1
|
Ramanunny AK, Wadhwa S, Gulati M, Vishwas S, Khursheed R, Paudel KR, Gupta S, Porwal O, Alshahrani SM, Jha NK, Chellappan DK, Prasher P, Gupta G, Adams J, Dua K, Tewari D, Singh SK. Journey of Alpinia galanga from kitchen spice to nutraceutical to folk medicine to nanomedicine. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115144. [PMID: 35227783 DOI: 10.1016/j.jep.2022.115144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/09/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
ETHANOPHARMACOLOGICAL IMPORTANCE Alpinia galanga (L.) Willd (AG), belonging to Zingiberaceae family is used as a spice and condiment in various culinary preparations of Indonesia, Thailand and Malaysia. It has been also used as a key ingredient in various traditional systems of medicine for the treatment of throat infection, asthma, urinary ailments, inflammation and rheumatism amongst other conditions. AG is widely used as a functional food and included in various preparations to obtain its nutraceutical and pharmacological benefits of its phytoconstituents such as phenyl propanoids, flavonoids and terpenoids. Over the past decades, several researchers have carried out systematic investigation on various parts of AG. Numerous studies on AG rhizomes have shown positive pharmacological effects such as anti-inflammatory, anticancer, antipsoriasis, antiallergic, neuroprotective and thermogenesis. Till date, no comprehensive review summarizing the exploitation of AG into nanomedicine has been published. AIM OF THE REVIEW This comprehensive review aims to briefly discuss cultivation methods, propagation techniques, extraction processes for AG. The ethnopharmacological uses and pharmacological activities of AG extracts and its isolates are discussed in detail which may contribute well in further development of novel drug delivery system (NDDS) i.e. future nanomedicine. MATERIALS AND METHODS Information about AG was collected using search engine tools such as Google, Google Scholar, PubMed, Google Patent, Web of Science and bibliographic databases of previously published peer-reviewed review articles and research works were explored. The obtained data sets were sequentially arranged for better understanding of AG's potential. RESULTS More advanced genetic engineering techniques have been utilized in cultivation and propagation of AG for obtaining better yield. Extraction, isolation and characterization techniques have reported numerous phytoconstituents which are chemically phenolic compounds (phenyl propanoids, flavonoids, chalcones, lignans) and terpenes. Ethnopharmacological uses and pharmacological activity of AG are explored in numerous ailments, their mechanism of action and its further potential to explore into novel drug delivery system are also highlighted. CONCLUSIONS The review highlights the importance of plant tissue culture in increasing the production of AG plantlets and rhizomes. It was understood from the review that AG and its phytoconstituents possess numerous pharmacological activities and have been explored for the treatment of cancer, microbial infection, gastrointestinal disorders, neuroprotective effects, obesity and skin disorders. However, the use of AG as alternative medicine is limited owing to poor solubility of its bioactive components and their instability. To overcome these challenges, novel drug delivery systems (NDDS) have been utilized and found good success in overcoming its aforementioned challenges. Furthermore, efforts are required towards development of scalable, non-toxic and stable NDDS of AG and/or its bioactives.
Collapse
Affiliation(s)
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia; School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Saurabh Gupta
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Omji Porwal
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University-Erbil, Kurdistan Region, Iraq
| | - Saad M Alshahrani
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No.32-34 Knowledge Park III Greater Noida, Uttar Pradesh, 201310, India
| | - Dinesh Kumar Chellappan
- School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, 248007, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Jon Adams
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Devesh Tewari
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
2
|
Maki P, Itharat A, Thongdeeying P, Tuy-On T, Kuropakornpong P, Pipatrattanaseree W, Mingmalairak C, Davies NM. Ethnopharmacological nexus between the traditional Thai medicine theory and biologically based cancer treatment. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114932. [PMID: 34953977 DOI: 10.1016/j.jep.2021.114932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The two major theories utilized for diagnosis and treatment in Traditional Thai Medicine (TTM) are the Four Element Theory and the Herbal Flavor Theory. A TTM "Poh-Pu" Remedy has been effectively utilized in Thailand for cancer therapy for centuries. AIMS OF STUDY To investigate anti-inflammatory activity and liver cancer cytotoxicity of Poh-Pu remedy. To determine relationships between the TTM Herbal Flavor theory and the Four Element theory and total flavonoid content and biological activities of Poh-Pu Remedy plant extracts. MATERIALS AND METHODS Each plant ingredient was macerated with 95% ethanol. The extracts were investigated for cytotoxic activity against liver cancer using a sulforhodamine B assay, and anti-inflammatory activity was evaluated by inhibition of nitric oxide production. The total flavonoid content was determined by an aluminum chloride colorimetric assay. The relationships between the TTM theories, total flavonoid content, and biological activities were evaluated by correlation and cluster analysis. RESULTS Mammea siamensis exerted potent cytotoxicity against hepatocellular carcinoma (HepG2) cell lines with an IC50 of 3.15 ± 0.16 μg/mL and low cytotoxicity to the non-cancerous cells (HaCat) with an IC50 33.39 ± 0.40 μg/mL (Selective index (SI) = 10.6). Tiliacora triandra was selectively cytotoxic to cholangiocarcinama (KKU-M156) cells with an IC50 of 12.65 ± 0.92 μg/mL (SI = 6.4). Curcuma comosa was the most potent anti-inflammatory inhibitor of nitric oxide production with an IC50 of 2.75 ± 0.34 μg/mL. Campomanesia aromatica exhibited the highest total flavonoid content of 259.7 ± 3.21 mg quercetin equivalent/g. Pungent plants were most prevalent in the TTM remedy. CONCLUSION Pungent, fragrant, bitter and nauseating plants utilized in TTM cancer remedy were successfully investigated and identified several lead plants and components with cytotoxic and antiinflammatory activity that require further study. The TTM wind element theory appeared to be aligned with cancer-related activity. Biological activity results of taste from herbs related with The TTM Herbal Flavor theory. The extra-oral locations of flavor receptors are a promising target for biological activity of TTM which require further scrutiny and identified several lead plants and components with cytotoxic and antiinflammatory activities that also require further study.
Collapse
Affiliation(s)
- Ponlawat Maki
- Student of Doctor of Philosophy (Applied Thai Traditional Medicine), Faculty of Medicine, Thammasat University (Rangsit Campus), Pathumthani, 12120, Thailand.
| | - Arunporn Itharat
- Faculty of Medicine, Thammasat University (Rangsit Campus), Department of Applied Thai Traditional Medicine, Pathumthani, 12120, Thailand; Center of Excellence in Applied Thai Traditional Medicine Research, Thammasat University (Rangsit Campus), Pathumthani, 12120, Thailand.
| | - Pakakrong Thongdeeying
- Faculty of Medicine, Thammasat University (Rangsit Campus), Department of Applied Thai Traditional Medicine, Pathumthani, 12120, Thailand; Center of Excellence in Applied Thai Traditional Medicine Research, Thammasat University (Rangsit Campus), Pathumthani, 12120, Thailand.
| | - Thammarat Tuy-On
- Center of Excellence in Applied Thai Traditional Medicine Research, Thammasat University (Rangsit Campus), Pathumthani, 12120, Thailand.
| | - Pranporn Kuropakornpong
- Center of Excellence in Applied Thai Traditional Medicine Research, Thammasat University (Rangsit Campus), Pathumthani, 12120, Thailand.
| | - Weerachai Pipatrattanaseree
- Regional Medical Science Center 12 Songkhla, Department of Medical Sciences, Ministry of Public Health, Songkhla, 90100, Thailand.
| | - Chatchai Mingmalairak
- Faculty of Medicine, Thammasat University (Rangsit Campus), Department of Surgery and Research Group in Thai Herbs and Traditional Remedy for Cancer Patients, Pathumthani, 12120, Thailand.
| | - Neal M Davies
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Canada.
| |
Collapse
|
3
|
Subramaniam B, Siddik ZH, Nagoor NH. Development and validation of a reversed-phase HPLC method for quantification of 1’-acetoxychavicol acetate content in a nanostructured lipid carrier formulation. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
4
|
Ikeya T, Terada Y, Morimitsu Y, Kubota K, Ito K, Watanabe T. 1'-Acetoxychavicol acetate, a potent transient receptor potential ankyrin 1 agonist derived from Thai ginger, prevents visceral fat accumulation in mice fed with a high-fat and high-sucrose diet. Biosci Biotechnol Biochem 2021; 85:2191-2194. [PMID: 34279595 DOI: 10.1093/bbb/zbab131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/08/2021] [Indexed: 11/14/2022]
Abstract
1'-Acetoxychavicol acetate (ACA) is found in Thai ginger (Alpinia galanga) and is a powerful agonist of transient receptor potential ankyrin 1 (TRPA1). In a diet-induced obesity mouse model, ACA reduced fat deposition. Sympathetic nerve activation was also indicated in the ACA-fed group. This study is expected to promote the utilization of food containing TRPA1 agonists to treat obesity.
Collapse
Affiliation(s)
- Tatsunori Ikeya
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Yuko Terada
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
- School of Food and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Yasujiro Morimitsu
- Department of Nutrition and Food Science, Ochanomizu University, Bunkyo-ku, Tokyo, Japan
| | - Kikue Kubota
- Department of Nutrition and Food Science, Ochanomizu University, Bunkyo-ku, Tokyo, Japan
| | - Keisuke Ito
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
- School of Food and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Tatsuo Watanabe
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
- School of Food and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| |
Collapse
|
5
|
Tran HTT, Stetter R, Herz C, Spöttel J, Krell M, Hanschen FS, Schreiner M, Rohn S, Behrens M, Lamy E. Allyl Isothiocyanate: A TAS2R38 Receptor-Dependent Immune Modulator at the Interface Between Personalized Medicine and Nutrition. Front Immunol 2021; 12:669005. [PMID: 33968075 PMCID: PMC8103899 DOI: 10.3389/fimmu.2021.669005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Understanding individual responses to nutrition and medicine is of growing interest and importance. There is evidence that differences in bitter taste receptor (TAS2R) genes which give rise to two frequent haplotypes, TAS2R38-PAV (functional) and TAS2R38-AVI (non-functional), may impact inter-individual differences in health status. We here analyzed the relevance of the TAS2R38 receptor in the regulation of the human immune response using the TAS2R38 agonist allyl isothiocyanate (AITC) from Brassica plants. A differential response in calcium mobilization upon AITC treatment in leucocytes from healthy humans confirmed a relevance of TAS2R38 functionality, independent from cation channel TRPV1 or TRPA1 activation. We further identified a TAS2R38-dependence of MAPK and AKT signaling activity, bactericidal (toxicity against E. coli) and anti-inflammatory activity (TNF-alpha inhibition upon cell stimulation). These in vitro results were derived at relevant human plasma levels in the low micro molar range as shown here in a human intervention trial with AITC-containing food.
Collapse
Affiliation(s)
- Hoai T T Tran
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine-University of Freiburg, Freiburg, Germany
| | - Rebecca Stetter
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine-University of Freiburg, Freiburg, Germany
| | - Corinna Herz
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine-University of Freiburg, Freiburg, Germany
| | - Jenny Spöttel
- Institute of Food Technology and Food Chemistry, Technical University of Berlin, Berlin, Germany
| | - Mareike Krell
- Institute of Food Technology and Food Chemistry, Technical University of Berlin, Berlin, Germany
| | - Franziska S Hanschen
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
| | - Monika Schreiner
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
| | - Sascha Rohn
- Institute of Food Technology and Food Chemistry, Technical University of Berlin, Berlin, Germany
| | - Maik Behrens
- Section II: Metabolic Function, Chemoreception & Biosignals, Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Evelyn Lamy
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine-University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Aloum L, Alefishat E, Shaya J, Petroianu GA. Remedia Sternutatoria over the Centuries: TRP Mediation. Molecules 2021; 26:1627. [PMID: 33804078 PMCID: PMC7998681 DOI: 10.3390/molecules26061627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022] Open
Abstract
Sneezing (sternutatio) is a poorly understood polysynaptic physiologic reflex phenomenon. Sneezing has exerted a strange fascination on humans throughout history, and induced sneezing was widely used by physicians for therapeutic purposes, on the assumption that sneezing eliminates noxious factors from the body, mainly from the head. The present contribution examines the various mixtures used for inducing sneezes (remedia sternutatoria) over the centuries. The majority of the constituents of the sneeze-inducing remedies are modulators of transient receptor potential (TRP) channels. The TRP channel superfamily consists of large heterogeneous groups of channels that play numerous physiological roles such as thermosensation, chemosensation, osmosensation and mechanosensation. Sneezing is associated with the activation of the wasabi receptor, (TRPA1), typical ligand is allyl isothiocyanate and the hot chili pepper receptor, (TRPV1), typical agonist is capsaicin, in the vagal sensory nerve terminals, activated by noxious stimulants.
Collapse
Affiliation(s)
- Lujain Aloum
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (L.A.); (E.A.)
| | - Eman Alefishat
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (L.A.); (E.A.)
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman 11941, Jordan
| | - Janah Shaya
- Pre-Medicine Bridge Program, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates;
| | - Georg A. Petroianu
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (L.A.); (E.A.)
| |
Collapse
|
7
|
Kojima-Yuasa A, Matsui-Yuasa I. Pharmacological Effects of 1'-Acetoxychavicol Acetate, a Major Constituent in the Rhizomes of Alpinia galanga and Alpinia conchigera. J Med Food 2020; 23:465-475. [PMID: 32069429 DOI: 10.1089/jmf.2019.4490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
1'-Acetoxychavicol acetate (ACA) is found in the rhizomes or seeds of Alpinia galanga and Alpinia conchigera, which are used as traditional spices in cooking and traditional medicines in Southeast Asia. ACA possesses numerous medicinal properties. Those include anticancer, antiobesity, antiallergy, antimicrobial, antidiabetic, gastroprotective, and anti-inflammatory activities. ACA is also observed to exhibit antidementia activity. Recent studies have demonstrated that combining ACA with other substances results in synergistic anticancer effects. The structural factors that regulate the activity of ACA include (1) the acetyl group at position 1', (2) the acetyl group at position 4, and (3) the unsaturated double bond between positions 2' and 3'. ACA induces the activation of AMP-activated protein kinase (AMPK), which regulates the signal transduction pathways, and has an important role in the prevention of diseases, including cancer, obesity, hyperlipidemia, diabetes, and neurodegenerative disorders. Such findings suggest that AMPK has a central role in different pharmacological functions of ACA, and ACA is useful for the prevention of life-threatening diseases. However, more studies should be performed to evaluate the clinical effects of ACA and to better understand its potential.
Collapse
Affiliation(s)
- Akiko Kojima-Yuasa
- Department of Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, Osaka, Japan
| | - Isao Matsui-Yuasa
- Department of Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, Osaka, Japan
| |
Collapse
|
8
|
Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B. Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiol Rev 2019; 100:725-803. [PMID: 31670612 DOI: 10.1152/physrev.00005.2019] [Citation(s) in RCA: 257] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Julio Alvarez-Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Alicia Sanchez
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
9
|
Liu M, Veryser C, Lu JG, Wenseleers T, De Borggraeve WM, Jiang ZH, Luyten W. Bioassay-guided isolation of active substances from Semen Torreyae identifies two new anthelmintic compounds with novel mechanism of action. JOURNAL OF ETHNOPHARMACOLOGY 2018; 224:421-428. [PMID: 29933012 DOI: 10.1016/j.jep.2018.06.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/13/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Semen Torreyae, the seeds of Torreya grandis Fortune ex Lindley (Cephalotaxaceae) is a well-known traditional Chinese medicinal plant recorded in the Chinese Pharmacopeia (2010 version). It is widely used for treating intestinal parasites in China, owing to its desirable efficacy and safety. However, the anthelmintic compounds in Semen Torreyae have not yet been identified. AIM OF THE STUDY This study aims to identify the compounds active against helminths from Semen Torreyae. In addition, we tested whether C. elegans strains resistant to currently-used anthelmintic drugs showed cross-resistance to these compounds. METHODS A bioassay-guided isolation of anthelmintic compounds from Semen Torreyae was performed using a Caenorhabditis elegans (C. elegans) testing model. The structures of active compounds were elucidated by a combination of GC-MS, high resolution MS, and NMR. The median-effect method was employed to generate a combination index (CI) to evaluate the synergistic effect of the anthelmintic compounds. A panel of C. elegans mutant strains resistant against the major anthelmintic drug classes was used to study the cross-resistance to currently-used anthelmintic drugs. A panel of transient receptor potential (TRP) channel mutant strains was also tested to explore the possible mechanisms of action of the anthelmintic compounds. RESULTS The bioassay-guided isolation led to two active compounds, i.e. galangal acetate (IC50: 58.5 ± 8.9 μM) and miogadial (IC50: 25.1 ± 5.4 μM). The combination of galangal acetate and miogadial resulted in a synergistic effect at IC50, IC70, and IC90 levels (CIs < 1). Galangal acetate and miogadial demonstrated similar activity against drug-resistant C. elegans strains compared to the wild-type strain. In addition, none of the TRP mutants was significantly resistant to galangal acetate or miogadial compared to wild type worms. CONCLUSIONS We identified the bioactive compounds from Semen Torreyae responsible for its anthelmintic activity: galangal acetate and miogadial. The two anthelmintic compounds demonstrated a synergistic effect against C. elegans. Galangal acetate and miogadial are unlikely to act on the targets of currently-used anthelmintics (ivermectin, levamisole, benomyl and aldicarb), and an action on TRP channels appears to be ruled out as well. In summary, galangal acetate and miogadial are promising anthelmintic hits worth further investigation.
Collapse
Affiliation(s)
- Maoxuan Liu
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Naamsestraat 59, box 2465, 3000 Leuven, Belgium; Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, box 921, 3000 Leuven, Belgium.
| | - Cedrick Veryser
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven, Celestijnenlaan 200F, box 2404, 3000 Leuven, Belgium
| | - Jing-Guang Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Tom Wenseleers
- Department of Ecology, Evolution and Biodiversity Conservation, KU Leuven, Naamsestraat 59, box 2466, 3000 Leuven, Belgium
| | - Wim M De Borggraeve
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven, Celestijnenlaan 200F, box 2404, 3000 Leuven, Belgium
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Walter Luyten
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Naamsestraat 59, box 2465, 3000 Leuven, Belgium
| |
Collapse
|
10
|
|
11
|
Lakhan SE, Ford CT, Tepper D. Zingiberaceae extracts for pain: a systematic review and meta-analysis. Nutr J 2015; 14:50. [PMID: 25972154 PMCID: PMC4436156 DOI: 10.1186/s12937-015-0038-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 05/06/2015] [Indexed: 01/01/2023] Open
Abstract
Background Members of the family Zingiberaceae including turmeric, ginger, Javanese ginger, and galangal have been used for centuries in traditional medicine. Preclinical studies of Zingiberaceae extracts have shown analgesic properties. This study aims to systematically review and meta-analyze whether extracts from Zingiberaceae are clinically effective hypoalgesic agents. Methods Literature was screened from electronic databases using the key words Zingiberaceae AND pain OR visual analogue score (VAS) to identify randomized trials. From this search, 18 studies were identified, and of these, 8 randomized, double-blinded, placebo-controlled trials were found that measured pain by VAS for inclusion in the meta-analysis. Results Findings indicated significant efficacy of Zingiberaceae extracts in reducing subjective chronic pain (SMD − 0.67; 95 % CI − 1.13 to − 0.21; P = 0.004). A linear dose-effect relationship was apparent between studies (R2 = 0.71). All studies included in the systematic review reported a good safety profile for extracts, without the renal risks associated with non-steroidal anti-inflammatory drugs, and with similar effectiveness. Conclusion Our findings indicated that Zingiberaceae extracts are clinically effective hypoalgesic agents and the available data show a better safety profile than non-steroidal anti-inflammatory drugs. However, both non-steroidal anti-inflammatory drugs and Zingiberaceae have been associated with a heightened bleeding risk, and there have been no comparator trials of this risk. Further clinical studies are recommended to identify the most effective type of Zingiberaceae extract and rigorously compare safety, including bleeding risk.
Collapse
Affiliation(s)
- Shaheen E Lakhan
- Global Neuroscience Initiative Foundation, Los Angeles, California, USA.
| | - Christopher T Ford
- Global Neuroscience Initiative Foundation, Los Angeles, California, USA. .,Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, The University of Liverpool, Liverpool, UK.
| | - Deborah Tepper
- Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
12
|
Mihara S, Shibamoto T. The role of flavor and fragrance chemicals in TRPA1 (transient receptor potential cation channel, member A1) activity associated with allergies. Allergy Asthma Clin Immunol 2015; 11:11. [PMID: 25897313 PMCID: PMC4404258 DOI: 10.1186/s13223-015-0074-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/18/2015] [Indexed: 01/07/2023] Open
Abstract
TRPA1 has been proposed to be associated with diverse sensory allergic reactions, including thermal (cold) nociception, hearing and allergic inflammatory conditions. Some naturally occurring compounds are known to activate TRPA1 by forming a Michael addition product with a cysteine residue of TRPA1 through covalent protein modification and, in consequence, to cause allergic reactions. The anti-allergic property of TRPA1 agonists may be due to the activation and subsequent desensitization of TRPA1 expressed in sensory neurons. In this review, naturally occurring TRPA1 antagonists, such as camphor, 1,8-cineole, menthol, borneol, fenchyl alcohol and 2-methylisoborneol, and TRPA1 agonists, including thymol, carvacrol, 1'S-1'- acetoxychavicol acetate, cinnamaldehyde, α-n-hexyl cinnamic aldehyde and thymoquinone as well as isothiocyanates and sulfides are discussed.
Collapse
Affiliation(s)
- Satoru Mihara
- 2-10-12 Nishinippori, Arakawa-ku, Tokyo, 116-0013 Japan
| | - Takayuki Shibamoto
- Department of Environmental Toxicology, University of California Davis, Davis, CA 95616 USA
| |
Collapse
|
13
|
Abstract
The transient receptor potential ankyrin subtype 1 protein (TRPA1) is a nonselective cation channel permeable to Ca(2+), Na(+), and K(+). TRPA1 is a promiscuous chemical nocisensor that is also involved in noxious cold and mechanical sensation. It is present in a subpopulation of Aδ- and C-fiber nociceptive sensory neurons as well as in other sensory cells including epithelial cells. In primary sensory neurons, Ca(2+) and Na(+) flowing through TRPA1 into the cell cause membrane depolarization, action potential discharge, and neurotransmitter release both at peripheral and central neural projections. In addition to being activated by cysteine and lysine reactive electrophiles and oxidants, TRPA1 is indirectly activated by pro-inflammatory agents via the phospholipase C signaling pathway, in which cytosolic Ca(2+) is an important regulator of channel gating. The finding that non-electrophilic compounds, including menthol and cannabinoids, activate TRPA1 may provide templates for the design of non-tissue damaging activators to fine-tune the activity of TRPA1 and raises the possibility that endogenous ligands sharing binding sites with such non-electrophiles exist and regulate TRPA1 channel activity. TRPA1 is promising as a drug target for novel treatments of pain, itch, and sensory hyperreactivity in visceral organs including the airways, bladder, and gastrointestinal tract.
Collapse
Affiliation(s)
- Peter M Zygmunt
- Clinical and Experimental Pharmacology, Clinical Chemistry, Department of Laboratory Medicine, Lund University, Skåne University Hospital, SE-221 85, Lund, Sweden,
| | | |
Collapse
|
14
|
Nilius B, Appendino G. Spices: the savory and beneficial science of pungency. Rev Physiol Biochem Pharmacol 2013; 164:1-76. [PMID: 23605179 DOI: 10.1007/112_2013_11] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Spicy food does not only provide an important hedonic input in daily life, but has also been anedoctically associated to beneficial effects on our health. In this context, the discovery of chemesthetic trigeminal receptors and their spicy ligands has provided the mechanistic basis and the pharmacological means to investigate this enticing possibility. This review discusses in molecular terms the connection between the neurophysiology of pungent spices and the "systemic" effects associated to their trigeminality. It commences with a cultural and historical overview on the Western fascination for spices, and, after analysing in detail the mechanisms underlying the trigeminality of food, the main dietary players from the transient receptor potential (TRP) family of cation channels are introduced, also discussing the "alien" distribution of taste receptors outside the oro-pharingeal cavity. The modulation of TRPV1 and TRPA1 by spices is next described, discussing how spicy sensations can be turned into hedonic pungency, and analyzing the mechanistic bases for the health benefits that have been associated to the consumption of spices. These include, in addition to a beneficial modulation of gastro-intestinal and cardio-vascular function, slimming, the optimization of skeletal muscle performance, the reduction of chronic inflammation, and the prevention of metabolic syndrome and diabetes. We conclude by reviewing the role of electrophilic spice constituents on cancer prevention in the light of their action on pro-inflammatory and pro-cancerogenic nuclear factors like NFκB, and on their interaction with the electrophile sensor protein Keap1 and the ensuing Nrf2-mediated transcriptional activity. Spicy compounds have a complex polypharmacology, and just like any other bioactive agent, show a balance of beneficial and bad actions. However, at least for moderate consumption, the balance seems definitely in favour of the positive side, suggesting that a spicy diet, a caveman-era technology, could be seriously considered in addition to caloric control and exercise as a measurement to prevent and control many chronic diseases associate to malnutrition from a Western diet.
Collapse
Affiliation(s)
- Bernd Nilius
- KU Leuven Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, Leuven, Belgium,
| | | |
Collapse
|
15
|
The transient receptor potential channel TRPA1: from gene to pathophysiology. Pflugers Arch 2012; 464:425-58. [DOI: 10.1007/s00424-012-1158-z] [Citation(s) in RCA: 262] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 12/13/2022]
|
16
|
Murakami A, Ohnishi K. Target molecules of food phytochemicals: food science bound for the next dimension. Food Funct 2012; 3:462-76. [PMID: 22377900 DOI: 10.1039/c2fo10274a] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Phytochemicals are generally defined as secondary metabolites in plants that play crucial roles in their adaptation to a variety of environmental stressors. There is a great body of compelling evidence showing that these metabolites have pronounced potentials for regulating and modulating human health and disease onset, as shown by both experimental and epidemiological approaches. Concurrently, enormous efforts have been made to elucidate the mechanism of actions underlying their biological and physiological functions. For example, the pioneering work of Tachibana et al. uncovered the receptor for (-)-epigallocatechin-3-gallate (EGCg) as the 67 kDa laminin receptor, which was shown to partially mediate the functions of EGCg, such as anti-inflammatory, anti-allergic, and anti-proliferative activities. Thereafter, several protein kinases were identified as binding proteins of flavonoids, including myricetin, quercetin, and kaempferol. Isothiocyanates, sulfur-containing phytochemicals present in cruciferous plants, are well known to target Keap1 for activating the transcription factor Nrf2 for inducing self-defensive and anti-oxidative gene expression. In addition, we recently identified CD36 as a cell surface receptor for ursolic acid, a triterpenoid ubiquitously occurring in plants. Importantly, the above mentioned target proteins are indispensable for phytochemicals to exhibit, at least in part, their bioactivities. Nevertheless, it is reasonable to assume that some of the activities and potential toxicities of metabolites are exerted via their interactions with unidentified, off-target proteins. This notion may be supported by the fact that even rationally designed drugs occasionally display off-target effects and induce unexpected outcomes, including toxicity. Here we update the current status and future directions of research related to target molecules of food phytochemicals.
Collapse
Affiliation(s)
- Akira Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | | |
Collapse
|
17
|
Tasty and healthy TR(i)Ps. The human quest for culinary pungency. EMBO Rep 2011; 12:1094-101. [PMID: 21979815 DOI: 10.1038/embor.2011.200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 09/20/2011] [Indexed: 11/09/2022] Open
|
18
|
Holzer P. Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system. Pharmacol Ther 2011; 131:142-70. [PMID: 21420431 PMCID: PMC3107431 DOI: 10.1016/j.pharmthera.2011.03.006] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 12/12/2022]
Abstract
Approximately 20 of the 30 mammalian transient receptor potential (TRP) channel subunits are expressed by specific neurons and cells within the alimentary canal. They subserve important roles in taste, chemesthesis, mechanosensation, pain and hyperalgesia and contribute to the regulation of gastrointestinal motility, absorptive and secretory processes, blood flow, and mucosal homeostasis. In a cellular perspective, TRP channels operate either as primary detectors of chemical and physical stimuli, as secondary transducers of ionotropic or metabotropic receptors, or as ion transport channels. The polymodal sensory function of TRPA1, TRPM5, TRPM8, TRPP2, TRPV1, TRPV3 and TRPV4 enables the digestive system to survey its physical and chemical environment, which is relevant to all processes of digestion. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 contribute to the absorption of Ca²⁺ and Mg²⁺, respectively. TRPM7 participates in intestinal pacemaker activity, and TRPC4 transduces muscarinic acetylcholine receptor activation to smooth muscle contraction. Changes in TRP channel expression or function are associated with a variety of diseases/disorders of the digestive system, notably gastro-esophageal reflux disease, inflammatory bowel disease, pain and hyperalgesia in heartburn, functional dyspepsia and irritable bowel syndrome, cholera, hypomagnesemia with secondary hypocalcemia, infantile hypertrophic pyloric stenosis, esophageal, gastrointestinal and pancreatic cancer, and polycystic liver disease. These implications identify TRP channels as promising drug targets for the management of a number of gastrointestinal pathologies. As a result, major efforts are put into the development of selective TRP channel agonists and antagonists and the assessment of their therapeutic potential.
Collapse
Key Words
- chemesthesis
- chemosensation
- gastrointestinal cancer
- gastrointestinal motility
- hypersensitivity
- hyperalgesia
- inflammation
- inflammatory bowel disease
- mechanosensation
- pain
- taste
- transducers
- trpa1
- trpc4
- trpc6
- trpm5
- trpm6
- trpv1
- trpv4
- trpv6
- aitc, allyl isothiocyanate
- cck, cholecystokinin
- cgrp, calcitonin gene-related peptide
- drg, dorsal root ganglion
- dss, dextran sulfate sodium
- gi, gastrointestinal
- gpcr, g protein-coupled receptor
- 5-ht, 5-hydroxytryptamine
- icc, interstitial cell of cajal
- mrna, messenger ribonucleic acid
- par, protease-activated receptor
- pkd, polycystic kidney disease
- rna, ribonucleic acid
- sirna, small interfering ribonucleic acid
- tnbs, trinitrobenzene sulfonic acid
- trp, transient receptor potential
- trpa, transient receptor potential ankyrin
- trpc, transient receptor potential canonical (or classical)
- trpm, transient receptor potential melastatin
- trpp, transient receptor potential polycystin
- trpv, transient receptor potential vanilloid
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| |
Collapse
|
19
|
Viana F. Chemosensory properties of the trigeminal system. ACS Chem Neurosci 2011; 2:38-50. [PMID: 22778855 PMCID: PMC3369707 DOI: 10.1021/cn100102c] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 12/14/2010] [Indexed: 11/28/2022] Open
Abstract
The capacity of cutaneous, including trigeminal endings, to detect chemicals is known as chemesthesis or cutaneous chemosensation. This sensory function involves the activation of nociceptor and thermoreceptor endings and has a protective or defensive function, as many of these substances are irritants or poisonous. However, humans have also developed a liking for the distinct sharpness or pungency of many foods, beverages, and spices following activation of the same sensory afferents. Our understanding of the cellular and molecular mechanisms of chemosensation in the trigeminal system has experienced enormous progress in the past decade, following the cloning and functional characterization of several ion channels activated by physical and chemical stimuli. This brief review attempts to summarize our current knowledge in this field, including a functional description of various sensory channels, especially TRP channels, involved in trigeminal chemosensitivy. Finally, some of these new findings are discussed in the context of the pathophysiology of trigeminal chemosensation, including pain, pruritus, migraine, cough, airway inflammation, and ophthalmic diseases.
Collapse
Affiliation(s)
- Félix Viana
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, San Juan de Alicante, Spain.
| |
Collapse
|