1
|
Lee S, Yoon SJ, Oh JH, Ryu JS, Park Y, Hwang ES. MPoMA protects against lung epithelial cell injury via p65 degradation. Biomed Pharmacother 2024; 175:116674. [PMID: 38703509 DOI: 10.1016/j.biopha.2024.116674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/20/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Numerous cases of lung injury caused by viral infection were reported during the coronavirus disease-19 pandemic. While there have been significant efforts to develop drugs that block viral infection and spread, the development of drugs to reduce or reverse lung injury has been a lower priority. This study aimed to identify compounds from a library of compounds that prevent viral infection that could reduce and prevent lung epithelial cell damage. We investigated the cytotoxicity of the compounds, their activity in inhibiting viral spike protein binding to cells, and their activity in reducing IL-8 production in lung epithelial cells damaged by amodiaquine (AQ). We identified N-(4-(4-methoxyphenoxy)-3-methylphenyl)-N-methylacetamide (MPoMA) as a non-cytotoxic inhibitor against viral infection and AQ-induced cell damage. MPoMA inhibited the expression of IL-8, IL-6, IL-1β, and fibronectin induced by AQ and protected against AQ-induced morphological changes. However, MPoMA did not affect basal IL-8 expression in lung epithelial cells in the absence of AQ. Further mechanistic analysis confirmed that MPoMA selectively promoted the proteasomal degradation of inflammatory mediator p65, thereby reducing intracellular p65 expression and p65-mediated inflammatory responses. MPoMA exerted potent anti-inflammatory and protective functions in epithelial cells against LPS-induced acute lung injury in vivo. These findings suggest that MPoMA may have beneficial effects in suppressing viral infection and preventing lung epithelial cell damage through the degradation of p65 and inhibition of the production of inflammatory cytokines.
Collapse
Affiliation(s)
- Soheun Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Suh Jin Yoon
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ji Hyun Oh
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jae-Sang Ryu
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yunjeong Park
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
2
|
Chen Y, Pang X, He Y, Lin X, Zhou X, Liu Y, Yang B. Secondary Metabolites from Coral-Associated Fungi: Source, Chemistry and Bioactivities. J Fungi (Basel) 2022; 8:1043. [PMID: 36294608 PMCID: PMC9604832 DOI: 10.3390/jof8101043] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 10/19/2023] Open
Abstract
Our study of the secondary metabolites of coral-associated fungi produced a valuable and extra-large chemical database. Many of them exhibit strong biological activity and can be used for promising drug lead compounds. Serving as an epitome of the most promising compounds, which take the ultra-new skeletons and/or remarkable bioactivities, this review presents an overview of new compounds and bioactive compounds isolated from coral-associated fungi, covering the literature from 2010 to 2021. Its scope included 423 metabolites, focusing on the bioactivity and structure diversity of these compounds. According to structure, these compounds can be roughly classified as terpenes, alkaloids, peptides, aromatics, lactones, steroids, and other compounds. Some of them described in this review possess a wide range of bioactivities, such as anticancer, antimicrobial, antifouling, and other activities. This review aims to provide some significant chemical and/or biological enlightenment for the study of marine natural products and marine drug development in the future.
Collapse
Affiliation(s)
- Ying Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yanchun He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xiuping Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
3
|
Singh KS, Singh A. Chemical diversities, biological activities and chemical synthesis of marine diphenyl ether and their derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Ninomiya A, Urayama SI, Hagiwara D. Antibacterial diphenyl ether production induced by co-culture of Aspergillus nidulans and Aspergillus fumigatus. Appl Microbiol Biotechnol 2022; 106:4169-4185. [PMID: 35595930 DOI: 10.1007/s00253-022-11964-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 11/30/2022]
Abstract
Fungi are a rich source of secondary metabolites with potent biological activities. Co-culturing a fungus with another microorganism has drawn much attention as a practical method for stimulating fungal secondary metabolism. However, in most cases, the molecular mechanisms underlying the activation of secondary metabolite production in co-culture are poorly understood. To elucidate such a mechanism, in this study, we established a model fungal-fungal co-culture system, composed of Aspergillus nidulans and Aspergillus fumigatus. In the co-culture of A. nidulans and A. fumigatus, production of antibacterial diphenyl ethers was enhanced. Transcriptome analysis by RNA-sequencing showed that the co-culture activated expression of siderophore biosynthesis genes in A. fumigatus and two polyketide biosynthetic gene clusters (the ors and cic clusters) in A. nidulans. Gene disruption experiments revealed that the ors cluster is responsible for diphenyl ether production in the co-culture. Interestingly, the ors cluster was previously reported to be upregulated by co-culture of A. nidulans with the bacterium Streptomyces rapamycinicus; orsellinic acid was the main product of the cluster in that co-culture. In other words, the main product of the ors cluster was different in fungal-fungal and bacterial-fungal co-culture. The genes responsible for biosynthesis of the bacterial- and fungal-induced polyketides were deduced using a heterologous expression system in Aspergillus oryzae. The molecular genetic mechanisms that trigger biosynthesis of two different types of compounds in A. nidulans in response to the fungus and the bacterium were demonstrated, which provides an insight into complex secondary metabolic response of fungi to microorganisms. KEY POINTS: • Co-culture of two fungal species triggered antibiotic diphenyl ether production. • The co-culture affected expression levels of several genes for secondary metabolism. • Gene cluster essential for induction of the antibiotics production was determined.
Collapse
Affiliation(s)
- Akihiro Ninomiya
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.,Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Syun-Ichi Urayama
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.,Microbiology Research Center for Sustainability, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Daisuke Hagiwara
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan. .,Microbiology Research Center for Sustainability, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
5
|
Asami Y, Kim SO, Jang JP, Ko SK, Kim BY, Osada H, Jang JH, Ahn JS. CRM646-A, a Fungal Metabolite, Induces Nucleus Condensation by Increasing Ca 2+ Levels in Rat 3Y1 Fibroblast Cells. J Microbiol Biotechnol 2020; 30:31-37. [PMID: 31752054 PMCID: PMC9728397 DOI: 10.4014/jmb.1908.08043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/23/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022]
Abstract
We previously identified a new heparinase inhibitor fungal metabolite, named CRM646-A, which showed inhibition of heparinase and telomerase activities in an in vitro enzyme assay and antimetastatic activity in a cell-based assay. In this study, we elucidated the mechanism by which CRM646-A rapidly induced nucleus condensation, plasma membrane disruption and morphological changes by increasing intracellular Ca2+ levels. Furthermore, PD98059, a mitogen-activated protein kinase (MEK) inhibitor, inhibited CRM646-A-induced nucleus condensation through ERK1/2 activation in rat 3Y1 fibroblast cells. We identified CRM646-A as a Ca2+ ionophore-like agent with a distinctly different chemical structure from that of previously reported Ca2+ ionophores. These results indicate that CRM646-A has the potential to be used as a new and effective antimetastatic drug.
Collapse
Affiliation(s)
- Yukihiro Asami
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 286, Republic of Korea
- Chemical Biology Research Group, RIKEN CSRS, Saitama 351-0198, Japan
- Kitasato Institute for Life Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Sun-Ok Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 286, Republic of Korea
| | - Jun-Pil Jang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 286, Republic of Korea
| | - Sung-Kyun Ko
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 8116, Republic of Korea
| | - Bo Yeon Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 286, Republic of Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology, Daejeon 411, Republic of Korea
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN CSRS, Saitama 351-0198, Japan
| | - Jae-Hyuk Jang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 8116, Republic of Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology, Daejeon 411, Republic of Korea
| | - Jong Seog Ahn
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 286, Republic of Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology, Daejeon 411, Republic of Korea
| |
Collapse
|
6
|
Nuankeaw K, Chaiyosang B, Suebrasri T, Kanokmedhakul S, Lumyong S, Boonlue S. First report of secondary metabolites, Violaceol I and Violaceol II produced by endophytic fungus, Trichoderma polyalthiae and their antimicrobial activity. MYCOSCIENCE 2020. [DOI: 10.1016/j.myc.2019.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
7
|
Li G, Li S, Zhang L, Chen S, Sun Z, Li S, Zhang L, Yang Y. Construction of Biofunctionalized Anisotropic Hydrogel Micropatterns and Their Effect on Schwann Cell Behavior in Peripheral Nerve Regeneration. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37397-37410. [PMID: 31525950 DOI: 10.1021/acsami.9b08510] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hydrogels have promising application in tissue regeneration due to their excellent physicochemical and biocompatible properties, whereas anisotropic micropatterns are been proven to directionally induce cell alignment and accelerate cell migration. However, an effect of biofunctionalized anisotropic hydrogel micropatterns on nerve regeneration has rarely been reported. In this study, the anisotropic polyacrylamide (PAM) hydrogel micropatterns with aligned ridge/groove structures were first prepared via in situ free radical polymerization and micromolding, and then biofunctionalized using YIGSR peptide for better promoting cell growth. The morphology, swelling ratio, wettability, mechanical properties, and stability of the prepared hydrogel were characterized. The successful immobilization of YIGSR peptide on the PAM hydrogel was monitored using FTIR, immunofluorescence staining, and ELISA. The effects on adhesion, directional growth, and biological function of Schwann cells were evaluated. The results displayed that the anisotropic PAM hydrogel micropatterns with inner porous structure possessed good stability, swelling, and mechanical properties. The YIGSR peptide could be well immobilized on hydrogel micropatterns with a percentage of 62.6%. The biofunctionalized anisotropic hydrogel micropatterns could effectively regulate the orientation growth of Schwann cells, and obviously up-regulate BDNF (40%) and β-actin (50%) expression compared with single hydrogel micropatterns, without negatively affecting the normal secretion of neurotropic factors by Schwann cells. To the best of our knowledge, this is the first time to study the construction and effect of biofunctionalized anisotropic hydrogel micropatterns on nerve regeneration, which may provide an experimental and theoretical basis for the design and development of artificial implants for nerve regeneration application.
Collapse
Affiliation(s)
| | - Shenjie Li
- Medical School of Nantong University , 226001 , Nantong , P.R. China
| | | | | | - Zedong Sun
- Medical School of Nantong University , 226001 , Nantong , P.R. China
| | - Siqi Li
- Medical School of Nantong University , 226001 , Nantong , P.R. China
| | | | | |
Collapse
|
8
|
Diphenyl Ethers from a Marine-Derived Aspergillus sydowii. Mar Drugs 2018; 16:md16110451. [PMID: 30453472 PMCID: PMC6267227 DOI: 10.3390/md16110451] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023] Open
Abstract
Six new diphenyl ethers (1⁻6) along with eleven known analogs were isolated from the ethyl acetate extract of a marine-derived Aspergillus sydowii guided by LC-UV-MS. Their structures were unambiguously characterized by HRESIMS, NMR, as well as chemical derivatization. Compounds 1 and 2 are rare diphenyl ether glycosides containing d-ribose. The absolute configuration of the sugar moieties in compounds 1⁻3 was determined by a LC-MS method. All the compounds were evaluated for their cytotoxicities against eight cancer cell lines, including 4T1, U937, PC3, HL-60, HT-29, A549, NCI-H460, and K562, and compounds 1, 5, 6, and 8⁻11 were found to exhibit selective cytotoxicity against different cancer cell lines.
Collapse
|
9
|
Quellenin, a new anti-Saprolegnia compound isolated from the deep-sea fungus, Aspergillus sp. YK-76. J Antibiot (Tokyo) 2018; 71:741-744. [DOI: 10.1038/s41429-018-0053-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/19/2018] [Accepted: 03/27/2018] [Indexed: 11/08/2022]
|
10
|
Chen AJ, Frisvad JC, Sun BD, Varga J, Kocsubé S, Dijksterhuis J, Kim DH, Hong SB, Houbraken J, Samson RA. Aspergillus section Nidulantes (formerly Emericella): Polyphasic taxonomy, chemistry and biology. Stud Mycol 2016; 84:1-118. [PMID: 28050053 PMCID: PMC5198626 DOI: 10.1016/j.simyco.2016.10.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Aspergillus section Nidulantes includes species with striking morphological characters, such as biseriate conidiophores with brown-pigmented stipes, and if present, the production of ascomata embedded in masses of Hülle cells with often reddish brown ascospores. The majority of species in this section have a sexual state, which were named Emericella in the dual name nomenclature system. In the present study, strains belonging to subgenus Nidulantes were subjected to multilocus molecular phylogenetic analyses using internal transcribed spacer region (ITS), partial β-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) sequences. Nine sections are accepted in subgenus Nidulantes including the new section Cavernicolus. A polyphasic approach using morphological characters, extrolites, physiological characters and phylogeny was applied to investigate the taxonomy of section Nidulantes. Based on this approach, section Nidulantes is subdivided in seven clades and 65 species, and 10 species are described here as new. Morphological characters including colour, shape, size, and ornamentation of ascospores, shape and size of conidia and vesicles, growth temperatures are important for identifying species. Many species of section Nidulantes produce the carcinogenic mycotoxin sterigmatocystin. The most important mycotoxins in Aspergillus section Nidulantes are aflatoxins, sterigmatocystin, emestrin, fumitremorgins, asteltoxins, and paxillin while other extrolites are useful drugs or drug lead candidates such as echinocandins, mulundocandins, calbistrins, varitriols, variecolins and terrain. Aflatoxin B1 is produced by four species: A. astellatus, A. miraensis, A. olivicola, and A. venezuelensis.
Collapse
Affiliation(s)
- A J Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China; CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - J C Frisvad
- Department of Systems Biology, Søltofts Plads B. 221, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - B D Sun
- China General Microbiological Culture Collection Centre, Institute of Microbiology, Chinese Academy of Sciences, Beichen West Road, Chaoyang District, Beijing, 100101, PR China
| | - J Varga
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Hungary
| | - S Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Hungary
| | - J Dijksterhuis
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - D H Kim
- Division of Forest Environment Protection, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - S-B Hong
- Korean Agricultural Culture Collection, National Institute of Agricultural Science, 166, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - J Houbraken
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - R A Samson
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
11
|
Zhao H, Wang GQ, Tong XP, Chen GD, Huang YF, Cui JY, Kong MZ, Guo LD, Zheng YZ, Yao XS, Gao H. Diphenyl ethers from Aspergillus sp. and their anti-Aβ₄₂ aggregation activities. Fitoterapia 2014; 98:77-83. [PMID: 25038471 DOI: 10.1016/j.fitote.2014.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/05/2014] [Accepted: 07/07/2014] [Indexed: 10/25/2022]
Abstract
Two new compounds with the character of diphenyl ether structure, oxisterigmatocystin D (1) and 9-acetyldiorcinol B (6), were isolated from the endolichenic fungal strain Aspergillus sp. (No. 16-20-8-1), along with six known compounds, oxisterigmatocystin A (2), oxisterigmatocystin C (3), sterigmatocystin (4), diorcinol B (5), violaceol-I (7), and violaceol-II (8). The structures of the new compounds were determined by extensive NMR spectroscopic data, and the absolute configuration of 1 was established by single-crystal X-ray diffraction analysis. Moreover, the Aβ42 aggregation inhibitory activities of 5-8 were evaluated by the standard thioflavin T (ThT) fluorescence assay using epigallocatechin gallate (EGCG) as the positive control. Compounds 7 and 8 displayed significant anti-Aβ42 aggregation activity with IC50 values of 5.1 and 2.3μM, respectively. Preliminary structure-activity relationship of these diphenyl ethers as anti-Aβ42 aggregation inhibitors was proposed.
Collapse
Affiliation(s)
- Huan Zhao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Gao-Qian Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xu-Peng Tong
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Guo-Dong Chen
- Department of Pharmaceutical Engineering, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Yuan-Fan Huang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jia-Yu Cui
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Ming-Zhu Kong
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yi-Zhi Zheng
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.
| |
Collapse
|