1
|
Jin S, Xiong Y, Zhang W, Qiao H, Wu Y, Jiang S, Fu H. Identification of Candidate Male-Reproduction-Related Genes from the Testis and Androgenic Gland of Macrobrachium nipponense, Regulated by PDHE1, through Transcriptome Profiling Analysis. Int J Mol Sci 2024; 25:1940. [PMID: 38339218 PMCID: PMC10856083 DOI: 10.3390/ijms25031940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
The previous publication identified that pyruvate dehydrogenase E1 (PDHE1) positively regulated the process of male reproduction in M. nipponense through affecting the expressions of insulin-like androgenic gland hormone. The present study aimed to identify the potential male-reproduction-related genes that were regulated by PDHE1 through performing the transcriptome profiling analysis in the testis and androgenic gland after the knockdown of the expressions of PDHE1 by the injection of dsPDHE1. Both RNA-Seq and qPCR analysis identified the significant decreases in PDHE1 expressions in the testis and androgenic gland in dsPDHE1-injected prawns compared to those in dsGFP-injected prawns, indicating the efficiency of dsPDHE1 in the present study. Transcriptome profiling analysis identified 56 and 127 differentially expressed genes (DEGs) in the testis and androgenic gland, respectively. KEGG analysis revealed that the energy-metabolism-related pathways represented the main enriched metabolic pathways of DEGs in both the testis and androgenic gland, including pyruvate metabolism, the Citrate cycle (TCA cycle), Glycolysis/Gluconeogenesis, and the Glucagon signaling pathway. Thus, it is predicted that these metabolic pathways and the DEGs from these metabolic pathways regulated by PDHE1 may be involved in the regulation of male reproduction in M. nipponense. Furthermore, four genes were found to be differentially expressed in both the testis and androgenic gland, of which ribosomal protein S3 was down-regulated and uncharacterized protein LOC113829596 was up-regulated in both the testis and androgenic gland in dsPDHE1-injected prawns. The present study provided valuable evidence for the establishment of an artificial technique to regulate the process of male reproduction in M. nipponense.
Collapse
Affiliation(s)
- Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Y.X.); (W.Z.); (H.Q.); (Y.W.); (S.J.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Y.X.); (W.Z.); (H.Q.); (Y.W.); (S.J.)
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Y.X.); (W.Z.); (H.Q.); (Y.W.); (S.J.)
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Y.X.); (W.Z.); (H.Q.); (Y.W.); (S.J.)
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Y.X.); (W.Z.); (H.Q.); (Y.W.); (S.J.)
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Y.X.); (W.Z.); (H.Q.); (Y.W.); (S.J.)
| | - Hongtuo Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Y.X.); (W.Z.); (H.Q.); (Y.W.); (S.J.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| |
Collapse
|
2
|
Kintsu H, Kodama K, Horiguchi T. Spatial distributions of and species differences in 90Sr accumulation in marine fishes from the Fukushima coastal region. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 256:107055. [PMID: 36356465 DOI: 10.1016/j.jenvrad.2022.107055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/16/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Large amounts of radionuclides were released into the ocean during the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. One of the released radionuclides, 90Sr, tends to accumulate in bone, and could conceivably have long-term negative impacts on fishes. Here, we investigated 90Sr radioactivity concentrations in the vertebrae of demersal fishes collected off the coast of Fukushima Prefecture in January and July 2014. High 90Sr radioactivity concentrations were detected in fish collected from central Fukushima (offshore of the FDNPP) and southern Fukushima (offshore of Iwaki City), but were almost hardly detected in northern Fukushima (offshore of Soma City). Additionally, 90Sr radioactivity concentrations were higher among rays (Okamejei kenojei and Hemitrygon akajei: from 1.1 ± 0.5 to 103.3 ± 15.1 mBq/g Ca) and soles (Cynoglossus joyneri and Paraplagusia japonica: from 18.5 ± 2.8 to 52.8 ± 11.3 mBq/g Ca) than among other species. Vertebral stable Sr/Ca ratios also differed by fish species. Ca concentrations were relatively constant among species, but Sr concentrations were higher among elasmobranchs and soles, indicating that differences in Sr/Ca might be related to differences in 90Sr accumulation in fish vertebrae.
Collapse
Affiliation(s)
- Hiroyuki Kintsu
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Keita Kodama
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Toshihiro Horiguchi
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan.
| |
Collapse
|
3
|
Loeppky AR, Belding LD, Quijada-Rodriguez AR, Morgan JD, Pracheil BM, Chakoumakos BC, Anderson WG. Influence of ontogenetic development, temperature, and pCO 2 on otolith calcium carbonate polymorph composition in sturgeons. Sci Rep 2021; 11:13878. [PMID: 34230512 PMCID: PMC8260795 DOI: 10.1038/s41598-021-93197-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Changes to calcium carbonate (CaCO3) biomineralization in aquatic organisms is among the many predicted effects of climate change. Because otolith (hearing/orientation structures in fish) CaCO3 precipitation and polymorph composition are controlled by genetic and environmental factors, climate change may be predicted to affect the phenotypic plasticity of otoliths. We examined precipitation of otolith polymorphs (aragonite, vaterite, calcite) during early life history in two species of sturgeon, Lake Sturgeon, (Acipenser fulvescens) and White Sturgeon (A. transmontanus), using quantitative X-ray microdiffraction. Both species showed similar fluctuations in otolith polymorphs with a significant shift in the proportions of vaterite and aragonite in sagittal otoliths coinciding with the transition to fully exogenous feeding. We also examined the effect of the environment on otolith morphology and polymorph composition during early life history in Lake Sturgeon larvae reared in varying temperature (16/22 °C) and pCO2 (1000/2500 µatm) environments for 5 months. Fish raised in elevated temperature had significantly increased otolith size and precipitation of large single calcite crystals. Interestingly, pCO2 had no statistically significant effect on size or polymorph composition of otoliths despite blood pH exhibiting a mild alkalosis, which is contrary to what has been observed in several studies on marine fishes. These results suggest climate change may influence otolith polymorph composition during early life history in Lake Sturgeon.
Collapse
Affiliation(s)
- Alison R Loeppky
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Luke D Belding
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | - John D Morgan
- Department of Resource Management and Protection, Vancouver Island University, Nanaimo, BC, Canada
| | - Brenda M Pracheil
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, Canada
| | - Bryan C Chakoumakos
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, Canada
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
4
|
Kintsu H, Nishimura R, Negishi L, Kuriyama I, Tsuchihashi Y, Zhu L, Nagata K, Suzuki M. Identification of methionine -rich insoluble proteins in the shell of the pearl oyster, Pinctada fucata. Sci Rep 2020; 10:18335. [PMID: 33110152 PMCID: PMC7591529 DOI: 10.1038/s41598-020-75444-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/12/2020] [Indexed: 11/30/2022] Open
Abstract
The molluscan shell is a biomineral that comprises calcium carbonate and organic matrices controlling the crystal growth of calcium carbonate. The main components of organic matrices are insoluble chitin and proteins. Various kinds of proteins have been identified by solubilizing them with reagents, such as acid or detergent. However, insoluble proteins remained due to the formation of a solid complex with chitin. Herein, we identified these proteins from the nacreous layer, prismatic layer, and hinge ligament of Pinctada fucata using mercaptoethanol and trypsin. Most identified proteins contained a methionine-rich region in common. We focused on one of these proteins, NU-5, to examine the function in shell formation. Gene expression analysis of NU-5 showed that NU-5 was highly expressed in the mantle, and a knockdown of NU-5 prevented the formation of aragonite tablets in the nacre, which suggested that NU-5 was required for nacre formation. Dynamic light scattering and circular dichroism revealed that recombinant NU-5 had aggregation activity and changed its secondary structure in the presence of calcium ions. These findings suggest that insoluble proteins containing methionine-rich regions may be important for scaffold formation, which is an initial stage of biomineral formation.
Collapse
Affiliation(s)
- Hiroyuki Kintsu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba-city, Ibaraki, 305-8506, Japan
| | - Ryo Nishimura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Lumi Negishi
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Isao Kuriyama
- Mie Prefecture Fisheries Research Institute, 3564-3 Hamajima, Hamajima-cho, Shima-city, Mie, 517-0404, Japan
| | - Yasushi Tsuchihashi
- Mie Prefecture Fisheries Research Institute, 3564-3 Hamajima, Hamajima-cho, Shima-city, Mie, 517-0404, Japan
| | - Lingxiao Zhu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
5
|
Ishikawa A, Shimizu K, Isowa Y, Takeuchi T, Zhao R, Kito K, Fujie M, Satoh N, Endo K. Functional shell matrix proteins tentatively identified by asymmetric snail shell morphology. Sci Rep 2020; 10:9768. [PMID: 32555253 PMCID: PMC7299971 DOI: 10.1038/s41598-020-66021-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 05/13/2020] [Indexed: 12/21/2022] Open
Abstract
Molluscan shell matrix proteins (SMPs) are essential in biomineralization. Here, we identify potentially important SMPs by exploiting the asymmetric shell growth in snail, Lymnaea stagnalis. Asymmetric shells require bilaterally asymmetric expression of SMP genes. We examined expression levels of 35,951 transcripts expressed in the left and right sides of mantle tissue of the pond snail, Lymnaea stagnalis. This transcriptome dataset was used to identify 207 SMPs by LC-MS/MS. 32 of the 207 SMP genes show asymmetric expression patterns, which were further verified for 4 of the 32 SMPs using quantitative PCR analysis. Among asymmetrically expressed SMPs in dextral snails, those that are more highly expressed on the left side than the right side are 3 times more abundant than those that are more highly expressed on the right than the left, suggesting potentially inhibitory roles of SMPs in shell formation. The 32 SMPs thus identified have distinctive features, such as conserved domains and low complexity regions, which may be essential in biomineralization.
Collapse
Affiliation(s)
- Akito Ishikawa
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan.
| | - Keisuke Shimizu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Yukinobu Isowa
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, 429-63 Sugashima, Toba, Mie, 517-0004, Japan
| | - Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Ran Zhao
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Keiji Kito
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama, Kawasaki, Kanagawa, 214-8571, Japan
| | - Manabu Fujie
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Kazuyoshi Endo
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
6
|
Blueprints for the Next Generation of Bioinspired and Biomimetic Mineralised Composites for Bone Regeneration. Mar Drugs 2018; 16:md16080288. [PMID: 30127281 PMCID: PMC6117730 DOI: 10.3390/md16080288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/25/2022] Open
Abstract
Coccolithophores are unicellular marine phytoplankton, which produce intricate, tightly regulated, exoskeleton calcite structures. The formation of biogenic calcite occurs either intracellularly, forming ‘wheel-like’ calcite plates, or extracellularly, forming ‘tiled-like’ plates known as coccoliths. Secreted coccoliths then self-assemble into multiple layers to form the coccosphere, creating a protective wall around the organism. The cell wall hosts a variety of unique species-specific inorganic morphologies that cannot be replicated synthetically. Although biomineralisation has been extensively studied, it is still not fully understood. It is becoming more apparent that biologically controlled mineralisation is still an elusive goal. A key question to address is how nature goes from basic building blocks to the ultrafine, highly organised structures found in coccolithophores. A better understanding of coccolithophore biomineralisation will offer new insight into biomimetic and bioinspired synthesis of advanced, functionalised materials for bone tissue regeneration. The purpose of this review is to spark new interest in biomineralisation and gain new insight into coccolithophores from a material science perspective, drawing on existing knowledge from taxonomists, geologists, palaeontologists and phycologists.
Collapse
|
7
|
Fungal-type carbohydrate binding modules from the coccolithophore Emiliania huxleyi show binding affinity to cellulose and chitin. PLoS One 2018; 13:e0197875. [PMID: 29782536 PMCID: PMC5962083 DOI: 10.1371/journal.pone.0197875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/09/2018] [Indexed: 12/21/2022] Open
Abstract
Six fungal-type cellulose binding domains were found in the genome of the coccolithophore Emiliania huxleyi and cloned and expressed in Escherichia coli. Sequence comparison indicate high similarity to fungal cellulose binding domains, raising the question of why these domains exist in coccolithophores. The proteins were tested for binding with cellulose and chitin as ligands, which resulted in the identification of two functional carbohydrate binding modules: EHUX2 and EHUX4. Compared to benchmark fungal cellulose binding domain Cel7A-CBM1 from Trichoderma reesei, these proteins showed slightly lower binding to birch and bacterial cellulose, but were more efficient chitin binders. Finally, a set of cellulose binding domains was created based on the shuffling of one well-functioning and one non-functional domain. These were characterized in order to get more information of the binding domain’s sequence–function relationship, indicating characteristic differences between the molecular basis of cellulose versus chitin recognition. As previous reports have showed the presence of cellulose in coccoliths and here we find functional cellulose binding modules, a possible connection is discussed.
Collapse
|
8
|
He Y, Sun Y, Zhang X. Noncoding miRNAs bridge virus infection and host autophagy in shrimp
in vivo. FASEB J 2017; 31:2854-2868. [DOI: 10.1096/fj.201601141rr] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/06/2017] [Indexed: 12/09/2022]
Affiliation(s)
- Yaodong He
- College of Life Sciences and Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyZhejiang UniversityHangzhou China
| | - Yuechao Sun
- College of Life Sciences and Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyZhejiang UniversityHangzhou China
| | - Xiaobo Zhang
- College of Life Sciences and Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyZhejiang UniversityHangzhou China
| |
Collapse
|
9
|
Yonezawa M, Sakuda S, Yoshimura E, Suzuki M. Molecular cloning and functional analysis of chitinases in the fresh water snail, Lymnaea stagnalis. J Struct Biol 2016; 196:107-118. [PMID: 26947209 DOI: 10.1016/j.jsb.2016.02.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 02/12/2016] [Accepted: 02/29/2016] [Indexed: 01/23/2023]
Abstract
Molluscan shells, consisting of calcium carbonate, are typical examples of biominerals. The small amount of organic matrices containing chitin and proteins in molluscan shells regulates calcification to produce elaborate microstructures. The shells of gastropods have a spiral shape around a central axis. The shell thickness on the internal side of the spiral becomes thinner than that on the outer side of the spiral during the growth to expand the interior space. These observations suggest that a dissolution process works as a remodeling mechanism to change shell shape in molluscan shells. To reveal the dissolution mechanism involved in the remodeling of gastropod spiral shells, we focused on chitinases in the fresh water snail Lymnaea stagnalis. Chitinase activity was observed in the acetic acid-soluble fraction of the shell and in the buffer extract from the mantle. Allosamidin, a specific inhibitor of family 18 chitinases, inhibited the chitinase activity of both fractions completely. Homology cloning and transcriptome analyses of the mantle revealed five genes (chi-I, chi-II, chi-III, chi-IV, and chi-V) encoding family 18 chitinases. All chitinases were expressed in the mantle and in other tissues suggesting that chitinases in the mantle have multiple-functions. Treatment with commercially available chitinase obtained from Trichoderma viride altered the shell microstructure of L. stagnalis. Larvae of L. stagnalis cultured in allosamidin solution had a thinner organic layer on the shell surface. These results suggest that the chitinase activities in the shell and mantle are probably associated with the shell formation process.
Collapse
Affiliation(s)
- Mai Yonezawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shohei Sakuda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Etsuro Yoshimura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
10
|
Mille T, Mahe K, Villanueva MC, De Pontual H, Ernande B. Sagittal otolith morphogenesis asymmetry in marine fishes. JOURNAL OF FISH BIOLOGY 2015; 87:646-663. [PMID: 26255775 DOI: 10.1111/jfb.12746] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 06/11/2015] [Indexed: 06/04/2023]
Abstract
This study investigated and compared asymmetry in sagittal otolith shape and length between left and right inner ears in four roundfish and four flatfish species of commercial interest. For each species, the effects of ontogenetic changes (individual age and total body length), sexual dimorphism (individual sex) and the otolith's location on the right or left side of the head, on the shape and length of paired otoliths (between 143 and 702 pairs according to species) were evaluated. Ontogenetic changes in otolith shape and length were observed for all species. Sexual dimorphism, either in otolith shape and length or in their ontogenetic changes, was detected for half of the species, be they round or flat. Significant directional asymmetry in otolith shape and length was detected in one roundfish species each, but its inconsistency across species and its small average amplitude (6·17% for shape and 1·99% for length) suggested that it has barely any biological relevance. Significant directional asymmetry in otolith shape and length was found for all flatfish species except otolith length for one species. Its average amplitude varied between 2·06 and 17·50% for shape and between 0·00 and 11·83% for length and increased significantly throughout ontogeny for two species, one dextral and one sinistral. The longer (length) and rounder otolith (shape) appeared to be always on the blind side whatever the species. These results suggest differential biomineralization between the blind and ocular inner ears in flatfish species that could result from perturbations of the proximal-distal gradient of otolith precursors in the endolymph and the otolith position relative to the geometry of the saccular epithelium due to body morphology asymmetry and lateralized behaviour. The fact that asymmetry never exceeded 18% even at the individual level suggests an evolutionary canalization of otolith shape symmetry to avoid negative effects on fish hearing and balance. Technically, asymmetry should be accounted for in future studies based on otolith shape.
Collapse
Affiliation(s)
- T Mille
- IFREMER, Centre Manche Mer du Nord, Laboratoire ressources halieutiques, BP 699, Boulogne-sur-mer 62321, France
| | - K Mahe
- IFREMER, Centre Manche Mer du Nord, Laboratoire ressources halieutiques, BP 699, Boulogne-sur-mer 62321, France
| | - M C Villanueva
- IFREMER, Centre de Bretagne, Sciences et Technologies Halieutiques, Z.I. Pointe du Diable, CS 10070, Plouzané 29280, France
| | - H De Pontual
- IFREMER, Centre de Bretagne, Sciences et Technologies Halieutiques, Z.I. Pointe du Diable, CS 10070, Plouzané 29280, France
| | - B Ernande
- IFREMER, Centre Manche Mer du Nord, Laboratoire ressources halieutiques, BP 699, Boulogne-sur-mer 62321, France
| |
Collapse
|
11
|
Suzuki M, Kogure T, Sakuda S, Nagasawa H. Identification of ligament intra-crystalline peptide (LICP) from the hinge ligament of the bivalve, Pinctada fucata. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:153-161. [PMID: 25315163 DOI: 10.1007/s10126-014-9603-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/28/2014] [Indexed: 06/04/2023]
Abstract
The hinge ligament of the bivalve is an important hard tissue that functions to open and close the shells. The ligament contains a fibrous structure consisting of aragonite crystals surrounded by dense organic matrices. Although many matrix proteins have been identified from various shell microstructures in previous works, ligament-specific matrix proteins have not yet been reported. In this study, in order to reveal the formation mechanism of the fibrous aragonite crystals in the ligament of Pinctada fucata, we identified a novel, small acidic peptide, named ligament intra-crystalline peptide (LICP), from the aragonite crystal of the ligament that had been pre-treated with sodium hypochlorite to remove the inter-crystalline organic matrices. LICP consists of 10 amino acid residues with N-terminal pyroglutamic acid. The result of cDNA cloning showed that the cDNA encodes another putative 10-residue peptide at the C-terminal end of LICP. LICP showed inhibitory activity on calcium carbonate precipitation, while the synthetic 10-residue peptide from the C-terminal sequence of proLICP did not. We also noted that the TEM and SEM observations of aragonite crystals formed by the in vitro crystallization experiment showed that LICP inhibited the growth of aragonite crystal to stop elongation in the c-axis direction. These results suggested that LICP has a role of regulating the formation of the aragonite crystals in the ligament.
Collapse
Affiliation(s)
- Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan,
| | | | | | | |
Collapse
|
12
|
Corbett Y, Häfner S. Crystal myth. Microbes Infect 2015; 17:169-72. [PMID: 25624268 DOI: 10.1016/j.micinf.2014.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 12/22/2014] [Indexed: 11/18/2022]
Affiliation(s)
| | - Sophia Häfner
- Univ. Paris Diderot, Sorbonne Paris Cité, UMR 7216 CNRS, Epigenetics and Cell Fate, 75013 Paris, France.
| |
Collapse
|
13
|
Hojo M, Omi A, Hamanaka G, Shindo K, Shimada A, Kondo M, Narita T, Kiyomoto M, Katsuyama Y, Ohnishi Y, Irie N, Takeda H. Unexpected link between polyketide synthase and calcium carbonate biomineralization. ZOOLOGICAL LETTERS 2015; 1:3. [PMID: 26605048 PMCID: PMC4604110 DOI: 10.1186/s40851-014-0001-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/15/2014] [Indexed: 06/05/2023]
Abstract
INTRODUCTION Calcium carbonate biominerals participate in diverse physiological functions. Despite intensive studies, little is known about how mineralization is initiated in organisms. RESULTS We analyzed the medaka spontaneous mutant, ha, defective in otolith (calcareous ear stone) formation. ha lacks a trigger for otolith mineralization, and the causative gene was found to encode polyketide synthase (pks), a multifunctional enzyme mainly found in bacteria, fungi, and plant. Subsequent experiments demonstrate that the products of medaka PKS, most likely polyketides or their derivatives, act as nucleation facilitators in otolith mineralization. The generality of this novel PKS function is supported by the essential role of echinoderm PKS in calcareous skeleton formation together with the presence of PKSs in a much wider range of animals from coral to vertebrates. CONCLUSION The present study first links PKS to biomineralization and provides a genetic cue for biogeochemistry of carbon and calcium cycles.
Collapse
Affiliation(s)
- Motoki Hojo
- />Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
- />Present address: Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24–1, Hyakunincho, Shinju-ku, Tokyo 169-0073 Japan
| | - Ai Omi
- />Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
- />Present address: Division of Molecular Pathology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022 Japan
| | - Gen Hamanaka
- />Tateyama Marine Laboratory, Marine and Coastal Research Center, Ochanomizu University, Kou-yatsu 11, Tateyama, Chiba 294-0301 Japan
| | - Kazutoshi Shindo
- />Department of Food and Nutrition, Japan Women’s University, 2-8-1, Mejirodai, Bunkyo-ku, Tokyo 112-8681 Japan
| | - Atsuko Shimada
- />Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Mariko Kondo
- />Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, 1024 Koajiro, Misaki, Miura, Kanagawa 238-0225 Japan
| | - Takanori Narita
- />Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
- />Present address: Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, 1866 Kameino, Fujisawa, Kanagawa 252-0880 Japan
| | - Masato Kiyomoto
- />Tateyama Marine Laboratory, Marine and Coastal Research Center, Ochanomizu University, Kou-yatsu 11, Tateyama, Chiba 294-0301 Japan
| | - Yohei Katsuyama
- />Department of Biotechnology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657 Japan
| | - Yasuo Ohnishi
- />Department of Biotechnology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657 Japan
| | - Naoki Irie
- />Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Hiroyuki Takeda
- />Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
| |
Collapse
|