1
|
de Kok NAW, Miao H, Schmidt S. In vitro analysis of the three-component Rieske oxygenase cumene dioxygenase from Pseudomonas fluorescens IP01. Methods Enzymol 2024; 703:167-192. [PMID: 39260995 DOI: 10.1016/bs.mie.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Rieske non-heme iron-dependent oxygenases (ROs) are a versatile group of enzymes traditionally associated with the degradation of aromatic xenobiotics. In addition, ROs have been found to play key roles in natural product biosynthesis, displaying a wide catalytic diversity with typically high regio- and stereo- selectivity. However, the detailed characterization of ROs presents formidable challenges due to their complex structural and functional properties, including their multi-component composition, cofactor dependence, and susceptibility to reactive oxygen species. In addition, the substrate availability of natural product biosynthetic intermediates, the limited solubility of aromatic hydrocarbons, and the radical-mediated reaction mechanism can further complicate functional assays. Despite these challenges, ROs hold immense potential as biocatalysts for pharmaceutical applications and bioremediation. Using cumene dioxygenase (CDO) from Pseudomonas fluorescens IP01 as a model enzyme, this chapter details techniques for characterizing ROs that oxyfunctionalize aromatic hydrocarbons. Moreover, potential pitfalls, anticipated complications, and proposed solutions for the characterization of novel ROs are described, providing a framework for future RO research and strategies for studying this enzyme class. In particular, we describe the methods used to obtain CDO, from construct design to expression conditions, followed by a purification procedure, and ultimately activity determination through various activity assays.
Collapse
Affiliation(s)
- Niels A W de Kok
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Hui Miao
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Sandy Schmidt
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
2
|
Yesankar PJ, Patil A, Kapley A, Qureshi A. Catalytic resilience of multicomponent aromatic ring-hydroxylating dioxygenases in Pseudomonas for degradation of polycyclic aromatic hydrocarbons. World J Microbiol Biotechnol 2023; 39:166. [PMID: 37076735 DOI: 10.1007/s11274-023-03617-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Hydrophobic organic compounds, either natural or introduced through anthropogenic activities, pose a serious threat to all spheres of life, including humankind. These hydrophobic compounds are recalcitrant and difficult to degrade by the microbial system; however, microbes have also evolved their metabolic and degradative potential. Pseudomonas species have been reported to have a multipotential role in the biodegradation of aromatic hydrocarbons through aromatic ring-hydroxylating dioxygenases (ARHDs). The structural complexity of different hydrophobic substrates and their chemically inert nature demands the explicit role of evolutionary conserved multicomponent enzyme ARHDs. These enzymes catalyze ring activation and subsequent oxidation by adding two molecular oxygen atoms onto the vicinal carbon of the aromatic nucleus. This critical metabolic step in the aerobic mode of degradation of polycyclic aromatic hydrocarbons (PAHs) catalyzed by ARHDs can also be explored through protein molecular docking studies. Protein data analysis enables an understanding of molecular processes and monitoring complex biodegradation reactions. This review summarizes the molecular characterization of five ARHDs from Pseudomonas species already reported for PAH degradation. Homology modeling for the amino acid sequences encoding the catalytic α-subunit of ARHDs and their docking analyses with PAHs suggested that the enzyme active sites show flexibility around the catalytic pocket for binding of low molecular weight (LMW) and high molecular weight (HMW) PAH substrates (naphthalene, phenanthrene, pyrene, benzo[α]pyrene). The alpha subunit harbours variable catalytic pockets and broader channels, allowing relaxed enzyme specificity toward PAHs. ARHD's ability to accommodate different LMW and HMW PAHs demonstrates its 'plasticity', meeting the catabolic demand of the PAH degraders.
Collapse
Affiliation(s)
- Prerna J Yesankar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Ayurshi Patil
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Atya Kapley
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Asifa Qureshi
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|
3
|
Li X, Kang X, Zou J, Yin J, Wang Y, Li A, Ma X. Allochthonous arbuscular mycorrhizal fungi promote Salix viminalis L.-mediated phytoremediation of polycyclic aromatic hydrocarbons characterized by increasing the release of organic acids and enzymes in soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114461. [PMID: 38321680 DOI: 10.1016/j.ecoenv.2022.114461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/02/2022] [Accepted: 12/20/2022] [Indexed: 02/08/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are well known persistent organic pollutants that have carcinogenic, teratogenic, and mutagenic effects on humans and animals. Arbuscular mycorrhizal fungi (AMF) that can infest plant hosts and form symbioses may help plants to enhance potential rhizosphere effects, thus contributing to the rhizodegradation of PAH-contaminated soils. The present study aimed to assess the effectiveness of AMF on enhancing Salix viminalis-mediated phytoremediation of PAH-polluted soil and clarify the plant enzymatic and organic acid mechanisms induced by AMF. Natural attenuation (NA), phytoremediation (P, Salix viminalis), S. viminalis-AMF combined remediation using willow inoculated with Funneliformis mosseae (PM), Laroideoglomus etunicatum (PE), and Rhizophagus intraradices (PI) were used as strategies for the remediation of PAH-polluted soils. The results showed that AMF inoculation contributed to the dissipation of the high-molecular-weight PAH benzo (α) pyrene that had concentrations in PM, PE, and PI treatments of 40.1 %, 24.49 %, and 36.28 % of the level in the NA treatment, and 62.32 %, 38.05 %, and 56.38 % of the level in the P treatment after 90 days. The mycorrhizal treatment also improved the removal efficiency of phenanthrene and pyrene, as their concentrations were sharply decreased after 30 days compared to the NA and P treatments. The research further clarified the changes in rhizosphere substances induced by AMF. Organic acids including arachidonic acid, octadecanedioic acid, α-linolenic acid, 10,12,14-octadecarachidonic acid and 5-methoxysalicylic acid that can act as co-metabolic substrates for certain microbial species to metabolize PAHs were significantly increased in AMF-inoculated treatments. AMF inoculation also elevated the levels of polyphenol oxidase, laccase, and dehydrogenase, that played crucial roles in PAHs biodegradation. These findings provide an effective strategy for using AMF-assisted S. viminalis to remediate PAH-polluted soils, and the results have confirmed the key roles of organic acids and soil enzymes in plant-AMF combined remediation of PAHs.
Collapse
Affiliation(s)
- Xia Li
- College of Agriculture and Bioengineering, Heze University, Heze 274000, Shandong, China
| | - Xiaofei Kang
- College of Agriculture and Bioengineering, Heze University, Heze 274000, Shandong, China
| | - Junzhu Zou
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Jiahui Yin
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; College of Horticulture, Jilin Agricultural University, Changchun 130000, Jilin, China
| | - Yuancheng Wang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Ao Li
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiaodong Ma
- Institute of Grassland, Flowers and Landscape Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China.
| |
Collapse
|
4
|
Two-component carnitine monooxygenase from Escherichia coli: Functional characterization, Inhibition and mutagenesis of the molecular interface. Biosci Rep 2022; 42:231753. [PMID: 36066069 PMCID: PMC9508527 DOI: 10.1042/bsr20221102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/16/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Gut microbial production of trimethylamine (TMA) from l-carnitine is directly linked to cardiovascular disease. TMA formation is facilitated by carnitine monooxygenase, which was proposed as a target for the development of new cardioprotective compounds. Therefore, the molecular understanding of the two-component Rieske-type enzyme from Escherichia coli was intended. The redox cofactors of the reductase YeaX (FMN, plant-type [2Fe-2S] cluster) and of the oxygenase YeaW (Rieske-type [2Fe-2S] and mononuclear [Fe] center) were identified. Compounds meldonium and the garlic-derived molecule allicin were recently shown to suppress microbiota-dependent TMA formation. Based on two independent carnitine monooxygenase activity assays, enzyme inhibition by meldonium or allicin was demonstrated. Subsequently, the molecular interplay of the reductase YeaX and the oxygenase YeaW was addressed. Chimeric carnitine monooxygenase activity was efficiently reconstituted by combining YeaX (or YeaW) with the orthologous oxygenase CntA (or reductase CntB) from Acinetobacter baumannii. Partial conservation of the reductase/oxygenase docking interface was concluded. A structure guided mutagenesis approach was used to further investigate the interaction and electron transfer between YeaX and YeaW. Based on AlphaFold structure predictions, a total of 28 site-directed variants of YeaX and YeaW were kinetically analyzed. Functional relevance of YeaX residues Arg271, Lys313 and Asp320 was concluded. Concerning YeaW, a docking surface centered around residues Arg83, Lys104 and Lys117 was hypothesized. The presented results might contribute to the development of TMA-lowering strategies that could reduce the risk for cardiovascular disease.
Collapse
|
5
|
Alghuthaymi MA, Awad AM, Hassan HA. Isolation and Characterization a Novel Catabolic Gene Cluster Involved in Chlorobenzene Degradation in Haloalkaliphilic Alcanivorax sp. HA03. BIOLOGY 2022; 11:biology11050724. [PMID: 35625452 PMCID: PMC9138330 DOI: 10.3390/biology11050724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022]
Abstract
Chlorobenzene (CB) poses a serious risk to human health and the environment, and because of its low degradation rate by microorganisms, it persists in the environment. Some bacterial strains can use CB as growth substrates and their degradative pathways have evolved; very little is known about these pathways and the enzymes for CB degradation in high pH and salinity environments. Alcanivorax sp. HA03 was isolated from the extremely saline and alkaline site. HA03 has the capability to degrade benzene, toluene and chlorobenzene (CB). CB catabolic genes were isolated from HA03, which have a complete gene cluster comprising α and β subunits, ferredoxin and ferredoxin reductase (CBA1A2A3A4), as well as one gene-encoding enzyme for chlorocatechol 1,2-dioxygenase (CC12DOs). Based on the deduced amino acid sequence homology, the gene cluster was thought to be responsible for the upper and lower catabolic pathways of CB degradation. The CBA1A2A3A4 genes probably encoding a chlorobenzene dioxygenase was confirmed by expression during the growth on CB by RT-PCR. Heterologous expression revealed that CBA1A2A3A4 exhibited activity for CB transformation into 3-chlorocatechol, while CC12DOs catalyze 3-chlorocatechol, transforming it into 2-chloromucounate. SDS-PAGE analysis indicated that the sizes of CbA1 and (CC12DOs) gene products were 51.8, 27.5 kDa, respectively. Thus, Alcanivorax sp. HA03 constitutes the first bacterial strain described in the metabolic pathway of CB degradation under high pH and salinity conditions. This finding may have obvious potential for the bioremediation of CB in both highly saline and alkaline contaminated sites.
Collapse
Affiliation(s)
- Mousa A. Alghuthaymi
- Biology Department, Science and Humanities College, Shaqra University, Alquwayiyah 11726, Saudi Arabia;
| | - Ahmed M. Awad
- Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt;
| | - Hamdy A. Hassan
- Biology Department, Science and Humanities College, Shaqra University, Alquwayiyah 11726, Saudi Arabia;
- Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt;
- Correspondence:
| |
Collapse
|
6
|
Assembly of a Rieske non-heme iron oxygenase multicomponent system from Phenylobacterium immobile E DSM 1986 enables pyrazon cis-dihydroxylation in E. coli. Appl Microbiol Biotechnol 2021; 105:2003-2015. [PMID: 33582834 PMCID: PMC7907043 DOI: 10.1007/s00253-021-11129-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/04/2021] [Accepted: 01/19/2021] [Indexed: 11/18/2022]
Abstract
Abstract Phenylobacterium immobile strain E is a soil bacterium with a striking metabolism relying on xenobiotics, such as the herbicide pyrazon, as sole carbon source instead of more bioavailable molecules. Pyrazon is a heterocyclic aromatic compound of environmental concern and its biodegradation pathway has only been reported in P. immobile. The multicomponent pyrazon oxygenase (PPO), a Rieske non-heme iron oxygenase, incorporates molecular oxygen at the 2,3 position of the pyrazon phenyl moiety as first step of degradation, generating a cis-dihydrodiendiol. The aim of this work was to identify the genes encoding for each one of the PPO components and enable their functional assembly in Escherichia coli. P. immobile strain E genome sequencing revealed genes encoding for RO components, such as ferredoxin-, reductase-, α- and β-subunits of an oxygenase. Though, P. immobile E displays three prominent differences with respect to the ROs currently characterized: (1) an operon-like organization for PPO is absent, (2) all the elements are randomly scattered in its DNA, (3) not only one, but 19 different α-subunits are encoded in its genome. Herein, we report the identification of the PPO components involved in pyrazon cis-dihydroxylation in P. immobile, its appropriate assembly, and its functional reconstitution in E. coli. Our results contributes with the essential missing pieces to complete the overall elucidation of the PPO from P. immobile. Key points • Phenylobacterium immobile E DSM 1986 harbors the only described pyrazon oxygenase (PPO). • We elucidated the genes encoding for all PPO components. • Heterologous expression of PPO enabled pyrazon dihydroxylation in E. coli JW5510. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11129-w.
Collapse
|
7
|
Massmig M, Reijerse E, Krausze J, Laurich C, Lubitz W, Jahn D, Moser J. Carnitine metabolism in the human gut: characterization of the two-component carnitine monooxygenase CntAB from Acinetobacter baumannii. J Biol Chem 2020; 295:13065-13078. [PMID: 32694223 DOI: 10.1074/jbc.ra120.014266] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/24/2020] [Indexed: 01/29/2023] Open
Abstract
Bacterial formation of trimethylamine (TMA) from carnitine in the gut microbiome has been linked to cardiovascular disease. During this process, the two-component carnitine monooxygenase (CntAB) catalyzes the oxygen-dependent cleavage of carnitine to TMA and malic semialdehyde. Individual redox states of the reductase CntB and the catalytic component CntA were investigated based on mutagenesis and electron paramagnetic resonance (EPR) spectroscopic approaches. Protein ligands of the flavin mononucleotide (FMN) and the plant-type [2Fe-2S] cluster of CntB and also of the Rieske-type [2Fe-2S] cluster and the mononuclear [Fe] center of CntA were identified. EPR spectroscopy of variant CntA proteins suggested a hierarchical metallocenter maturation, Rieske [2Fe-2S] followed by the mononuclear [Fe] center. NADH-dependent electron transfer via the redox components of CntB and within the trimeric CntA complex for the activation of molecular oxygen was investigated. EPR experiments indicated that the two electrons from NADH were allocated to the plant-type [2Fe-2S] cluster and to FMN in the form of a flavin semiquinone radical. Single-turnover experiments of this reduced CntB species indicated the translocation of the first electron onto the [Fe] center and the second electron onto the Rieske-type [2Fe-2S] cluster of CntA to finally allow for oxygen activation as a basis for carnitine cleavage. EPR spectroscopic investigation of CntA variants indicated an unusual intermolecular electron transfer between the subunits of the CntA trimer via the "bridging" residue Glu-205. On the basis of these data, a redox catalytic cycle for carnitine monooxygenase was proposed.
Collapse
Affiliation(s)
- Marco Massmig
- Institute of Microbiology, Technical University Braunschweig, Braunschweig, Germany
| | - Edward Reijerse
- Max-Planck-Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Joern Krausze
- Institute of Plant Biology, Technical University Braunschweig, Braunschweig, Germany
| | - Christoph Laurich
- Max-Planck-Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max-Planck-Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Dieter Jahn
- Braunschweig Centre of Integrated Systems Biology, Braunschweig, Germany
| | - Jürgen Moser
- Institute of Microbiology, Technical University Braunschweig, Braunschweig, Germany.
| |
Collapse
|
8
|
Saibu S, Adebusoye SA, Oyetibo GO. Aerobic bacterial transformation and biodegradation of dioxins: a review. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-0294-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractWaste generation tends to surge in quantum as the population and living conditions grow. A group of structurally related chemicals of dibenzofurans and dibenzo-p-dioxins including their chlorinated congeners collectively known as dioxins are among the most lethal environmental pollutants formed during different anthropogenic activities. Removal of dioxins from the environment is challenging due to their persistence, recalcitrance to biodegradation, and prevalent nature. Dioxin elimination through the biological approach is considered both economically and environmentally as a better substitute to physicochemical conventional approaches. Bacterial aerobic degradation of these compounds is through two major catabolic routes: lateral and angular dioxygenation pathways. Information on the diversity of bacteria with aerobic dioxin degradation capability has accumulated over the years and efforts have been made to harness this fundamental knowledge to cleanup dioxin-polluted soils. This paper covers the previous decades and recent developments on bacterial diversity and aerobic bacterial transformation, degradation, and bioremediation of dioxins in contaminated systems.
Collapse
|
9
|
Construction and analysis of an engineered Escherichia coli-Pseudomonas aeruginosa co-culture consortium for phenanthrene bioremoval. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Ji J, Zhang J, Liu Y, Zhang Y, Liu Y, Yan X. The substrate specificity of aniline dioxygenase is mainly determined by two of its components: glutamine synthetase-like enzyme and oxygenase. Appl Microbiol Biotechnol 2019; 103:6333-6344. [DOI: 10.1007/s00253-019-09871-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 11/29/2022]
|
11
|
Verma N, Kantiwal U, Nitika, Yadav YK, Teli S, Goyal D, Pandey J. Catalytic Promiscuity of Aromatic Ring-Hydroxylating Dioxygenases and Their Role in the Plasticity of Xenobiotic Compound Degradation. MICROORGANISMS FOR SUSTAINABILITY 2019. [DOI: 10.1007/978-981-13-7462-3_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
Antarctic Soil Microbial Communities in a Changing Environment: Their Contributions to the Sustainability of Antarctic Ecosystems and the Bioremediation of Anthropogenic Pollution. SPRINGER POLAR SCIENCES 2019. [DOI: 10.1007/978-3-030-02786-5_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Yavas A, Icgen B. Diversity of the Aromatic-Ring-Hydroxylating Dioxygenases in the Monoaromatic Hydrocarbon Degraders Held by a Common Ancestor. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 101:410-416. [PMID: 29752518 DOI: 10.1007/s00128-018-2350-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/02/2018] [Indexed: 05/02/2023]
Abstract
Aromatic ring hydroxylating dioxygenases (ARHDs), harboured by a variety of bacteria, catalyze the initial reaction in the degradation of a wide range of toxic environmental contaminants like aromatic and polycyclic aromatic hydrocarbons (PAHs). Regardless of the source, bacteria harbouring RHDs play major role in the removal of these toxic contaminants. The diversity of ARHDs in contaminated sites is supposed to be huge. However, most of the ARHD diversity studies are based on the PAH degraders and the ARHD diversity in the monoaromatic hydrocarbon degraders has not fully explored yet. In this study, therefore, the ARHD gene from nine different genara of the monoaromatic hydrocarbon degraders including Raoultella, Stenotrophomons, Staphylococcus, Acinetobacter, Pseudomonas, Serratia, Comamonas, Pantoea, and Micrococcus was analysed through polymerase chain reactions and sequencing. The sequence alignments of the ARHD amplicons with 81%-99% homologies were found to be highly related and held by divergent evolution from a common ancestor.
Collapse
Affiliation(s)
- Alper Yavas
- Department of Biotechnology, Middle East Technical University, 06800, Ankara, Turkey
| | - Bulent Icgen
- Department of Biotechnology, Middle East Technical University, 06800, Ankara, Turkey.
- Department of Environmental Engineering, Middle East Technical University, 06800, Ankara, Turkey.
| |
Collapse
|
14
|
Glycine Betaine Monooxygenase, an Unusual Rieske-Type Oxygenase System, Catalyzes the Oxidative N-Demethylation of Glycine Betaine in Chromohalobacter salexigens DSM 3043. Appl Environ Microbiol 2018; 84:AEM.00377-18. [PMID: 29703733 DOI: 10.1128/aem.00377-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/20/2018] [Indexed: 11/20/2022] Open
Abstract
Although some bacteria, including Chromohalobacter salexigens DSM 3043, can use glycine betaine (GB) as a sole source of carbon and energy, little information is available about the genes and their encoded proteins involved in the initial step of the GB degradation pathway. In the present study, the results of conserved domain analysis, construction of in-frame deletion mutants, and an in vivo functional complementation assay suggested that the open reading frames Csal_1004 and Csal_1005, designated bmoA and bmoB, respectively, may act as the terminal oxygenase and the ferredoxin reductase genes in a novel Rieske-type oxygenase system to convert GB to dimethylglycine in C. salexigens DSM 3043. To further verify their function, BmoA and BmoB were heterologously overexpressed in Escherichia coli, and 13C nuclear magnetic resonance analysis revealed that dimethylglycine was accumulated in E. coli BL21(DE3) expressing BmoAB or BmoA. In addition, His-tagged BmoA and BmoB were individually purified to electrophoretic homogeneity and estimated to be a homotrimer and a monomer, respectively. In vitro biochemical analysis indicated that BmoB is an NADH-dependent flavin reductase with one noncovalently bound flavin adenine dinucleotide (FAD) as its prosthetic group. In the presence of BmoB, NADH, and flavin, BmoA could aerobically degrade GB to dimethylglycine with the concomitant production of formaldehyde. BmoA exhibited strict substrate specificity for GB, and its demethylation activity was stimulated by Fe2+ Phylogenetic analysis showed that BmoA belongs to group V of the Rieske nonheme iron oxygenase (RO) family, and all the members in this group were able to use quaternary ammonium compounds as substrates.IMPORTANCE GB is widely distributed in nature. In addition to being accumulated intracellularly as a compatible solute to deal with osmotic stress, it can be utilized by many bacteria as a source of carbon and energy. However, very limited knowledge is presently available about the molecular and biochemical mechanisms for the initial step of the aerobic GB degradation pathway in bacteria. Here, we report the molecular and biochemical characterization of a novel two-component Rieske-type monooxygenase system, GB monooxygenase (BMO), which is responsible for oxidative demethylation of GB to dimethylglycine in C. salexigens DSM 3043. The results gained in this study extend our knowledge on the catalytic reaction of microbial GB degradation to dimethylglycine.
Collapse
|
15
|
Zhou R, Liao X, Li H, Li J, Feng P, Zhao B, Xu S. Isolation and Synthesis of Misszrtine A: A Novel Indole Alkaloid From Marine Sponge-Associated Aspergillus sp. SCSIO XWS03F03. Front Chem 2018; 6:212. [PMID: 29951479 PMCID: PMC6008316 DOI: 10.3389/fchem.2018.00212] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/23/2018] [Indexed: 11/13/2022] Open
Abstract
A novel indole alkaloid, misszrtine A (1), was isolated from marine sponge-derived fungus Aspergillus sp. SCSIO XWS03F03. The planar structure of 1 was assigned by analysis of spectroscopic data, the absolute configuration of which was unambiguously determined by total synthesis. Compound 1 represents the first example of N-isopentenyl tryptophan methyl ester with a phenylpropanoic amide arm, which exhibited a potent antagonistic activity on HL60 (IC50 = 3.1 μM) and LNCaP (IC50 = 4.9 μM) cell lines. Bioactivity evaluation reveals that functional group on indole nitrogen of 1 has a great effect on its cytotoxity, which provides a mean to probe the structure-activity relationships of 1.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Xiaojian Liao
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Hangbin Li
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Jing Li
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Pengju Feng
- Department of Chemistry, Jinan University, Guangzhou, China
| | - BingXin Zhao
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Shihai Xu
- Department of Chemistry, Jinan University, Guangzhou, China
| |
Collapse
|
16
|
Kalnins G, Sevostjanovs E, Hartmane D, Grinberga S, Tars K. CntA oxygenase substrate profile comparison and oxygen dependency of TMA production in Providencia rettgeri. J Basic Microbiol 2017; 58:52-59. [PMID: 29110324 DOI: 10.1002/jobm.201700428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/05/2017] [Accepted: 10/12/2017] [Indexed: 01/22/2023]
Abstract
CntA oxygenase is a Rieske 2S-2Fe cluster-containing protein that has been previously described as able to produce trimethylamine (TMA) from carnitine, gamma-butyrobetaine, glycine betaine, and in one case, choline. TMA found in humans is exclusively of bacterial origin, and its metabolite, trimethylamine oxide (TMAO), has been associated with atherosclerosis and heart and renal failure. We isolated four different Rieske oxygenases and determined that there are no significant differences in their substrate panels. All three had high activity toward carnitine/gamma-butyrobetaine, medium activity toward glycine betaine, and very low activity toward choline. We tested the influence of low oxygen concentrations on TMA production in CntA-containing Providencia rettgeri cell cultures and discovered that this process, although dependent on the amount of oxygen, is still feasible in environments with 1 and 0.2% oxygen, which is comparable to oxygen levels in some parts of the digestive system.
Collapse
Affiliation(s)
- Gints Kalnins
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Dace Hartmane
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | | | - Kaspars Tars
- Latvian Biomedical Research and Study Centre, Riga, Latvia.,Faculty of Biology, University of Latvia, Riga, Latvia
| |
Collapse
|
17
|
de Sousa STP, Cabral L, Lacerda Júnior GV, Oliveira VM. Diversity of aromatic hydroxylating dioxygenase genes in mangrove microbiome and their biogeographic patterns across global sites. Microbiologyopen 2017; 6. [PMID: 28544594 PMCID: PMC5552929 DOI: 10.1002/mbo3.490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/16/2017] [Accepted: 03/23/2017] [Indexed: 01/25/2023] Open
Abstract
Aromatic hydrocarbons (AH), such as polycyclic aromatic hydrocarbons, are compounds largely found in nature. Aromatic‐ring‐hydroxylating dioxygenases (ARHD) are proteins involved in AH degradation pathways. We used ARHD functional genes from an oil‐impacted mangrove area and compared their diversity with other sites around the world to understand the ARHD biogeographic distribution patterns. For this, a comprehensive database was established with 166 operational protein families (OPFs) from 1,758 gene sequences obtained from 15 different sites worldwide, of which twelve are already published studies and three are unpublished. Based on a deduced ARHD peptide sequences consensus phylogeny, we examined trends and divergences in the sequence phylogenetic clustering from the different sites. The taxonomic affiliation of the OPF revealed that Pseudomonas, Streptomyces, Variovorax, Bordetella and Rhodococcus were the five most abundant genera, considering all sites. The functional diversity analysis showed the enzymatic prevalence of benzene 1,2‐dioxygenase, 3‐phenylpropionate dioxygenase and naphthalene 1,2‐dioxygenase, in addition to 10.98% of undefined category ARHDs. The ARHD gene correlation analysis among different sites was essentially important to gain insights on spatial distribution patterns, genetic congruence and ecological coherence of the bacterial groups found. This work revealed the genetic potential from the mangrove sediment for AH biodegradation and a considerable evolutionary proximity among the dioxygenase OPFs found in Antarctica and South America sites, in addition to high level of endemism in each continental region.
Collapse
Affiliation(s)
- Sanderson T P de Sousa
- Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Paulínia, São Paulo, Brazil.,Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Lucélia Cabral
- Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Paulínia, São Paulo, Brazil
| | - Gileno Vieira Lacerda Júnior
- Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Paulínia, São Paulo, Brazil.,Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Valéria M Oliveira
- Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Paulínia, São Paulo, Brazil
| |
Collapse
|
18
|
Ertekin E, Konstantinidis KT, Tezel U. A Rieske-Type Oxygenase of Pseudomonas sp. BIOMIG1 Converts Benzalkonium Chlorides to Benzyldimethyl Amine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:175-181. [PMID: 27792326 DOI: 10.1021/acs.est.6b03705] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recently, an array of eight genes involved in the biotransformation of benzalkonium chlorides (BACs)-an active ingredient of many disinfectants-to benzyldimethyl amine (BDMA) was identified in the genome of Pseudomonas sp. BIOMIG1, which is a bacterium present in various environments and mineralizes BACs. In this study, we showed that heterologous expression of an oxygenase gene (oxyBAC) present in this gene array in E. coli resulted in formation of BDMA from BACs at a rate of 14 μM h-1. oxyBAC is phylogenetically classified as a Rieske-type oxygenase (RO) and belongs to a group which catalyzes the cleavage of C-N+ bond between either methyl or alkyl ester and a quaternary nitrogen (N) of natural quaternary ammonium compounds such as stachydrine, carnitine, and trimethylglycine. Insertion of two glycines into the Rieske domain and substitution of tyrosine with leucine in the mononuclear iron center differentiate oxyBAC from other ROs that cleave C-N+, and presumably facilitate the cleavage of saturated alkyl chain from quaternary N via N-dealkylation reaction. In addition, unlike other ROs, oxyBAC did not require a specific reductase to function. Our results demonstrate that oxyBAC represents a new member of RO associated with BAC degradation, and have applications for controlling the fate of BACs in the environment.
Collapse
Affiliation(s)
- Emine Ertekin
- Institute of Environmental Sciences and ‡Center for Life Sciences and Technologies, Bogazici University , Bebek 34342 Istanbul, Turkey
- School of Civil and Environmental Engineering and ∥School of Biology, Georgia Institute of Technology , Atlanta, Georgia 30332-0512, United States
| | - Konstantinos T Konstantinidis
- Institute of Environmental Sciences and ‡Center for Life Sciences and Technologies, Bogazici University , Bebek 34342 Istanbul, Turkey
- School of Civil and Environmental Engineering and ∥School of Biology, Georgia Institute of Technology , Atlanta, Georgia 30332-0512, United States
| | - Ulas Tezel
- Institute of Environmental Sciences and ‡Center for Life Sciences and Technologies, Bogazici University , Bebek 34342 Istanbul, Turkey
- School of Civil and Environmental Engineering and ∥School of Biology, Georgia Institute of Technology , Atlanta, Georgia 30332-0512, United States
| |
Collapse
|
19
|
The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part III. {[Fe2S2](Cys)3(X)} (X=Asp, Arg, His) and {[Fe2S2](Cys)2(His)2} proteins. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Strejcek M, Wang Q, Ridl J, Uhlik O. Hunting Down Frame Shifts: Ecological Analysis of Diverse Functional Gene Sequences. Front Microbiol 2015; 6:1267. [PMID: 26635739 PMCID: PMC4656815 DOI: 10.3389/fmicb.2015.01267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/30/2015] [Indexed: 01/19/2023] Open
Abstract
Functional gene ecological analyses using amplicon sequencing can be challenging as translated sequences are often burdened with shifted reading frames. The aim of this work was to evaluate several bioinformatics tools designed to correct errors which arise during sequencing in an effort to reduce the number of frameshifts (FS). Genes encoding for alpha subunits of biphenyl (bphA) and benzoate (benA) dioxygenases were used as model sequences. FrameBot, a FS correction tool, was able to reduce the number of detected FS to zero. However, up to 44% of sequences were discarded by FrameBot as non-specific targets. Therefore, we proposed a de novo mode of FrameBot for FS correction, which works on a similar basis as common chimera identifying platforms and is not dependent on reference sequences. By nature of FrameBot de novo design, it is crucial to provide it with data as error free as possible. We tested the ability of several publicly available correction tools to decrease the number of errors in the data sets. The combination of maximum expected error filtering and single linkage pre-clustering proved to be the most efficient read processing approach. Applying FrameBot de novo on the processed data enabled analysis of BphA sequences with minimal losses of potentially functional sequences not homologous to those previously known. This experiment also demonstrated the extensive diversity of dioxygenases in soil. A script which performs FrameBot de novo is presented in the supplementary material to the study or available at https://github.com/strejcem/FBdenovo. The tool was also implemented into FunGene Pipeline available at http://fungene.cme.msu.edu/FunGenePipeline/.
Collapse
Affiliation(s)
- Michal Strejcek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague Prague, Czech Republic
| | - Qiong Wang
- Center for Microbial Ecology, Michigan State University East Lansing, MI, USA
| | - Jakub Ridl
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic Prague, Czech Republic
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague Prague, Czech Republic
| |
Collapse
|
21
|
Dihydroxylation of four- and five-ring aromatic hydrocarbons by the naphthalene dioxygenase from Sphingomonas CHY-1. Appl Microbiol Biotechnol 2015; 100:1253-1263. [DOI: 10.1007/s00253-015-7050-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/20/2015] [Accepted: 09/29/2015] [Indexed: 12/23/2022]
|
22
|
Overwin H, Standfuß-Gabisch C, González M, Méndez V, Seeger M, Reichelt J, Wray V, Hofer B. Permissivity of the biphenyl-specific aerobic bacterial metabolic pathway towards analogues with various steric requirements. Microbiology (Reading) 2015; 161:1844-1856. [DOI: 10.1099/mic.0.000138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Heike Overwin
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Myriam González
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Valentina Méndez
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Joachim Reichelt
- Department of Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Victor Wray
- Department of Molecular Structural Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Bernd Hofer
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Division of Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
23
|
Peng R, Fu X, Tian Y, Zhao W, Zhu B, Xu J, Wang B, Wang L, Yao Q. Metabolic engineering of Arabidopsis for remediation of different polycyclic aromatic hydrocarbons using a hybrid bacterial dioxygenase complex. Metab Eng 2014; 26:100-110. [PMID: 25305469 DOI: 10.1016/j.ymben.2014.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/02/2014] [Accepted: 09/18/2014] [Indexed: 12/24/2022]
Abstract
The widespread presence of polycyclic aromatic hydrocarbons (PAHs) and their potential harm to various organisms has generated interest in efficiently eliminating these compounds from the environment. Phytoremediation is an efficient technology for cleaning up pollutants. However, unlike microorganisms, plants lack the catabolic pathway for complete degradation of these dangerous groups of compounds. One way to enhance the potential of plants for remediation of these compounds is by transferring genes involved in xenobiotic degradation from microbes to plants. In this paper, four genes, namely nidA and nidB (encoding the large and small subunits of naphthalene dioxygenase of Mycobacterium vanbaalenii PYR-1) as well as NahAa and NahAb (encoding flavoprotein reductase and ferredoxin of the electron-transport chain of the Pseudomonas putida G7 naphthalene dioxygenase system), were transferred and ectopically expressed in Arabidopsis thaliana. Transgenic Arabidopsis plants overexpressing the heterozygous naphthalene dioxygenase system exhibited enhanced tolerance toward 2-4 rings PAHs. Transgenic plants assimilated PAHs from the culture media faster and accumulated less in vivo than wild-type plants. Furthermore, examination of metabolic intermediates by gas chromatography-mass spectrometry revealed that the naphthalene metabolic pathway in transgenic plants mainly involves the dioxygenase pathway. Taken together, our findings suggest that grafting the naphthalene dioxygenase complex into plants is a possible strategy to breed PAH-tolerant plants to efficiently degrade PAHs in the environment.
Collapse
Affiliation(s)
- Rihe Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, National Center for Plant Gene Research, Shanghai, PR China
| | - Xiaoyan Fu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, National Center for Plant Gene Research, Shanghai, PR China
| | - Yongsheng Tian
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, National Center for Plant Gene Research, Shanghai, PR China
| | - Wei Zhao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, National Center for Plant Gene Research, Shanghai, PR China
| | - Bo Zhu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, National Center for Plant Gene Research, Shanghai, PR China
| | - Jing Xu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, National Center for Plant Gene Research, Shanghai, PR China
| | - Bo Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, National Center for Plant Gene Research, Shanghai, PR China
| | - Lijuan Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, National Center for Plant Gene Research, Shanghai, PR China
| | - Quanhong Yao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, National Center for Plant Gene Research, Shanghai, PR China.
| |
Collapse
|
24
|
Characterization of novel polycyclic aromatic hydrocarbon dioxygenases from the bacterial metagenomic DNA of a contaminated soil. Appl Environ Microbiol 2014; 80:6591-600. [PMID: 25128340 DOI: 10.1128/aem.01883-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ring-hydroxylating dioxygenases (RHDs) play a crucial role in the biodegradation of a range of aromatic hydrocarbons found on polluted sites, including polycyclic aromatic hydrocarbons (PAHs). Current knowledge on RHDs comes essentially from studies on culturable bacterial strains, while compelling evidence indicates that pollutant removal is mostly achieved by uncultured species. In this study, a combination of DNA-SIP labeling and metagenomic sequence analysis was implemented to investigate the metabolic potential of main PAH degraders on a polluted site. Following in situ labeling using [(13)C]phenanthrene, the labeled metagenomic DNA was isolated from soil and subjected to shotgun sequencing. Most annotated sequences were predicted to belong to Betaproteobacteria, especially Rhodocyclaceae and Burkholderiales, which is consistent with previous findings showing that main PAH degraders on this site were affiliated to these taxa. Based on metagenomic data, four RHD gene sets were amplified and cloned from soil DNA. For each set, PCR yielded multiple amplicons with sequences differing by up to 321 nucleotides (17%), reflecting the great genetic diversity prevailing in soil. RHDs were successfully overexpressed in Escherichia coli, but full activity required the coexpression of two electron carrier genes, also cloned from soil DNA. Remarkably, two RHDs exhibited much higher activity when associated with electron carriers from a sphingomonad. The four RHDs showed markedly different preferences for two- and three-ring PAHs but were poorly active on four-ring PAHs. Three RHDs preferentially hydroxylated phenanthrene on the C-1 and C-2 positions rather than on the C-3 and C-4 positions, suggesting that degradation occurred through an alternate pathway.
Collapse
|
25
|
3-Ketosteroid 9α-hydroxylase enzymes: Rieske non-heme monooxygenases essential for bacterial steroid degradation. Antonie van Leeuwenhoek 2014; 106:157-72. [PMID: 24846050 PMCID: PMC4064121 DOI: 10.1007/s10482-014-0188-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/25/2014] [Indexed: 12/26/2022]
Abstract
Various micro-organisms are able to use sterols/steroids as carbon- and energy sources for growth. 3-Ketosteroid 9α-hydroxylase (KSH), a two component Rieske non-heme monooxygenase comprised of the oxygenase KshA and the reductase KshB, is a key-enzyme in bacterial steroid degradation. It initiates opening of the steroid polycyclic ring structure. The enzyme has industrial relevance in the synthesis of pharmaceutical steroids. Deletion of KSH activity in sterol degrading bacteria results in blockage of steroid ring opening and is used to produce valuable C19-steroids such as 4-androstene-3,17-dione and 1,4-androstadiene-3,17-dione. Interestingly, KSH activity is essential for the pathogenicity of Mycobacterium tuberculosis. Detailed information about KSH thus is of medical relevance, and KSH inhibitory compounds may find application in combatting tuberculosis. In recent years, the 3D structure of the KshA protein of M. tuberculosis H37Rv has been elucidated and various studies report biochemical characteristics and possible physiological roles of KSH. The current knowledge is reviewed here and forms a solid basis for further studies on this highly interesting enzyme. Future work may result in the construction of KSH mutants capable of production of specific bioactive steroids. Furthermore, KSH provides an promising target for drugs against the pathogenic agent M. tuberculosis.
Collapse
|
26
|
Zhang H, Jiang X, Xiao W, Lu L. Proteomic strategy for the analysis of the polychlorobiphenyl-degrading cyanobacterium Anabaena PD-1 exposed to Aroclor 1254. PLoS One 2014; 9:e91162. [PMID: 24618583 PMCID: PMC3949748 DOI: 10.1371/journal.pone.0091162] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 02/07/2014] [Indexed: 12/21/2022] Open
Abstract
The cyanobacterium Anabaena PD-1, which was originally isolated from polychlorobiphenyl (PCB)-contaminated paddy soils, has capabilities for dechlorinatin and for degrading the commercial PCB mixture Aroclor 1254. In this study, 25 upregulated proteins were identified using 2D electrophoresis (2-DE) coupled with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). These proteins were involved in (i) PCB degradation (i.e., 3-chlorobenzoate-3,4-dioxygenase); (ii) transport processes [e.g., ATP-binding cassette (ABC) transporter substrate-binding protein, amino acid ABC transporter substrate-binding protein, peptide ABC transporter substrate-binding protein, putrescine-binding protein, periplasmic solute-binding protein, branched-chain amino acid uptake periplasmic solute-binding protein, periplasmic phosphate-binding protein, phosphonate ABC transporter substrate-binding protein, and xylose ABC transporter substrate-binding protein]; (iii) energetic metabolism (e.g., methanol/ethanol family pyrroloquinoline quinone (PQQ)-dependent dehydrogenase, malate-CoA ligase subunit beta, enolase, ATP synthase β subunit, FOF1 ATP synthase subunit beta, ATP synthase α subunit, and IMP cyclohydrolase); (iv) electron transport (cytochrome b6f complex Fe-S protein); (v) general stress response (e.g., molecular chaperone DnaK, elongation factor G, and translation elongation factor thermostable); (vi) carbon metabolism (methanol dehydrogenase and malate-CoA ligase subunit beta); and (vii) nitrogen reductase (nitrous oxide reductase). The results of real-time polymerase chain reaction showed that the genes encoding for dioxygenase, ABC transporters, transmembrane proteins, electron transporter, and energetic metabolism proteins were significantly upregulated during PCB degradation. These genes upregulated by 1.26- to 8.98-fold. These findings reveal the resistance and adaptation of cyanobacterium to the presence of PCBs, shedding light on the complexity of PCB catabolism by Anabaena PD-1.
Collapse
Affiliation(s)
- Hangjun Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiaojun Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Wenfeng Xiao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Liping Lu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
27
|
Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota. Proc Natl Acad Sci U S A 2014; 111:4268-73. [PMID: 24591617 DOI: 10.1073/pnas.1316569111] [Citation(s) in RCA: 270] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dietary intake of L-carnitine can promote cardiovascular diseases in humans through microbial production of trimethylamine (TMA) and its subsequent oxidation to trimethylamine N-oxide by hepatic flavin-containing monooxygenases. Although our microbiota are responsible for TMA formation from carnitine, the underpinning molecular and biochemical mechanisms remain unclear. In this study, using bioinformatics approaches, we first identified a two-component Rieske-type oxygenase/reductase (CntAB) and associated gene cluster proposed to be involved in carnitine metabolism in representative genomes of the human microbiota. CntA belongs to a group of previously uncharacterized Rieske-type proteins and has an unusual "bridging" glutamate but not the aspartate residue, which is believed to facilitate intersubunit electron transfer between the Rieske center and the catalytic mononuclear iron center. Using Acinetobacter baumannii as the model, we then demonstrate that cntAB is essential in carnitine degradation to TMA. Heterologous overexpression of cntAB enables Escherichia coli to produce TMA, confirming that these genes are sufficient in TMA formation. Site-directed mutagenesis experiments have confirmed that this unusual "bridging glutamate" residue in CntA is essential in catalysis and neither mutant (E205D, E205A) is able to produce TMA. Taken together, the data in our study reveal the molecular and biochemical mechanisms underpinning carnitine metabolism to TMA in human microbiota and assign the role of this novel group of Rieske-type proteins in microbial carnitine metabolism.
Collapse
|
28
|
Dutta A, Chakraborty J, Dutta TK. Episodic positive selection during the evolution of naphthalene dioxygenase to nitroarene dioxygenase. Biochem Biophys Res Commun 2013; 440:68-75. [PMID: 24041690 DOI: 10.1016/j.bbrc.2013.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 09/05/2013] [Indexed: 06/02/2023]
Abstract
Using different maximum-likelihood models of adaptive evolution, signatures of natural selective pressure, operating across the naphthalene family of dioxygenases, were examined. A lineage- and branch-site specific combined analysis revealed that purifying selection pressure dominated the evolutionary history of the enzyme family. Specifically, episodic positive Darwinian selection pressure, affecting only a few sites in a subset of lineages, was found to be responsible for the evolution of nitroarene dioxygenases (NArDO) from naphthalene dioxygenase (NDO). Site-specific analysis confirmed the absence of diversifying selection pressure at any particular site. Different sets of positively selected residues, obtained from branch-site specific analysis, were detected for the evolution of each NArDO. They were mainly located around the active site, the catalytic pocket and their adjacent regions, when mapped onto the 3D structure of the α-subunit of NDO. The present analysis enriches the current understanding of adaptive evolution and also broadens the scope for rational alteration of substrate specificity of enzyme by directed evolution.
Collapse
Affiliation(s)
- Arindam Dutta
- Department of Microbiology, Bose Institute, Kolkata 700054, India
| | | | | |
Collapse
|
29
|
Function of a glutamine synthetase-like protein in bacterial aniline oxidation via γ-glutamylanilide. J Bacteriol 2013; 195:4406-14. [PMID: 23893114 DOI: 10.1128/jb.00397-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter sp. strain YAA has five genes (atdA1 to atdA5) involved in aniline oxidation as a part of the aniline degradation gene cluster. From sequence analysis, the five genes were expected to encode a glutamine synthetase (GS)-like protein (AtdA1), a glutamine amidotransferase-like protein (AtdA2), and an aromatic compound dioxygenase (AtdA3, AtdA4, and AtdA5) (M. Takeo, T. Fujii, and Y. Maeda, J. Ferment. Bioeng. 85:17-24, 1998). A recombinant Pseudomonas strain harboring these five genes quantitatively converted aniline into catechol, demonstrating that catechol is the major oxidation product from aniline. To elucidate the function of the GS-like protein AtdA1 in aniline oxidation, we purified it from recombinant Escherichia coli harboring atdA1. The purified AtdA1 protein produced gamma-glutamylanilide (γ-GA) quantitatively from aniline and l-glutamate in the presence of ATP and MgCl2. This reaction was identical to glutamine synthesis by GS, except for the use of aniline instead of ammonia as the substrate. Recombinant Pseudomonas strains harboring the dioxygenase genes (atdA3 to atdA5) were unable to degrade aniline but converted γ-GA into catechol, indicating that γ-GA is an intermediate to catechol and a direct substrate for the dioxygenase. Unexpectedly, a recombinant Pseudomonas strain harboring only atdA2 hydrolyzed γ-GA into aniline, reversing the γ-GA formation by AtdA1. Deletion of atdA2 from atdA1 to atdA5 caused γ-GA accumulation from aniline in recombinant Pseudomonas cells and inhibited the growth of a recombinant Acinetobacter strain on aniline, suggesting that AtdA2 prevents γ-GA accumulation that is harmful to the host cell.
Collapse
|
30
|
Kim D, Yoo M, Kim E, Hong SG. Anthranilate degradation by a cold-adaptedPseudomonassp. J Basic Microbiol 2013; 55:354-62. [DOI: 10.1002/jobm.201300079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/13/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Dockyu Kim
- Division of Life Sciences; Korea Polar Research Institute; Incheon Korea
| | - Miyoun Yoo
- Department of Systems Biology; Yonsei University; Seoul Korea
- Yonsei/Paris-Sud Project; Yonsei International Campus; Incheon Korea
| | - Eungbin Kim
- Department of Systems Biology; Yonsei University; Seoul Korea
- Yonsei/Paris-Sud Project; Yonsei International Campus; Incheon Korea
| | - Soon Gyu Hong
- Division of Life Sciences; Korea Polar Research Institute; Incheon Korea
| |
Collapse
|
31
|
Colbert CL, Agar NYR, Kumar P, Chakko MN, Sinha SC, Powlowski JB, Eltis LD, Bolin JT. Structural characterization of Pandoraea pnomenusa B-356 biphenyl dioxygenase reveals features of potent polychlorinated biphenyl-degrading enzymes. PLoS One 2013; 8:e52550. [PMID: 23308114 PMCID: PMC3536784 DOI: 10.1371/journal.pone.0052550] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 11/19/2012] [Indexed: 11/19/2022] Open
Abstract
The oxidative degradation of biphenyl and polychlorinated biphenyls (PCBs) is initiated in Pandoraea pnomenusa B-356 by biphenyl dioxygenase (BPDO(B356)). BPDO(B356), a heterohexameric (αβ)(3) Rieske oxygenase (RO), catalyzes the insertion of dioxygen with stereo- and regioselectivity at the 2,3-carbons of biphenyl, and can transform a broad spectrum of PCB congeners. Here we present the X-ray crystal structures of BPDO(B356) with and without its substrate biphenyl 1.6-Å resolution for both structures. In both cases, the Fe(II) has five ligands in a square pyramidal configuration: H233 Nε2, H239 Nε2, D386 Oδ1 and Oδ2, and a single water molecule. Analysis of the active sites of BPDO(B356) and related ROs revealed structural features that likely contribute to the superior PCB-degrading ability of certain BPDOs. First, the active site cavity readily accommodates biphenyl with minimal conformational rearrangement. Second, M231 was predicted to sterically interfere with binding of some PCBs, and substitution of this residue yielded variants that transform 2,2'-dichlorobiphenyl more effectively. Third, in addition to the volume and shape of the active site, residues at the active site entrance also apparently influence substrate preference. Finally, comparison of the conformation of the active site entrance loop among ROs provides a basis for a structure-based classification consistent with a phylogeny derived from amino acid sequence alignments.
Collapse
Affiliation(s)
- Christopher L Colbert
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Baboshin MA, Golovleva LA. Aerobic bacterial degradation of polycyclic aromatic hydrocarbons (PAHs) and its kinetic aspects. Microbiology (Reading) 2012. [DOI: 10.1134/s0026261712060021] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
33
|
Martin F, Malagnoux L, Violet F, Jakoncic J, Jouanneau Y. Diversity and catalytic potential of PAH-specific ring-hydroxylating dioxygenases from a hydrocarbon-contaminated soil. Appl Microbiol Biotechnol 2012; 97:5125-35. [PMID: 22903320 DOI: 10.1007/s00253-012-4335-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/20/2012] [Accepted: 07/21/2012] [Indexed: 10/28/2022]
Abstract
Ring-hydroxylating dioxygenases (RHDs) catalyze the initial oxidation step of a range of aromatic hydrocarbons including polycyclic aromatic hydrocarbons (PAHs). As such, they play a key role in the bacterial degradation of these pollutants in soil. Several polymerase chain reaction (PCR)-based methods have been implemented to assess the diversity of RHDs in soil, allowing limited sequence-based predictions on RHD function. In the present study, we developed a method for the isolation of PAH-specific RHD gene sequences of Gram-negative bacteria, and for analysis of their catalytic function. The genomic DNA of soil PAH degraders was labeled in situ by stable isotope probing, then used to PCR amplify sequences specifying the catalytic domain of RHDs. Sequences obtained fell into five clusters phylogenetically linked to RHDs from either Sphingomonadales or Burkholderiales. However, two clusters comprised sequences distantly related to known RHDs. Some of these sequences were cloned in-frame in place of the corresponding region of the phnAIa gene from Sphingomonas CHY-1 to generate hybrid genes, which were expressed in Escherichia. coli as chimerical enzyme complexes. Some of the RHD chimeras were found to be competent in the oxidation of two- and three-ring PAHs, but other appeared unstable. Our data are interpreted in structural terms based on 3D modeling of the catalytic subunit of hybrid RHDs. The strategy described herein might be useful for exploring the catalytic potential of the soil metagenome and recruit RHDs with new activities from uncultured soil bacteria.
Collapse
Affiliation(s)
- Florence Martin
- Laboratoire de Chimie et Biologie des Métaux, CEA, DSV, 38054 Grenoble Cedex 9, France
| | | | | | | | | |
Collapse
|
34
|
Chakraborty J, Ghosal D, Dutta A, Dutta TK. An insight into the origin and functional evolution of bacterial aromatic ring-hydroxylating oxygenases. J Biomol Struct Dyn 2012; 30:419-36. [PMID: 22694139 DOI: 10.1080/07391102.2012.682208] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Bacterial aromatic ring-hydroxylating oxygenases (RHOs) are multicomponent enzyme systems which have potential utility in bioremediation of aromatic compounds in the environment. To cope with the enormous diversity of aromatic compounds in the environment, this enzyme family has evolved remarkably exhibiting broad substrate specificity. RHOs are multicomponent enzymes comprising of a homo- or hetero-multimeric terminal oxygenase and one or more electron transport (ET) protein(s). The present study attempts in depicting the evolutionary scenarios that might have occurred during the evolution of RHOs, by analyzing a set of available sequences including those obtained from complete genomes. A modified classification scheme identifying four new RHO types has been suggested on the basis of their evolutionary and functional behaviours, in relation to structural configuration of substrates and preferred oxygenation site(s). The present scheme emphasizes on the fact that the phylogenetic affiliation of RHOs is distributed among four distinct 'Similarity classes', independent of the constituent ET components. Similar combination of RHO components that was previously considered to be equivalent and classified together [Kweon et al., BMC Biochemistry 9, 11 (2008)] were found here in distinct similarity classes indicating the role of substrate-binding terminal oxygenase in guiding the evolution of RHOs irrespective of the nature of constituent ET components. Finally, a model for evolution of the multicomponent RHO enzyme system has been proposed, beginning from genesis of the terminal oxygenase components followed by recruitment of constituent ET components, finally evolving into various 'extant' RHO types.
Collapse
|
35
|
Gan HM, Shahir S, Yahya A. Cloning and functional analysis of the genes coding for 4-aminobenzenesulfonate 3,4-dioxygenase from Hydrogenophaga sp. PBC. MICROBIOLOGY-SGM 2012; 158:1933-1941. [PMID: 22609751 DOI: 10.1099/mic.0.059550-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The gene coding for the oxygenase component, sadA, of 4-aminobenzenesulfonate (4-ABS) 3,4-dioxygenase in Hydrogenophaga sp. PBC was previously identified via transposon mutagenesis. Expression of wild-type sadA in trans restored the ability of the sadA mutant to grow on 4-ABS. The inclusion of sadB and sadD, coding for a putative glutamine-synthetase-like protein and a plant-type ferredoxin, respectively, further improved the efficiency of 4-ABS degradation. Transcription analysis using the gfp promoter probe plasmid showed that sadABD was expressed during growth on 4-ABS and 4-sulfocatechol. Heterologous expression of sadABD in Escherichia coli led to the biotransformation of 4-ABS to a metabolite which shared a similar retention time and UV/vis profile with 4-sulfocatechol. The putative reductase gene sadC was isolated via degenerate PCR and expression of sadC and sadABD in E. coli led to maximal 4-ABS biotransformation. In E. coli, the deletion of sadB completely eliminated dioxygenase activity while the deletion of sadC or sadD led to a decrease in dioxygenase activity. Phylogenetic analysis of SadB showed that it is closely related to the glutamine-synthetase-like proteins involved in the aniline degradation pathway. This is the first discovery, to our knowledge, of the functional genetic components for 4-ABS aromatic ring hydroxylation in the bacterial domain.
Collapse
Affiliation(s)
- Han Ming Gan
- Department of Biological Sciences, Faculty of Biosciences and Bioengineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia
| | - Shafinaz Shahir
- Department of Biological Sciences, Faculty of Biosciences and Bioengineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia
| | - Adibah Yahya
- Department of Industrial Biotechnology, Faculty of Biosciences and Bioengineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia
| |
Collapse
|
36
|
Paissé S, Goñi-Urriza M, Stadler T, Budzinski H, Duran R. Ring-hydroxylating dioxygenase (RHD) expression in a microbial community during the early response to oil pollution. FEMS Microbiol Ecol 2012; 80:77-86. [DOI: 10.1111/j.1574-6941.2011.01270.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/08/2011] [Accepted: 11/24/2011] [Indexed: 11/27/2022] Open
Affiliation(s)
- Sandrine Paissé
- Equipe Environnement et Microbiologie; UMR CNRS IPREM 5254; Université de Pau; Pau Cedex; France
| | - Marisol Goñi-Urriza
- Equipe Environnement et Microbiologie; UMR CNRS IPREM 5254; Université de Pau; Pau Cedex; France
| | - Thibault Stadler
- Equipe Environnement et Microbiologie; UMR CNRS IPREM 5254; Université de Pau; Pau Cedex; France
| | - Hélène Budzinski
- Institut des Sciences Moléculaires; UMR CNRS 5255; Université Bordeaux; Talence; France
| | - Robert Duran
- Equipe Environnement et Microbiologie; UMR CNRS IPREM 5254; Université de Pau; Pau Cedex; France
| |
Collapse
|
37
|
Phylogenetic analysis reveals the surprising diversity of an oxygenase class. J Biol Inorg Chem 2011; 17:425-36. [PMID: 22203449 DOI: 10.1007/s00775-011-0865-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 12/07/2011] [Indexed: 10/14/2022]
Abstract
As metalloenzymes capable of transforming a broad range of substrates with high stereo- and regio-specificity, the multicomponent Rieske oxygenases (ROs) have been studied in bacterial systems for applications in bioremediation and industrial biocatalysis. These studies include genetic and biochemical investigations, determination of enzyme structure, phylogenetic analysis, and enzyme classification. Although RO terminal oxygenase components (RO-Os) share a conserved domain structure, their sequences are highly divergent and present significant challenges for identification and classification. Herein, we present the first global phylogenetic analysis of a broad range of RO-Os from diverse taxonomic groups. We employed objective, structure-based criteria to significantly reduce the inclusion of erroneously aligned sequences in the analysis. Our findings reveal that RO biochemical studies to date have been largely concentrated in an unexpectedly narrow portion of the RO-O sequence landscape. Additionally, our analysis demonstrates the existence two distinct groups of RO-O sequences. Finally, the sequence diversity recognized in this study necessitates a new RO-O classification scheme. We therefore propose a P450-like naming system. Our results reveal a diversity of sequence and potential catalytic functionality that has been wholly unappreciated in the RO literature. This study also demonstrates that many commonly used bioinformatic tools may not be sufficient to analyze the vast amount of data available in current databases. These findings facilitate the expanded exploration of RO catalytic capabilities in both biological and technological contexts and increase the potential for practical exploitation of their activities.
Collapse
|
38
|
Differential degradation of bicyclics with aromatic and alicyclic rings by Rhodococcus sp. strain DK17. Appl Environ Microbiol 2011; 77:8280-7. [PMID: 21965391 DOI: 10.1128/aem.06359-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The metabolically versatile Rhodococcus sp. strain DK17 is able to grow on tetralin and indan but cannot use their respective desaturated counterparts, 1,2-dihydronaphthalene and indene, as sole carbon and energy sources. Metabolite analyses by gas chromatography-mass spectrometry and nuclear magnetic resonance spectrometry clearly show that (i) the meta-cleavage dioxygenase mutant strain DK180 accumulates 5,6,7,8-tetrahydro-1,2-naphthalene diol, 1,2-indene diol, and 3,4-dihydro-naphthalene-1,2-diol from tetralin, indene, and 1,2-dihydronaphthalene, respectively, and (ii) when expressed in Escherichia coli, the DK17 o-xylene dioxygenase transforms tetralin, indene, and 1,2-dihydronaphthalene into tetralin cis-dihydrodiol, indan-1,2-diol, and cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene, respectively. Tetralin, which is activated by aromatic hydroxylation, is degraded successfully via the ring cleavage pathway to support growth of DK17. Indene and 1,2-dihydronaphthalene do not serve as growth substrates because DK17 hydroxylates them on the alicyclic ring and further metabolism results in a dead-end metabolite. This study reveals that aromatic hydroxylation is a prerequisite for proper degradation of bicyclics with aromatic and alicyclic rings by DK17 and confirms the unique ability of the DK17 o-xylene dioxygenase to perform distinct regioselective hydroxylations.
Collapse
|
39
|
Zhao C, Zhang Y, Li X, Wen D, Tang X. Biodegradation of carbazole by the seven Pseudomonas sp. strains and their denitrification potential. JOURNAL OF HAZARDOUS MATERIALS 2011; 190:253-259. [PMID: 21466916 DOI: 10.1016/j.jhazmat.2011.03.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/20/2011] [Accepted: 03/10/2011] [Indexed: 05/30/2023]
Abstract
Carbazole, one representative of non-alkaline nitrogen heterocyclic compounds, is widespread in the natural environment and harmful to human health. In this research, the seven bacterial strains using carbazole as their sole carbon, nitrogen and energy source were isolated from activated sludge of a coking wastewater treatment plant. All strains efficiently degraded 500 mg/L of carbazole in the medium within 36 h. Based on the DNA sequence and phylogenetic tree analysis, the seven strains were identified as the genera Pseudomonas with different evolutionary pathways. PCR analysis revealed that the seven isolates carried the car gene. Moreover, all of these strains could utilize and transform ammonium and nitrate efficiently, and the six strains except BC043 strain coded the nitrite reductase gene (nirS) and the nitrous oxide reductase (nosZ), that indicated their denitrification ability. All these strains may be useful in the bioremediation of environments contaminated by carbazole.
Collapse
Affiliation(s)
- Cui Zhao
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing 100871, People's Republic of China
| | | | | | | | | |
Collapse
|
40
|
Andreini C, Bertini I, Cavallaro G, Decaria L, Rosato A. A Simple Protocol for the Comparative Analysis of the Structure and Occurrence of Biochemical Pathways Across Superkingdoms. J Chem Inf Model 2011; 51:730-8. [DOI: 10.1021/ci100392q] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Claudia Andreini
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Ivano Bertini
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Gabriele Cavallaro
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Leonardo Decaria
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Antonio Rosato
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
41
|
Mallick S, Chakraborty J, Dutta TK. Role of oxygenases in guiding diverse metabolic pathways in the bacterial degradation of low-molecular-weight polycyclic aromatic hydrocarbons: a review. Crit Rev Microbiol 2010; 37:64-90. [PMID: 20846026 DOI: 10.3109/1040841x.2010.512268] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Widespread environmental pollution by polycyclic aromatic hydrocarbons (PAHs) poses an immense risk to the environment. Bacteria-mediated attenuation has a great potential for the restoration of PAH-contaminated environment in an ecologically accepted manner. Bacterial degradation of PAHs has been extensively studied and mining of biodiversity is ever expanding the biodegradative potentials with intelligent manipulation of catabolic genes and adaptive evolution to generate multiple catabolic pathways. The present review of bacterial degradation of low-molecular-weight (LMW) PAHs describes the current knowledge about the diverse metabolic pathways depicting novel metabolites, enzyme-substrate/metabolite relationships, the role of oxygenases and their distribution in phylogenetically diverse bacterial species.
Collapse
Affiliation(s)
- Somnath Mallick
- Department of Chemistry, Saldiha College, Bankura, West Bengal, India
| | | | | |
Collapse
|
42
|
Gomes NC, Flocco CG, Costa R, Junca H, Vilchez R, Pieper DH, Krögerrecklenfort E, Paranhos R, Mendonça-Hagler LC, Smalla K. Mangrove microniches determine the structural and functional diversity of enriched petroleum hydrocarbon-degrading consortia. FEMS Microbiol Ecol 2010. [DOI: 10.1111/j.1574-6941.2010.00962.x 276-290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
43
|
Gomes NCM, Flocco CG, Costa R, Junca H, Vilchez R, Pieper DH, Krögerrecklenfort E, Paranhos R, Mendonça-Hagler LCS, Smalla K. Mangrove microniches determine the structural and functional diversity of enriched petroleum hydrocarbon-degrading consortia. FEMS Microbiol Ecol 2010; 74:276-90. [PMID: 20812953 DOI: 10.1111/j.1574-6941.2010.00962.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In this study, the combination of culture enrichments and molecular tools was used to identify bacterial guilds, plasmids and functional genes potentially important in the process of petroleum hydrocarbon (PH) decontamination in mangrove microniches (rhizospheres and bulk sediment). In addition, we aimed to recover PH-degrading consortia (PHDC) for future use in remediation strategies. The PHDC were enriched with petroleum from rhizosphere and bulk sediment samples taken from a mangrove chronically polluted with oil hydrocarbons. Southern blot hybridization (SBH) assays of PCR amplicons from environmental DNA before enrichments resulted in weak positive signals for the functional gene types targeted, suggesting that PH-degrading genotypes and plasmids were in low abundance in the rhizosphere and bulk sediments. However, after enrichment, these genes were detected and strong microniche-dependent differences in the abundance and composition of hydrocarbonoclastic bacterial populations, plasmids (IncP-1α, IncP-1β, IncP-7 and IncP-9) and functional genes (naphthalene, extradiol and intradiol dioxygenases) were revealed by in-depth molecular analyses [PCR-denaturing gradient gel electrophoresis and hybridization (SBH and microarray)]. Our results suggest that, despite the low abundance of PH-degrading genes and plasmids in the environmental samples, the original bacterial composition of the mangrove microniches determined the structural and functional diversity of the PHDC enriched.
Collapse
Affiliation(s)
- Newton C M Gomes
- CESAM and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Peng RH, Xiong AS, Xue Y, Fu XY, Gao F, Zhao W, Tian YS, Yao QH. A profile of ring-hydroxylating oxygenases that degrade aromatic pollutants. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 206:65-94. [PMID: 20652669 DOI: 10.1007/978-1-4419-6260-7_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Numerous aromatic compounds are pollutants to which exposure exists or is possible, and are of concern because they are mutagenic, carcinogenic, or display other toxic characteristics. Depending on the types of dioxygenation reactions of which microorganisms are capable, they utilize ring-hydroxylating oxygenases (RHOs) to initiate the degradation and detoxification of such aromatic compound pollutants. Gene families encoding for RHOs appear to be most common in bacteria. Oxygenases are important in degrading both natural and synthetic aromatic compounds and are particularly important for their role in degrading toxic pollutants; for this reason, it is useful for environmental scientists and others to understand more of their characteristics and capabilities. It is the purpose of this review to address RHOs and to describe much of their known character, starting with a review as to how RHOs are classified. A comprehensive phylogenetic analysis has revealed that all RHOs are, in some measure, related, presumably by divergent evolution from a common ancestor, and this is reflected in how they are classified. After we describe RHO classification schemes, we address the relationship between RHO structure and function. Structural differences affect substrate specificity and product formation. In the alpha subunit of the known terminal oxygenase of RHOs, there is a catalytic domain with a mononuclear iron center that serves as a substrate-binding site and a Rieske domain that retains a [2Fe-2S] cluster that acts as an entity of electron transfer for the mononuclear iron center. Oxygen activation and substrate dihydroxylation occurring at the catalytic domain are dependent on the binding of substrate at the active site and the redox state of the Rieske center. The electron transfer from NADH to the catalytic pocket of RHO and catalyzing mechanism of RHOs is depicted in our review and is based on the results of recent studies. Electron transfer involving the RHO system typically involves four steps: NADH-ferredoxin reductase receives two electrons from NADH; ferredoxin binds with NADH-ferredoxin reductase and accepts electron from it; the reduced ferredoxin dissociates from NADH-ferredoxin reductase and shuttles the electron to the Rieske domain of the terminal oxygenase; the Rieske cluster donates electrons to O2 through the mononuclear iron. On the basis of crystal structure studies, it has been proposed that the broad specificity of the RHOs results from the large size and specific topology of its hydrophobic substrate-binding pocket. Several amino acids that determine the substrate specificity and enantioselectivity of RHOs have been identified through sequence comparison and site-directed mutagenesis at the active site. Exploiting the crystal structure data and the available active site information, engineered RHO enzymes have been and can be designed to improve their capacity to degrade environmental pollutants. Such attempts to enhance degradation capabilities of RHOs have been made. Dioxygenases have been modified to improve the degradation capacities toward PCBs, PAHs, dioxins, and some other aromatic hydrocarbons. We hope that the results of this review and future research on enhancing RHOs will promote their expanded usage and effectiveness for successfully degrading environmental aromatic pollutants.
Collapse
Affiliation(s)
- Ri-He Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Rhodococcus rhodochrous DSM 43269 3-ketosteroid 9alpha-hydroxylase, a two-component iron-sulfur-containing monooxygenase with subtle steroid substrate specificity. Appl Environ Microbiol 2009; 75:5300-7. [PMID: 19561185 DOI: 10.1128/aem.00066-09] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This paper reports the biochemical characterization of a purified and reconstituted two-component 3-ketosteroid 9alpha-hydroxylase (KSH). KSH of Rhodococcus rhodochrous DSM 43269, consisting of a ferredoxin reductase (KshB) and a terminal oxygenase (KshA), was heterologously expressed in Escherichia coli. E. coli cell cultures, expressing both KshA and KshB, converted 4-androstene-3,17-dione (AD) into 9alpha-hydroxy-4-AD (9OHAD) with a >60% molar yield over 48 h of incubation. Coexpression and copurification were critical to successfully obtain pure and active KSH. Biochemical analysis revealed that the flavoprotein KshB is an NADH-dependent reductase using flavin adenine dinucleotide as a cofactor. Reconstitution experiments confirmed that KshA, KshB, and NADH are essential for KSH activity with steroid substrates. KSH hydroxylation activity was inhibited by several divalent metal ions, especially by zinc. The reconstituted KSH displayed subtle steroid substrate specificity; a range of 3-ketosteroids, i.e., 5alpha-Eta, 5beta-Eta, Delta1, and Delta4 steroids, could act as KSH substrates, provided that they had a short side chain. The formation of 9OHAD from AD by KSH was confirmed by liquid chromatography-mass spectrometry analysis and by the specific enzymatic conversion of 9OHAD into 3-hydroxy-9,10-secoandrost-1,3,5(10)-triene-9,17-dione using 3-ketosteroid Delta1-dehydrogenase. Only a single KSH is encoded in the genome of the human pathogen Mycobacterium tuberculosis H37Rv, shown to be important for survival in macrophages. Since no human KSH homolog exists, the M. tuberculosis enzyme may provide a novel target for treatment of tuberculosis. Detailed knowledge about the biochemical properties of KSH thus is highly relevant in the research fields of biotechnology and medicine.
Collapse
|
46
|
Flocco CG, Gomes NCM, Mac Cormack W, Smalla K. Occurrence and diversity of naphthalene dioxygenase genes in soil microbial communities from the Maritime Antarctic. Environ Microbiol 2009; 11:700-14. [PMID: 19278452 DOI: 10.1111/j.1462-2920.2008.01858.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The diversity of naphthalene dioxygenase genes (ndo) in soil environments from the Maritime Antarctic was assessed, dissecting as well the influence of the two vascular plants that grow in the Antarctic: Deschampsia antarctica and Colobanthus quitensis. Total community DNA was extracted from bulk and rhizosphere soil samples from Jubany station and Potter Peninsula, South Shetland Islands. ndo genes were amplified by a nested PCR and analysed by denaturant gradient gel electrophoresis approach (PCR-DGGE) and cloning and sequencing. The ndo-DGGE fingerprints of oil-contaminated soil samples showed even and reproducible patterns, composed of four dominant bands. The presence of vascular plants did not change the relative abundance of ndo genotypes compared with bulk soil. For non-contaminated sites, amplicons were not obtained for all replicates and the variability among the fingerprints was comparatively higher, likely reflecting a lower abundance of ndo genes. The phylogenetic analyses showed that all sequences were affiliated to the nahAc genes closely related to those described for Pseudomonas species and related mobile genetic elements. This study revealed that a microdiversity of nahAc-like genes exists in microbial communities of Antarctic soils and quantitative PCR indicated that their relative abundance was increased in response to anthropogenic sources of pollution.
Collapse
Affiliation(s)
- Cecilia G Flocco
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants (JKI), Braunschweig, Germany.
| | | | | | | |
Collapse
|
47
|
Pathway and evolutionary implications of diphenylamine biodegradation by Burkholderia sp. strain JS667. Appl Environ Microbiol 2009; 75:2694-704. [PMID: 19251893 DOI: 10.1128/aem.02198-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diphenylamine (DPA) is a common contaminant at munitions-contaminated sites as well as at aniline manufacturing sites. Little is known about the biodegradation of the compound, and bacteria able to use DPA as the growth substrate have not been reported. Burkholderia sp. strain JS667 and Ralstonia sp. strain JS668 were isolated by selective enrichment from DPA-contaminated sediment. The isolates grew aerobically with DPA as the sole carbon, nitrogen, and energy source. During induction of DPA degradation, stoichiometric amounts of aniline accumulated and then disappeared, which suggested that aniline is on the DPA degradation pathway. Genes encoding the enzymes that catalyze the initial steps in DPA degradation were cloned from the genomic DNA of strain JS667. The Escherichia coli clone catalyzed stoichiometric transformation of DPA to aniline and catechol. Transposon mutagenesis, the sequence similarity of putative open reading frames to those of well-characterized dioxygenases, and (18)O(2) experiments support the conclusion that the initial reaction in DPA degradation is catalyzed by a multicomponent ring-hydroxylating dioxygenase. DPA is converted to aniline and catechol via dioxygenation at the 1,2 position of the aromatic ring and spontaneous rearomatization. Aniline and catechol are further biodegraded by the well-established aniline degradation pathway. Genes that encode the complete aniline degradation pathway were found 12 kb downstream of the genes that encode the initial dioxygenase. Expression of the relevant dioxygenases was confirmed by reverse transcription-PCR analysis. Both the sequence similarity and the gene organization suggest that the DPA degradation pathway evolved recently by the recruitment of two gene clusters that encode the DPA dioxygenase and aniline degradation pathway.
Collapse
|
48
|
Pope SD, Chen LL, Stewart V. Purine utilization by Klebsiella oxytoca M5al: genes for ring-oxidizing and -opening enzymes. J Bacteriol 2009; 191:1006-17. [PMID: 19060149 PMCID: PMC2632102 DOI: 10.1128/jb.01281-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 11/25/2008] [Indexed: 11/20/2022] Open
Abstract
The enterobacterium Klebsiella oxytoca uses a variety of inorganic and organic nitrogen sources, including purines, nitrogen-rich compounds that are widespread in the biosphere. We have identified a 23-gene cluster that encodes the enzymes for utilizing purines as the sole nitrogen source. Growth and complementation tests with insertion mutants, combined with sequence comparisons, reveal functions for the products of these genes. Here, we report our characterization of 12 genes, one encoding guanine deaminase and the others encoding enzymes for converting (hypo)xanthine to allantoate. Conventionally, xanthine dehydrogenase, a broadly distributed molybdoflavoenzyme, catalyzes sequential hydroxylation reactions to convert hypoxanthine via xanthine to urate. Our results show that these reactions in K. oxytoca are catalyzed by a two-component oxygenase (HpxE-HpxD enzyme) homologous to Rieske nonheme iron aromatic-ring-hydroxylating systems, such as phthalate dioxygenase. Our results also reveal previously undescribed enzymes involved in urate oxidation to allantoin, catalyzed by a flavoprotein monooxygenase (HpxO enzyme), and in allantoin conversion to allantoate, which involves allantoin racemase (HpxA enzyme). The pathway also includes the recently described PuuE allantoinase (HpxB enzyme). The HpxE-HpxD and HpxO enzymes were discovered independently by de la Riva et al. (L. de la Riva, J. Badia, J. Aguilar, R. A. Bender, and L. Baldoma, J. Bacteriol. 190:7892-7903, 2008). Thus, several enzymes in this K. oxytoca purine utilization pathway differ from those in other microorganisms. Isofunctional homologs of these enzymes apparently are encoded by other species, including Acinetobacter, Burkholderia, Pseudomonas, Saccharomyces, and Xanthomonas.
Collapse
Affiliation(s)
- Scott D Pope
- Department of Microbiology, University of California, One Shields Ave., Davis, CA 95616-8665, USA
| | | | | |
Collapse
|
49
|
Kweon O, Kim SJ, Baek S, Chae JC, Adjei MD, Baek DH, Kim YC, Cerniglia CE. A new classification system for bacterial Rieske non-heme iron aromatic ring-hydroxylating oxygenases. BMC BIOCHEMISTRY 2008; 9:11. [PMID: 18387195 PMCID: PMC2358900 DOI: 10.1186/1471-2091-9-11] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 04/03/2008] [Indexed: 11/18/2022]
Abstract
BACKGROUND Rieske non-heme iron aromatic ring-hydroxylating oxygenases (RHOs) are multi-component enzyme systems that are remarkably diverse in bacteria isolated from diverse habitats. Since the first classification in 1990, there has been a need to devise a new classification scheme for these enzymes because many RHOs have been discovered, which do not belong to any group in the previous classification. Here, we present a scheme for classification of RHOs reflecting new sequence information and interactions between RHO enzyme components. RESULT We have analyzed a total of 130 RHO enzymes in which 25 well-characterized RHO enzymes were used as standards to test our hypothesis for the proposed classification system. From the sequence analysis of electron transport chain (ETC) components of the standard RHOs, we extracted classification keys that reflect not only the phylogenetic affiliation within each component but also relationship among components. Oxygenase components of standard RHOs were phylogenetically classified into 10 groups with the classification keys derived from ETC components. This phylogenetic classification scheme was converted to a new systematic classification consisting of 5 distinct types. The new classification system was statistically examined to justify its stability. Type I represents two-component RHO systems that consist of an oxygenase and an FNRC-type reductase. Type II contains other two-component RHO systems that consist of an oxygenase and an FNRN-type reductase. Type III represents a group of three-component RHO systems that consist of an oxygenase, a [2Fe-2S]-type ferredoxin and an FNRN-type reductase. Type IV represents another three-component systems that consist of oxygenase, [2Fe-2S]-type ferredoxin and GR-type reductase. Type V represents another different three-component systems that consist of an oxygenase, a [3Fe-4S]-type ferredoxin and a GR-type reductase. CONCLUSION The new classification system provides the following features. First, the new classification system analyzes RHO enzymes as a whole. RwithSecond, the new classification system is not static but responds dynamically to the growing pool of RHO enzymes. Third, our classification can be applied reliably to the classification of incomplete RHOs. Fourth, the classification has direct applicability to experimental work. Fifth, the system provides new insights into the evolution of RHO systems based on enzyme interaction.
Collapse
Affiliation(s)
- Ohgew Kweon
- Microbiology Division, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, USA
| | - Seong-Jae Kim
- Microbiology Division, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, USA
| | - Songjoon Baek
- Division of Personalized Nutrition & Medicine, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, USA
| | - Jong-Chan Chae
- Biotechnology Center for Agriculture and the Environment, Cook College, Rutgers University, New Brunswick, NJ 08901, USA
| | - Michael D Adjei
- Department of Health Norfolk Department of Public Health Bureau of Laboratories, Norfolk, VA 23510, USA
| | - Dong-Heon Baek
- Department of Oral Microbiology and Immunology, School of Dentistry, Dankook University, Chonan 330-714, Republic of Korea
| | - Young-Chang Kim
- School of Life Science, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Carl E Cerniglia
- Microbiology Division, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, USA
| |
Collapse
|
50
|
Lozada M, Riva Mercadal JP, Guerrero LD, Di Marzio WD, Ferrero MA, Dionisi HM. Novel aromatic ring-hydroxylating dioxygenase genes from coastal marine sediments of Patagonia. BMC Microbiol 2008; 8:50. [PMID: 18366740 PMCID: PMC2364624 DOI: 10.1186/1471-2180-8-50] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 03/25/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs), widespread pollutants in the marine environment, can produce adverse effects in marine organisms and can be transferred to humans through seafood. Our knowledge of PAH-degrading bacterial populations in the marine environment is still very limited, and mainly originates from studies of cultured bacteria. In this work, genes coding catabolic enzymes from PAH-biodegradation pathways were characterized in coastal sediments of Patagonia with different levels of PAH contamination. RESULTS Genes encoding for the catalytic alpha subunit of aromatic ring-hydroxylating dioxygenases (ARHDs) were amplified from intertidal sediment samples using two different primer sets. Products were cloned and screened by restriction fragment length polymorphism analysis. Clones representing each restriction pattern were selected in each library for sequencing. A total of 500 clones were screened in 9 gene libraries, and 193 clones were sequenced. Libraries contained one to five different ARHD gene types, and this number was correlated with the number of PAHs found in the samples above the quantification limit (r = 0.834, p < 0.05). Overall, eight different ARHD gene types were detected in the sediments. In five of them, their deduced amino acid sequences formed deeply rooted branches with previously described ARHD peptide sequences, exhibiting less than 70% identity to them. They contain consensus sequences of the Rieske type [2Fe-2S] cluster binding site, suggesting that these gene fragments encode for ARHDs. On the other hand, three gene types were closely related to previously described ARHDs: archetypical nahAc-like genes, phnAc-like genes as identified in Alcaligenes faecalis AFK2, and phnA1-like genes from marine PAH-degraders from the genus Cycloclasticus. CONCLUSION These results show the presence of hitherto unidentified ARHD genes in this sub-Antarctic marine environment exposed to anthropogenic contamination. This information can be used to study the geographical distribution and ecological significance of bacterial populations carrying these genes, and to design molecular assays to monitor the progress and effectiveness of remediation technologies.
Collapse
Affiliation(s)
- Mariana Lozada
- Centro Nacional Patagónico (CENPAT-CONICET), Boulevard Brown 2825, Puerto Madryn (9120), Chubut, Argentina.
| | | | | | | | | | | |
Collapse
|