1
|
Schwarz J, Schumacher K, Brameyer S, Jung K. Bacterial battle against acidity. FEMS Microbiol Rev 2022; 46:6652135. [PMID: 35906711 DOI: 10.1093/femsre/fuac037] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 01/09/2023] Open
Abstract
The Earth is home to environments characterized by low pH, including the gastrointestinal tract of vertebrates and large areas of acidic soil. Most bacteria are neutralophiles, but can survive fluctuations in pH. Herein, we review how Escherichia, Salmonella, Helicobacter, Brucella, and other acid-resistant Gram-negative bacteria adapt to acidic environments. We discuss the constitutive and inducible defense mechanisms that promote survival, including proton-consuming or ammonia-producing processes, cellular remodeling affecting membranes and chaperones, and chemotaxis. We provide insights into how Gram-negative bacteria sense environmental acidity using membrane-integrated and cytosolic pH sensors. Finally, we address in more detail the powerful proton-consuming decarboxylase systems by examining the phylogeny of their regulatory components and their collective functionality in a population.
Collapse
Affiliation(s)
- Julia Schwarz
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Kilian Schumacher
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Sophie Brameyer
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| |
Collapse
|
2
|
Chen X, Ma A, McDermaid A, Zhang H, Liu C, Cao H, Ma Q. RECTA: Regulon Identification Based on Comparative Genomics and Transcriptomics Analysis. Genes (Basel) 2018; 9:genes9060278. [PMID: 29849014 PMCID: PMC6027394 DOI: 10.3390/genes9060278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/19/2018] [Accepted: 05/25/2018] [Indexed: 11/16/2022] Open
Abstract
Regulons, which serve as co-regulated gene groups contributing to the transcriptional regulation of microbial genomes, have the potential to aid in understanding of underlying regulatory mechanisms. In this study, we designed a novel computational pipeline, regulon identification based on comparative genomics and transcriptomics analysis (RECTA), for regulon prediction related to the gene regulatory network under certain conditions. To demonstrate the effectiveness of this tool, we implemented RECTA on Lactococcus lactis MG1363 data to elucidate acid-response regulons. A total of 51 regulons were identified, 14 of which have computational-verified significance. Among these 14 regulons, five of them were computationally predicted to be connected with acid stress response. Validated by literature, 33 genes in Lactococcus lactis MG1363 were found to have orthologous genes which were associated with six regulons. An acid response related regulatory network was constructed, involving two trans-membrane proteins, eight regulons (llrA, llrC, hllA, ccpA, NHP6A, rcfB, regulons #8 and #39), nine functional modules, and 33 genes with orthologous genes known to be associated with acid stress. The predicted response pathways could serve as promising candidates for better acid tolerance engineering in Lactococcus lactis. Our RECTA pipeline provides an effective way to construct a reliable gene regulatory network through regulon elucidation, and has strong application power and can be effectively applied to other bacterial genomes where the elucidation of the transcriptional regulation network is needed.
Collapse
Affiliation(s)
- Xin Chen
- Center for Applied Mathematics, Tianjin University, Tianjin 300072, China.
| | - Anjun Ma
- Bioinformatics and Mathematical Biosciences Lab, Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57006, USA.
- Department of Mathematics and Statistics, South Dakota State University, Brookings, SD 57006, USA.
| | - Adam McDermaid
- Bioinformatics and Mathematical Biosciences Lab, Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57006, USA.
- Department of Mathematics and Statistics, South Dakota State University, Brookings, SD 57006, USA.
| | - Hanyuan Zhang
- College of Computer Science and Engineering, University of Nebraska Lincoln, Lincoln, NE 68588, USA.
| | - Chao Liu
- Shandong Provincial Hospital affiliated to Shandong University, Jinan 250021, China.
| | - Huansheng Cao
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Qin Ma
- Bioinformatics and Mathematical Biosciences Lab, Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57006, USA.
- Department of Mathematics and Statistics, South Dakota State University, Brookings, SD 57006, USA.
| |
Collapse
|
3
|
Kanauchi M, Nagata A, Kondo A. Accumulation of Hydroxyl Fatty Acid inLactobacillus sakeiY-20 Cells Cultivated under Stress Conditions and Expression of Fatty Acid Hydroxylase. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1080/03610470.2017.1402580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Makoto Kanauchi
- Department of Food Management, Miyagi University, 2-2-1 Hatatate, Taihaku-ku, Sendai, Miyagi, Japan
| | - Ayaka Nagata
- Department of Food Management, Miyagi University, 2-2-1 Hatatate, Taihaku-ku, Sendai, Miyagi, Japan
| | - Ayaka Kondo
- Department of Food Management, Miyagi University, 2-2-1 Hatatate, Taihaku-ku, Sendai, Miyagi, Japan
| |
Collapse
|
4
|
Toscano M, De Grandi R, Pastorelli L, Vecchi M, Drago L. A consumer's guide for probiotics: 10 golden rules for a correct use. Dig Liver Dis 2017; 49:1177-1184. [PMID: 28830747 DOI: 10.1016/j.dld.2017.07.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 02/08/2023]
Abstract
Probiotics are used all over the world as their beneficial effects on the human organism have been widely demonstrated. Certain probiotics can down-regulate production of pro-inflammatory cytokines and promote intestinal epithelial barrier functions, increasing an anti-inflammatory response and contributing to the host's overall health. The main mechanisms by which probiotic microorganisms can interact with the host are by modulating the immune system and the epithelial cell functions and interacting with intestinal gut microbiota. To date, hundreds of different microorganisms are used for the formulation of numerous probiotic products; therefore, it is very difficult to choose the best probiotic product for specific or more general needs. Therefore, physicians are getting more and more confused due to the high number of commercial products which are often lacking healthy effects on the host. Therefore, the aim of this paper is to demonstrate the main characteristics that probiotic microorganisms and products should possess to have a positive impact on the host's health. To this purpose, this review suggests "10 golden rules" or "commandments" that clinicians should follow to properly select the optimal probiotic product and avoid misidentifications, mislabelling and "pie in the sky" stories.
Collapse
Affiliation(s)
- Marco Toscano
- Laboratory of Clinical Microbiology, Department of Biomedical Science for Health, University of Milan, Milan, Italy
| | - Roberta De Grandi
- Laboratory of Clinical Microbiology, Department of Biomedical Science for Health, University of Milan, Milan, Italy
| | - Luca Pastorelli
- Department of Biomedical Science for Health, University of Milan, Milan, Italy; Gastroenterology and Gastrointestinal Endoscopy Unit, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Maurizio Vecchi
- Department of Biomedical Science for Health, University of Milan, Milan, Italy; Gastroenterology and Gastrointestinal Endoscopy Unit, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Lorenzo Drago
- Laboratory of Clinical Microbiology, Department of Biomedical Science for Health, University of Milan, Milan, Italy; Laboratory of Clinical-Chemistry and Microbiology, IRCCS Galeazzi Institute, University of Milan, Milan, Italy.
| |
Collapse
|
5
|
Uchiyama J, Kanesaki Y, Iwata N, Asakura R, Funamizu K, Tasaki R, Agatsuma M, Tahara H, Matsuhashi A, Yoshikawa H, Ogawa S, Ohta H. Genomic analysis of parallel-evolved cyanobacterium Synechocystis sp. PCC 6803 under acid stress. PHOTOSYNTHESIS RESEARCH 2015; 125:243-54. [PMID: 25736465 DOI: 10.1007/s11120-015-0111-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 02/25/2015] [Indexed: 05/06/2023]
Abstract
Experimental evolution is a powerful tool for clarifying phenotypic and genotypic changes responsible for adaptive evolution. In this study, we isolated acid-adapted Synechocystis sp. PCC 6803 (Synechocystis 6803) strains to identify genes involved in acid tolerance. Synechocystis 6803 is rarely found in habitants with pH < 5.75. The parent (P) strain was cultured in BG-11 at pH 6.0. We gradually lowered the pH of the medium from pH 6.0 to pH 5.5 over 3 months. Our adapted cells could grow in acid stress conditions at pH 5.5, whereas the parent cells could not. We performed whole-genome sequencing and compared the acid-adapted and P strains, thereby identifying 11 SNPs in the acid-adapted strains, including in Fo F1-ATPase. To determine whether the SNP genes responded to acid stress, we examined gene expression in the adapted strains using quantitative reverse-transcription polymerase chain reaction. sll0914, sll1496, sll0528, and sll1144 expressions increased under acid stress in the P strain, whereas sll0162, sll0163, slr0623, and slr0529 expressions decreased. There were no differences in the SNP genes expression levels between the P strain and two adapted strains, except for sll0528. These results suggest that SNPs in certain genes are involved in acid stress tolerance in Synechocystis 6803.
Collapse
Affiliation(s)
- Junji Uchiyama
- Research Center for RNA Science, Research Institute for Science and Technology, Tokyo University of Science, 2641, Yamasaki, Noda, Chiba, 278-8510, Japan,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Lund P, Tramonti A, De Biase D. Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol Rev 2014; 38:1091-125. [PMID: 24898062 DOI: 10.1111/1574-6976.12076] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 02/26/2014] [Accepted: 03/14/2014] [Indexed: 12/31/2022] Open
Abstract
As part of their life cycle, neutralophilic bacteria are often exposed to varying environmental stresses, among which fluctuations in pH are the most frequent. In particular, acid environments can be encountered in many situations from fermented food to the gastric compartment of the animal host. Herein, we review the current knowledge of the molecular mechanisms adopted by a range of Gram-positive and Gram-negative bacteria, mostly those affecting human health, for coping with acid stress. Because organic and inorganic acids have deleterious effects on the activity of the biological macromolecules to the point of significantly reducing growth and even threatening their viability, it is not unexpected that neutralophilic bacteria have evolved a number of different protective mechanisms, which provide them with an advantage in otherwise life-threatening conditions. The overall logic of these is to protect the cell from the deleterious effects of a harmful level of protons. Among the most favoured mechanisms are the pumping out of protons, production of ammonia and proton-consuming decarboxylation reactions, as well as modifications of the lipid content in the membrane. Several examples are provided to describe mechanisms adopted to sense the external acidic pH. Particular attention is paid to Escherichia coli extreme acid resistance mechanisms, the activity of which ensure survival and may be directly linked to virulence.
Collapse
Affiliation(s)
- Peter Lund
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | | | |
Collapse
|
7
|
Müller-Herbst S, Wüstner S, Mühlig A, Eder D, M. Fuchs T, Held C, Ehrenreich A, Scherer S. Identification of genes essential for anaerobic growth of Listeria monocytogenes. Microbiology (Reading) 2014; 160:752-765. [DOI: 10.1099/mic.0.075242-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The facultative anaerobic bacterium Listeria monocytogenes encounters microaerophilic or anaerobic conditions in various environments, e.g. in soil, in decaying plant material, in food products and in the host gut. To elucidate the adaptation of Listeria monocytogenes to variations in oxygen tension, global transcription analyses using DNA microarrays were performed. In total, 139 genes were found to be transcribed differently during aerobic and anaerobic growth; 111 genes were downregulated and 28 genes were upregulated anaerobically. The oxygen-dependent transcription of central metabolic genes is in agreement with results from earlier physiological studies. Of those genes more strongly expressed under lower oxygen tension, 20 were knocked out individually. Growth analysis of these knock out mutants did not indicate an essential function for the respective genes during anaerobiosis. However, even if not essential, transcriptional induction of several genes might optimize the bacterial fitness of Listeria monocytogenes in anaerobic niches, e.g. during colonization of the gut. For example, expression of the anaerobically upregulated gene lmo0355, encoding a fumarate reductase α chain, supported growth on 10 mM fumarate under anaerobic but not under aerobic growth conditions. Genes essential for anaerobic growth were identified by screening a mutant library. Eleven out of 1360 investigated mutants were sensitive to anaerobiosis. All 11 mutants were interrupted in the atp locus. These results were further confirmed by phenotypic analysis of respective in-frame deletion and complementation mutants, suggesting that the generation of a proton motive force via F1F0-ATPase is essential for anaerobic proliferation of Listeria monocytogenes.
Collapse
Affiliation(s)
- Stefanie Müller-Herbst
- Lehrstuhl für Mikrobielle Ökologie, Department Biowissenschaften, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
- Abteilung Mikrobiologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Technische Universität München, Freising, Germany
| | - Stefanie Wüstner
- Lehrstuhl für Mikrobielle Ökologie, Department Biowissenschaften, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Anna Mühlig
- Lehrstuhl für Mikrobielle Ökologie, Department Biowissenschaften, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Daniela Eder
- Abteilung Mikrobiologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Technische Universität München, Freising, Germany
| | - Thilo M. Fuchs
- Lehrstuhl für Mikrobielle Ökologie, Department Biowissenschaften, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
- Abteilung Mikrobiologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Technische Universität München, Freising, Germany
| | - Claudia Held
- Lehrstuhl für Mikrobiologie, Department Biowissenschaften, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Armin Ehrenreich
- Lehrstuhl für Mikrobiologie, Department Biowissenschaften, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Siegfried Scherer
- Lehrstuhl für Mikrobielle Ökologie, Department Biowissenschaften, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
- Abteilung Mikrobiologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Technische Universität München, Freising, Germany
| |
Collapse
|
8
|
Carvalho AL, Turner DL, Fonseca LL, Solopova A, Catarino T, Kuipers OP, Voit EO, Neves AR, Santos H. Metabolic and transcriptional analysis of acid stress in Lactococcus lactis, with a focus on the kinetics of lactic acid pools. PLoS One 2013; 8:e68470. [PMID: 23844205 PMCID: PMC3700934 DOI: 10.1371/journal.pone.0068470] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 05/29/2013] [Indexed: 01/27/2023] Open
Abstract
The effect of pH on the glucose metabolism of non-growing cells of L. lactis MG1363 was studied by in vivo NMR in the range 4.8 to 6.5. Immediate pH effects on glucose transporters and/or enzyme activities were distinguished from transcriptional/translational effects by using cells grown at the optimal pH of 6.5 or pre-adjusted to low pH by growth at 5.1. In cells grown at pH 5.1, glucose metabolism proceeds at a rate 35% higher than in non-adjusted cells at the same pH. Besides the upregulation of stress-related genes (such as dnaK and groEL), cells adjusted to low pH overexpressed H(+)-ATPase subunits as well as glycolytic genes. At sub-optimal pHs, the total intracellular pool of lactic acid reached approximately 500 mM in cells grown at optimal pH and about 700 mM in cells grown at pH 5.1. These high levels, together with good pH homeostasis (internal pH always above 6), imply intracellular accumulation of the ionized form of lactic acid (lactate anion), and the concomitant export of the equivalent protons. The average number, n, of protons exported with each lactate anion was determined directly from the kinetics of accumulation of intra- and extracellular lactic acid as monitored online by (13)C-NMR. In cells non-adjusted to low pH, n varies between 2 and 1 during glucose consumption, suggesting an inhibitory effect of intracellular lactate on proton export. We confirmed that extracellular lactate did not affect the lactate: proton stoichiometry. In adjusted cells, n was lower and varied less, indicating a different mix of lactic acid exporters less affected by the high level of intracellular lactate. A qualitative model for pH effects and acid stress adaptation is proposed on the basis of these results.
Collapse
Affiliation(s)
- Ana Lúcia Carvalho
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - David L. Turner
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Luís L. Fonseca
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- Integrative BioSystems Institute and the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Ana Solopova
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | - Teresa Catarino
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- Departamento de Química, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, Caparica, Oeiras, Portugal
| | - Oscar P. Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | - Eberhard O. Voit
- Integrative BioSystems Institute and the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Ana Rute Neves
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Helena Santos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
9
|
The metabolic pH response in Lactococcus lactis: an integrative experimental and modelling approach. Comput Biol Chem 2008; 33:71-83. [PMID: 18829387 DOI: 10.1016/j.compbiolchem.2008.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 07/18/2008] [Accepted: 08/07/2008] [Indexed: 11/23/2022]
Abstract
Lactococcus lactis is characterised by its ability to convert sugar almost exclusively into lactic acid. This organic acid lowers extracellular pH, thus inhibiting growth of competing bacteria. Although L. lactis is able to survive at low pH, glycolysis is strongly affected at pH values below 5, showing reduced rate of glucose consumption. Therefore, in order to deepen our knowledge on central metabolism of L. lactis in natural or industrial environments, an existing full scale kinetic model of glucose metabolism was extended to simulate the impact of lowering extracellular pH in non-growing cells of L. lactis MG1363. Validation of the model was performed using (13)C NMR, (31)P NMR, and nicotinamide adenine dinucleotide hydride auto-fluorescence data of living cells metabolizing glucose at different pH values. The changes in the rate of glycolysis as well as in the dynamics of intracellular metabolites (NADH, nucleotide triphosphates and fructose-1,6-bisphosphate) observed during glucose pulse experiments were reproduced by model simulations. The model allowed investigation of key enzymes at sub-optimum extracellular pH, simulating their response to changing conditions in the complex network, as opposed to in vitro enzyme studies. The model predicts that a major cause of the decrease in the glycolytic rate, upon lowering the extracellular pH, is the lower pool of phosphoenolpyruvate available to fuel glucose uptake via the phosphoenolpyruvate-dependent transport system.
Collapse
|
10
|
Sawatari Y, Yokota A. Diversity and mechanisms of alkali tolerance in lactobacilli. Appl Environ Microbiol 2007; 73:3909-15. [PMID: 17449704 PMCID: PMC1932741 DOI: 10.1128/aem.02834-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We determined the maximum pH that allows growth (pHmax) for 34 strains of lactobacilli. High alkali tolerance was exhibited by strains of Lactobacillus casei, L. paracasei subsp. tolerans, L. paracasei subsp. paracasei, L. curvatus, L. pentosus, and L. plantarum that originated from plant material, with pHmax values between 8.5 and 8.9. Among these, L. casei NRIC 1917 and L. paracasei subsp. tolerans NRIC 1940 showed the highest pHmax, at 8.9. Digestive tract isolates of L. gasseri, L. johnsonii, L. reuteri, L. salivarius subsp. salicinius, and L. salivarius subsp. salivarius exhibited moderate alkali tolerance, with pHmax values between 8.1 and 8.5. Dairy isolates of L. delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, and L. helveticus exhibited no alkali tolerance, with pHmax values between 6.7 and 7.1. Measurement of the internal pH of representative strains revealed the formation of transmembrane proton gradients (DeltapH) in a reversed direction (i.e., acidic interior) at alkaline external-pH ranges, regardless of their degrees of alkali tolerance. Thus, the reversed DeltapH did not determine alkali tolerance diversity. However, the DeltapH contributed to alkali tolerance, as the pHmax values of several strains decreased with the addition of nigericin, which dissipates DeltapH. Although neutral external-pH values resulted in the highest glycolysis activity in the presence of nigericin regardless of alkali tolerance, substantial glucose utilization was still detected in the alkali-tolerant strains, even in a pH range of between 8.0 and 8.5, at which the remaining strains lost most activity. Therefore, the alkali tolerance of glycolysis reactions contributes greatly to the determination of alkali tolerance diversity.
Collapse
Affiliation(s)
- Yuki Sawatari
- Laboratory of Microbial Physiology, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | | |
Collapse
|
11
|
Frees D, Vogensen FK, Ingmer H. Identification of proteins induced at low pH in Lactococcus lactis. Int J Food Microbiol 2003; 87:293-300. [PMID: 14527802 DOI: 10.1016/s0168-1605(03)00104-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Gram-positive bacterium Lactococcus lactis is of major importance to the dairy industry due to its conversion of lactose to lactic acid leading to the acidification of milk. To investigate which proteins are induced when L. lactis is exposed to conditions of low pH, we used two-dimensional gel electrophoresis to follow how protein expression changes with the degree of acidification. We found that reducing the pH of the growth medium with hydrochloric acid induced the synthesis of a small subset of proteins. The majority of these proteins were induced both after a minor (pH 5.5) and a major (pH 4.5) reduction in pH. Among the most strongly induced proteins, we identified the oxidative stress proteins superoxide dismutase and alkylhydroperoxidase as well as the autoinducer synthesis protein, LuxS. We also observed a differential induction of heat shock proteins by low pH as members of the CtsR regulon, ClpE and ClpP were induced at both pH 5.5 and 4.5, while HrcA-regulated chaperones, GroEL, GroES, DnaK and GrpE were induced only at pH 4.5. In addition, we identified two proteins repressed by low pH that proved to be the L. lactis HPr protein of the phosphoenolpyruvate sugar phosphotransferase system and the trigger factor known to participate in the folding of newly synthesized polypeptides.
Collapse
Affiliation(s)
- Dorte Frees
- Department of Veterinary Microbiology, The Royal Veterinary and Agricultural University, Stigbøjlen 4, KVL, DK-1870 C Frederiksberg, Denmark
| | | | | |
Collapse
|
12
|
Palese LL, Gaballo A, Technikova-Dobrova Z, Labonia N, Abbrescia A, Scacco S, Micelli L, Papa S. Characterization of plasma membrane respiratory chain and ATPase in the actinomyceteNonomuraeasp. ATCC 39727. FEMS Microbiol Lett 2003; 228:233-9. [PMID: 14638429 DOI: 10.1016/s0378-1097(03)00758-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have characterized the respiratory system of the aerobic actinomycete Nonomuraea sp. ATCC 39727. The plasma membrane of the microorganism is shown to contain a protonmotive respiratory chain and H+-ATPase. The respiratory chain is made up of a rotenone-sensitive NADH-quinone oxidoreductase, a four subunits aa3-type cytochrome c oxidase and a bc1 complex. The H+-ATPase is characterized as an F0F1-type on the basis of its sensitivity to specific inhibitors; the enzyme is also inhibited by mM concentrations of Ca2+. The activity of the respiratory chain increases during the exponential growth phase, but is depressed in the stationary phase. The H+-ATPase activity reaches, as the respiratory chain, a maximal activity at the end of the exponential growth phase and then remains constant in the stationary phase.
Collapse
Affiliation(s)
- L L Palese
- Department of Medical Biochemistry and Biology, University of Bari, Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Cotter PD, Hill C. Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol Mol Biol Rev 2003; 67:429-53, table of contents. [PMID: 12966143 PMCID: PMC193868 DOI: 10.1128/mmbr.67.3.429-453.2003] [Citation(s) in RCA: 791] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gram-positive bacteria possess a myriad of acid resistance systems that can help them to overcome the challenge posed by different acidic environments. In this review the most common mechanisms are described: i.e., the use of proton pumps, the protection or repair of macromolecules, cell membrane changes, production of alkali, induction of pathways by transcriptional regulators, alteration of metabolism, and the role of cell density and cell signaling. We also discuss the responses of Listeria monocytogenes, Rhodococcus, Mycobacterium, Clostridium perfringens, Staphylococcus aureus, Bacillus cereus, oral streptococci, and lactic acid bacteria to acidic environments and outline ways in which this knowledge has been or may be used to either aid or prevent bacterial survival in low-pH environments.
Collapse
Affiliation(s)
- Paul D Cotter
- Department of Microbiology and National Food Biotechnology Centre, University College Cork, Cork, Ireland
| | | |
Collapse
|
14
|
Galland D, Tourdot-Maréchal R, Abraham M, Chu KS, Guzzo J. Absence of malolactic activity is a characteristic of H+-ATPase-deficient mutants of the lactic acid bacterium Oenococcus oeni. Appl Environ Microbiol 2003; 69:1973-9. [PMID: 12676672 PMCID: PMC154835 DOI: 10.1128/aem.69.4.1973-1979.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lack of malolactic activity in H(+)-ATPase-deficient mutants of Oenococcus oeni selected previously was analyzed at the molecular level. Western blot experiments revealed a spot at 60 kDa corresponding to the malolactic enzyme only in the parental strain. Moreover, the mleA transcript encoding the malolactic enzyme was not detected by reverse transcription (RT)-PCR analysis of mutants. These results suggest that the malolactic operon was not transcribed in ATPase-deficient mutants. The mleR gene encoding a LysR-type regulatory protein which should be involved in expression of the malolactic genes was described previously for O. oeni. Results obtained in this study show that the mleR transcript was not detected in the mutants by RT-PCR. No mutation in the nucleotide sequences of the mleR gene and the malolactic operon was found. The effect of a reduction in H(+)-ATPase activity on L-malate metabolism was then investigated by using other malolactic bacteria. Spontaneous H(+)-ATPase-deficient mutant strains of Lactococcus lactis and Leuconostoc mesenteroides were isolated by using neomycin resistance. Two mutants were selected. These mutants exhibited ATPase activities that were reduced to 54 and 70% of the activities obtained for the L. lactis and L. mesenteroides parental strains, respectively. These mutants were also acid sensitive. However, in contrast to the ATPase-deficient mutants of O. oeni, activation of L-malate metabolism was observed with the L. lactis and L. mesenteroides mutants under optimal or acidic growth conditions. These data support the suggestion that expression of the genes encoding malolactic enzymes in O. oeni is regulated by the mleR product, as it is in L. lactis. Nevertheless, our results strongly suggest that there is a difference between the regulation of expression of the malolactic locus in O. oeni and the regulation of expression of this locus in less acidophilic lactic acid bacteria.
Collapse
Affiliation(s)
- Delphine Galland
- Laboratoire de Microbiologie, UMR INRA 1232, Equipe PG2MA, ENSBANA, Université de Bourgogne, 21000 Dijon, France
| | | | | | | | | |
Collapse
|
15
|
Sakamoto K, Van Veen HW, Saito H, Kobayashi H, Konings WN. Membrane-bound ATPase contributes to hop resistance of Lactobacillus brevis. Appl Environ Microbiol 2002; 68:5374-8. [PMID: 12406727 PMCID: PMC129889 DOI: 10.1128/aem.68.11.5374-5378.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The activity of the membrane-bound H+-ATPase of the beer spoilage bacterium Lactobacillus brevis ABBC45 increased upon adaptation to bacteriostatic hop compounds. The ATPase activity was optimal around pH 5.6 and increased up to fourfold when L. brevis was exposed to 666 microM hop compounds. The extent of activation depended on the concentration of hop compounds and was maximal at the highest concentration tested. The ATPase activity was strongly inhibited by N,N'-dicyclohexylcarbodiimide, a known inhibitor of FoF1-ATPase. Western blots of membrane proteins of L. brevis with antisera raised against the alpha- and beta-subunits of FoF1-ATPase from Enterococcus hirae showed that there was increased expression of the ATPase after hop adaptation. The expression levels, as well as the ATPase activity, decreased to the initial nonadapted levels when the hop-adapted cells were cultured further without hop compounds. These observations strongly indicate that proton pumping by the membrane-bound ATPase contributes considerably to the resistance of L. brevis to hop compounds.
Collapse
Affiliation(s)
- Kanta Sakamoto
- Fundamental Research Laboratory, Asahi Breweries, Ltd., Moriya-shi, Ibaraki 302-0106, Japan.
| | | | | | | | | |
Collapse
|
16
|
Hill C, Cotter PD, Sleator RD, Gahan CG. Bacterial stress response in Listeria monocytogenes: jumping the hurdles imposed by minimal processing. Int Dairy J 2002. [DOI: 10.1016/s0958-6946(01)00125-x] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Rao M, Streur TL, Aldwell FE, Cook GM. Intracellular pH regulation by Mycobacterium smegmatis and Mycobacterium bovis BCG. MICROBIOLOGY (READING, ENGLAND) 2001; 147:1017-1024. [PMID: 11283297 DOI: 10.1099/00221287-147-4-1017] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycobacteria are likely to encounter acidic pH in the environments they inhabit; however intracellular pH homeostasis has not been investigated in these bacteria. In this study, Mycobacterium smegmatis and Mycobacterium bovis [Bacille Calmette--Guérin (BCG)] were used as examples of fast- and slow-growing mycobacteria, respectively, to study biochemical and physiological responses to acidic pH. M. smegmatis and M. bovis BCG were able to grow at pH values of 4.5 and 5.0, respectively, suggesting the ability to regulate internal pH. Both species of mycobacteria maintained their internal pH between pH 6.1 and 7.2 when exposed to decreasing external pH and the maximum Delta pH observed was approximately 2.1 to 2.3 units for both bacteria. The Delta pH of M. smegmatis at external pH 5.0 was dissipated by protonophores (e.g. carbonyl cyanide m-chlorophenylhydrazone), ionophores (e.g. monensin and nigericin) and N,N'-dicyclohexylcarbodiimide (DCCD), an inhibitor of the proton-translocating F(1)F(0)-ATPase. These results demonstrate that permeability of the cytoplasmic membrane to protons and proton extrusion by the F(1)F(0)-ATPase plays a key role in maintaining internal pH near neutral. Correlations between measured internal pH and cell viability indicated that the lethal internal pH for both strains of mycobacteria was less than pH 6.0. Compounds that decreased internal pH caused a rapid decrease in cell survival at acidic pH, but not at neutral pH. These data indicate that both strains of mycobacteria exhibit intracellular pH homeostasis and this was crucial for the survival of these bacteria at acidic pH values.
Collapse
Affiliation(s)
- Min Rao
- Department of Microbiology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin, New Zealand1
| | - Trevor L Streur
- Department of Microbiology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin, New Zealand1
| | - Frank E Aldwell
- Department of Microbiology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin, New Zealand1
| | - Gregory M Cook
- Department of Microbiology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin, New Zealand1
| |
Collapse
|
18
|
Jones PC. Introduction of a carboxyl group in the first transmembrane helix of Escherichia coli F1Fo ATPase subunit c and cytoplasmic pH regulation. J Bacteriol 2001; 183:1524-30. [PMID: 11160082 PMCID: PMC95036 DOI: 10.1128/jb.183.5.1524-1530.2001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2000] [Accepted: 11/30/2000] [Indexed: 11/20/2022] Open
Abstract
The multicopy subunit c of the H(+)-transporting F1Fo ATP synthase of Escherichia coli folds across the membrane as a hairpin of two hydrophobic alpha helices. The subunits interact in a front-to-back fashion, forming an oligomeric ring with helix 1 packing in the interior and helix 2 at the periphery. A conserved carboxyl, Asp(61) in E. coli, centered in the second transmembrane helix is essential for H+ transport. A second carboxylic acid in the first transmembrane helix is found at a position equivalent to Ile28 in several bacteria, some the cause of serious infectious disease. This side chain has been predicted to pack proximal to the essential carboxyl in helix 2. It appears that in some of these bacteria the primary function of the enzyme is H+ pumping for cytoplasmic pH regulation. In this study, Ile28 was changed to Asp and Glu. Both mutants were functional. However, unlike the wild type, the mutants showed pH-dependent ATPase-coupled H+ pumping and passive H+ transport through Fo. The results indicate that the presence of a second carboxylate enables regulation of enzyme function in response to cytoplasmic pH and that the ion binding pocket is aqueous accessible. The presence of a single carboxyl at position 28, in mutants I28D/D61G and I28E/D61G, did not support growth on a succinate carbon source. However, I28E/D61G was functional in ATPase-coupled H+ transport. This result indicates that the side chain at position 28 is part of the ion binding pocket.
Collapse
Affiliation(s)
- P C Jones
- Dunn Human Nutrition Unit, Medical Research Council, Cambridge CB2 2XY, United Kingdom.
| |
Collapse
|
19
|
|
20
|
|