1
|
Kater L, Frieg B, Berninghausen O, Gohlke H, Beckmann R, Kedrov A. Partially inserted nascent chain unzips the lateral gate of the Sec translocon. EMBO Rep 2019; 20:e48191. [PMID: 31379073 PMCID: PMC6776908 DOI: 10.15252/embr.201948191] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 12/25/2022] Open
Abstract
The Sec translocon provides the lipid bilayer entry for ribosome-bound nascent chains and thus facilitates membrane protein biogenesis. Despite the appreciated role of the native environment in the translocon:ribosome assembly, structural information on the complex in the lipid membrane is scarce. Here, we present a cryo-electron microscopy-based structure of bacterial translocon SecYEG in lipid nanodiscs and elucidate an early intermediate state upon insertion of the FtsQ anchor domain. Insertion of the short nascent chain causes initial displacements within the lateral gate of the translocon, where α-helices 2b, 7, and 8 tilt within the membrane core to "unzip" the gate at the cytoplasmic side. Molecular dynamics simulations demonstrate that the conformational change is reversed in the absence of the ribosome, and suggest that the accessory α-helices of SecE subunit modulate the lateral gate conformation. Site-specific cross-linking validates that the FtsQ nascent chain passes the lateral gate upon insertion. The structure and the biochemical data suggest that the partially inserted nascent chain remains highly flexible until it acquires the transmembrane topology.
Collapse
Affiliation(s)
- Lukas Kater
- Gene Center MunichLudwig‐Maximilian‐UniversityMunichGermany
| | - Benedikt Frieg
- John von Neumann Institute for ComputingJülich Supercomputing CentreInstitute for Complex Systems ‐ Structural Biochemistry (ICS‐6)Forschungszentrum Jülich GmbHJülichGermany
| | | | - Holger Gohlke
- John von Neumann Institute for ComputingJülich Supercomputing CentreInstitute for Complex Systems ‐ Structural Biochemistry (ICS‐6)Forschungszentrum Jülich GmbHJülichGermany
- Institute for Pharmaceutical and Medicinal ChemistryHeinrich Heine University DüsseldorfDüsseldorfGermany
| | | | - Alexej Kedrov
- Gene Center MunichLudwig‐Maximilian‐UniversityMunichGermany
- Synthetic Membrane SystemsInstitute for BiochemistryHeinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
2
|
Dalal K, Nguyen N, Alami M, Tan J, Moraes TF, Lee WC, Maurus R, Sligar SS, Brayer GD, Duong F. Structure, binding, and activity of Syd, a SecY-interacting protein. J Biol Chem 2009; 284:7897-902. [PMID: 19139097 PMCID: PMC2658082 DOI: 10.1074/jbc.m808305200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 12/19/2008] [Indexed: 01/20/2023] Open
Abstract
The Syd protein has been implicated in the Sec-dependent transport of polypeptides across the bacterial inner membrane. Using Nanodiscs, we here provide direct evidence that Syd binds the SecY complex, and we demonstrate that interaction involves the two electropositive and cytosolic loops of the SecY subunit. We solve the crystal structure of Syd and together with cysteine cross-link analysis, we show that a conserved concave and electronegative groove constitutes the SecY-binding site. At the membrane, Syd decreases the activity of the translocon containing loosely associated SecY-SecE subunits, whereas in detergent solution Syd disrupts the SecYEG heterotrimeric associations. These results support the role of Syd in proofreading the SecY complex biogenesis and point to the electrostatic nature of the Sec channel interaction with its cytosolic partners.
Collapse
Affiliation(s)
- Kush Dalal
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T1Z3, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Abstract
FtsH is a cytoplasmic membrane protein that has N-terminally located transmembrane segments and a main cytosolic region consisting of AAA-ATPase and Zn2+-metalloprotease domains. It forms a homo-hexamer, which is further complexed with an oligomer of the membrane-bound modulating factor HflKC. FtsH degrades a set of short-lived proteins, enabling cellular regulation at the level of protein stability. FtsH also degrades some misassembled membrane proteins, contributing to their quality maintenance. It is an energy-utilizing and processive endopeptidase with a special ability to dislocate membrane protein substrates out of the membrane, for which its own membrane-embedded nature is essential. We discuss structure-function relationships of this intriguing enzyme, including the way it recognizes the soluble and membrane-integrated substrates differentially, on the basis of the solved structure of the ATPase domain as well as extensive biochemical and genetic information accumulated in the past decade on this enzyme.
Collapse
Affiliation(s)
- Koreaki Ito
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan.
| | | |
Collapse
|
4
|
Kakizawa S, Oshima K, Nishigawa H, Jung HY, Wei W, Suzuki S, Tanaka M, Miyata SI, Ugaki M, Namba S. Secretion of immunodominant membrane protein from onion yellows phytoplasma through the Sec protein-translocation system in Escherichia coli. MICROBIOLOGY-SGM 2004; 150:135-142. [PMID: 14702406 DOI: 10.1099/mic.0.26521-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A gene that encodes a putative SecE protein, which is a component of the Sec protein-translocation system, was cloned from the onion yellows phytoplasma (OY). The identification of this gene and the previously reported genes encoding SecA and SecY provides evidence that the Sec system exists in phytoplasma. In addition, a gene encoding an antigenic membrane protein (Amp) (a type of immunodominant membrane protein) of OY was cloned and sequenced. The OY amp gene consisted of 702 nt encoding a protein of 233 aa which was highly similar to Amp of aster yellows phytoplasma (AY). Part of OY Amp was overexpressed in Escherichia coli, purified, and used to raise an anti-Amp polyclonal antibody. The anti-Amp antibody reacted specifically with an OY-infected plant extract in Western blot analysis and was therefore useful for the detection of OY as well as Amp. Amp has a conserved protein motif that is known to be exported by the Sec system of E. coli. A partial OY Amp protein expressed in E. coli was localized in the periplasm as a shorter, putatively processed form of the protein. It had probably been exported from the cytoplasm to the periplasm through the Sec system. Moreover, OY Amp protein expressed in OY and detected in OY-infected plants was apparently also processed. Because phytoplasmas cannot be cultured or transformed, little information is available regarding their protein secretion systems. This study suggests that the Sec system operates in this phytoplasma to export OY Amp.
Collapse
Affiliation(s)
- Shigeyuki Kakizawa
- Division of Integrated Biosciences, The University of Tokyo, 202 Bioscience Bldg, 5-1-5 Kashiwanoha, Chiba 277-8562, Japan
| | - Kenro Oshima
- Division of Integrated Biosciences, The University of Tokyo, 202 Bioscience Bldg, 5-1-5 Kashiwanoha, Chiba 277-8562, Japan
| | - Hisashi Nishigawa
- Division of Integrated Biosciences, The University of Tokyo, 202 Bioscience Bldg, 5-1-5 Kashiwanoha, Chiba 277-8562, Japan
| | - Hee-Young Jung
- Division of Integrated Biosciences, The University of Tokyo, 202 Bioscience Bldg, 5-1-5 Kashiwanoha, Chiba 277-8562, Japan
| | - Wei Wei
- Division of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shiho Suzuki
- Division of Integrated Biosciences, The University of Tokyo, 202 Bioscience Bldg, 5-1-5 Kashiwanoha, Chiba 277-8562, Japan
| | - Minoru Tanaka
- National Agricultural Research Center, National Agricultural Research Organization, 3-1-1 Kannondai, Tsukuba-shi, Ibaraki 305-8666, Japan
| | - Shin-Ichi Miyata
- Division of Integrated Biosciences, The University of Tokyo, 202 Bioscience Bldg, 5-1-5 Kashiwanoha, Chiba 277-8562, Japan
| | - Masashi Ugaki
- Division of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Division of Integrated Biosciences, The University of Tokyo, 202 Bioscience Bldg, 5-1-5 Kashiwanoha, Chiba 277-8562, Japan
| | - Shigetou Namba
- Division of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Division of Integrated Biosciences, The University of Tokyo, 202 Bioscience Bldg, 5-1-5 Kashiwanoha, Chiba 277-8562, Japan
| |
Collapse
|
5
|
Nagamori S, Vázquez-Ibar JL, Weinglass AB, Kaback HR. In vitro synthesis of lactose permease to probe the mechanism of membrane insertion and folding. J Biol Chem 2003; 278:14820-6. [PMID: 12590141 DOI: 10.1074/jbc.m300332200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insertion and folding of polytopic membrane proteins is an important unsolved biological problem. To study this issue, lactose permease, a membrane transport protein from Escherichia coli, is transcribed, translated, and inserted into inside-out membrane vesicles in vitro. The protein is in a native conformation as judged by sensitivity to protease, binding of a monoclonal antibody directed against a conformational epitope, and importantly, by functional assays. By exploiting this system it is possible to express the N-terminal six helices of the permease (N(6)) and probe changes in conformation during insertion into the membrane. Specifically, when N(6) remains attached to the ribosome it is readily extracted from the membrane with urea, whereas after release from the ribosome or translation of additional helices, those polypeptides are not urea extractable. Furthermore, the accessibility of an engineered Factor Xa site to Xa protease is reduced significantly when N(6) is released from the ribosome or more helices are translated. Finally, spontaneous disulfide formation between Cys residues at positions 126 (Helix IV) and 144 (Helix V) is observed when N(6) is released from the ribosome and inserted into the membrane. Moreover, in contrast to full-length permease, N(6) is degraded by FtsH protease in vivo, and N(6) with a single Cys residue at position 148 does not react with N-ethylmaleimide. Taken together, the findings indicate that N(6) remains in a hydrophilic environment until it is released from the ribosome or additional helices are translated and continues to fold into a quasi-native conformation after insertion into the bilayer. Furthermore, there is synergism between N(6) and the C-terminal half of permease during assembly, as opposed to assembly of the two halves as independent domains.
Collapse
Affiliation(s)
- Shushi Nagamori
- Howard Hughes Medical Institute and Departments of Physiology and Microbiology, Immunology, and Molecular Genetics, Molecular Biology Institute, UCLA, Los Angeles, California 90095-1662, USA
| | | | | | | |
Collapse
|
6
|
Cao TB, Saier MH. The general protein secretory pathway: phylogenetic analyses leading to evolutionary conclusions. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1609:115-25. [PMID: 12507766 DOI: 10.1016/s0005-2736(02)00662-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have identified all homologues in the current databases of the ubiquitous protein constituents of the general secretory (Sec) pathway. These prokaryotic/eukaryotic proteins include (1) SecY/Sec61alpha, (2) SecE/Sec61gamma, (3) SecG/Sec61beta, (4) Ffh/SRP54 and (5) FtsY/SRP receptor subunit-alpha. Phylogenetic and sequence analyses lead to major conclusions concerning (1) the ubiquity of these proteins in living organisms, (2) the topological uniformity of some but not other Sec constituents, (3) the orthologous nature of almost all of them, (4) a total lack of paralogues in almost all organisms for which complete genome sequences are available, (5) the occurrence of two or even three paralogues in a few bacteria, plants, and yeast, depending on the Sec constituent, and (6) a tremendous degree of sequence divergence in bacteria compared with that in archaea or eukaryotes. The phylogenetic analyses lead to the conclusion that with a few possible exceptions, the five families of Sec constituents analyzed generally underwent sequence divergence in parallel but at different characteristic rates. The results provide evolutionary insights as well as guides for future functional studies. Because every organism with a fully sequenced genome exhibits at least one orthologue of each of these Sec proteins, we conclude that all living organisms have relied on the Sec system as their primary protein secretory/membrane insertion system. Because most prokaryotes and many eukaryotes encode within their genomes only one of each constituent, we also conclude that strong evolutionary pressure has minimized gene duplication events leading to the establishment of Sec paralogues. Finally, the sequence diversity of bacterial proteins as compared with their archaeal and eukaryotic counterparts is in agreement with the suggestion that bacteria were the evolutionary predecessors of archaea and eukaryotes.
Collapse
Affiliation(s)
- Thien B Cao
- Division of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | |
Collapse
|
7
|
Fröderberg L, Röhl T, van Wijk KJ, de Gier JW. Complementation of bacterial SecE by a chloroplastic homologue. FEBS Lett 2001; 498:52-6. [PMID: 11389897 DOI: 10.1016/s0014-5793(01)02494-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The SecE protein is an essential component of the SecAYE-translocase, which mediates protein translocation across the cytoplasmic membrane in bacteria. In the thylakoid membranes of chloroplasts, a protein homologous to SecE, chloroplastic (cp) SecE, has been identified. However, the functional role of cpSecE has not been established experimentally. In this report we show that cpSecE in cells depleted for bacterial SecE (i) supports growth, (ii) stabilizes, just like bacterial SecE, the Sec-translocase core component SecY, and (iii) supports Sec-dependent protein translocation. This indicates that cpSecE can functionally replace bacterial SecE in vivo, and strongly suggests that the thylakoid membrane contains a SecAYE-like translocase with functional and structural similarities to the bacterial complex. This study further underscores the evolutionary link between chloroplasts and bacteria.
Collapse
Affiliation(s)
- L Fröderberg
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | | | | | | |
Collapse
|