lee GA, Hyun DY. Genetic Diversity and Population Structure of Potato Germplasm in RDA-Genebank: Utilization for Breeding and Conservation. PLANTS (BASEL, SWITZERLAND) 2021; 10:752. [PMID: 33921437 PMCID: PMC8068792 DOI: 10.3390/plants10040752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 11/17/2022]
Abstract
Potato (Solanum tuberosum L.) is an important staple food and economic crop in many countries. It is of critical importance to understand the genetic diversity and population structure for effective collection, conservation, and utilization of potato germplasm. Thus, the objective of the present study was to investigate the genetic diversity and population structure of potato germplasm conserved in the National Agrobiodiversity Center (NAC) of South Korea to provide basic data for future preservation and breeding of potato genetic resources. A total of 24 simple sequence repeat (SSR) markers were used to assess the genetic diversity and population structure of 482 potato accessions. A total of 257 alleles were detected, with an average of 10.71 alleles per locus. Analysis of molecular variance showed that 97% of allelic diversity was attributed to individual accessions within the population, while only 3% was distributed among populations. Results of genetic structure analysis based on STRUCTURE and discriminant analysis of principal components revealed that 482 potato accessions could be divided into two main subpopulations. Accessions of subpopulation 1 mainly belonged to cultivars and breeding lines. Accessions of subpopulations 2 basically corresponded to wild relatives of potatoes. Results of this study provide useful information for potato improvement and conservation programs, although further studies are needed for a more accurate evaluation of genetic diversity and phenotypic traits of potatoes.
Collapse
Affiliation(s)
- Kyung-Jun Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Jeol-labuk-do, Korea; (K.-J.L.); (R.S.); (G.-T.C.); (M.Y.); (G.-A.L.)
- Honam National Institute of Biological Resources, 99, Gohadoan-gil, Mokpo-si 58762, Jeollanam-do, Korea
| | - Raveendar Sebastin
- National Agrobiodiversity Center, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Jeol-labuk-do, Korea; (K.-J.L.); (R.S.); (G.-T.C.); (M.Y.); (G.-A.L.)
| | - Gyu-Taek Cho
- National Agrobiodiversity Center, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Jeol-labuk-do, Korea; (K.-J.L.); (R.S.); (G.-T.C.); (M.Y.); (G.-A.L.)
| | - Munsup Yoon
- National Agrobiodiversity Center, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Jeol-labuk-do, Korea; (K.-J.L.); (R.S.); (G.-T.C.); (M.Y.); (G.-A.L.)
| | - Gi-An Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Jeol-labuk-do, Korea; (K.-J.L.); (R.S.); (G.-T.C.); (M.Y.); (G.-A.L.)
| | - Do-Yoon Hyun
- National Agrobiodiversity Center, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Jeol-labuk-do, Korea; (K.-J.L.); (R.S.); (G.-T.C.); (M.Y.); (G.-A.L.)
| |
Collapse
|
29
|
Sood S, Kumar A, Singh B, S S, Bhardwaj V. Cytoplasmic genome of Indian potato varieties and breeding lines vis a vis prospects in potato breeding. Heliyon 2021; 7:e06365. [PMID: 33732923 PMCID: PMC7937657 DOI: 10.1016/j.heliyon.2021.e06365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/25/2020] [Accepted: 02/22/2021] [Indexed: 11/19/2022] Open
Abstract
Advances in research resulted in development of a simple, rapid and reliable multiplex PCR protocol for cytoplasm differentiation in potato. Applying this rapid technique, we assessed the cytoplasm diversity in 57 Indian potato varieties, 15 popular exotic varieties and 47 biotic stress resistance breeding parental lines using five DNA based markers. Results revealed that T is the predominant cytoplasm type followed by D in Indian and exotic potato varieties as well as parental lines. The proportion of T and D type cytoplasm was 77.2% and 19.3% and 73.3% and 20.0% in Indian and exotic varieties, respectively. A and W type were found in one variety each, while M and P were missing in Indian varieties. All the popular Indian table potato varieties have tuberosum type cytoplasm with few exceptions of varieties bred for biotic stress resistance namely Kufri Himalini, Kufri Girdhari, carrying demissum cytoplasm. Opposite was true for Indian processing cultivars with the exception of Kufri Chipsona 4, which had T type cytoplasm. Evaluation of biotic stress resistance breeding parental lines showed increasing use of D (34.0%) and W (12.8%) cytoplasm in comparison to previously bred varieties. Although D type cytoplasm is associated with late blight resistance and male sterility, all Indian cultivars with D type cytoplasm are not resistant to late blight, nor they all are male sterile. Male fertile D type cytoplasm and the cytoplasms showing good interaction between cytoplasmic and nuclear gene for agronomic traits should be incorporated in the parental lines. Efforts must also be done to diversify the cytoplasm of cultivated potato with at least semi-cultivated cytoplasm types.
Collapse
|
30
|
Dyachenko EA, Kulakova AV, Meleshin AA, Shchennikova AV, Kochieva EZ. Amylase Inhibitor SbAI in Potato Species: Structure, Variability and Expression Pattern. RUSS J GENET+ 2021. [DOI: 10.1134/s102279542101004x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Sood S, Bhardwaj V, Kaushik SK, Sharma S. Prediction based on estimated breeding values using genealogy for tuber yield and late blight resistance in auto-tetraploid potato ( Solanum tuberosum L.). Heliyon 2020; 6:e05624. [PMID: 33305041 PMCID: PMC7710635 DOI: 10.1016/j.heliyon.2020.e05624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/08/2020] [Accepted: 11/25/2020] [Indexed: 11/05/2022] Open
Abstract
Estimated breeding values using best linear unbiased prediction (BLUP) through pedigree relationship can enhance selection efficiency and save time as well as resources in autotetraploid potato breeding program. Here, we used historical preliminary yield evaluation trials data of 469–619 breeding lines for tuber yield and late blight resistance to estimate heritability and BLUP based breeding values modelling auto-tetraploid inheritance in mixed model analysis. The pedigree file had a depth of 3–4 generations with total 370 individuals including 111 founders. Heritability estimates varied from 0.15 for marketable tuber yield to 0.47 for late blight resistance computed using A matrix. The prediction accuracy for total tuber yield, marketable tuber yield and late blight resistance (AUDPC) was 0.53 ± 0.02, 0.44 ± 0.02 and 0.81 ± 0.01, respectively. The prediction accuracy was highest for late blight resistance and moderate for total and marketable tuber yield. The prediction bias measured as regression of observed phenotype values on predicted values for late blight resistance was almost nil in comparison to total and marketable tuber yield. Moderate to high prediction accuracies for tuber yields and late blight resistance suggest the selection of genotypes based on EBVs in Indian potato breeding programme for higher genetic gain.
Collapse
Affiliation(s)
- Salej Sood
- ICAR-Central Potato Research Institute, Shimla, HP, India
| | - Vinay Bhardwaj
- ICAR-Central Potato Research Institute, Shimla, HP, India
| | - S K Kaushik
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sanjeev Sharma
- ICAR-Central Potato Research Institute, Shimla, HP, India
| |
Collapse
|
32
|
Prediction of α-Solanine and α-Chaconine in Potato Tubers from Hunter Color Values and VIS/NIR Spectra. J FOOD QUALITY 2020. [DOI: 10.1155/2020/8884219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The glycoalkaloids contents of potato tubers are usually measured by the destructive analysis that consumes time and requires expensive high-performance equipment. This study was carried out to determine the possibility of nondestructive estimation of α-solanine and α-chaconine content in potato tubers. Visible/near-infrared (VIS/NIR) spectra, color values, and the reference α-solanine and α-chaconine were measured from 180 tubers of ‘Atlantic’ and ‘Trent’ potato cultivars with eight replications at two-week intervals during the storage up to ten weeks. The partial least square (PLS) regression method was used to develop models correlating color and spectra data to the measured reference data. Regression coefficient (r) between color variables (Hunter
,
, and (
)2) and the actual measured values of a-solanine and a-chaconine content were 0.74, 0.62, and 0.62 and 0.70, 0.58, and 0.57, respectively, for the prediction set. Concurrently, equations were developed from color variables in multiple regression with r-values of 0.76 and 0.71 for α-solanine and α-chaconine, respectively. Additionally, the selected PLS model of VIS/NIR spectra had promising predictive power for α-solanine and α-chaconine with r-values of 0.68 and 0.63, respectively, between measured and predicted samples. Taken together, although it requires further studies to improve the prediction power of the developed models, the results of this study revealed the possibility of using VIS/NIR spectra and color variables for the prediction of α-solanine and α-chaconine contents from intact unpeeled potato tubers with chemical-free, fast, and cheap assessment methods.
Collapse
|
33
|
Slugina MA, Kochieva EZ, Shchennikova AV. Polymorphism and Phylogeny of the Vacuolar Invertase Inhibitor Gene INH2 Homologs in Solanaceae Species. BIOL BULL+ 2020. [DOI: 10.1134/s1062359020040111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Galluzzi G, Seyoum A, Halewood M, López Noriega I, Welch EW. The Role of Genetic Resources in Breeding for Climate Change: The Case of Public Breeding Programmes in Eighteen Developing Countries. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9091129. [PMID: 32878309 PMCID: PMC7569780 DOI: 10.3390/plants9091129] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023]
Abstract
The role of plant breeding in adapting crops to climate changes that affect food production in developing countries is recognized as extremely important and urgent, alongside other agronomic, socio-economic and policy adaptation pathways. To enhance plant breeders' capacity to respond to climate challenges, it is acknowledged that they need to be able to access and use as much genetic diversity as they can get. Through an analysis of data from a global survey, we explore if and how public breeders in selected developing countries are responding to climate challenges through a renewed or innovative use of plant genetic resources, particularly in terms of types of material incorporated into their breeding work as well as sources of such germplasm. It also looks at the possible limitations breeders encounter in their efforts towards exploring diversity for adaptation. Breeders are clearly considering climate challenges. In general, their efforts are aimed at intensifying their breeding work on traits that they were already working on before climate change was so widely discussed. Similarly, the kinds of germplasm they use, and the sources from which they obtain it, do not appear to have changed significantly over the course of recent years. The main challenges breeders faced in accessing germplasm were linked to administrative/legal factors, particularly related to obtaining genetic resources across national borders. They also underscore technical challenges such as a lack of appropriate technologies to exploit germplasm sets such as crop wild relatives and landraces. Addressing these limitations will be crucial to fully enhance the role of public sector breeders in helping to adapt vulnerable agricultural systems to the challenges of climate change.
Collapse
Affiliation(s)
- Gea Galluzzi
- Bioversity International, Via dei Tre Denari 472/a, Maccarese (Fiumicino), 00057 Rome, Italy; (M.H.); (I.L.N.)
- Correspondence: ; Tel.: +39-348-403-0812
| | - Aseffa Seyoum
- Center for Science, Technology, and Environmental Policy Studies, School of Public Affairs, Arizona State University, 411 N Central Ave, Phoenix, AZ 85004, USA; (A.S.); (E.W.W.)
| | - Michael Halewood
- Bioversity International, Via dei Tre Denari 472/a, Maccarese (Fiumicino), 00057 Rome, Italy; (M.H.); (I.L.N.)
| | - Isabel López Noriega
- Bioversity International, Via dei Tre Denari 472/a, Maccarese (Fiumicino), 00057 Rome, Italy; (M.H.); (I.L.N.)
| | - Eric W. Welch
- Center for Science, Technology, and Environmental Policy Studies, School of Public Affairs, Arizona State University, 411 N Central Ave, Phoenix, AZ 85004, USA; (A.S.); (E.W.W.)
| |
Collapse
|
35
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Brimer L, Cottrill B, Dusemund B, Mulder P, Vollmer G, Binaglia M, Ramos Bordajandi L, Riolo F, Roldán‐Torres R, Grasl‐Kraupp B. Risk assessment of glycoalkaloids in feed and food, in particular in potatoes and potato-derived products. EFSA J 2020; 18:e06222. [PMID: 32788943 PMCID: PMC7417869 DOI: 10.2903/j.efsa.2020.6222] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The European Commission asked EFSA for a scientific opinion on the risks for animal and human health related to the presence of glycoalkaloids (GAs) in feed and food. This risk assessment covers edible parts of potato plants and other food plants containing GAs, in particular, tomato and aubergine. In humans, acute toxic effects of potato GAs (α-solanine and α-chaconine) include gastrointestinal symptoms such as nausea, vomiting and diarrhoea. For these effects, the CONTAM Panel identified a lowest-observed-adverse-effect level of 1 mg total potato GAs/kg body weight (bw) per day as a reference point for the risk characterisation following acute exposure. In humans, no evidence of health problems associated with repeated or long-term intake of GAs via potatoes has been identified. No reference point for chronic exposure could be identified from the experimental animal studies. Occurrence data were available only for α-solanine and α-chaconine, mostly for potatoes. The acute dietary exposure to potato GAs was estimated using a probabilistic approach and applying processing factors for food. Due to the limited data available, a margin of exposure (MOE) approach was applied. The MOEs for the younger age groups indicate a health concern for the food consumption surveys with the highest mean exposure, as well as for the P95 exposure in all surveys. For adult age groups, the MOEs indicate a health concern only for the food consumption surveys with the highest P95 exposures. For tomato and aubergine GAs, the risk to human health could not be characterised due to the lack of occurrence data and the limited toxicity data. For horses, farm and companion animals, no risk characterisation for potato GAs could be performed due to insufficient data on occurrence in feed and on potential adverse effects of GAs in these species.
Collapse
|
36
|
Meade F, Hutten R, Wagener S, Prigge V, Dalton E, Kirk HG, Griffin D, Milbourne D. Detection of Novel QTLs for Late Blight Resistance Derived from the Wild Potato Species Solanum microdontum and Solanum pampasense. Genes (Basel) 2020; 11:E732. [PMID: 32630103 PMCID: PMC7396981 DOI: 10.3390/genes11070732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 12/30/2022] Open
Abstract
Wild potato species continue to be a rich source of genes for resistance to late blight in potato breeding. Whilst many dominant resistance genes from such sources have been characterised and used in breeding, quantitative resistance also offers potential for breeding when the loci underlying the resistance can be identified and tagged using molecular markers. In this study, F1 populations were created from crosses between blight susceptible parents and lines exhibiting strong partial resistance to late blight derived from the South American wild species Solanum microdontum and Solanum pampasense. Both populations exhibited continuous variation for resistance to late blight over multiple field-testing seasons. High density genetic maps were created using single nucleotide polymorphism (SNP) markers, enabling mapping of quantitative trait loci (QTLs) for late blight resistance that were consistently expressed over multiple years in both populations. In the population created with the S. microdontum source, QTLs for resistance consistently expressed over three years and explaining a large portion (21-47%) of the phenotypic variation were found on chromosomes 5 and 6, and a further resistance QTL on chromosome 10, apparently related to foliar development, was discovered in 2016 only. In the population created with the S. pampasense source, QTLs for resistance were found in over two years on chromosomes 11 and 12. For all loci detected consistently across years, the QTLs span known R gene clusters and so they likely represent novel late blight resistance genes. Simple genetic models following the effect of the presence or absence of SNPs associated with consistently effective loci in both populations demonstrated that marker assisted selection (MAS) strategies to introgress and pyramid these loci have potential in resistance breeding strategies.
Collapse
Affiliation(s)
- Fergus Meade
- Teagasc, Crop Science Department, Oak Park, R93 XE12 Carlow, Ireland; (F.M.); (D.G.)
| | - Ronald Hutten
- Wageningen University & Research (WUR), 6708 PB Wageningen, The Netherlands;
| | - Silke Wagener
- SaKa Pflanzenzucht GmbH & Co., 22761 Hamburg, Germany; (S.W.); (V.P.)
| | - Vanessa Prigge
- SaKa Pflanzenzucht GmbH & Co., 22761 Hamburg, Germany; (S.W.); (V.P.)
| | | | | | - Denis Griffin
- Teagasc, Crop Science Department, Oak Park, R93 XE12 Carlow, Ireland; (F.M.); (D.G.)
| | - Dan Milbourne
- Teagasc, Crop Science Department, Oak Park, R93 XE12 Carlow, Ireland; (F.M.); (D.G.)
| |
Collapse
|
37
|
Smyda-Dajmund P, Śliwka J, Janiszewska M, Zimnoch-Guzowska E. Cytoplasmic diversity of potato relatives preserved at Plant Breeding and Acclimatization Institute in Poland. Mol Biol Rep 2020; 47:3929-3935. [PMID: 32406017 PMCID: PMC7239805 DOI: 10.1007/s11033-020-05486-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/30/2020] [Indexed: 11/06/2022]
Abstract
Among different types of potato cytoplasmic genomes, some are associated with male sterility or affect agronomic traits. The goal of this study was to analyze types of chloroplast and mitochondrial genomes of selected potato relatives originating from collection of the Institute of Plant Industry, Saint Petersburg, Russia, and preserved in Poland. Using chloroplast and mitochondrial markers the cytoplasm types were determined for 401 genotypes belonging to 43 seed accessions of 28 Solanum species. Among characterized genotypes, 201 (50.1%), 156 (38.9%) and 44 (11%) had cytoplasm types W, D, M, respectively. No accessions with the T, P or A cytoplasm were found. Within cytoplasm W, genotypes with the subtypes: W/α and W/β were identified, but not with W/γ. In S. famatinae, we detected unusual product of the T marker with 65 bp insertion earlier seen exclusively in S. vernei. Among the genotypes of S. leptophyes, two profiles of the ALM_4/ALM_5 marker were observed. S. famatinae and S. vernei come from Argentina, provinces Catamarca and Tucumán. Possibly the insertion in marker T occurred independently in two species, or the accessions were misidentified. Segregation of the ALM_4/ALM_5 marker within S. leptophyes indicates that potato seed accessions are heterogeneous not only due to nuclear DNA polymorphisms but have diversified cytoplasm, too. Our findings are important for exploitation of the tested material in potato breeding. Male-fertile cytoplasm types give a chance of avoiding fertility problems and widening the range of crosses in future generations of breeding materials.
Collapse
Affiliation(s)
- Paulina Smyda-Dajmund
- Plant Breeding and Acclimatization Institute-National Research Institute, Młochów Research Center, Platanowa 19, 05-831, Młochów, Poland.
| | - Jadwiga Śliwka
- Plant Breeding and Acclimatization Institute-National Research Institute, Młochów Research Center, Platanowa 19, 05-831, Młochów, Poland
| | - Marta Janiszewska
- Plant Breeding and Acclimatization Institute-National Research Institute, Młochów Research Center, Platanowa 19, 05-831, Młochów, Poland
| | - Ewa Zimnoch-Guzowska
- Plant Breeding and Acclimatization Institute-National Research Institute, Młochów Research Center, Platanowa 19, 05-831, Młochów, Poland
| |
Collapse
|
38
|
Slugina MA, Filyushin MA, Meleshin AA, Shchennikova AV, Kochieva EZ. Differences in the Amylase Inhibitor Gene SbAI Expression in Potato during Long-Term Tuber Cold Storage and in Response to Short-Term Cold Stress. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420030163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Singh B, Salaria N, Thakur K, Kukreja S, Gautam S, Goutam U. Functional genomic approaches to improve crop plant heat stress tolerance. F1000Res 2019; 8:1721. [PMID: 31824669 PMCID: PMC6896246 DOI: 10.12688/f1000research.19840.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/02/2019] [Indexed: 12/21/2022] Open
Abstract
Heat stress as a yield limiting issue has become a major threat for food security as global warming progresses. Being sessile, plants cannot avoid heat stress. They respond to heat stress by activating complex molecular networks, such as signal transduction, metabolite production and expressions of heat stress-associated genes. Some plants have developed an intricate signalling network to respond and adapt it. Heat stress tolerance is a polygenic trait, which is regulated by various genes, transcriptional factors, proteins and hormones. Therefore, to improve heat stress tolerance, a sound knowledge of various mechanisms involved in the response to heat stress is required. The classical breeding methods employed to enhance heat stress tolerance has had limited success. In this era of genomics, next generation sequencing techniques, availability of genome sequences and advanced biotechnological tools open several windows of opportunities to improve heat stress tolerance in crop plants. This review discusses the potential of various functional genomic approaches, such as genome wide association studies, microarray, and suppression subtractive hybridization, in the process of discovering novel genes related to heat stress, and their functional validation using both reverse and forward genetic approaches. This review also discusses how these functionally validated genes can be used to improve heat stress tolerance through plant breeding, transgenics and genome editing approaches.
Collapse
Affiliation(s)
- Baljeet Singh
- Molecular Biology and Genetic Engineering, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Neha Salaria
- Molecular Biology and Genetic Engineering, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Kajal Thakur
- Molecular Biology and Genetic Engineering, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sarvjeet Kukreja
- School of Agriculture, Lovely Professional University, Phagwara, Jalandhar, 144411, India
| | - Shristy Gautam
- Molecular Biology and Genetic Engineering, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Umesh Goutam
- Molecular Biology and Genetic Engineering, Lovely Professional University, Phagwara, Punjab, 144411, India
| |
Collapse
|
40
|
Tu YK, Lin YC, Feng YW, Tseng YY, Chen HW. Visual, sensitive and rapid event-specific detection of genetically modified potato EH92-527-1 by loop-mediated isothermal amplification method. Biosci Biotechnol Biochem 2019; 84:43-52. [PMID: 31495297 DOI: 10.1080/09168451.2019.1661766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To date, studies on the application of loop-mediated isothermal amplification (LAMP) in the detection of genetically modified organisms (GMOs) are stably increasing and demonstrates LAMP is a potential and promising method for on spot identification of GMOs. However, little information is known for detection of GM potato events by LAMP. In this report, we developed an optimized and visual LAMP assay with high specificity and sensitivity to rapidly amplify genomic DNA of potato EH92-527-1 within 45 min. The limit of detection of LAMP in our study is 10-fold higher than the conventional PCR. Furthermore, LAMP products can be directly observed via naked eyes by addition of SYBR Green I without gel electrophoresis analysis and PCR-based equipment. Therefore, the LAMP assay developed in this paper provides an efficient, convenient and cost-effective tool for the detection of GM potato EH92-527-1.
Collapse
Affiliation(s)
- Yuan-Kai Tu
- Biotechnology Division, Taiwan Agricultural Research Institute, Taichung City, Taiwan
| | - Yen-Chun Lin
- Biotechnology Division, Taiwan Agricultural Research Institute, Taichung City, Taiwan
| | - Yu-Wei Feng
- Biotechnology Division, Taiwan Agricultural Research Institute, Taichung City, Taiwan
| | - Yeu-Yang Tseng
- John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Han-Wei Chen
- Biotechnology Division, Taiwan Agricultural Research Institute, Taichung City, Taiwan
| |
Collapse
|
41
|
Delgado-Ortiz JC, Beltrán-Beache M, Cerna-Chávez E, Aguirre-Uribe LA, Landero-Flores J, Rodríguez-Pagaza Y, Ochoa-Fuentes YM. Candidatus Liberibacter solanacearum patógeno vascular de solanáceas: Diagnóstico y control. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2019. [DOI: 10.22201/fesz.23958723e.2019.0.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Candidatus Liberibacter solanacearum (CLso) es una bacteria fitopatógena Gram-negativa, limitada al floema en solanáceas y no cultivable in vitro. Es transmitida de manera vertical y horizontal por el psílido Bactericera cockerelli. En México se asocia como responsable de la enfermedad "permanente del tomate", "punta morada de la papa" (Zebra chip) y "variegado del chile". Los síntomas causados por la bacteria varían según el cultivar y la etapa de crecimiento del hospedante pero consisten principalmente en amarillamientos y deformación de la lámina foliar, debido a la alimentación del vector y la colonización del patógeno. Las infecciones ocasionadas por CLso reducen la calidad del producto y el valor comercial en el mercado. La presencia de esta bacteria ha sido detectada en los estados de Coahuila, Sinaloa y Guanajuato, México a través de técnicas moleculares; mientras que el control de la enfermedad se encuentra enfocado en el vector, mediante prácticas culturales y la aplicación de agentes químicos y biológicos. Por lo anterior el objetivo del trabajo es puntualizar la situación actual de la distribución de CLso en México, los métodos de diagnóstico y las estrategias para el manejo integrado de la enfermedad y el vector.
Collapse
|
42
|
Rogozina EV, Mironenko NV, Chalaya NA, Matsushita Y, Yanagisawa H. Potato mosaic viruses which infect plants of tuber-bearing Solanum spp. growing in the VIR field gene bank. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Potato crop is particularly affected by virus diseases, and potato virus Y (PVY) currently considered the most important pathogen distributed worldwide as a diversity of strains. Wild and cultivated tuber-bearing species of the genus Solanum L., stored in the VIR collection, are used as the initial material in creation domestic potato varieties (Solanum tuberosum L.) resistant to virus diseases. The preservation and rational utilization of the potato collection is based on regular phytosanitary monitoring, including quarantine objects, foremost PSTVd (potato spindle tuber viroid). The aim of the work is to examine plants of tuber-bearing Solanum species in the field gene bank of VIR for the presence of PSTVd and PVX (potato virus X), PVS (potato virus S), PVM (potato virus M) and PVY, which are the most common viruses on potatoes in the North-West District of Russia. We examined clonal plants of 137 genotypes representing 31 species of the section Petota of the genus Solanum L. A diagnostic was carried out using ELISA, RT-PCR and indicator plants. No PSTVd was found in the studied plants, but a plural infestation by mosaic viruses was detected, more than half of the tested clones are infected with two or more viruses. In the studied samples, only 17 genotypes (12 %) are not infected by PVX, PVS, PVM and PVY according to the ELISA test. There are statistically significant differences in the virus infestation of Solanum species with different origins, according to Pearson’s chi-squared test. Among the studied genotypes of wild relatives of potatoes, the proportion of those affected by PVY was significantly higher in the South American than in the North American species (χ2 = 4.56, p = 0.03); the proportion of genotypes affected by PVХ was significantly higher in the North American species (χ2 = 8.81, p = 0.003), the critical value was χ2 = 3.841. PVY strains were identified by multiplex RT-PCR in 37 genotypes of Solanum spp. We found that 27 genotypes are infected by a common PVYO strain, two genotypes are infected by PVYNW (A) and PVYNW (B) strains, respectively, seven genotypes are infected by a mixture of PVYO +PVYNW (A) strains, and one is infected by a mixture of PVYO +PVYNTN-NW (SYRI)+SYRIII strains. The recombinant strains of PVY are detected in the North-West District of Russia for the first time. Coherency of the results of PVY strains detection by various (immunological, molecular and biological) methods is discussed.
Collapse
Affiliation(s)
- E. V. Rogozina
- The N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
| | | | - N. A. Chalaya
- The N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
| | - Yu. Matsushita
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization
| | - H. Yanagisawa
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization
| |
Collapse
|
43
|
Guo Q, Li X, Yang S, Yang Z, Sun Y, Zhang J, Cao S, Dong L, Uddin S, Li Y. Evaluation of the Genetic Diversity and Differentiation of Black Locust ( Robinia pseudoacacia L.) Based on Genomic and Expressed Sequence Tag-Simple Sequence Repeats. Int J Mol Sci 2018; 19:ijms19092492. [PMID: 30142921 PMCID: PMC6164529 DOI: 10.3390/ijms19092492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 11/16/2022] Open
Abstract
Understanding the genetic diversity and differentiation of the genetic resources of a species is important for the effective use and protection of forest tree resources. Ex situ development is a common method for the protection of genetic diversity and an essential resource for users who require ready access to a species’ germplasm. In this study, we collected seeds of black locust (Robinia pseudoacacia L.) from 19 provenances, covering most of its natural distribution; we randomly selected 367 tender leaves with well-grown and different maternal strains from this group for further analysis. Forty-eight simple sequence repeat (SSR) primers were successfully selected from 91 pairs of SSR primers using native-deformation polyacrylamide gel electrophoresis. In addition, we identified identical genotypes among all individuals and evaluated the quality of the markers. From this, 35 loci were confirmed for analyses of genetic diversity and differentiation of the black locust provenances, which contained 28 expressed sequence tag-derived simple sequence repeats (EST-SSRs) and 7 genomic DNA-derived simple sequence repeats (G-SSRs). We observed high genetic diversity among the native black locust provenances, from which Wright’s fixation index and molecular variance suggested that a majority of the genetic differentiation variation could be attributed to within-provenance differences. The genetic distance and identity results indicated that geographic distance was not a dominating factor influencing the distribution of black locust. This is the first study to evaluate provenance genetic variation in native black locust samples using two types of SSR markers, which provides a comprehensive theoretical basis for ex situ conservation and utilization of genetic resources, with an emphasis on breeding applications.
Collapse
Affiliation(s)
- Qi Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Xiuyu Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Shuhong Yang
- Henan Academy of Forestry, Zhengzhou 450008, China.
| | - Zhiheng Yang
- State-Owned Linghai Hongqi Forest, Jinzhou 121228, China.
| | - Yuhan Sun
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | | | - Sen Cao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Li Dong
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Saleem Uddin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Yun Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
44
|
Li X, Xu J, Duan S, Bian C, Hu J, Shen H, Li G, Jin L. Pedigree-Based Deciphering of Genome-Wide Conserved Patterns in an Elite Potato Parental Line. FRONTIERS IN PLANT SCIENCE 2018; 9:690. [PMID: 29875792 PMCID: PMC5974212 DOI: 10.3389/fpls.2018.00690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/04/2018] [Indexed: 05/26/2023]
Abstract
Elite parental lines are more likely to breed fine varieties, but knowledge about elite parents and their genetic backgrounds is limited. In this paper, we investigated the pedigree relationships of potato varieties bred worldwide and in China. Several elite parents were identified, and these parents were more frequently used as parents in breeding programs across different time periods and countries. We next used 2b-RAD, a reduced-representation sequencing method, to genotype the elite parent Mira and 24 of its offspring. These cultivars span 5 generations, making this lineage the longest continuous pedigree among Chinese bred potatoes. A total of 47,314 tetraploid single nucleotide polymorphisms (SNPs) identified by FreeBayes were used to trace the conserved segments of the Mira genome. The conserved segments had identical or similar allele-specific SNPs across the analyzed genotypes. In Mira, 3,788 segments comprising over 10,000 bp, or 20.8% of the genome, were defined as conserved segments. These segments contain genes involved in crucial biological processes that are of special interest to breeders. These regions, which have been conserved across generations of highly selective breeding, may be helpful for further breeding and performing genome-wide breeding by design.
Collapse
Affiliation(s)
- Xiaochuan Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crops, Ministry of Agriculture, Beijing, China
- College of Horticulture, China Agricultural University, Beijing, China
- Bijie Institute of Agricultural Sciences, Bijie, China
| | - Jianfei Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crops, Ministry of Agriculture, Beijing, China
| | - Shaoguang Duan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crops, Ministry of Agriculture, Beijing, China
| | - Chunsong Bian
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crops, Ministry of Agriculture, Beijing, China
| | - Jun Hu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crops, Ministry of Agriculture, Beijing, China
| | - Huolin Shen
- College of Horticulture, China Agricultural University, Beijing, China
| | - Guangcun Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crops, Ministry of Agriculture, Beijing, China
| | - Liping Jin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crops, Ministry of Agriculture, Beijing, China
| |
Collapse
|
45
|
Li Y, Colleoni C, Zhang J, Liang Q, Hu Y, Ruess H, Simon R, Liu Y, Liu H, Yu G, Schmitt E, Ponitzki C, Liu G, Huang H, Zhan F, Chen L, Huang Y, Spooner D, Huang B. Genomic Analyses Yield Markers for Identifying Agronomically Important Genes in Potato. MOLECULAR PLANT 2018; 11:473-484. [PMID: 29421339 DOI: 10.1016/j.molp.2018.01.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/02/2018] [Accepted: 01/22/2018] [Indexed: 05/24/2023]
Abstract
Wild potato species have substantial phenotypic and physiological diversity. Here, we report a comprehensive assessment of wild and cultivated potato species based on genomic analyses of 201 accessions of Solanum section Petota. We sequenced the genomes of these 201 accessions and identified 6 487 006 high-quality single nucleotide polymorphisms (SNPs) from 167 accessions in clade 4 of Solanum section Petota, including 146 wild and 21 cultivated diploid potato accessions with a broad geographic distribution. Genome-wide genetic variation analysis showed that the diversity of wild potatoes is higher than that of cultivated potatoes, and much higher genetic diversity in the agronomically important disease resistance genes was observed in wild potatoes. Furthermore, by exploiting information about known quantitative trait loci (QTL), we identified 609 genes under selection, including those correlated with the loss of bitterness in tubers and those involved in tuberization, two major domesticated traits of potato. Phylogenetic analyses revealed a north-south division of all species in clade 4, not just those in the S. brevicaule complex, and further supported S. candolleanum as the progenitor of cultivated potato and the monophyletic origin of cultivated potato in southern Peru. In addition, we analyzed the genome of S. candolleanum and identified 529 genes lost in cultivated potato. Collectively, the molecular markers generated in this study provide a valuable resource for the identification of agronomically important genes useful for potato breeding.
Collapse
Affiliation(s)
- Yangping Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, China; Joint International Research Laboratory of Crop Resources and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | | | - Junjie Zhang
- Joint International Research Laboratory of Crop Resources and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Chengdu, China; College of Life Science, Sichuan Agricultural University, Chengdu, China
| | - Qiqi Liang
- Novogene Bioinformatics Institute, Beijing, China
| | - Yufeng Hu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China; Joint International Research Laboratory of Crop Resources and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Holly Ruess
- Vegetable Crops Research Unit, USDA-Agricultural Research Service, Department of Horticulture, University of Wisconsin, Madison, WI, USA
| | - Reinhard Simon
- Integrated IT and Computational Research Unit, International Potato Center, Lima, Peru
| | - Yinghong Liu
- Joint International Research Laboratory of Crop Resources and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Chengdu, China; Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hanmei Liu
- Joint International Research Laboratory of Crop Resources and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Chengdu, China; College of Life Science, Sichuan Agricultural University, Chengdu, China
| | - Guowu Yu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China; Joint International Research Laboratory of Crop Resources and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Eric Schmitt
- University of Lille, CNRS, UMR 8198 Evo Eco-Paleo, Lille, France
| | - Chloé Ponitzki
- University of Lille, CNRS, UMR 8198 Evo Eco-Paleo, Lille, France
| | | | - Huanhuan Huang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Feilong Zhan
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lin Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yubi Huang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - David Spooner
- Vegetable Crops Research Unit, USDA-Agricultural Research Service, Department of Horticulture, University of Wisconsin, Madison, WI, USA.
| | - Binquan Huang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China; Joint International Research Laboratory of Crop Resources and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Chengdu, China; Department of Plant Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
46
|
Reiss ER, Drinkwater LE. Cultivar mixtures: a meta-analysis of the effect of intraspecific diversity on crop yield. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:62-77. [PMID: 28940830 DOI: 10.1002/eap.1629] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/25/2017] [Indexed: 05/27/2023]
Abstract
Extensive research has shown that greater plant community diversity leads to higher levels of productivity and other ecosystem services, and such increased diversity has been suggested as a way to improve yield and agricultural sustainability. Increasing intraspecific diversity with cultivar mixtures is one way to increase diversity in agricultural systems. We examined the relationship between intraspecific diversity and yield in cultivar mixtures using a meta-analysis of 91 studies and >3,600 observations. Additionally, we investigated how environmental and management factors might influence this relationship, and if the yield stability of cultivar mixtures differed from that of monocultures. We found that the yield increased by 2.2% overall in cultivar mixtures relative to their monoculture components. Mixtures with more cultivars and those with more functional trait diversity showed higher relative yields. Under biotic stressors, such as disease pressure, and abiotic stressors, such as low levels of soil organic matter and nutrient availability, this diversity effect was stronger, resulting in higher relative yields. Finally, cultivar mixtures generally showed higher yield stability compared to monocultures, especially in response to annual weather variability at a site over time. This practice of mixing cultivars can be integrated into intensified cropping systems where species monocultures dominate, as well as in smallholder cropping systems where low-cost improvements are in demand. Overall, these results suggest that cultivar mixtures are a viable strategy to increase diversity in agroecosystems, promoting increased yield and yield stability, with minimal environmental impact.
Collapse
Affiliation(s)
- Emily R Reiss
- School of Integrative Plant Science, Horticulture, Cornell University, Ithaca, New York, 14853, USA
| | - Laurie E Drinkwater
- School of Integrative Plant Science, Horticulture, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
47
|
Ferreira V, Pianzzola MJ, Vilaró FL, Galván GA, Tondo ML, Rodriguez MV, Orellano EG, Valls M, Siri MI. Interspecific Potato Breeding Lines Display Differential Colonization Patterns and Induced Defense Responses after Ralstonia solanacearum Infection. FRONTIERS IN PLANT SCIENCE 2017; 8:1424. [PMID: 28894453 PMCID: PMC5581342 DOI: 10.3389/fpls.2017.01424] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/02/2017] [Indexed: 05/05/2023]
Abstract
Potato (Solanum tuberosum L.) is one of the main hosts of Ralstonia solanacearum, the causative agent of bacterial wilt. This plant pathogen bacteria produce asymptomatic latent infections that promote its global spread, hindering disease control. A potato breeding program is conducted in Uruguay based on the introgression of resistance from the wild native species S. commersonii Dun. Currently, several backcrosses were generated exploiting the high genetic variability of this wild species resulting in advanced interspecific breeding lines with different levels of bacterial wilt resistance. The overall aim of this work was to characterize the interaction of the improved potato germplasm with R. solanacearum. Potato clones with different responses to R. solanacearum were selected, and colonization, dissemination and multiplication patterns after infection were evaluated. A R. solanacearum strain belonging to the phylotype IIB-sequevar 1, with high aggressiveness on potato was genetically modified to constitutively generate fluorescence and luminescence from either the green fluorescence protein gene or lux operon. These reporter strains were used to allow a direct and precise visualization of fluorescent and luminescent cells in plant tissues by confocal microscopy and luminometry. Based on wilting scoring and detection of latent infections, the selected clones were classified as susceptible or tolerant, while no immune-like resistance response was identified. Typical wilting symptoms in susceptible plants were correlated with high concentrations of bacteria in roots and along the stems. Tolerant clones showed a colonization pattern restricted to roots and a limited number of xylem vessels only in the stem base. Results indicate that resistance in potato is achieved through restriction of bacterial invasion and multiplication inside plant tissues, particularly in stems. Tolerant plants were also characterized by induction of anatomical and biochemical changes after R. solanacearum infection, including hyperplasic activity of conductor tissue, tylose production, callose and lignin deposition, and accumulation of reactive oxygen species. This study highlights the potential of the identified tolerant interspecific potato clones as valuable genetic resources for potato-breeding programs and leads to a better understanding of resistance against R. solanacearum in potato.
Collapse
Affiliation(s)
- Virginia Ferreira
- Departamento de Biociencias, Facultad de Química, Universidad de la RepúblicaMontevideo, Uruguay
| | - María J. Pianzzola
- Departamento de Biociencias, Facultad de Química, Universidad de la RepúblicaMontevideo, Uruguay
| | | | - Guillermo A. Galván
- Departamento de Producción Vegetal, Centro Regional Sur, Facultad de Agronomía, Universidad de la RepúblicaCanelones, Uruguay
| | - María L. Tondo
- Instituto de Biología Molecular y Celular de Rosario (CONICET-UNR)Rosario, Argentina
- Área Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de RosarioRosario, Argentina
| | - María V. Rodriguez
- Área Biología Vegetal (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de RosarioRosario, Argentina
| | - Elena G. Orellano
- Instituto de Biología Molecular y Celular de Rosario (CONICET-UNR)Rosario, Argentina
- Área Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de RosarioRosario, Argentina
| | - Marc Valls
- Center for Research in Agricultural Genomics, CSIC, IRTA, UAB, UBBarcelona, Spain
- Department of Genetics, Universitat de BarcelonaBarcelona, Spain
| | - María I. Siri
- Departamento de Biociencias, Facultad de Química, Universidad de la RepúblicaMontevideo, Uruguay
| |
Collapse
|
48
|
Wang N, Pierson EA, Setubal JC, Xu J, Levy JG, Zhang Y, Li J, Rangel LT, Martins J. The Candidatus Liberibacter-Host Interface: Insights into Pathogenesis Mechanisms and Disease Control. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017. [PMID: 28637377 DOI: 10.1146/annurev-phyto-080516-035513] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
"Candidatus Liberibacter" species are associated with economically devastating diseases of citrus, potato, and many other crops. The importance of these diseases as well as the proliferation of new diseases on a wider host range is likely to increase as the insects vectoring the "Ca. Liberibacter" species expand their territories worldwide. Here, we review the progress on understanding pathogenesis mechanisms of "Ca. Liberibacter" species and the control approaches for diseases they cause. We discuss the Liberibacter virulence traits, including secretion systems, putative effectors, and lipopolysaccharides (LPSs), as well as other important traits likely to contribute to disease development, e.g., flagella, prophages, and salicylic acid hydroxylase. The pathogenesis mechanisms of Liberibacters are discussed. Liberibacters secrete Sec-dependent effectors (SDEs) or other virulence factors into the phloem elements or companion cells to interfere with host targets (e.g., proteins or genes), which cause cell death, necrosis, or other phenotypes of phloem elements or companion cells, leading to localized cell responses and systemic malfunction of phloem. Receptors on the remaining organelles in the phloem, such as plastid, vacuole, mitochondrion, or endoplasmic reticulum, interact with secreted SDEs and/or other virulence factors secreted or located on the Liberibacter outer membrane to trigger cell responses. Some of the host genes or proteins targeted by SDEs or other virulence factors of Liberibacters serve as susceptibility genes that facilitate compatibility (e.g., promoting pathogen growth or suppressing immune responses) or disease development. In addition, Liberibacters trigger plant immunity response via pathogen-associated molecular patterns (PAMPs, such as lipopolysaccharides), which leads to premature cell death, callose deposition, or phloem protein accumulation, causing a localized response and/or systemic effect on phloem transportation. Physical presence of Liberibacters and their metabolic activities may disturb the function of phloem, via disrupting osmotic gradients, or the integrity of phloem conductivity. We also review disease management strategies, including promising new technologies. Citrus production in the presence of Huanglongbing is possible if the most promising management approaches are integrated. HLB management is discussed in the context of local, area-wide, and regional Huanglongbing/Asian Citrus Psyllid epidemiological zones. For zebra chip disease control, aggressive psyllid management enables potato production, although insecticide resistance is becoming an issue. Meanwhile, new technologies such as clustered regularly interspaced short palindromic repeat (CRISPR)-derived genome editing provide an unprecedented opportunity to provide long-term solutions.
Collapse
Affiliation(s)
- Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida 33850;
| | - Elizabeth A Pierson
- Department of Horticultural Sciences, Texas A&M University, College Station, Texas 77843
| | - João Carlos Setubal
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Jin Xu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida 33850;
| | - Julien G Levy
- Department of Horticultural Sciences, Texas A&M University, College Station, Texas 77843
| | - Yunzeng Zhang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida 33850;
| | - Jinyun Li
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida 33850;
| | - Luiz Thiberio Rangel
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Joaquim Martins
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| |
Collapse
|
49
|
Aversano R, Contaldi F, Adelfi MG, D'Amelia V, Diretto G, De Tommasi N, Vaccaro C, Vassallo A, Carputo D. Comparative metabolite and genome analysis of tuber-bearing potato species. PHYTOCHEMISTRY 2017; 137:42-51. [PMID: 28215419 DOI: 10.1016/j.phytochem.2017.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 05/20/2023]
Abstract
The cultivated potato Solanum tuberosum is unrivalled among crop plants for its wild relatives, which potentially represent an important source of genetic diversity to improve the nutritional value of potato varieties and understand metabolism regulation. The main aim of this research was to profile human health-related metabolites in a number of clones from 13 Solanum species. Results from HPLC-DAD and LC-ESI-MS analyses highlighted a high interspecific variability in the level of metabolites analysed. Ascorbic acid was confirmed to be the most abundant antioxidant in potato and chlorogenic acid the primary polyphenol. Generally, metabolite-based hierarchical clustering (HCL) and correlation networks did not group clones of identical species in the same cluster. This might be due to various factors, including the outcrossing nature of potato species, gene expression level and metabolic profiling techniques. Access to the genome sequence of S. tuberosum and S. commersonii allowed comparison of the genes involved in ascorbic acid, aromatic amino acid, phenylpropanoid and glycoalkaloid biosynthesis and helped interpret their respective pathways.
Collapse
Affiliation(s)
- Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Portici 80055, Italy
| | - Felice Contaldi
- Department of Agricultural Sciences, University of Naples Federico II, Portici 80055, Italy
| | - Maria Grazia Adelfi
- Department of Agricultural Sciences, University of Naples Federico II, Portici 80055, Italy
| | - Vincenzo D'Amelia
- Department of Agricultural Sciences, University of Naples Federico II, Portici 80055, Italy
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, Rome 00123, Italy
| | - Nunziatina De Tommasi
- Department of Pharmaceutical Sciences, University of Salerno, Via Ponte Don Melillo 1, 84084 Fisciano, Italy
| | - Carmen Vaccaro
- Department of Pharmaceutical Sciences, University of Salerno, Via Ponte Don Melillo 1, 84084 Fisciano, Italy
| | - Antonio Vassallo
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Portici 80055, Italy.
| |
Collapse
|
50
|
Duarte-Delgado D, Juyó D, Gebhardt C, Sarmiento F, Mosquera-Vásquez T. Novel SNP markers in InvGE and SssI genes are associated with natural variation of sugar contents and frying color in Solanum tuberosum Group Phureja. BMC Genet 2017; 18:23. [PMID: 28279167 PMCID: PMC5345157 DOI: 10.1186/s12863-017-0489-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 03/03/2017] [Indexed: 11/22/2022] Open
Abstract
Background Potato frying color is an agronomic trait influenced by the sugar content of tubers. The candidate gene approach was employed to elucidate the molecular basis of this trait in Solanum tuberosum Group Phureja, which is mainly diploid and represents an important genetic resource for potato breeding. The objective of this research was to identify novel genetic variants related with frying quality in loci with key functions in carbohydrate metabolism, with the purpose of discovering genetic variability useful in breeding programs. Therefore, an association analysis was implemented with 109 SNP markers identified in ten candidate genes. Results The analyses revealed four associations in the locus InvGE coding for an apoplastic invertase and one association in the locus SssI coding for a soluble starch synthase. The SNPs SssI-C45711901T and InvGE-C2475454T were associated with sucrose content and frying color, respectively, and were not found previously in tetraploid genotypes. The rare haplotype InvGE-A2475187C2475295A2475344 was associated with higher fructose contents. Our study allowed a more detailed analysis of the sequence variation of exon 3 from InvGE, which was not possible in previous studies because of the high frequency of insertion-deletion polymorphisms in tetraploid potatoes. Conclusion The association mapping strategy using a candidate gene approach in Group Phureja allowed the identification of novel SNP markers in InvGE and SssI associated with frying color and the tuber sugar content measured by High Performance Liquid Chromatography (HPLC). These novel associations might be useful in potato breeding programs for improving quality traits and to increase crop genetic variability. The results suggest that some genes involved in the natural variation of tuber sugar content and frying color are conserved in both Phureja and tetraploid germplasm. Nevertheless, the associated variants in both types of germplasm were present in different regions of these genes. This study contributes to the understanding of the genetic architecture of tuber sugar contents and frying color at harvest in Group Phureja. Electronic supplementary material The online version of this article (doi:10.1186/s12863-017-0489-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diana Duarte-Delgado
- Faculty of Agricultural Sciences, Agronomy Department, National University of Colombia, Bogotá, Colombia.,Present address: INRES-Plant Breeding, University of Bonn, Bonn, Germany
| | - Deissy Juyó
- Faculty of Agricultural Sciences, Agronomy Department, National University of Colombia, Bogotá, Colombia
| | - Christiane Gebhardt
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Felipe Sarmiento
- Faculty of Sciences, Biology Department, National University of Colombia, Bogotá, Colombia
| | - Teresa Mosquera-Vásquez
- Faculty of Agricultural Sciences, Agronomy Department, National University of Colombia, Bogotá, Colombia.
| |
Collapse
|