1
|
Omasa T, Sawamoto A, Nakajima M, Okuyama S. Anti-Inflammatory and Neurotrophic Factor Production Effects of 3,5,6,7,8,3',4'-Heptamethoxyflavone in the Hippocampus of Lipopolysaccharide-Induced Inflammation Model Mice. Molecules 2024; 29:5559. [PMID: 39683718 DOI: 10.3390/molecules29235559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Citrus fruits contain several bioactive components. Among them, one of the major components is 3,5,6,7,8,3',4'-heptamethoxyflavone (HMF), which has previously shown protective effects in the brain in some disease models; moreover, HMF has been shown to penetrate the brain. In recent years, inflammation has been identified as a defense response in the body; however, a chronic inflammatory response may trigger several diseases. Inflammation in the peripheral tissues spreads to the brain and is suggested to be closely associated with diseases of the central nervous system. HMF has shown anti-inflammatory effects in the hippocampus following global cerebral ischemia; however, its effects on acute and chronic inflammation in the brain remain unclear. Therefore, in the present study, we examined the effects of HMF in a mouse model of systemic inflammation induced by lipopolysaccharide (LPS) administration. In this study, HMF suppressed LPS-induced microglial activation in the brains of acute inflammation model mice two days after LPS administration. In addition, 24 days after the administration of LPS in a chronic inflammation model, HMF promoted BDNF production and neurogenesis in the brain, which also tended to suppress tau protein phosphorylation at Ser396. These results suggest that HMF has anti-inflammatory and neurotrophic effects in the brains of model mice with lipopolysaccharide-induced systemic inflammation.
Collapse
Affiliation(s)
- Toshiki Omasa
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan
| | - Atsushi Sawamoto
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan
| | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan
| | - Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan
| |
Collapse
|
2
|
Zhang Y, Yang Y, Liang H, Liang Y, Xiong G, Lu F, Yang K, Zou Q, Zhang X, Du G, Xu X, Hao J. Nobiletin, as a Novel PDE4B Inhibitor, Alleviates Asthma Symptoms by Activating the cAMP-PKA-CREB Signaling Pathway. Int J Mol Sci 2024; 25:10406. [PMID: 39408735 PMCID: PMC11477036 DOI: 10.3390/ijms251910406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Asthma is a chronic airway inflammation that is considered a serious public health concern worldwide. Nobiletin (5,6,7,8,3',4'-hexamethyl flavonoid), an important compound isolated from several traditional Chinese medicines, especially Citri Reticulatae Pericarpium, is widely used for a number of indications, including cancer, allergic diseases, and chronic inflammation. However, the mechanism by which nobiletin exerts its anti-asthmatic effect remains unclear. In this research, we comprehensively demonstrated the anti-asthmatic effects of nobiletin in an animal model of asthma. It was found that nobiletin significantly reduced the levels of inflammatory cells and cytokines in mice and alleviated airway hyperresponsiveness. To explore the target of nobiletin, we identified PDE4B as the target of nobiletin through pharmacophore modeling, molecular docking, molecular dynamics simulation, SPR, and enzyme activity assays. Subsequently, it was found that nobiletin could activate the cAMP-PKA-CREB signaling pathway downstream of PDE4B in mouse lung tissues. Additionally, we studied the anti-inflammatory and anti-airway remodeling effects of nobiletin in LPS-induced RAW264.7 cells and TGF-β1-induced ASM cells, confirming the activation of the cAMP-PKA-CREB signaling pathway by nobiletin. Further validation in PDE4B-deficient RAW264.7 cells confirmed that the increase in cAMP levels induced by nobiletin depended on the inhibition of PDE4B. In conclusion, nobiletin exerts anti-asthmatic activity by targeting PDE4B and activating the cAMP-PKA-CREB signaling pathway.
Collapse
Affiliation(s)
- Yan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
| | - Yaping Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
| | - Huicong Liang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
| | - Yuerun Liang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
| | - Guixin Xiong
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
| | - Fang Lu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
| | - Kan Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
| | - Qi Zou
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
| | - Xiaomin Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
| | - Guanhua Du
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China;
| | - Ximing Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China;
- Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jiejie Hao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China;
| |
Collapse
|
3
|
Omasa T, Okuyama S, Sawamoto A, Nakajima M, Furukawa Y. Effects of Citrus kawachiensis Peel in Frailty-like Model Mice Induced by Low Protein Nutrition Disorders. Antioxidants (Basel) 2023; 12:779. [PMID: 36979027 PMCID: PMC10045201 DOI: 10.3390/antiox12030779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
"Frailty" caused by a decline in physiological reserve capacity, chronic inflammation, and oxidative stress in the elderly has recently become a major social issue. The present study examined the effects of the peel of Citrus kawachiensis (CK), which exhibits anti-inflammatory, antioxidant, and pro-neurogenesis activities in frailty-like model mice. Male C57BL/6 mice (15 weeks old) were fed an 18% protein diet (CON), a 2.5% protein diet (PM), and PM mixed with 1% dried CK peel powder for approximately 1 month. Mice were euthanized 2 or 8 days after a single intraperitoneal administration of lipopolysaccharide (LPS) and tissues were dissected. Among peripheral tissues, muscle weight, liver weight, and blood glucose levels were significantly higher in the PM-LPS-CK group than in the PM-LPS group. In the behavioral analysis, locomotive activity was significantly lower in the PM-LPS group than in the PM group. The reduction in locomotive activity in the PM-LPS-CK group was significantly smaller than that in the PM-LPS group. The quantification of microglia in the hippocampal stratum lacunosum-moleculare revealed that increases in the PM-LPS group were significantly suppressed by the dried CK peel powder. Furthermore, the quantification of synaptic vesicle membrane proteins in the hippocampal CA3 region showed down-regulated expression in the PM-LPS group, which was significantly ameliorated by the administration of the dried CK peel powder. Collectively, these results suggest that CK inhibits inflammation and oxidative stress induced by PM and LPS in the central nervous system and peripheral tissue. Therefore, C. kawachiensis is highly effective against "frailty".
Collapse
Affiliation(s)
| | - Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Japan
| | | | | | | |
Collapse
|
4
|
Yang M, Jiang Z, Wen M, Wu Z, Zha M, Xu W, Zhang L. Chemical Variation of Chenpi (Citrus Peels) and Corresponding Correlated Bioactive Compounds by LC-MS Metabolomics and Multibioassay Analysis. Front Nutr 2022; 9:825381. [PMID: 35284442 PMCID: PMC8905505 DOI: 10.3389/fnut.2022.825381] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The peel of Citrus reticulata “Chachi” (CP) possesses various health-promoting benefits and is not only one of the most famous Chinese herbal medicine, but also an ingredient in fermented foods. In the present study, the effects of storage years (1-, 3-, 4-, 5-, 6-, and 11-years) on the chemical profiling and potential bioactive compounds of CP were compared by metabolomics and in vitro bioactivity analysis. With the increase of storage time, the content of hesperidin significantly decreased, but nobiletin, 3,5,6,7,8,3′,4′-heptamethoxyflavone, and tangeretin were increased. Meanwhile, the antioxidant activity of CP was enhanced. Phenolic acids, flavonol glycosides, fatty acids, and alkyl glycosides were marker compounds that were responsible for distinguishing the storage time of CP. Correlation analysis suggested that some polyphenols including quercetin-glucoside, quinic acid, trihydroxydimethoxyflavone, and rutin were potential antioxidant compounds in CP. The dichloromethane and n-butanol fractions showed the better antioxidant capacity and inhibitory effects on glucose-hydrolysis enzymes. They mainly contained ferulic acid, nobiletin, 3,5,6,7,8,3′,4′-heptamethoxyflavone, kaempferol, and hesperidin.
Collapse
Affiliation(s)
- Mei Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China
| | - Zongde Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China
| | - Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
- Zhenfeng Wu
| | - Minyu Zha
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China
| | - Wen Xu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China
- *Correspondence: Liang Zhang
| |
Collapse
|
5
|
Furukawa Y. [Search for Neuroprotective Compounds -From 4-Methycatechol to Citrus Compounds]. YAKUGAKU ZASSHI 2021; 141:67-79. [PMID: 33390450 DOI: 10.1248/yakushi.20-00164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the 1980s, the authors developed the enzyme immunoassay (EIA) system for mouse nerve growth factor (NGF) to clarify its important physiological roles. Our EIA system was a new and powerful tool for measurement of extremely low levels of NGF in vitro and in vivo, and it contributed to investigation into the regulatory mechanism of NGF synthesis. After that, we demonstrated that the compounds with a low molecular weight, such as 4-methylcatechol, which elicit stimulatory activity toward NGF synthesis, were useful and practical for therapeutic purposes; as NGF has potent activity on neuronal degeneration in both the central nervous system (CNS) and the peripheral nervous system. Since 2008, we have been searching for and isolating neuroprotective component(s) from citrus peels. As a result, our study revealed that 1) 3,5,6,7,8,3',4'-heptamethoxyflavone (HMF) has neuroprotective ability in the CNS by inducing brain-derived neurotrophic factor (BDNF) and by suppressing inflammation; 2) auraptene (AUR) also has neuroprotective ability in the CNS by suppressing inflammation and by probably inducing neurotrophic factor(s). As the content of AUR in the peels of Kawachi Bankan is exceptionally high, 1) we found this peel powder to exert neuroprotective effects in the brain of various pathological model mice; 2) some of the AUR transited from the peel to the juice during the squeezing process to obtain the juice. Therefore, K. Bankan juice, which is enriched in AUR by adding peel paste to the raw juice, was shown to be practical for suppression of cognitive dysfunction of aged healthy volunteers.
Collapse
Affiliation(s)
- Yoshiko Furukawa
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| |
Collapse
|
6
|
Furukawa Y, Okuyama S, Amakura Y, Sawamoto A, Nakajima M, Yoshimura M, Igase M, Fukuda N, Tamai T, Yoshida T. Isolation and Characterization of Neuroprotective Components from Citrus Peel and Their Application as Functional Food. Chem Pharm Bull (Tokyo) 2021; 69:2-10. [PMID: 33390517 DOI: 10.1248/cpb.c20-00265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The elderly experience numerous physiological alterations. In the brain, aging causes degeneration or loss of distinct populations of neurons, resulting in declining cognitive function, locomotor capability, etc. The pathogenic factors of such neurodegeneration are oxidative stress, mitochondrial dysfunction, inflammation, reduced energy homeostatis, decreased levels of neurotrophic factor, etc. On the other hand, numerous studies have investigated various biologically active substances in fruit and vegetables. We focused on the peel of citrus fruit to search for neuroprotective components and found that: 1) 3,5,6,7,8,3',4'-heptamethoxyflavone (HMF) and auraptene (AUR) in the peel of Kawachi Bankan (Citrus kawachiensis) exert neuroprotective effects; 2) both HMF and AUR can pass through the blood-brain barrier, suggesting that they act directly in the brain; 3) the content of AUR in the peel of K. Bankan was exceptionally high, and consequently the oral administration of the dried peel powder of K. Bankan exerts neuroprotective effects; and 4) intake of K. Bankan juice, which was enriched in AUR by adding peel paste to the raw juice, contributed to the prevention of cognitive dysfunction in aged healthy volunteers. This review summarizes our studies in terms of the isolation/characterization of HMF and AUR in K. Bankan peel, analysis of their actions in the brain, mechanisms of their actions, and trials to develop food that retains their functions.
Collapse
Affiliation(s)
- Yoshiko Furukawa
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Yoshiaki Amakura
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University
| | - Atsushi Sawamoto
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Morio Yoshimura
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University
| | - Michiya Igase
- Department of Geriatric Medicine and Neurology, Ehime University Graduate School of Medicine
| | | | | | - Takashi Yoshida
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University.,Department of Pharmaceutical Sciences, Okayama University
| |
Collapse
|
7
|
Okuyama S, Sawamoto A, Nakajima M, Furukawa Y. [The Search for Citrus Components with Neuroprotective and Anti-dementia Effects in the Mouse Brain]. YAKUGAKU ZASSHI 2021; 141:819-824. [PMID: 34078788 DOI: 10.1248/yakushi.20-00251-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Citrus kawachiensis (Kawachi Bankan), is a citrus species grown in Ehime, Japan, and its peel is abundant in 3,5,6,7,8,3',4'-heptamethoxyflavone (HMF). We have recently revealed that HMF, one of the citrus flavonoids, has anti-inflammatory activity and neuroprotective abilities in the brain against global cerebral ischemia. HMF rescued neuronal cell death in the hippocampus and suppressed the activation of microglia, whose activation have been shown to significantly aggravate neurological deficit scores for ischemic mice. In the Y-maze test, HMF showed protection against ischemia-induced short-term memory dysfunction; in addition, HMF enhanced the expression of brain-derived neurotrophic factor and accelerated neurogenesis in the hippocampus. Similarly, the powder of the peel of C. kawachiensis showed anti-inflammatory activity and neuroprotective abilities in the ischemic brain. To further examine the effect of the peel of C. kawachiensis, we administered it to senescence-accelerated-mouse prone 8 (SAMP8) mice, which show memory impairment and brain inflammation, tau hyperphosphorylation, and neuronal dysfunction. The C. kawachiensis treatment inhibited microglial activation and the hyperphosphorylation of tau protein in hippocampal neurons, and also relieved the suppression of neurogenesis in the dentate gyrus of the hippocampus in SAMP8. These results suggest that HMF and the peel of C. kawachiensis have potential effects as neuroprotective and anti-dementia agents.
Collapse
Affiliation(s)
- Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Atsushi Sawamoto
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Yoshiko Furukawa
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| |
Collapse
|
8
|
Nakamura S, Abe S, Miyoshi K, Amakura Y, Okuyama S, Yoshimura M, Furukawa Y, Sakamoto T. Preparation of orally disintegrating tablets from active ingredients of citrus peel by direct powder compression for the maintenance of brain function. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Shohei Nakamura
- Department of Pharmaceutical Technology, School of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University
| | - Sae Abe
- Department of Pharmaceutical Technology, School of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University
| | - Kazuki Miyoshi
- Department of Pharmaceutical Technology, School of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University
| | - Yoshiaki Amakura
- Department of Pharmaceutical Technology, School of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University
| | - Satoshi Okuyama
- Department of Pharmaceutical Technology, School of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University
| | - Morio Yoshimura
- Department of Pharmaceutical Technology, School of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University
| | - Yoshiko Furukawa
- Department of Pharmaceutical Technology, School of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University
| | - Takatoshi Sakamoto
- Department of Pharmaceutical Technology, School of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University
| |
Collapse
|
9
|
Okuyama S, Sawamoto A, Nakajima M, Furukawa Y. [Neuroprotective effects of the peel of Citrus kawachiensis (Kawachi Bankan) and auraptene in the hippocampus of hyperglycemia mice and global cerebral ischemia/reperfusion injury mice]. Nihon Yakurigaku Zasshi 2020; 155:214-219. [PMID: 32612031 DOI: 10.1254/fpj.20022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The peel of Citrus kawachiensis (Kawachi Bankan), a citrus species grown in Ehime, Japan, is abundant in auraptene. Auraptene, a coumarin compound, have been shown to exert anti-inflammatory effects in peripheral tissues, but it was still unclear of the effect in the brain. Hyperglycemia and brain ischemia induce inflammation and oxidative stress and cause massive damage in the brain; therefore, we examined the anti-inflammatory and other effects of the dried peel powder of C. kawachiensis and auraptene in a hyperglycemia and global cerebral ischemia models. The C. kawachiensis treatment inhibited astroglial activation in the hippocampus and the hyperphosphorylation of tau protein in hippocampal neurons, and also relieved the suppression of neurogenesis in the dentate gyrus of the hippocampus in the type 2 diabetic db/db mice. The C. kawachiensis treatment inhibited microglial and astroglial activation, and neuronal cell death in the hippocampus of transient global cerebral ischemia mice. It was suggested that the dried peel powder of C. kawachiensis exerts anti-inflammatory and neuroprotective effects in the brain. We attempted to demonstrate the effect of auraptene in the brains in streptozotocin-induced hyperglycemic mice and transient global cerebral ischemia mice. Auraptene administration showed the similar effects as the peel of C. kawachiensis in the hippocampus of these mice models. These results suggested that auraptene have potential effects as a neuroprotective agent in the peel of C. kawachiensis.
Collapse
Affiliation(s)
- Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Atsushi Sawamoto
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Yoshiko Furukawa
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| |
Collapse
|
10
|
Tan JY, Liu Y, Cheng YG, Sun YP, Li XM, Guan W, Pan J, Yang BY, Kuang HX. Seven new glycosides from the leaves of Datura metel L. Nat Prod Res 2020; 36:295-304. [DOI: 10.1080/14786419.2020.1779713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Jin-Yan Tan
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan Liu
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan-Gang Cheng
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan-Ping Sun
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiao-Mao Li
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Guan
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Juan Pan
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Bing-You Yang
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hai-Xue Kuang
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
11
|
Characterization of Extra Early Spanish Clementine Varieties ( Citrus clementina Hort ex Tan) as a Relevant Source of Bioactive Compounds with Antioxidant Activity. Foods 2020; 9:foods9050642. [PMID: 32429360 PMCID: PMC7278874 DOI: 10.3390/foods9050642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 11/16/2022] Open
Abstract
The most relevant nutrients and bioactive compounds (soluble sugars, dietary fiber, ascorbic acid and organic acids, individual phenolic compounds, fatty acids, and tocopherols) as well as antioxidant activity have been characterized in three extra early varieties of clementine (Citrus clementina Hort ex Tan. Basol, Clemensoon and Clemenrubí) cultivated in Valencia (Spain). Clementines are a relevant source of bioactive compounds, such as vitamin C (values around 80 mg/100 g), allowing to satisfy the recommended daily intake with the consumption of a normal portion. Sucrose was the most abundant sugar, and potassium the main mineral while manganese was the least. Fat content was very low (<0.5 mg/100 g), with palmitic acid and α-tocopherol the most abundant fatty acid and vitamin E form, respectively. Flavonoids were the predominant phenolic compounds, with narirutin/naringin and (neo)hesperidin the best represented ones. The antioxidant capacity evaluated by reducing power, DPPH, and β-carotene bleaching inhibition assays was satisfactory with values similar to those reported in other citrus fruits. Thus, this fruit is a relevant source of bioactive compounds with antioxidant properties of interest for consumers and the food industry.
Collapse
|
12
|
Citrus Auraptene Induces Expression of Brain-Derived Neurotrophic Factor in Neuro2a Cells. Molecules 2020; 25:molecules25051117. [PMID: 32138196 PMCID: PMC7179231 DOI: 10.3390/molecules25051117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/18/2020] [Accepted: 02/28/2020] [Indexed: 01/19/2023] Open
Abstract
(1) Background: Our published data have indicated that 1) auraptene (AUR), a citrus ingredient, has neuroprotective effects on the mouse brain, owing to its ability to suppress inflammation, such as causing a reduction in hyperactivation of microglia and astrocytes; 2) AUR has the ability to trigger phosphorylation (activation) of extracellular signal-related kinase (ERK) and cAMP response element-binding protein (CREB) in neuronal cells; 3) AUR has the ability to induce glial cell line-derived neurotrophic factor (GDNF) synthesis/secretion in rat C6 glioma cells. The well-established fact that the ERK-CREB pathway plays an important role in the production of neurotrophic factors, including GDNF and brain-derived neurotrophic factor (BDNF), prompted us to investigate whether AUR would also have the ability to induce BDNF expression in neuronal cells. (2) Methods: Mouse neuroblastoma neuro2a cells were cultured and the effects of AUR on BDNF mRNA expression and protein content were evaluated by RT-PCR and ELISA, respectively. (3) Results: The levels of BDNF mRNA and secreted BDNF were significantly increased by AUR in a dose- and time-dependent manner in neuro2a cells. (4) Conclusion: The induction of BDNF in neuronal cells might be, in part, one of the mechanisms accounting for the neuroprotective effects of AUR.
Collapse
|
13
|
Haramiishi R, Okuyama S, Yoshimura M, Nakajima M, Furukawa Y, Ito H, Amakura Y. Identification of the characteristic components in walnut and anti-inflammatory effect of glansreginin A as an indicator for quality evaluation. Biosci Biotechnol Biochem 2020; 84:187-197. [DOI: 10.1080/09168451.2019.1670046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
ABSTRACT
Walnut is a nutritious food material, but only a few studies have been conducted on the mechanisms of its functions and the technique for quality evaluation. Therefore, we analyzed the components in aqueous methanol extract of walnut, and characterized 30 components, including three new compounds, glansreginin C, ellagic acid 4-O-(3′-O-galloyl)-β-D-xyloside, and platycaryanin A methyl ester. We analyzed the extracts of other nuts using HPLC and clarified that a characteristic peak corresponding to glansreginin A was mainly observed in walnut. These results suggested that glansreginin A might be an indicator component of the quality of walnut. We then examined whether glansreginin A has neuroprotective effect, using lipopolysaccharide (LPS)-induced inflammatory model mice. The results revealed that oral administration of glansreginin A prevented LPS-induced abnormal behavior and LPS-induced hyper-activation of microglia in the hippocampus. These results suggested that glansreginin A has the ability to exert neuroprotective effect via anti-inflammation in the brain.
Collapse
Affiliation(s)
- Rie Haramiishi
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Japan
| | - Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Japan
| | - Morio Yoshimura
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Japan
| | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Japan
| | - Yoshiko Furukawa
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Japan
| | - Hideyuki Ito
- Faculty of Health and Welfare Science, Department of Nutritional Science, Okayama Prefectural University, Okayama, Japan
| | - Yoshiaki Amakura
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Japan
| |
Collapse
|
14
|
Ishida M, Takekuni C, Nishi K, Sugahara T. Anti-inflammatory effect of aqueous extract from Kawachi-bankan (Citrus maxima) peel in vitro and in vivo. Cytotechnology 2019; 71:797-807. [PMID: 31190318 PMCID: PMC6663950 DOI: 10.1007/s10616-019-00323-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/07/2019] [Indexed: 11/29/2022] Open
Abstract
Kawachi-bankan (Citrus maxima) is one of the citruses produced in Ehime, Japan. Although health functions of flavonoids and carotenoids in citrus peel have been studied very well, those of water-soluble substances in the peel have not been focused. We herein indicated the anti-inflammatory effect of Kawachi-bankan peel aqueous extract (KPE) in vitro and in vivo. KPE significantly inhibited the production of inflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor (TNF)-α by LPS-stimulated RAW264.7 cells without cytotoxicity. KPE also significantly inhibited the mRNA expression levels of IL-6 and TNF-α in the cells, suggesting that KPE inhibits the production of inflammatory cytokines by suppressing the gene expression levels. Immunoblot analysis revealed that KPE shows an anti-inflammatory effect on macrophages through the suppression of the phosphorylation of p38 and the translocation of NF-κB into nucleus. The oral administration of KPE inhibited the serum levels of inflammatory cytokines and improved the survival rate in systemic inflammatory response syndrome (SIRS) model mice. Our experiments using a cell line suggested that KPE inhibits the production of inflammatory cytokines by macrophages in hyperinflammatory state. In addition, experiments in vivo showed that the oral administration of KPE inhibited the serum levels of inflammatory cytokines and improved the survival rate in SIRS model mice. Our findings indicated that KPE contributes to alleviating of a hyperinflammatory response.
Collapse
Affiliation(s)
- Momoko Ishida
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Chihiro Takekuni
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Kosuke Nishi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan
- Food and Health Sciences Research Center, Ehime University, Matsuyama, Ehime, 790-8566, Japan
| | - Takuya Sugahara
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan.
- Food and Health Sciences Research Center, Ehime University, Matsuyama, Ehime, 790-8566, Japan.
| |
Collapse
|
15
|
Okuyama S, Kanzaki T, Kotani Y, Katoh M, Sawamoto A, Nakajima M, Furukawa Y. Continual Treatment with the Peels of Citrus kawachiensis (Kawachi Bankan) Protects against Dopaminergic Neuronal Cell Death in a Lipopolysaccharide-Induced Model of Parkinson's Disease. J Nutr Sci Vitaminol (Tokyo) 2019; 65:205-208. [PMID: 31061292 DOI: 10.3177/jnsv.65.205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Our previous study showed that the subcutaneous administration of auraptene (AUR) suppresses inflammatory responses including the hyperactivation of microglia in the substantia nigra (SN) of the midbrain of lipopolysaccharide-induced Parkinson's disease (PD)-like mice, as well as inhibits dopaminergic neuronal cell death in this region. We also showed that the oral administration of the dried peel powder of Citrus kawachiensis, which contains relatively high amounts of AUR, suppresses inflammatory responses including the hyperactivation of microglia in the systemically inflamed brain. In the present study we showed that the oral administration of this dried peel powder successfully suppressed microglial activation and protected against dopaminergic neuronal cell death in the SN, suggesting its potential as a neuroprotective agent for the treatment of patients with PD.
Collapse
Affiliation(s)
- Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Tomoko Kanzaki
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Yoshimi Kotani
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Mako Katoh
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Atsushi Sawamoto
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Yoshiko Furukawa
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| |
Collapse
|
16
|
OKUYAMA S, KATOH M, KANZAKI T, KOTANI Y, AMAKURA Y, YOSHIMURA M, FUKUDA N, TAMAI T, SAWAMOTO A, NAKAJIMA M, FURUKAWA Y. Auraptene/Naringin-Rich Fruit Juice of Citrus kawachiensis (Kawachi Bankan) Prevents Ischemia-Induced Neuronal Cell Death in Mouse Brain through Anti-Inflammatory Responses. J Nutr Sci Vitaminol (Tokyo) 2019; 65:66-71. [DOI: 10.3177/jnsv.65.66] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Satoshi OKUYAMA
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Mako KATOH
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Tomoko KANZAKI
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Yoshimi KOTANI
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Yoshiaki AMAKURA
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University
| | - Morio YOSHIMURA
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University
| | | | | | - Atsushi SAWAMOTO
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Mitsunari NAKAJIMA
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Yoshiko FURUKAWA
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| |
Collapse
|
17
|
Haramiishi R, Yoshimura M, Okuyama S, Fukuda N, Tamai T, Nakajima M, Furukawa Y, Amakura Y. Effects of Production-line Squeezing Techniques and Heat Treatment on Functional Components of <i>Citrus kawachiensis</i> (Kawachi bankan) Fruits. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2019. [DOI: 10.3136/fstr.25.809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Rie Haramiishi
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University
| | - Morio Yoshimura
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University
| | - Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | | | | | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Yoshiko Furukawa
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Yoshiaki Amakura
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University
| |
Collapse
|
18
|
Kawabata A, Van Hung T, Nagata Y, Fukuda N, Suzuki T. Citrus kawachiensis Peel Powder Reduces Intestinal Barrier Defects and Inflammation in Colitic Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10991-10999. [PMID: 30277770 DOI: 10.1021/acs.jafc.8b03511] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The anti-inflammatory effect of Citrus kawachiensis peel powder was examined in a murine model of dextran sodium sulfate (DSS)-induced colitic mice. In addition to the whole powder, its ethanol extract rich in polyphenolic compounds and ethanol extraction residue rich in dietary fibers were used. The whole powder ameliorated the DSS-induced body weight loss (body weight changes on day 9, Control 108 ± 2, DSS 91 ± 4, DSS+whole peel powder 106 ± 1%, p < 0.05), colon shortening (colon length, Control 5.0 ± 0.1, DSS 3.9 ± 0.1, DSS+whole peel powder 4.7 ± 0.1 cm, p < 0.05), increased expression of pro-inflammatory cytokines (e.g., TNF-α, Control 1.0 ± 0.1, DSS 22.2 ± 5.8, DSS+whole peel powder 4.3 ± 1.5 arbitrary unit, p < 0.05), and decreased expression of colonic tight junctions (TJs) (e.g., occludin, Control 1.00 ± 0.07, DSS 0.21 ± 0.07, DSS+whole peel powder 0.70 ± 0.06 arbitrary unit, p < 0.05). The resolution of abnormalities barring the decreased expression of zonula occludens-2, junctional adhesion molecule-A, and claudin-7 by the extraction residue was comparable to that achieved using the powder (body weight change 107 ± 1%; colon length 4.7 ± 0.1 cm; TNF-α 4.1 ± 0.7; occludin 0.58 ± 0.06 arbitrary unit, p < 0.05). The ethanol extract alone did not have any influence on these abnormalities (body weight change 94 ± 2%; colon length 4.1 ± 0.1 cm; TNF-α 40.5 ± 9.0 arbitrary unit; occludin 0.18 ± 0.02 arbitrary unit, p < 0.05). The powder and ethanol extraction residue, but not ethanol extract, increased fecal acetic acid concentration (Control 4.9 ± 0.6, DSS 5.0 ± 0.9, DSS+whole peel powder 8.8 ± 1.8, DSS+ethanol extract 5.3 ± 0.8, DSS+ethanol extraction residue 12.5 ± 1.1 mmol/L, p < 0.05). Taken together, DFs in the ethanol extraction residue largely contributed to the peel powder-mediated reduction of TJ barrier defect and inflammation in colitic mice.
Collapse
Affiliation(s)
- Ayami Kawabata
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science , Hiroshima University , 1-4-4 Kagamiyama , Higashi-Hiroshima 739-8528 , Japan
| | - Tran Van Hung
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science , Hiroshima University , 1-4-4 Kagamiyama , Higashi-Hiroshima 739-8528 , Japan
- Ho Chi Minh University of Food Industry , 140 Le Trong Tan, Tay Thanh Ward, Tan Phu District , Ho Chi Minh 700000 , Vietnam
| | - Yoko Nagata
- Food Industrial Technolegy Center , Ehime Institute of Industrial Technology , 487-2, Kume-Kubotamachi , Matsuyama 791-1101 , Japan
| | - Naohiro Fukuda
- Department of Planning and Development , Ehime Institute of Industrial Technology , 487-2, Kume-Kubotamachi , Matsuyama 791-1101 , Japan
| | - Takuya Suzuki
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science , Hiroshima University , 1-4-4 Kagamiyama , Higashi-Hiroshima 739-8528 , Japan
| |
Collapse
|
19
|
Okuyama S, Shinoka W, Nakamura K, Kotani M, Sawamoto A, Sugawara K, Sudo M, Nakajima M, Furukawa Y. Suppressive effects of the peel of Citrus kawachiensis (Kawachi Bankan) on astroglial activation, tau phosphorylation, and inhibition of neurogenesis in the hippocampus of type 2 diabetic db/db mice. Biosci Biotechnol Biochem 2018; 82:1384-1395. [DOI: 10.1080/09168451.2018.1469396] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
ABSTRACT
We previously reported that the dried peel powder of Citrus kawachiensis exerted anti-inflammatory effects in the brain in several animal models. Hyperglycemia induces inflammation and oxidative stress and causes massive damage in the brain; therefore, we herein examined the anti-inflammatory and other effects of the dried peel powder of C. kawachiensis in the streptozotocin-induced hyperglycemia mice model and in the type 2 diabetic db/db mice model. The C. kawachiensis administration inhibited microglial activation in the hippocampus in the streptozotocin-injected mice. Moreover, The C. kawachiensis treatment inhibited astroglial activation in the hippocampus and the hyperphosphorylation of tau at 231 of threonine and 396 of serine in hippocampal neurons, and also relieved the suppression of neurogenesis in the dentate gyrus of the hippocampus in the db/db mice. It was suggested that the dried peel powder of C. kawachiensis exerts anti-inflammatory and neuroprotective effects in the brain.
Collapse
Affiliation(s)
- Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University , Matsuyama, Japan
| | - Wakana Shinoka
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University , Matsuyama, Japan
| | - Kumi Nakamura
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University , Matsuyama, Japan
| | - Maho Kotani
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University , Matsuyama, Japan
| | - Atsushi Sawamoto
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University , Matsuyama, Japan
| | - Kuniaki Sugawara
- Department of Planning and Development, Ehime Beverage Inc. , Matsuyama, Japan
| | - Masahiko Sudo
- Department of Planning and Development, Ehime Beverage Inc. , Matsuyama, Japan
| | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University , Matsuyama, Japan
| | - Yoshiko Furukawa
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University , Matsuyama, Japan
| |
Collapse
|
20
|
Okuyama S, Yamamoto K, Mori H, Sawamoto A, Amakura Y, Yoshimura M, Tamanaha A, Ohkubo Y, Sugawara K, Sudo M, Nakajima M, Furukawa Y. Neuroprotective effect of Citrus kawachiensis (Kawachi Bankan) peels, a rich source of naringin, against global cerebral ischemia/reperfusion injury in mice. Biosci Biotechnol Biochem 2018; 82:1216-1224. [DOI: 10.1080/09168451.2018.1456320] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Abstract
Cerebral ischemia/reperfusion is known to induce the generation of reactive oxygen species and inflammatory responses. Numerous studies have demonstrated that naringin (NGIN) has anti-oxidant and anti-inflammatory properties. We previously reported that Citrus kawachiensis contains a large quantity of NGIN in its peel. In the present study, we orally (p.o.) administered dried peel powder of C. kawachiensis to mice of a transient global ischemia model and found in the hippocampus region that it 1) suppressed neuronal cell death, 2) reversed the reduction in the level of phosphorylated calcium-calmodulin-dependent protein kinase II, 3) had the tendency to reverse the reduction in the level of glutathione, and 4) blocked excessive activation of microglia and astrocytes. These results suggested that the dried peel powder of C. kawachiensis had a neuroprotective effect against ischemic brain via anti-oxidative and anti-inflammatory effects. We also showed that these effects of the dried peel powder were more powerful than those obtained with a comparable amount of NGIN alone.
Collapse
Affiliation(s)
- Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University , Matsuyama, Japan
| | - Kana Yamamoto
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University , Matsuyama, Japan
| | - Hirotomo Mori
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University , Matsuyama, Japan
| | - Atsushi Sawamoto
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University , Matsuyama, Japan
| | - Yoshiaki Amakura
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University , Matsuyama, Japan
| | - Morio Yoshimura
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University , Matsuyama, Japan
| | - Arisa Tamanaha
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University , Matsuyama, Japan
| | - Yuu Ohkubo
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University , Matsuyama, Japan
| | - Kuniaki Sugawara
- Department of Planning and Development, Ehime Beverage Inc. , Matsuyama, Japan
| | - Masahiko Sudo
- Department of Planning and Development, Ehime Beverage Inc. , Matsuyama, Japan
| | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University , Matsuyama, Japan
| | - Yoshiko Furukawa
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University , Matsuyama, Japan
| |
Collapse
|
21
|
Okuyama S, Kotani Y, Yamamoto K, Sawamoto A, Sugawara K, Sudo M, Ohkubo Y, Tamanaha A, Nakajima M, Furukawa Y. The peel of Citrus kawachiensis (kawachi bankan) ameliorates microglial activation, tau hyper-phosphorylation, and suppression of neurogenesis in the hippocampus of senescence-accelerated mice. Biosci Biotechnol Biochem 2018; 82:869-878. [PMID: 29424280 DOI: 10.1080/09168451.2018.1433993] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We previously reported that the dried peel powder of Citrus kawachiensis, one of the citrus products of Ehime, Japan, exerted anti-inflammatory effects in the brain of a lipopolysaccharide-injected systemic inflammation animal model. Inflammation is one of the main mechanisms underlying aging in the brain; therefore, we herein evaluated the anti-inflammatory and other effects of the dried peel powder of C. kawachiensis in the senescence-accelerated mouse-prone 8 (SAMP8) model. The C. kawachiensis treatment inhibited microglial activation in the hippocampus, the hyper-phosphorylation of tau at 231 of threonine in hippocampal neurons, and ameliorated the suppression of neurogenesis in the dentate gyrus of the hippocampus. These results suggest that the dried peel powder of C. kawachiensis exert anti-inflammatory and neuroprotective effects.
Collapse
Affiliation(s)
- Satoshi Okuyama
- a Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences , Matsuyama University , Matsuyama , Japan
| | - Yoshimi Kotani
- a Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences , Matsuyama University , Matsuyama , Japan
| | - Kana Yamamoto
- a Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences , Matsuyama University , Matsuyama , Japan
| | - Atsushi Sawamoto
- a Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences , Matsuyama University , Matsuyama , Japan
| | - Kuniaki Sugawara
- b Department of Planning and Development , Ehime Beverage Inc ., Matsuyama , Japan
| | - Masahiko Sudo
- b Department of Planning and Development , Ehime Beverage Inc ., Matsuyama , Japan
| | - Yuu Ohkubo
- a Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences , Matsuyama University , Matsuyama , Japan
| | - Arisa Tamanaha
- a Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences , Matsuyama University , Matsuyama , Japan
| | - Mitsunari Nakajima
- a Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences , Matsuyama University , Matsuyama , Japan
| | - Yoshiko Furukawa
- a Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences , Matsuyama University , Matsuyama , Japan
| |
Collapse
|
22
|
Gargouri B, Ammar S, Verardo V, Besbes S, Segura-Carretero A, Bouaziz M. RP-HPLC–DAD-ESI-TOF–MS based strategy for new insights into the qualitative and quantitative phenolic profile in Tunisian industrial Citrus Limon by-product and their antioxidant activity. Eur Food Res Technol 2017. [DOI: 10.1007/s00217-017-2904-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Nakajima M, Ogawa M, Amakura Y, Yoshimura M, Okuyama S, Furukawa Y. 3,5,6,7,8,3',4'-Heptamethoxyflavone reduces interleukin-4 production in the spleen cells of mice. Biomed Res 2016; 37:95-9. [PMID: 27108879 DOI: 10.2220/biomedres.37.95] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In our previous studies, we reported anti-inflammatory functions of 3,5,6,7,8,3',4'-heptamethoxyflavone (HMF), which is a polymethoxyflavone rich in various citrus fruits. Here, we investigated the immunomodulatory function of HMF in mice. HMF administration (50 mg/kg, i.p., 2 times/week) tended to reduce the production of antigen-specific IgE induced by ovalbumin in combination with aluminum hydroxide gel. Fluorescence-activated cell sorting analysis revealed the reduction of interleukin-4(+)CD4(+) spleen cells and sustained presence of interferon-γ(+)CD4(+) spleen cells in mice administered HMF, whereas the ratio of CD4(+)CD8(-) versus CD4(-)CD8(+) spleen cells was not affected. Interleukin-4 release from CD3/CD28-stimulated spleen cells of mice administered HMF was reduced, whereas interferon-γ release was not affected. These results suggest that HMF has an immunomodulatory function via reduced interleukin-4 expression.
Collapse
Affiliation(s)
- Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, School of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University
| | | | | | | | | | | |
Collapse
|
24
|
Okuyama S. Effects of Bioactive Substances from Citrus on the Central Nervous System and Utilization as Food Material. YAKUGAKU ZASSHI 2015; 135:1153-9. [DOI: 10.1248/yakushi.15-00205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Auraptene in the Peels of Citrus kawachiensis (Kawachi Bankan) Ameliorates Lipopolysaccharide-Induced Inflammation in the Mouse Brain. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:408503. [PMID: 24955102 PMCID: PMC4052083 DOI: 10.1155/2014/408503] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 01/25/2014] [Accepted: 01/27/2014] [Indexed: 11/17/2022]
Abstract
Examination of the dried peel powder of Citrus kawachiensis, one of the citrus products of Ehime, Japan, showed that it contained naringin (NGIN; 44.02 ± 0.491 mg/g), narirutin (NRTN; 4.46 ± 0.0563 mg/g), auraptene (AUR; 4.07 ± 0.033 mg/g), and 3,5,6,7,8,3′,4′-heptamethoxyflavone (HMF; 0.27 ± 0.0039 mg/g). When this dried peel powder was orally preadministered at the dose of 1.2 or 2.4 g/kg/day for 7 days into lipopolysaccharide- (LPS-) injected mice, an animal model of systemic inflammation, it suppressed (1) LPS-induced loss of body weight and abnormal behavior in the open field, (2) LPS-induced activation of microglia and astrocytes in the hippocampus, and (3) LPS-induced expression of cyclooxygenase (COX)-2, which were coexpressed in astrocytes of these mice. When NGIN or AUR was preadministered to LPS-injected mice at an amount similar to that in the peel powder, AUR, but not NGIN, had the ability to suppress the LPS-induced inflammation in the brain of these model mice. The dried powder of flavedo tissue (the outer colored layer of the mesocarp of a citrus fruit) and juice, which contained sufficient amounts of AUR, also had anti-inflammatory effect. These results suggest that AUR was the main ingredient responsible for the anti-inflammatory property of the dried peels of C. kawachiensis.
Collapse
|