1
|
Zhang LQ, Tian Y, Dai LP, Ye XE, Zheng YQ, Lai NC, Dai W, Wang Q. Comparative analysis of chemical composition in Zanthoxylum avicennae leaves and branches based on UPLC-Q-Orbitrap HRMS, and evaluation of their antioxidant activities. Nat Prod Res 2024:1-8. [PMID: 39560438 DOI: 10.1080/14786419.2024.2430324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/14/2024] [Accepted: 11/09/2024] [Indexed: 11/20/2024]
Abstract
This study comprehensively analyzes the chemical constituents of Zanthoxylum avicennae leaves and branches using UPLC-Q-Orbitrap HRMS. A total of 64 components were identified, with fragmentation patterns summarised for key compounds. Notably, 51 of these components were newly discovered in this plant. The predominant compound classes were alkaloids (31.25%) and flavonoids (25.00%). Visualisation results revealed significant differences in chemical composition between leaves and branches, with an overlap rate of only 26.60%. Leaves were rich in flavonoids such as neohesperidin, while branches contained more alkaloids, such as schinifoline. Antioxidant activity, assessed using DPPH and ABTS assays, indicated that methanol extracts had notable antioxidant potential. The leaf extract demonstrated superior antioxidant activity (ABTS: IC50 = 0.098 ± 0.006 mg/mL; DPPH: IC50 = 3.624 ± 0.070 mg/mL) compared to the branch extract (ABTS: IC50 = 0.303 ± 0.004 mg/mL; DPPH: IC50 = 3.265 ± 0.075 mg/mL), likely due to differences in the content and variety of flavonoids.
Collapse
Affiliation(s)
- Liang-Qian Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Yuan Tian
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Li-Ping Dai
- College of Traditional Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu, China
| | - Xing-Er Ye
- College of Traditional Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu, China
| | - Yi-Qin Zheng
- Teaching and Experimental Center, Guangdong Pharmaceutical University, Guangzhou, China
| | - Nan-Chen Lai
- Teaching and Experimental Center, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wei Dai
- Teaching and Experimental Center, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qi Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| |
Collapse
|
2
|
Islam MR, Rauf A, Alash S, Fakir MNH, Thufa GK, Sowa MS, Mukherjee D, Kumar H, Hussain MS, Aljohani ASM, Imran M, Al Abdulmonem W, Thiruvengadam R, Thiruvengadam M. A comprehensive review of phytoconstituents in liver cancer prevention and treatment: targeting insights into molecular signaling pathways. Med Oncol 2024; 41:134. [PMID: 38703282 DOI: 10.1007/s12032-024-02333-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/13/2024] [Indexed: 05/06/2024]
Abstract
Primary liver cancer is a type of cancer that develops in the liver. Hepatocellular carcinoma is a primary liver cancer that usually affects adults. Liver cancer is a fatal global condition that affects millions of people worldwide. Despite advances in technology, the mortality rate remains alarming. There is growing interest in researching alternative medicines to prevent or reduce the effects of liver cancer. Recent studies have shown growing interest in herbal products, nutraceuticals, and Chinese medicines as potential treatments for liver cancer. These substances contain unique bioactive compounds with anticancer properties. The causes of liver cancer and potential treatments are discussed in this review. This study reviews natural compounds, such as curcumin, resveratrol, green tea catechins, grape seed extracts, vitamin D, and selenium. Preclinical and clinical studies have shown that these medications reduce the risk of liver cancer through their antiviral, anti-inflammatory, antioxidant, anti-angiogenic, and antimetastatic properties. This article discusses the therapeutic properties of natural products, nutraceuticals, and Chinese compounds for the prevention and treatment of liver cancer.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Shopnil Alash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Md Naeem Hossain Fakir
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Gazi Kaifeara Thufa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Mahbuba Sharmin Sowa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Dattatreya Mukherjee
- Raiganj Government Medical College and Hospital, Pranabananda Sarani, Raiganj, 733134, West Bengal, India
| | - Harendra Kumar
- Dow University of Health Sciences, Mission Rd, New Labour Colony Nanakwara, Karachi, 74200, Sindh, Pakistan
| | - Md Sadique Hussain
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, 302017, Rajasthan, India
| | - Abdullah S M Aljohani
- Department of Medical Biosciences, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, South Korea
| |
Collapse
|
3
|
Wang B, Gu B, Zhang T, Li X, Wang N, Ma C, Xiang L, Wang Y, Gao L, Yu Y, Song K, He P, Wang Y, Zhu J, Chen H. Good or bad: Paradox of plasminogen activator inhibitor 1 (PAI-1) in digestive system tumors. Cancer Lett 2023; 559:216117. [PMID: 36889376 DOI: 10.1016/j.canlet.2023.216117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
The fibrinolytic system is involved in many physiological functions, among which the important members can interact with each other, either synergistically or antagonistically to participate in the pathogenesis of many diseases. Plasminogen activator inhibitor 1 (PAI-1) acts as a crucial element of the fibrinolytic system and functions in an anti-fibrinolytic manner in the normal coagulation process. It inhibits plasminogen activator, and affects the relationship between cells and extracellular matrix. PAI-1 not only involved in blood diseases, inflammation, obesity and metabolic syndrome but also in tumor pathology. Especially PAI-1 plays a different role in different digestive tumors as an oncogene or cancer suppressor, even a dual role for the same cancer. We term this phenomenon "PAI-1 paradox". PAI-1 is acknowledged to have both uPA-dependent and -independent effects, and its different actions can result in both beneficial and adverse consequences. Therefore, this review will elaborate on PAI-1 structure, the dual value of PAI-1 in different digestive system tumors, gene polymorphisms, the uPA-dependent and -independent mechanisms of regulatory networks, and the drugs targeted by PAI-1 to deepen the comprehensive understanding of PAI-1 in digestive system tumors.
Collapse
Affiliation(s)
- Bofang Wang
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Baohong Gu
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Tao Zhang
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xuemei Li
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Na Wang
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Chenhui Ma
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Lin Xiang
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yunpeng Wang
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Lei Gao
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yang Yu
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Kewei Song
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Puyi He
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yueyan Wang
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jingyu Zhu
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Hao Chen
- Lanzhou University Second Hospital, Lanzhou, Gansu, China; Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, Gansu, China; Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
4
|
Ji KL, Liu W, Yin WH, Li JY, Yue JM. Quinoline alkaloids with anti-inflammatory activity from Zanthoxylum avicennae. Org Biomol Chem 2022; 20:4176-4182. [PMID: 35535577 DOI: 10.1039/d2ob00711h] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Zanthoxylum avicennae fruits were traditionally used to treat many inflammatory-related diseases, such as icterohepatitis, nephritis and colitis, which inspired us to explore the active chemicals and pharmacological activity. As a result, ten quinoline alkaloids, including six new ones, avicenines A-F (1-6), were isolated and structurally characterized by solid data. Compounds 1, 7 and 8 were identified as three pairs of enantiomers by chiral HPLC separation, of which 1 was an unusual 6/6/5/5-fused quinoline alkaloid bearing a unique cis-hexahydrofuro[3,2-b]furan moiety. The putative biosynthetic pathway for enantiomeric compounds was also proposed. In addition, compound 6 significantly suppressed the gene expression and secretion of pro-inflammatory cytokines IL-1β and IL-6 in macrophages.
Collapse
Affiliation(s)
- Kai-Long Ji
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Wei Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Wei-Hang Yin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jing-Ya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
5
|
Mandlik DS, Mandlik SK. An Overview of Hepatocellular Carcinoma with Emphasis on Dietary Products and Herbal Remedies. Nutr Cancer 2021; 74:1549-1567. [PMID: 34396860 DOI: 10.1080/01635581.2021.1965630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The most common principal malignant tumor that accounts for ∼80% of cases of liver cancer across the world is hepatocellular carcinoma (HCC). It is a multifacetedillness that is caused by several risk factors and often progresses in the context of underlying cirrhosis. It is tremendously difficult and essential for the screening of novel therapeutic medications to establish HCC preclinical models that are equivalent to clinical diseases settings, i.e., representing the tumor microenvironment of HCC. In the progress of HCC, numerous molecular cascades have been supposed to play a part. Sorafenib is the only drug permitted by the US Food and Drug Administration for the treatment of HCC. Yet because of the increasing resistance to the drug and its toxicity, clinical treatment methods are not completely adequate. Newer treatment therapy options are essential for the management of HCC in patients. Natural compounds can be afforded by the patients with improved results with less toxicity and fewer side effects, among different methods of liver cancer treatment. The treatment and management of HCC with natural drugs and their phytoconstituents are connected to several paths that can prevent the occurrence and progress of HCC in several ways. The present review summarizes the etiology of HCC, molecular pathways, newer therapeutic approaches, natural dietary products, herbal plants and phytoconstituents for HCC treatment.
Collapse
Affiliation(s)
- Deepa S Mandlik
- Poona College of Pharmacy, Bharati Vidyapeeth, Deemed to be University, Pune, India
| | - Satish K Mandlik
- Poona College of Pharmacy, Bharati Vidyapeeth, Deemed to be University, Pune, India
| |
Collapse
|
6
|
Mandlik DS, Mandlik SK. Herbal and Natural Dietary Products: Upcoming Therapeutic Approach for Prevention and Treatment of Hepatocellular Carcinoma. Nutr Cancer 2020; 73:2130-2154. [PMID: 33073617 DOI: 10.1080/01635581.2020.1834591] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The most common tumor linked with elevated death rates is considered the hepatocellular carcinoma (HCC), sometimes called the malignant hepatoma. The initiation and progression of HCC are triggered by multiple factors like long term alcohol consumption, metabolic disorders, fatty liver disease, hepatitis B and C infection, age, and oxidative stress. Sorafenib is the merely US Food and Drug Administration (FDA)-approved drug used to treat HCC. Several treatment methods are available for HCC therapy such as chemotherapy, immunotherapy and adjuvant therapy but they often lead to several side effects. Yet these treatment methods are not entirely adequate due to the increasing resistance to the drug and their toxicity. Many natural products help to prevent and treat HCC. A variety of pathways are associated with the prevention and treatment of HCC with herbal products and their active components. Accumulating research shows that certain natural dietary compounds are possible source of hepatic cancer prevention and treatments, such as black currant, strawberries, plum, grapes, pomegranate, cruciferous crops, tomatoes, French beans, turmeric, garlic, ginger, asparagus, and many more. Such a dietary natural products and their active constituents may prevent the production and advancement of liver cancer in many ways such as guarding against liver carcinogens, improving the effectiveness of chemotherapeutic medications, inhibiting the growth, metastasis of tumor cells, reducing oxidative stress, and chronic inflammation. The present review article represents hepatic carcinoma etiology, role of herbal products, their active constituents, and dietary natural products for the prevention and treatment of HCC along with their possible mechanisms of action.
Collapse
Affiliation(s)
- Deepa S Mandlik
- Department of Pharmacology, Bharat Vidyapeeth (Deemed to be University), Poona College of Pharmacy, Pune, Maharashtra, India
| | - Satish K Mandlik
- Department of Pharmaceutics, Sinhgad College of Pharmacy, Pune, Maharashtra, India
| |
Collapse
|
7
|
Moghadam ER, Ang HL, Asnaf SE, Zabolian A, Saleki H, Yavari M, Esmaeili H, Zarrabi A, Ashrafizadeh M, Kumar AP. Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future Perspectives. Biomolecules 2020; 10:E1374. [PMID: 32992587 PMCID: PMC7600196 DOI: 10.3390/biom10101374] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Pharmacological profile of phytochemicals has attracted much attention to their use in disease therapy. Since cancer is a major problem for public health with high mortality and morbidity worldwide, experiments have focused on revealing the anti-tumor activity of natural products. Flavonoids comprise a large family of natural products with different categories. Chrysin is a hydroxylated flavonoid belonging to the flavone category. Chrysin has demonstrated great potential in treating different disorders, due to possessing biological and therapeutic activities, such as antioxidant, anti-inflammatory, hepatoprotective, neuroprotective, etc. Over recent years, the anti-tumor activity of chrysin has been investigated, and in the present review, we provide a mechanistic discussion of the inhibitory effect of chrysin on proliferation and invasion of different cancer cells. Molecular pathways, such as Notch1, microRNAs, signal transducer and activator of transcription 3 (STAT3), nuclear factor-kappaB (NF-κB), PI3K/Akt, MAPK, etc., as targets of chrysin are discussed. The efficiency of chrysin in promoting anti-tumor activity of chemotherapeutic agents and suppressing drug resistance is described. Moreover, poor bioavailability, as one of the drawbacks of chrysin, is improved using various nanocarriers, such as micelles, polymeric nanoparticles, etc. This updated review will provide a direction for further studies in evaluating the anti-tumor activity of chrysin.
Collapse
Affiliation(s)
- Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Hui Li Ang
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
| | - Sholeh Etehad Asnaf
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, IslamicAzad University, Tehran 165115331, Iran;
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Mohammad Yavari
- Nursing and Midwifery Department, Islamic Azad University, Tehran Medical Sciences Branch, Tehran 1916893813, Iran;
| | - Hossein Esmaeili
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Milad Ashrafizadeh
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
| |
Collapse
|
8
|
Lin CC, Chen KB, Tsai CH, Tsai FJ, Huang CY, Tang CH, Yang JS, Hsu YM, Peng SF, Chung JG. Casticin inhibits human prostate cancer DU 145 cell migration and invasion via Ras/Akt/NF-κB signaling pathways. J Food Biochem 2019; 43:e12902. [PMID: 31353708 DOI: 10.1111/jfbc.12902] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/13/2019] [Accepted: 05/04/2019] [Indexed: 12/29/2022]
Abstract
Casticin, a polymethoxyflavone derived from natural plants, has biological activities including induction of cell apoptosis. In this study, we showed the beneficial effects of casticin on the inhibition of prostate cancer cell metastasis. Casticin reduced total viable cell number, thus, we selected low doses of casticin for following experiments. Casticin decreased cell mobility, suppressed cell migration and invasion, and reduced cell gelatinolytic activities of MMP-2/-9. Furthermore, casticin inhibited the protein levels of AKT, GSK3 αβ, Snail, and MMPs (MMP-2, -9, -13, and -7) at 24 and 48 hr treatment. Casticin diminished the expressions of NF-κB p65, GRB2, SOS-1, MEK, p-ERK1/2, and p-JNK1/2 at 48 hr treatment only. However, casticin reduced the level of E-cadherin at 24 hr treatment but elevated at 48 hr. The novel findings suggest that casticin may represent a new and promising therapeutic agent for the metastatic prostate cancer. PRACTICAL APPLICATIONS: Casticin derived from natural plants had been used for Chinese medicine in Chinese population for thousands of years. In the present study, casticin attenuated metastatic effects, including decreasing viable cell number, inhibiting the migration, invasion, and adhesion, and reducing matrix metalloproteinases activity on human prostate DU 145 cancer cells. In addition, the results also provided possible pathways involved in casticin anti-metastasis mechanism. We conclude that casticin may be an aptitude anticancer agent or adjuvant for the metastatic prostate cancer in the future.
Collapse
Affiliation(s)
- Chia-Chang Lin
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Kuen-Bao Chen
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chang-Hai Tsai
- China Medical University Children's Hospital, China Medical University, Taichung, Taiwan.,Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- China Medical University Children's Hospital, China Medical University, Taichung, Taiwan.,School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
9
|
Chen HY, Jiang YW, Kuo CL, Way TD, Chou YC, Chang YS, Chung JG. Chrysin inhibit human melanoma A375.S2 cell migration and invasion via affecting MAPK signaling and NF-κB signaling pathway in vitro. ENVIRONMENTAL TOXICOLOGY 2019; 34:434-442. [PMID: 30578657 DOI: 10.1002/tox.22697] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/25/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
Numerous evidences have shown that chrysin induced cytotoxic effects via induced cell cycle arrest and induction of cell apoptosis in human cancer cell lines, however, no information showed that chrysin inhibited skin cancer cell migration and invasion. In this study, we investigated anti-metastasis mechanisms of chrysin in human melanoma cancer A375.S2 cells in vitro. Under sub-lethal concentrations of chrysin (0, 5, 10, and 15 μM) which inhibits cell mobility, migration and invasion of A375.S2 cells that were assayed by wound healing and Transwell filter. That chrysin inhibited MMP-2 activity in A375.S2 cells was investigated by gelatin zymography assay. Western blotting was used to examine protein expression and results indicated that chrysin inhibited the expression of GRB2, SOS-1, PKC, p-AKT (Thr308), NF-κBp65, and NF-κBp50 at 24 and 48 hours treatment, but only at 10-15 μM of chrysin decreased Ras, PI3K, p-c-Jun, and Snail only at 48 hours treatment and only decrease p-AKT(Ser473) at 24 hours treatment. Furthermore, chrysin (5-15 μM) decreased the expression of uPA, N-cadherin and MMP-1 at 24 and 48 hours treatment but only decreased MMP-2 and VEGF at 48 hours treatment at 10-15 μM and 5-15 μM of chrysin, respectively, however, increased E-cadherin at 5-15 μM treatment. Results of confocal laser microscopy systems indicated that chrysin inhibited expression of NF-κBp65 in A375.S2 cells. Based on these observations, we suggest that chrysin can be used in anti-metastasis of human melanoma cells in the future.
Collapse
Affiliation(s)
- Hsin-Yu Chen
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Yi-Wen Jiang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Chao-Lin Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Tzong-Der Way
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Yu-Cheng Chou
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yuan-Shiun Chang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
10
|
Hsiao YT, Fan MJ, Huang AC, Lien JC, Lin JJ, Chen JC, Hsia TC, Wu RSC, Chung JG. Deguelin Impairs Cell Adhesion, Migration and Invasion of Human Lung Cancer Cells through the NF-[Formula: see text]B Signaling Pathways. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:209-229. [PMID: 29402127 DOI: 10.1142/s0192415x1850012x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Deguelin, a rotenoid, is isolated from a natural plant species, and has biological activities including antitumor function. In the present study, we investigated the effect of deguelin on the cell adhesion, migration and invasion of NCI-H292 human lung cancer cells in vitro. Cell viability was analyzed by using flow cytometer. Cell adhesion was determined by using the cell-matrix adhesion assay. Wound healing assay was used to examine cell migration. Cell migration and invasion were investigated using a Boyden chamber assay. The protein expression was measured by Western blotting and confocal laser microscopy. The electrophoretic mobility shift assay was used to measure NF-[Formula: see text]B p65 binding to DNA.We selected the concentrations of deguelin at 0, 0.5, 1.0, 1.5, 2.0 and 2.5[Formula: see text][Formula: see text]M and we found that those concentrations of deguelin did not induce significant cytotoxic effects on NCI-H292 cells. Thus, we selected those concentrations of deguelin for metastasis assay. We found that deguelin inhibited cell adhesion, migration and invasion in dose-dependent manners that was assayed by wound healing and transwell methods, respectively. Deguelin decreased the expression of MMP-2/-9, SOS 1, Rho A, p-AKT (Thr308), p-ERK1/2, p-p38, p-JNK, NF-[Formula: see text]B (p65) and uPA in NCI-H292 cells. Deguelin suppressed the expression of PI3K, SOS 1, NF-[Formula: see text]B (p65), but did not significantly affect PKC and Ras in the nuclei of NCI-H292 cells that were confirmed by confocal laser microscopy. We suggest that deguelin may be used as a novel anticancer metastasis of lung cancer in the future.
Collapse
Affiliation(s)
- Yung-Ting Hsiao
- * Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Ming-Jen Fan
- ¶ Department of Biotechnology, Asia University, Taichung, Taiwan
| | - An-Cheng Huang
- ∥ Department of Nursing, St. Mary's Junior College of Medicine, Nursing and Management, Yilan County, Taiwan
| | - Jin-Cherng Lien
- † School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Jen-Jyh Lin
- ** Division of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | - Jaw-Chyun Chen
- §§ Department of Medicinal Botany and Health Applications, Da-Yeh University, Changhua, Taiwan
| | - Te-Chun Hsia
- ‡ Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan.,†† Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Rick Sai-Chuen Wu
- § School of Medicine, China Medical University, Taichung, Taiwan.,‡‡ Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
| | - Jing-Gung Chung
- * Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.,¶ Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
11
|
Juan TK, Liu KC, Kuo CL, Yang MD, Chu YL, Yang JL, Wu PP, Huang YP, Lai KC, Chung JG. Tetrandrine suppresses adhesion, migration and invasion of human colon cancer SW620 cells via inhibition of nuclear factor-κB, matrix metalloproteinase-2 and matrix metalloproteinase-9 signaling pathways. Oncol Lett 2018; 15:7716-7724. [PMID: 29731901 PMCID: PMC5921181 DOI: 10.3892/ol.2018.8286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/20/2017] [Indexed: 01/02/2023] Open
Abstract
Tetrandrine (TET) exhibits biological activities, including anticancer activity. In Chinese medicine, TET has been used to treat hypertensive and arrhythmic conditions and has been demonstrated to induce cytotoxic effects on human cancer cell lines. However, to the best of the author's knowledge, no previous studies have revealed that TET affects cell metastasis in SW620 human colon cancer cells. The present study demonstrated that TET decreased the cell number and inhibited cell adhesion and mobility of SW620 cells. Furthermore, a wound healing assay was performed to demonstrate that TET suppressed cell movement, and Transwell chamber assays were used to reveal that TET suppressed the cell migration and invasion of SW620 cells. Western blotting demonstrated that TET significantly reduced protein expression levels of SOS Ras/Rac guanine nucleotide exchange factor 1, phosphatidylinositol 3-kinase, growth factor receptor bound protein 2, phosphorylated (p)-c Jun N-terminal kinase 1/2, p-p38, p38, 14-3-3, Rho A, β-catenin, nuclear factor-κB p65, signal transducer and activator of transcription-1 and cyclooxygenase-2, in comparison with untreated SW620 cells. Overall, the results of the present study suggested that TET may be used as a novel anti-metastasis agent for the treatment of human colon cancer in the future.
Collapse
Affiliation(s)
- Ta-Kuo Juan
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Kuo-Ching Liu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Chao-Lin Kuo
- Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Mei-Due Yang
- Department of Surgery, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Yung-Lin Chu
- International Master's Degree Program in Food Science, International College, National Pingtung University of Science and Technology, Pingtung 912, Taiwan, R.O.C
| | - Jiun-Long Yang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Ping-Ping Wu
- School of Pharmacy, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Yi-Ping Huang
- Department of Physiology, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Kuang-Chi Lai
- School of Medicine, China Medical University, Taichung 404, Taiwan, R.O.C.,Department of Medical Laboratory Science and Biotechnology, College of Medicine and Life Science, Chung Hwa University of Medical Technology, Tainan 717, Taiwan, R.O.C.,Department of Surgery, China Medical University Beigang Hospital, Beigang, Yunlin 651, Taiwan, R.O.C
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan, R.O.C.,Department of Biotechnology, Asia University, Wufeng, Taichung 413, Taiwan, R.O.C
| |
Collapse
|
12
|
Zheng HY, Shen FJ, Tong YQ, Li Y. PP2A Inhibits Cervical Cancer Cell Migration by Dephosphorylation of p-JNK, p-p38 and the p-ERK/MAPK Signaling Pathway. Curr Med Sci 2018; 38:115-123. [DOI: 10.1007/s11596-018-1854-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 01/03/2018] [Indexed: 02/06/2023]
|
13
|
Shih YL, Au MK, Liu KL, Yeh MY, Lee CH, Lee MH, Lu HF, Yang JL, Wu RSC, Chung JG. Ouabain impairs cell migration, and invasion and alters gene expression of human osteosarcoma U-2 OS cells. ENVIRONMENTAL TOXICOLOGY 2017; 32:2400-2413. [PMID: 28795476 DOI: 10.1002/tox.22453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 07/07/2017] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
Ouabain, the specific Na+ /K+ -ATPase blocker, has biological activity including anti-proliferative and anti-metastasis effects in cancer cell. There is no study to show ouabain inhibiting cell migration and invasion in human osteosarcoma U-2 OS cells. Thus, we investigated the effect of ouabain on the cell migration and invasion of human osteosarcoma U-2 OS cells. Results indicated that ouabain significantly decreased the percentage of viable cells at 2.5-5.0 μM, thus, we selected 0.25-1.0 μM for inhibiting studies. Ouabain inhibited cell migration, invasion and the enzymatic activities of MMP-2, and also affected the expression of metastasis-associated protein in U-2 OS cells. The cDNA microarray assay indicated that CDH1, TGFBR3, SHC3 and MAP2K6 metastasis-related genes were increased, but CCND1, JUN, CDKN1A, TGFB1, 2 and 3, SMAD4, MMP13, MMP2 and FN1 genes were decreased. These findings provide more information regarding ouabain inhibited cell migration and invasion and associated gene expressions in U-2 OS cells after exposed to ouabain.
Collapse
Affiliation(s)
- Yung-Luen Shih
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Man-Kuan Au
- Department of Orthopedics, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Ko-Lin Liu
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ming-Yang Yeh
- Office of Director, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Ching-Hsiao Lee
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli County, Taiwan
| | - Mei-Hui Lee
- Department of Genetic Counseling Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Hsu-Feng Lu
- Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, New Taipei City, Taiwan
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Jiun-Long Yang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | | | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan
| |
Collapse
|
14
|
Shih YL, Chou HM, Chou HC, Lu HF, Chu YL, Shang HS, Chung JG. Casticin impairs cell migration and invasion of mouse melanoma B16F10 cells via PI3K/AKT and NF-κB signaling pathways. ENVIRONMENTAL TOXICOLOGY 2017; 32:2097-2112. [PMID: 28444820 DOI: 10.1002/tox.22417] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/01/2017] [Accepted: 03/05/2017] [Indexed: 06/07/2023]
Abstract
Casticin, a polymethoxyflavone, is one of the major active components obtained from Fructus viticis, which have been shown to have anticancer activities including induce cell apoptosis in human cancer cells. The aim of this study was to investigate the molecular mechanisms by which casticin inhibits cell migration and invasion of mouse melanoma B16F10 cells. Cell viability was examined by MTT assay and the results indicated that casticin decreased the total percentages of viable cells in dose-dependent manners. Casticin affected cell migration and invasion in B16F10 cells were examined by wound healing mobility assay and Boyden chamber migration and invasion assay and results indicated that casticin inhibited cell migration and invasion in dose-dependent manners. Western blotting was used to examine the protein expression of B16F10 cells after exposed to casticin and the results showed that casticin decreased the expressions of MMP-9, MMP-2, MMP-1, FAK, 14-3-3, GRB2, Akt, NF-κB p65, SOS-1, p-EGFR, p-JNK 1/2, uPA, and Rho A in B16F10 cells. Furthermore, cDNA microarray assay was used to show that casticin affected associated gene expression of cell migration and invasion and the results indicated that casticin affected some of the gene expression such as increased SCN1B (cell adhesion molecule 1) and TIMP2 (TIMP metallopeptidase inhibitor 2) and decreased NDUFS4 (NADH dehydrogenase (ubiquinone) Fe-S protein4), VEGFA (vascular endothelial growth factor A), and DDIT3 (DNA-damage-inducible transcript 3) which associated cell migration and invasion in B16F10 cells. Based on those observations, we suggest that casticin could be used as a novel anticancer metastasis of melanoma cancer in the future.
Collapse
Affiliation(s)
- Yung-Luen Shih
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Hsiao-Min Chou
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Hsiu-Chen Chou
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Hsu-Feng Lu
- Department of Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, New Taipei, Taiwan
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Yung-Lin Chu
- International Master's Degree Program in Food Science, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Hung-Sheng Shang
- Department of Pathology, National Defense Medical Center, Division of Clinical Pathology, Tri-Service General Hospital, Taipei, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan
| |
Collapse
|
15
|
Gu XD, Xu LL, Zhao H, Gu JZ, Xie XH. Cantharidin suppressed breast cancer MDA-MB-231 cell growth and migration by inhibiting MAPK signaling pathway. ACTA ACUST UNITED AC 2017; 50:e5920. [PMID: 28678918 PMCID: PMC5496155 DOI: 10.1590/1414-431x20175920] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 04/17/2017] [Indexed: 01/05/2023]
Abstract
As an active constituent of the beetle Mylabris used in traditional Chinese medicine, cantharidin is a potent and selective inhibitor of protein phosphatase 2A (PP2A) that plays a crucial role in cell cycle progression, apoptosis, and cell fate. The role and possible mechanisms exerted by cantharidin in cell growth and metastasis of breast cancer were investigated in this study. Cantharidin was found to inhibit cell viability and clonogenic potential in a time- and dose-dependent manner. Cell cycle analysis revealed that cell percentage in G2/M phase decreased, whereas cells in S and G1 phases progressively accumulated with the increasing doses of cantharidin treatment. In a xenograft model of breast cancer, cantharidin inhibited tumor growth in a dose-dependent manner. Moreover, high doses of cantharidin treatment inhibited cell migration in wound and healing assay and downregulated protein levels of major matrix metalloproteinases (MMP)-2 and MMP-9. MDA-MB-231 cell migration and invasion were dose-dependently inhibited by cantharidin treatment. Interestingly, the members of the mitogen-activated protein kinase (MAPK) signaling family were less phosphorylated as the cantharidin dose increased. Cantharidin was hypothesized to exert its anticancer effect through the MAPK signaling pathway. The data of this study also highlighted the possibility of using PP2A as a therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- X-D Gu
- Department of Breast Surgery, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - L-L Xu
- First Clinical Medical School, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - H Zhao
- Department of Breast Surgery, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - J-Z Gu
- Oncology Department, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - X-H Xie
- Department of Breast Surgery, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Huang L, Song Y, Lian J, Wang Z. Allicin inhibits the invasion of lung adenocarcinoma cells by altering tissue inhibitor of metalloproteinase/matrix metalloproteinase balance via reducing the activity of phosphoinositide 3-kinase/AKT signaling. Oncol Lett 2017; 14:468-474. [PMID: 28693193 DOI: 10.3892/ol.2017.6129] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/07/2017] [Indexed: 01/11/2023] Open
Abstract
Allicin, the main active principle associated with Allium sativum chemistry, has various antitumor activities. However, to the best of our knowledge, there is no available information to address the anti-invasive effect and associated mechanism in lung adenocarcinoma. In the present study, cell viability assay, cell adhesion assay, western blot analysis, Transwell migration and invasion assays and reverse transcription-quantitative polymerase chain reaction were performed. Allicin was identified to inhibit the adhesion, invasion and migration of lung adenocarcinoma cells in a dose-dependent manner, accompanied by decreasing mRNA and protein levels of matrix metalloproteinase (MMP)-2 and MMP-9. Conversely, the mRNA and protein levels of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 were increased in a dose-dependent manner. Furthermore, it was revealed that allicin treatment significantly suppressed the phosphorylation of AKT (P<0.05), but not the total protein expression of AKT. Combined treatment with LY294002, an inhibitor of phosphoinositide 3-kinase (PI3K)/AKT signaling, and allicin led to the synergistic reduction of MMP-2 and MMP-9 expression, followed by an increase in TIMP-1 and TIMP-2 expression. The invasive capabilities of lung adenocarcinoma cells were also suppressed. However, insulin-like growth factor-1 (an activator of PI3K/AKT signaling) reversed the effects of allicin on cell invasion and expression of MMP-2, MMP-9, TIMP-1 and TIMP-2. The present study concluded that allicin may inhibit invasion of lung adenocarcinoma cells by altering TIMP/MMP balance, via reducing the activity of the PI3K/AKT signaling pathway. This indicated that allicin may be recognized as an anti-invasive agent for lung adenocarcinoma treatment.
Collapse
Affiliation(s)
- Ling Huang
- Department of Cardiovascular Surgery, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yuanhong Song
- Department of Pathology, The Affiliated Hospital of Jinggangshan University, Jian, Jiangxi 343000, P.R. China
| | - Jianping Lian
- Department of Oncology, The Affiliated Hospital of Jinggangshan University, Jian, Jiangxi 343000, P.R. China
| | - Zhiwei Wang
- Department of Cardiovascular Surgery, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
17
|
Ward MP, Spiers JP. Protein phosphatase 2A regulation of markers of extracellular matrix remodelling in hepatocellular carcinoma cells: functional consequences for tumour invasion. Br J Pharmacol 2017; 174:1116-1130. [PMID: 28239848 DOI: 10.1111/bph.13759] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 02/13/2017] [Accepted: 02/16/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE A hallmark of tumour invasion is breakdown of the extracellular matrix due to dysregulation of the matrix metalloproteinase (MMP) system. While our understanding of how this is regulated by kinase signalling pathways is well established, its counter-regulation by protein phosphatases (PP) is poorly understood. Therefore, we investigated the effect of PP inhibition on markers of extracellular remodelling and how PP2A activity modulated MMP-9 abundance and function of Hep3B cells. EXPERIMENTAL APPROACH Cells were exposed to okadaic acid (OA), tautomycetin and cyclosporin A, and the expression profile determined using PCR. Effects of OA and a protein inhibitor of PP2A, CIP2A, on MMP-9 abundance, PP2A activity and cell migration were investigated using ELISA, promoter constructs, siRNA knockdown and transwell migration assays. KEY RESULTS OA increased expression and abundance of MMP-9 and the tissue inhibitor of MMP, TIMP-1, without affecting other MMPs, TIMPs and ADAMs. The effect on MMP-9 was mimicked by CIP2A overexpression and knockdown of the PPP2CA catalytic, but not PPP2R1A scaffolding, subunit. Cyclosporin A and PPP1CA silencing did not alter MMP-9 expression, while tautomycetin transiently increased it. Mutation of AP-1, but not NF-κB, binding sites inhibited OA-mediated MMP-9 transcriptional activity. OA and CIP2A decreased PP2A activity and increased cell migration. CONCLUSION AND IMPLICATIONS OA increased MMP-9 by decreasing PP2A activity and PP2Ac, through AP-1 binding sites on the MMP-9 promoter. The functional consequence of this and CIP2A overexpression was increased cell migration. Hence, PP2A inhibition induced a metastatic phenotype through alterations in MMP-9 in Hep3B cells.
Collapse
Affiliation(s)
- M P Ward
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Dublin, Ireland
| | - J P Spiers
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
18
|
Leonetti C, Macrez R, Pruvost M, Hommet Y, Bronsard J, Fournier A, Perrigault M, Machin I, Vivien D, Clemente D, De Castro F, Maubert E, Docagne F. Tissue-type plasminogen activator exerts EGF-like chemokinetic effects on oligodendrocytes in white matter (re)myelination. Mol Neurodegener 2017; 12:20. [PMID: 28231842 PMCID: PMC5322587 DOI: 10.1186/s13024-017-0160-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/10/2017] [Indexed: 01/12/2023] Open
Abstract
Background The ability of oligodendrocyte progenitor cells (OPCs) to give raise to myelin forming cells during developmental myelination, normal adult physiology and post-lesion remyelination in white matter depends on factors which govern their proliferation, migration and differentiation. Tissue plasminogen activator (tPA) is a serine protease expressed in the central nervous system (CNS), where it regulates cell fate. In particular, tPA has been reported to protect oligodendrocytes from apoptosis and to facilitate the migration of neurons. Here, we investigated whether tPA can also participate in the migration of OPCs during CNS development and during remyelination after focal white matter lesion. Methods OPC migration was estimated by immunohistological analysis in spinal cord and corpus callosum during development in mice embryos (E13 to P0) and after white matter lesion induced by the stereotactic injection of lysolecithin in adult mice (1 to 21 days post injection). Migration was compared in these conditions between wild type and tPA knock-out animals. The action of tPA was further investigated in an in vitro chemokinesis assay. Results OPC migration along vessels is delayed in tPA knock-out mice during development and during remyelination. tPA enhances OPC migration via an effect dependent on the activation of epidermal growth factor receptor. Conclusion Endogenous tPA facilitates the migration of OPCs during development and during remyelination after white matter lesion by the virtue of its epidermal growth factor-like domain. Electronic supplementary material The online version of this article (doi:10.1186/s13024-017-0160-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Camille Leonetti
- Normandie Univ, UNICAEN, INSERM U1237, Physiology and imaging of neurological disorders (PhIND), Cyceron, Caen, 14000, France
| | - Richard Macrez
- Normandie Univ, UNICAEN, INSERM U1237, Physiology and imaging of neurological disorders (PhIND), Cyceron, Caen, 14000, France
| | - Mathilde Pruvost
- Normandie Univ, UNICAEN, INSERM U1237, Physiology and imaging of neurological disorders (PhIND), Cyceron, Caen, 14000, France
| | - Yannick Hommet
- Normandie Univ, UNICAEN, INSERM U1237, Physiology and imaging of neurological disorders (PhIND), Cyceron, Caen, 14000, France
| | - Jérémie Bronsard
- Normandie Univ, UNICAEN, INSERM U1237, Physiology and imaging of neurological disorders (PhIND), Cyceron, Caen, 14000, France
| | - Antoine Fournier
- Normandie Univ, UNICAEN, INSERM U1237, Physiology and imaging of neurological disorders (PhIND), Cyceron, Caen, 14000, France
| | - Maxime Perrigault
- Normandie Univ, UNICAEN, INSERM U1237, Physiology and imaging of neurological disorders (PhIND), Cyceron, Caen, 14000, France
| | - Isabel Machin
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos-SESCAM, Toledo, Spain.,Grupo de Neuroinmuno-reparación, Hospital Nacional de Parapléjicos, Toledo, Spain
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM U1237, Physiology and imaging of neurological disorders (PhIND), Cyceron, Caen, 14000, France
| | - Diego Clemente
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos-SESCAM, Toledo, Spain.,Grupo de Neuroinmuno-reparación, Hospital Nacional de Parapléjicos, Toledo, Spain
| | - Fernando De Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos-SESCAM, Toledo, Spain.,Grupo de Neurobiología del Desarrollo (GNDe), Instituto Cajal, CSIC, Madrid, Spain
| | - Eric Maubert
- Normandie Univ, UNICAEN, INSERM U1237, Physiology and imaging of neurological disorders (PhIND), Cyceron, Caen, 14000, France
| | - Fabian Docagne
- Normandie Univ, UNICAEN, INSERM U1237, Physiology and imaging of neurological disorders (PhIND), Cyceron, Caen, 14000, France. .,Inserm, Centre Cyceron, Bvd Becquerel, BP5229, Caen Cedex, 14074, France.
| |
Collapse
|
19
|
Casticin Inhibits A375.S2 Human Melanoma Cell Migration/Invasion through Downregulating NF-κB and Matrix Metalloproteinase-2 and -1. Molecules 2016; 21:384. [PMID: 27007357 PMCID: PMC6274196 DOI: 10.3390/molecules21030384] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 01/14/2023] Open
Abstract
Casticin is one of the main components from Fructus Viticis, which is widely used as an anti-inflammatory agent. The mechanism of how casticin affects melanoma cell migration and invasion is still not well known. Here we studied the anti-metastasis effects of casticin on A375.S2 melanoma cells by using a non-lethal concentration. First; we used an adhesion assay to test the A375.S2 cells’ adhesion ability after treatment with casticin. We next investigated the cell migration ability after casticin treatment by using a wound healing assay to prove that the migration of A375.S2 cells can be inhibited by casticin and double checked the results using the transwell-migration assay. The suppressive effects on matrix metalloproteinase-2; and -9 (MMP-2; and -9) activities were examined by gelatin zymography. Furthermore, western blotting was used to investigate the protein level changes in A375.S2 cells. We found that p-EGFR; Ras and p-ERK1/2 are decreased by casticin, indicating that casticin can down-regulate the migration and invasion ability of A375.S2 cells via the p-EGFR/Ras/p-ERK pathway. The NF-κB p65 and p-ERK levels in nuclear proteins are also decreased by treatment with casticin. An EMSA assay also discovered that the NF-κB p65 and DNA interaction is decreased. NF-κB p65 protein level was examined by immunofluorescence staining and also decreased. Our findings suggest that casticin has anti-metastatic potential by decreasing the invasiveness of A375.S2 cells. We also found that casticin suppressed A375.S2 cell proliferation and cell adhesion ability, but did not affect cell death, as examined using cytometry and a collagen adhesion assay. Based on these observations, casticin could be used as an inhibitor of migration and invasion of human melanoma cells in the future.
Collapse
|
20
|
Zhou Y, Li Y, Zhou T, Zheng J, Li S, Li HB. Dietary Natural Products for Prevention and Treatment of Liver Cancer. Nutrients 2016; 8:156. [PMID: 26978396 PMCID: PMC4808884 DOI: 10.3390/nu8030156] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/22/2016] [Accepted: 03/01/2016] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is the most common malignancy of the digestive system with high death rate. Accumulating evidences suggests that many dietary natural products are potential sources for prevention and treatment of liver cancer, such as grapes, black currant, plum, pomegranate, cruciferous vegetables, French beans, tomatoes, asparagus, garlic, turmeric, ginger, soy, rice bran, and some edible macro-fungi. These dietary natural products and their active components could affect the development and progression of liver cancer in various ways, such as inhibiting tumor cell growth and metastasis, protecting against liver carcinogens, immunomodulating and enhancing effects of chemotherapeutic drugs. This review summarizes the potential prevention and treatment activities of dietary natural products and their major bioactive constituents on liver cancer, and discusses possible mechanisms of action.
Collapse
Affiliation(s)
- Yue Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Tong Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Jie Zheng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
21
|
SUN YANG, WANG XIUFENG, ZHOU QIANMEI, LU YIYU, ZHANG HUI, CHEN QILONG, ZHAO MING, SU SHIBING. Inhibitory effect of emodin on migration, invasion and metastasis of human breast cancer MDA-MB-231 cells in vitro and in vivo. Oncol Rep 2014; 33:338-46. [DOI: 10.3892/or.2014.3585] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 10/06/2014] [Indexed: 11/05/2022] Open
|
22
|
Carolina de Oliveira Neves A, Fernandes de Araújo Júnior R, Luiza Cabral de Sá Leitão Oliveira A, Antunes de Araújo A, de Lima KMG. The use of EEM fluorescence data and OPLS/UPLS-DA algorithm to discriminate between normal and cancer cell lines: a feasibility study. Analyst 2014; 139:2423-31. [DOI: 10.1039/c4an00296b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|