1
|
Otten BMJ, Sthijns MMJPE, Troost FJ. A Combination of Acetate, Propionate, and Butyrate Increases Glucose Uptake in C2C12 Myotubes. Nutrients 2023; 15:nu15040946. [PMID: 36839304 PMCID: PMC9967986 DOI: 10.3390/nu15040946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Dietary fibers are subjected to saccharolytic fermentation by the gut microbiota, leading to the production of short chain fatty acids (SCFAs). SCFAs act as signaling molecules to different cells in the human body including skeletal muscle cells. The ability of SCFAs to induce multiple signaling pathways, involving nuclear erythroid 2-related factor 2 (Nrf2), may contribute to the redox balance, and thereby may be involved in glucose homeostasis. The aim of this study is to investigate whether SCFAs increase glucose uptake by upregulating the endogenous antioxidant glutathione (GSH) in C2C12 myotubes. METHODS C2C12 myotubes were exposed to 1, 5, or 20 mM of single (acetate, propionate, or butyrate) or mixtures of SCFAs for 24 h. Cytotoxicity, glucose uptake, and intracellular GSH levels were measured. RESULTS 20 mM of mixture but not separate SCFAs induced cytotoxicity. Exposure to a mixture of SCFAs at 5 mM increased glucose uptake in myotubes, while 20 mM of propionate, butyrate, and mixtures decreased glucose uptake. Exposure to single SCFAs increased GSH levels in myotubes; however, SCFAs did not prevent the menadione-induced decrease in glucose uptake in myotubes. CONCLUSIONS The effect of SCFAs on modulating glucose uptake in myotubes is not associated with the effect on endogenous GSH levels.
Collapse
|
2
|
Mathakala V, Muppuru MK, Palempalli UMD. Halophila beccarii extract ameliorate glucose uptake in 3T3-L1 adipocyte cells and improves glucose homeostasis in streptozotocin-induced diabetic rats. Heliyon 2022; 8:e10252. [PMID: 36042748 PMCID: PMC9420365 DOI: 10.1016/j.heliyon.2022.e10252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/20/2021] [Accepted: 08/05/2022] [Indexed: 11/28/2022] Open
Abstract
The regulation of carbohydrate metabolizing enzymes is an effective way of reducing blood glucose levels and improving glycogen synthesis during the management of type 2 diabetes. The present investigation was conducted to explain the detailed mechanism with which a Seagrass, Halophila beccarii extract (HBE) enhances the glucose uptake in the 3T3-L1 adipocyte cell culture system in invitro. HBE stimulates the glucose uptake by the translocation of glucose transporter 4 (GLUT4) on to plasma cell membrane through induction of insulin receptor substrate 1 (IRS-1)/protein kinase B (Akt) signaling pathways. To assess the effect of HBE on T2DM, we used invivo experimental diabetes rat models induced with streptozotocin (STZ) to perform oral GTT and ITT. Furthermore, we assessed the enzymatic profile of Glycolysis, Pentose phosphate pathway, and gluconeogenesis from liver tissue homogenate. After long-term exposure with HBE, our results confirmed, that HBE improves the glucose uptake in 3T3-L1 cell lines by up-regulation of glucose transporter type 4 (GLUT4) through uptake of glucose by the adipocytes. The resulting data indicated that HBE had a great potentiality in preventing diabetes and maintaining glucose homeostasis through improving glucose uptake. The present data also showed that HBE with its insulin mimetic activity activates glycogen synthesis and enhances glucose utilization by regulating the carbohydrate metabolic enzymes. The similarity between HBE and insulin indicates that the HBE follows the mechanisms same as the insulin signaling pathway to show the antidiabetic activity.
Collapse
Affiliation(s)
- Vani Mathakala
- Department of Applied Microbiology and Biochemistry, Sri Padmavati Mahila Visva vidyalayam, Tirupati, AP, India
| | - Muni Kesavulu Muppuru
- Department of Biosciences, Mohanbabu University, Sree Vidyanikethan Engineering college, Sree Sainath Nagar, Tirupati, AP, India
| | | |
Collapse
|
3
|
Martins VF, LaBarge SA, Stanley A, Svensson K, Hung CW, Keinan O, Ciaraldi TP, Banoian D, Park JE, Ha C, Hetrick B, Meyer GA, Philp A, David LL, Henry RR, Aslan JE, Saltiel AR, McCurdy CE, Schenk S. p300 or CBP is required for insulin-stimulated glucose uptake in skeletal muscle and adipocytes. JCI Insight 2021; 7:141344. [PMID: 34813504 PMCID: PMC8765050 DOI: 10.1172/jci.insight.141344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
While current thinking posits that insulin signaling to GLUT4 exocytic translocation and glucose uptake in skeletal muscle and adipocytes is controlled by phosphorylation-based signaling, many proteins in this pathway are acetylated on lysine residues. However, the importance of acetylation and lysine acetyltransferases to insulin-stimulated glucose uptake is incompletely defined. Here, we demonstrate that combined loss of the acetyltransferases E1A binding protein p300 (p300) and cAMP response element binding protein binding protein (CBP) in mouse skeletal muscle causes a complete loss of insulin-stimulated glucose uptake. Similarly, brief (i.e. 1 h) pharmacological inhibition of p300/CBP acetyltransferase activity recapitulates this phenotype in human and rodent myotubes, 3T3-L1 adipocytes, and mouse muscle. Mechanistically, these effects are due to p300/CBP-mediated regulation of GLUT4 exocytic translocation and occurs downstream of Akt signaling. Taken together, we highlight a fundamental role for acetylation and p300/CBP in the direct regulation of insulin-stimulated glucose transport in skeletal muscle and adipocytes.
Collapse
Affiliation(s)
- Vitor F Martins
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, United States of America
| | - Samuel A LaBarge
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, United States of America
| | - Alexandra Stanley
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, United States of America
| | - Kristoffer Svensson
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, United States of America
| | - Chao-Wei Hung
- Department of Medicine, University of California, San Diego, La Jolla, United States of America
| | - Omer Keinan
- Department of Medicine, University of California, San Diego, La Jolla, United States of America
| | - Theodore P Ciaraldi
- Department of Medicine, University of California, San Diego, La Jolla, United States of America
| | - Dion Banoian
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, United States of America
| | - Ji E Park
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, United States of America
| | - Christina Ha
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, United States of America
| | - Byron Hetrick
- Department of Human Physiology, University of Oregon, Eugene, United States of America
| | - Gretchen A Meyer
- Program in Physical Therapy, Washington University in St. Louis, St. Louis, United States of America
| | - Andrew Philp
- Mitochondrial Metabolism and Ageing, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Larry L David
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, United States of America
| | - Robert R Henry
- Division of Endocrinology & Metabolism, VA San Diego Healthcare System, San Diego, United States of America
| | - Joseph E Aslan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, United States of America
| | - Alan R Saltiel
- University of California, San Diego, La Jolla, United States of America
| | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon, Eugene, United States of America
| | - Simon Schenk
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, United States of America
| |
Collapse
|
4
|
Assan Aliyar M, Nadig P, Bharatham N. In vitro anti-diabetic activity, bioactive constituents, and molecular modeling studies with sulfonylurea receptor1 for insulin secretagogue activity of seed extract of Syzygium cumini (L.). JOURNAL OF HERBMED PHARMACOLOGY 2021. [DOI: 10.34172/jhp.2021.35] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Introduction: Syzygium cumini (L.) has been known to be used for diabetes treatment in traditional Indian and Chinese medicine. The present study focuses on the evaluation for glucose uptake and insulin release in vitro and characterization of phytoconstituents of the hydro-ethanolic extract of Syzygium cumini seed (SCE). Further, this report covers the molecular docking findings of the bioactive constituents on the sulfonylurea receptor 1 (SUR1). Methods: A glucose uptake assay of SCE was used to estimate the glucose uptake from the cell lysates and the cell culture supernatants using insulin as the reference standard. Insulin release activity of SCE from RIN-5F cells was estimated using enzyme-linked immunosorbent assay. The phytoconstituents were isolated by preparative HPLC and characterized by mass spectrometry, nuclear magnetic resonance (NMR) and infrared spectroscopy. The molecular docking of bioactive constituents was carried on repaglinide bound to the SUR1. Results: In the presence of SCE, the glucose uptake through L6 myoblast cells increased by 19.91% at 40 µg/mL in comparison with the vehicle control (P < 0.05). Moreover, SCE showed 2.8-fold enhancement of insulin release at 40 µg/mL as compared to the vehicle controls (P < 0.05). Gallic and ellagic acids were the key phytoconstituents isolated from SCE. Molecular docking studies revealed that both gallic acid and ellagic acid bind to the repaglinide binding pocket of SUR1. Conclusion: SCE increases the release of insulin and enhances glucose uptake in vitro, which may contribute to its in vivo anti-diabetic activity. The presence of ellagic acid and gallic acid in SCE may be the cause for enhanced insulin release observed with SCE following binding to SUR1.
Collapse
Affiliation(s)
- Meharban Assan Aliyar
- Department of Pharmacology, Vydehi Institute of Medical Sciences and Research Centre, Bangalore 560066, Karnataka, India
| | - Pratibha Nadig
- Department of Pharmacology, Vydehi Institute of Medical Sciences and Research Centre, Bangalore 560066, Karnataka, India
| | - Nagakumar Bharatham
- Bugworks research India Pvt.Ltd, Center for Cellular & Molecular Platforms, National Center for Biological Sciences, TIFR GKVK Campus, Bellary Road, Bangalore 560 065, India
| |
Collapse
|
5
|
Sen A. Prophylactic and therapeutic roles of oleanolic acid and its derivatives in several diseases. World J Clin Cases 2020; 8:1767-1792. [PMID: 32518769 PMCID: PMC7262697 DOI: 10.12998/wjcc.v8.i10.1767] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/27/2020] [Accepted: 05/01/2020] [Indexed: 02/05/2023] Open
Abstract
Oleanolic acid (OA) and its derivatives are widely found in diverse plants and are naturally effective pentacyclic triterpenoid compounds with broad prophylactic and therapeutic roles in various diseases such as ulcerative colitis, multiple sclerosis, metabolic disorders, diabetes, hepatitis and different cancers. This review assembles and presents the latest in vivo reports on the impacts of OA and OA derivatives from various plant sources and the biological mechanisms of OA activities. Thus, this review presents sufficient data proposing that OA and its derivatives are potential alternative and complementary therapies for the treatment and management of several diseases.
Collapse
Affiliation(s)
- Alaattin Sen
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri 38080, Turkey
| |
Collapse
|
6
|
Kondash ME, Ananthakumar A, Khodabukus A, Bursac N, Truskey GA. Glucose Uptake and Insulin Response in Tissue-engineered Human Skeletal Muscle. Tissue Eng Regen Med 2020; 17:801-813. [PMID: 32200516 DOI: 10.1007/s13770-020-00242-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Tissue-engineered muscles ("myobundles") offer a promising platform for developing a human in vitro model of healthy and diseased muscle for drug development and testing. Compared to traditional monolayer cultures, myobundles better model the three-dimensional structure of native skeletal muscle and are amenable to diverse functional measures to monitor the muscle health and drug response. Characterizing the metabolic function of human myobundles is of particular interest to enable their utilization in mechanistic studies of human metabolic diseases, identification of related drug targets, and systematic studies of drug safety and efficacy. METHODS To this end, we studied glucose uptake and insulin responsiveness in human tissue-engineered skeletal muscle myobundles in the basal state and in response to drug treatments. RESULTS In the human skeletal muscle myobundle system, insulin stimulates a 50% increase in 2-deoxyglucose (2-DG) uptake with a compiled EC50 of 0.27 ± 0.03 nM. Treatment of myobundles with 400 µM metformin increased basal 2-DG uptake 1.7-fold and caused a significant drop in twitch and tetanus contractile force along with decreased fatigue resistance. Treatment with the histone deacetylase inhibitor 4-phenylbutyrate (4-PBA) increased the magnitude of insulin response from a 1.2-fold increase in glucose uptake in the untreated state to a 1.4-fold increase after 4-PBA treatment. 4-PBA treated myobundles also exhibited increased fatigue resistance and increased twitch half-relaxation time. CONCLUSION Although tissue-engineered human myobundles exhibit a modest increase in glucose uptake in response to insulin, they recapitulate key features of in vivo insulin sensitivity and exhibit relevant drug-mediated perturbations in contractile function and glucose metabolism.
Collapse
Affiliation(s)
- Megan E Kondash
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | | | - Alastair Khodabukus
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
7
|
Olaniyi KS, Amusa OA, Areola ED, Olatunji LA. Suppression of HDAC by sodium acetate rectifies cardiac metabolic disturbance in streptozotocin-nicotinamide-induced diabetic rats. Exp Biol Med (Maywood) 2020; 245:667-676. [PMID: 32183550 DOI: 10.1177/1535370220913847] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus, particularly type 2 occurs at global epidemic proportions and leads to cardiovascular diseases. Molecular studies suggest the involvement of epigenetic alterations such as histone code modification in the progression of cardiometabolic disorders. However, short chain fatty acids (SCFAs) are recognized as epigenetic modulators by their histone deacetylase inhibitory property. It is therefore hypothesized that cardiac histone deacetylase activity increases in type II diabetes and SCFA, acetate, would inhibit histone deacetylase with accompanying restoration of glucose dysregulation, cardiac lipid deposition, and tissue damage in male Wistar rats. Twenty-four male rats (240–270 g) were allotted into four groups ( n = 6 per group) namely: vehicle-treated ( p.o.), sodium acetate-treated (200 mg/kg), diabetic, and diabetic+sodium acetate-treated groups. Diabetes was induced by intraperitoneal injection of streptozotocin 65 mg/kg after a dose of nicotinamide 110 mg/kg. The results showed that diabetic rats had, glucose dysregulation, elevated serum and cardiac triglyceride, malondialdehyde, alanine aminotransferase, histone deacetylase, serum aspartate transaminase, cardiac low density lipoprotein cholesterol (LDLc), glutathione/glutathione disulphide ratio (GSH/GSSG), reduced serum and cardiac high density lipoprotein cholesterol (HDLc), and serum GSH/GSSG. Histological analysis revealed disrupted cardiac fiber in diabetic rats. However, sodium acetate attenuated glucose dysregulation and improved serum and cardiac GSH/GSSG. Sodium acetate normalized cardiac triglyceride accumulation, malondialdehyde, serum aspartate transaminase levels and prevented cardiac tissue damage in diabetic rats. These effects were associated with suppressed histone deacetylase activity. Therefore, sodium acetate attenuated but failed to normalize glucoregulation. Nevertheless, it ameliorated oxidative stress- and lipid dysmetabolism-driven cardiovascular complications in diabetic rats by the suppression of histone deacetylase activity. Impact statement This study provides evidence that STZ-NA-induced diabetes mellitus is associated with cardiac triglyceride accumulation and tissue disruption with corresponding increase in cardiac HDAC activity. However, sodium acetate suppresses cardiac HDAC activity and normalizes cardiac triglyceride and tissue integrity in diabetic rats. Therefore, the study suggests that sodium acetate is beneficial for cardioprotection in diabetes mellitus.
Collapse
Affiliation(s)
- Kehinde S Olaniyi
- Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti 360101, Nigeria.,HOPE Cardiometabolic Research Team & Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin 240001, Nigeria
| | - Oluwatobi A Amusa
- Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti 360101, Nigeria
| | - Emmanuel D Areola
- HOPE Cardiometabolic Research Team & Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin 240001, Nigeria
| | - Lawrence A Olatunji
- HOPE Cardiometabolic Research Team & Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin 240001, Nigeria
| |
Collapse
|
8
|
Gudise V, Chowdhury B, Manjappa AS. In vitro free radical scavenging and antidiabetic activity of aqueous and ethanolic leaf extracts: a comparative evaluation of Argyreia pierreana and Matelea denticulata. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2019. [DOI: 10.1186/s43094-019-0014-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractBackgroundOxidation is believed to play a vital role in the pathogenesis of diabetes mellitus by lipid peroxidation; DNA and protein damage leads to the development of vascular complications like coronary heart disease, stroke, neuropathy, retinopathy, and nephropathy. The herbal preparations are complementary and alternative medicines to allopathic drugs which are believed to cause adverse events. Therefore, the current study was aimed to identify the novel plants, which belong to the generaArgyreia(Argyreia pierreana(AP)) andMatelea(Matelea denticulata(MD)), and assess the aqueous and ethanolic leaf extracts for in vitro antioxidant and antidiabetic potential by DPPH, OH•, superoxide, and glucose uptake and gene expression (GLUT-4 and PPARγ) studies using the L-6 cell line respectively.ResultsThe preliminary scrutiny revealed the presence of polyphenols, flavonoids, terpenoids, steroids, tannins, alkaloids, and glycosides. The total phenolic and flavonoid contents of ethanolic extracts were found higher than those of aqueous extracts. The ethanolic extracts exhibited the superior antioxidant capacity when compared with aqueous extracts. However, the ethanolic extract of MD was shown superlative glucose uptake activity (72.54%) over control (0.037%) and GLUT-4 and PPARγ gene expressions (1.17 and 1.20) in term of folds respectively over cell control (1.00).ConclusionThe ethanolic leaf extracts of both plants showed significant in vitro antioxidant and antidiabetic activities compare to aqueous extracts. TheMatelea denticulataethanolic leaf extract exhibited superior activity. This superior activity might be due to their higher phenolic and flavonoid content. However, further approaches are needed to define these activities.
Collapse
|
9
|
Martins VF, Begur M, Lakkaraju S, Svensson K, Park J, Hetrick B, McCurdy CE, Schenk S. Acute inhibition of protein deacetylases does not impact skeletal muscle insulin action. Am J Physiol Cell Physiol 2019; 317:C964-C968. [PMID: 31461343 DOI: 10.1152/ajpcell.00159.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Whether the histone deacetylase (HDAC) and sirtuin families of protein deacetylases regulate insulin-stimulated glucose uptake, independent of their transcriptional effects, has not been studied. Our objective was to determine the nontranscriptional role of HDACs and sirtuins in regulation of skeletal muscle insulin action. Basal and insulin-stimulated glucose uptake and signaling and acetylation were assessed in L6 myotubes and skeletal muscle from C57BL/6J mice that were treated acutely (1 h) with HDAC (trichostatin A, panobinostat, TMP195) and sirtuin inhibitors (nicotinamide). Treatment of L6 myotubes with HDAC inhibitors or skeletal muscle with a combination of HDAC and sirtuin inhibitors increased tubulin and pan-protein acetylation, demonstrating effective impairment of HDAC and sirtuin deacetylase activities. Despite this, neither basal nor insulin-stimulated glucose uptake or insulin signaling was impacted. Acute reduction of the deacetylase activity of HDACs and/or sirtuins does not impact insulin action in skeletal muscle.
Collapse
Affiliation(s)
- Vitor F Martins
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, California.,Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California
| | - Maedha Begur
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, California
| | - Shivani Lakkaraju
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, California
| | - Kristoffer Svensson
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, California
| | - Ji Park
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, California
| | - Byron Hetrick
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, California.,Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California
| |
Collapse
|
10
|
Backe MB, Jin C, Andreone L, Sankar A, Agger K, Helin K, Madsen AN, Poulsen SS, Bysani M, Bacos K, Ling C, Perone MJ, Holst B, Mandrup-Poulsen T. The Lysine Demethylase KDM5B Regulates Islet Function and Glucose Homeostasis. J Diabetes Res 2019; 2019:5451038. [PMID: 31467927 PMCID: PMC6701283 DOI: 10.1155/2019/5451038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/06/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022] Open
Abstract
AIMS Posttranslational modifications of histones and transcription factors regulate gene expression and are implicated in beta-cell failure and diabetes. We have recently shown that preserving H3K27 and H3K4 methylation using the lysine demethylase inhibitor GSK-J4 reduces cytokine-induced destruction of beta-cells and improves beta-cell function. Here, we investigate the therapeutic potential of GSK-J4 to prevent diabetes development and examine the importance of H3K4 methylation for islet function. MATERIALS AND METHODS We used two mouse models of diabetes to investigate the therapeutic potential of GSK-J4. To clarify the importance of H3K4 methylation, we characterized a mouse strain with knockout (KO) of the H3K4 demethylase KDM5B. RESULTS GSK-J4 administration failed to prevent the development of experimental diabetes induced by multiple low-dose streptozotocin or adoptive transfer of splenocytes from acutely diabetic NOD to NODscid mice. KDM5B-KO mice were growth retarded with altered body composition, had low IGF-1 levels, and exhibited reduced insulin secretion. Interestingly, despite secreting less insulin, KDM5B-KO mice were able to maintain normoglycemia following oral glucose tolerance test, likely via improved insulin sensitivity, as suggested by insulin tolerance testing and phosphorylation of proteins belonging to the insulin signaling pathway. When challenged with high-fat diet, KDM5B-deficient mice displayed similar weight gain and insulin sensitivity as wild-type mice. CONCLUSION Our results show a novel role of KDM5B in metabolism, as KDM5B-KO mice display growth retardation and improved insulin sensitivity.
Collapse
Affiliation(s)
- Marie Balslev Backe
- Immuno-endocrinology Laboratory, Department of Biomedical Sciences, University of Copenhagen, Denmark
- Institute of Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark
| | - Chunyu Jin
- Institute of Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark
| | - Luz Andreone
- Immuno-endocrinology, Diabetes & Metabolism Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET–Universidad Austral, Argentina
| | - Aditya Sankar
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Stem Cell Biology, Denmark
| | - Karl Agger
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Stem Cell Biology, Denmark
| | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Stem Cell Biology, Denmark
| | - Andreas Nygaard Madsen
- Institute of Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark
| | - Steen Seier Poulsen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Madhusudhan Bysani
- Unit for Epigenetics and Diabetes, Department of Clinical Sciences, Lund University, Scania University Hospital, Malmo, Sweden
| | - Karl Bacos
- Unit for Epigenetics and Diabetes, Department of Clinical Sciences, Lund University, Scania University Hospital, Malmo, Sweden
| | - Charlotte Ling
- Unit for Epigenetics and Diabetes, Department of Clinical Sciences, Lund University, Scania University Hospital, Malmo, Sweden
| | - Marcelo Javier Perone
- Immuno-endocrinology Laboratory, Department of Biomedical Sciences, University of Copenhagen, Denmark
- Immuno-endocrinology, Diabetes & Metabolism Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET–Universidad Austral, Argentina
| | - Birgitte Holst
- Institute of Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark
| | - Thomas Mandrup-Poulsen
- Immuno-endocrinology Laboratory, Department of Biomedical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
11
|
Vijayalakshmi K, Selvaraj CI. Cell line cytotoxicity, antiadipogenic and glucose uptake activity of Sarcostemma brevistigma Wight. & Arn. Mol Biol Rep 2018; 45:2555-2561. [DOI: 10.1007/s11033-018-4423-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/05/2018] [Indexed: 11/28/2022]
|
12
|
Patel MM, Patel BM. Repurposing of sodium valproate in colon cancer associated with diabetes mellitus: Role of HDAC inhibition. Eur J Pharm Sci 2018; 121:188-199. [PMID: 29852291 DOI: 10.1016/j.ejps.2018.05.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/25/2018] [Accepted: 05/27/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Diabetic patients are at greater risk for colon cancer. Histone deacetylases (HDACs) serve as common target for both. The key objective of the study was to evaluate the effect of sodium valproate in type 2 diabetes mellitus associated colon cancer. EXPERIMENTAL APPROACH High fat diet and streptozotocin were used to induce type 2 diabetes. Following this, after diabetes confirmation, colon cancer was induced using 1,2 dimethylhydrazine (25 mg/kg, s.c.) once weekly from 7th week to 20th weeks. Sodium valproate (200 mg/kg) treatment was given from 20th to 24th week. At the end of 24 weeks, several enzymatic and biochemical parameters, were estimated. MTT, clonogenic and scratch wound healing assay were carried out in HCT-15 cell line. KEY RESULTS Hyperglycemia, hyperinsulinemia, increase in cytokines (TNF-α and IL-1β) and carcinoembryonic antigen and presence of proliferating cells was seen in disease control animals which was prevented by sodium valproate treatment. Overexpression of relative HDAC2 mRNA levels was found in diseased control animals, which was reduced by sodium valproate treatment. IC50 of sodium valproate was found to be 3.40 mM and 3.73 mM at 48 h and 72 h respectively on HCT-15 cell line. Sodium valproate also dose dependently prevented colony formation and cell migration. CONCLUSION AND IMPLICATIONS Sodium valproate can be considered for repurposing in colon cancer associated with diabetes mellitus.
Collapse
Affiliation(s)
- Mayur M Patel
- Institute of Pharmacy, Nirma University, Ahmedabad 382 481, India.
| | - Bhoomika M Patel
- Institute of Pharmacy, Nirma University, Ahmedabad 382 481, India.
| |
Collapse
|
13
|
Epigenetics of Subcellular Structure Functioning in the Origin of Risk or Resilience to Comorbidity of Neuropsychiatric and Cardiometabolic Disorders. Int J Mol Sci 2018; 19:ijms19051456. [PMID: 29757967 PMCID: PMC5983601 DOI: 10.3390/ijms19051456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/04/2018] [Accepted: 05/09/2018] [Indexed: 12/31/2022] Open
Abstract
Mechanisms controlling mitochondrial function, protein folding in the endoplasmic reticulum (ER) and nuclear processes such as telomere length and DNA repair may be subject to epigenetic cues that relate the genomic expression and environmental exposures in early stages of life. They may also be involved in the comorbid appearance of cardiometabolic (CMD) and neuropsychiatric disorders (NPD) during adulthood. Mitochondrial function and protein folding in the endoplasmic reticulum are associated with oxidative stress and elevated intracellular calcium levels and may also underlie the vulnerability for comorbid CMD and NPD. Mitochondria provide key metabolites such as nicotinamide adenine dinucleotide (NAD+), ATP, α-ketoglutarate and acetyl coenzyme A that are required for many transcriptional and epigenetic processes. They are also a source of free radicals. On the other hand, epigenetic markers in nuclear DNA determine mitochondrial biogenesis. The ER is the subcellular organelle in which secretory proteins are folded. Many environmental factors stop the ability of cells to properly fold proteins and modify post-translationally secretory and transmembrane proteins leading to endoplasmic reticulum stress and oxidative stress. ER functioning may be epigenetically determined. Chronic ER stress is emerging as a key contributor to a growing list of human diseases, including CMD and NPD. Telomere loss causes chromosomal fusion, activation of the control of DNA damage-responses, unstable genome and altered stem cell function, which may underlie the comorbidity of CMD and NPD. The length of telomeres is related to oxidative stress and may be epigenetically programmed. Pathways involved in DNA repair may be epigenetically programmed and may contribute to diseases. In this paper, we describe subcellular mechanisms that are determined by epigenetic markers and their possible relation to the development of increased susceptibility to develop CMD and NPD.
Collapse
|
14
|
Epigenetic Programming of Synthesis, Release, and/or Receptor Expression of Common Mediators Participating in the Risk/Resilience for Comorbid Stress-Related Disorders and Coronary Artery Disease. Int J Mol Sci 2018; 19:ijms19041224. [PMID: 29670001 PMCID: PMC5979500 DOI: 10.3390/ijms19041224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023] Open
Abstract
Corticotrophin releasing factor, vasopressin, oxytocin, natriuretic hormones, angiotensin, neuregulins, some purinergic substances, and some cytokines contribute to the long-term modulation and restructuring of cardiovascular regulation networks and, at the same time, have relevance in situations of comorbid abnormal stress responses. The synthesis, release, and receptor expression of these mediators seem to be under epigenetic control since early stages of life, possibly underlying the comorbidity to coronary artery disease (CAD) and stress-related disorders (SRD). The exposure to environmental conditions, such as stress, during critical periods in early life may cause epigenetic programming modifying the development of pathways that lead to stable and long-lasting alterations in the functioning of these mediators during adulthood, determining the risk of or resilience to CAD and SRD. However, in contrast to genetic information, epigenetic marks may be dynamically altered throughout the lifespan. Therefore, epigenetics may be reprogrammed if the individual accepts the challenge to undertake changes in their lifestyle. Alternatively, epigenetics may remain fixed and/or even be inherited in the next generation. In this paper, we analyze some of the common neuroendocrine functions of these mediators in CAD and SRD and summarize the evidence indicating that they are under early programming to put forward the theoretical hypothesis that the comorbidity of these diseases might be epigenetically programmed and modified over the lifespan of the individual.
Collapse
|
15
|
Myrie SB, Pinder MA. Skeletal muscle and fetal alcohol spectrum disorder. Biochem Cell Biol 2018; 96:222-229. [DOI: 10.1139/bcb-2017-0118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle is critical for mobility and many metabolic functions integral to survival and long-term health. Alcohol can affect skeletal muscle physiology and metabolism, which will have immediate and long-term consequences on health. While skeletal muscle abnormalities, including morphological, biochemical, and functional impairments, are well-documented in adults that excessively consume alcohol, there is a scarcity of information about the skeletal muscle in the offspring prenatally exposed to alcohol (“prenatal alcohol exposure”; PAE). This minireview examines the available studies addressing skeletal muscle abnormalities due to PAE. Growth restriction, fetal alcohol myopathy, and abnormalities in the neuromuscular system, which contribute to deficits in locomotion, are some direct, immediate consequences of PAE on skeletal muscle morphology and function. Long-term health consequences of PAE-related skeletal abnormalities include impaired glucose metabolism in the skeletal muscle, resulting in glucose intolerance and insulin resistance, leading to an increased risk of type 2 diabetes. In general, there is limited information on the morphological, biochemical, and functional features of skeletal abnormalities in PAE offspring. There is a need to understand how PAE affects muscle growth and function at the cellular level during early development to improve the immediate and long-term health of offspring suffering from PAE.
Collapse
Affiliation(s)
- Semone B. Myrie
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Mark A. Pinder
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
16
|
Annapandian VM, Sundaram RS. In vitro Antidiabetic Activity of Polar and Nonpolar Solvent Extracts from Leucas aspera (Willd.) Link Leaves. Pharmacognosy Res 2017; 9:261-265. [PMID: 28827967 PMCID: PMC5541482 DOI: 10.4103/pr.pr_141_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background: Diabetes mellitus is a chronic illness, and the management of diabetes is a global problem. Successful treatment is required to prevent complications and organ damages. Herbal medicines are having minimal adverse effects when compared to the available synthetic drugs to treat such chronic diseases and disorders. Objective: The present study was aimed to evaluate the antidiabetic and antioxidant activity of polar and nonpolar solvent extracts of Leucas aspera (Willd.) link leaves under in vitro models. Materials and Methods: The in vitro antidiabetic activity of petroleum ether (nonpolar) and ethanol (polar) extracts were evaluated in C2C12 cell lines by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (cell viability method) and glucose uptake assay. 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging method used for the evaluation of in vitro antioxidant activity. Results: Both the polar and nonpolar solvent extracts of L. aspera had shown better antioxidant activity compared to standard (IC50 = 18.96 and 19.90 μg/mL, respectively). Petroleum ether extract exhibited better cytotoxic activity in C2C12 cell line compared to ethanol extract (concentration of test drug needed to inhibit cell growth by 50% 110.75 ± 5.5 vs. 415.25 ± 8.0 μg/mL) whereas ethanol extract showed enhanced glucose uptake activity than petroleum ether extract in C2C12 cell line at same concentrations. Conclusion: From our study results, we concluded that L. aspera (Willd.) link leaves had shown better antidiabetic activity and antioxidant activity under in vitro models. Nonpolar solvent extract produced slightly better activity than polar solvent extract. This study warrants further research and experiments on animal models. SUMMARY Petroleum ether extract of Leucas aspera (PELA) exhibited slightly higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity compared to ethanol extract of L. aspera (EELA) PELA exhibited better cytotoxic activity in C2C12 cell line compared to EELA EELA had shown enhanced glucose uptake activity than PELA in C2C12 cell line at same concentrations L. aspera leaf extracts have potential scavenging of DPPH radicals similar to that of ascorbic acid Overall, PELA (nonpolar) produced slightly better antidiabetic activity and antioxidant activity than EELA (polar).
Abbreviations Used: DM: Diabetes mellitus, EELA: Ethanol extract of Leucas aspera, L. aspera: Leucas aspera, PELA: Petroleum ether extract of Leucas aspera.
Collapse
Affiliation(s)
- V M Annapandian
- Department of Pharmacology, JKK Nattraja College of Pharmacy, Namakkal, Tamil Nadu, India
| | - R Shanmuga Sundaram
- Department of Pharmacology, JKK Nattraja College of Pharmacy, Namakkal, Tamil Nadu, India
| |
Collapse
|
17
|
Pradhan P, Upadhyay N, Tiwari A, Singh LP. Genetic and epigenetic modifications in the pathogenesis of diabetic retinopathy: a molecular link to regulate gene expression. ACTA ACUST UNITED AC 2016; 2:192-204. [PMID: 28691104 DOI: 10.15761/nfo.1000145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intensification in the frequency of diabetes and the associated vascular complications has been a root cause of blindness and visual impairment worldwide. One such vascular complication which has been the prominent cause of blindness; retinal vasculature, neuronal and glial abnormalities is diabetic retinopathy (DR), a chronic complicated outcome of Type 1 and Type 2 diabetes. It has also become clear that "genetic" variations in population alone can't explain the development and progression of diabetes and its complications including DR. DR experiences engagement of foremost mediators of diabetes such as hyperglycemia, oxidant stress, and inflammatory factors that lead to the dysregulation of "epigenetic" mechanisms involving histone acetylation and histone and DNA methylation, chromatin remodeling and expression of a complex set of stress-regulated and disease-associated genes. In addition, both elevated glucose concentration and insulin resistance leave a robust effect on epigenetic reprogramming of the endothelial cells too, since endothelium associated with the eye aids in maintaining the vascular homeostasis. Furthermore, several studies conducted on the disease suggest that the modifications of the epigenome might be the fundamental mechanism(s) for the proposed metabolic memory' resulting into prolonged gene expression for inflammation and cellular dysfunction even after attaining the glycemic control in diabetics. Henceforth, the present review focuses on the aspects of genetic and epigenetic alterations in genes such as vascular endothelial growth factor and aldose reductase considered being associated with DR. In addition, we discuss briefly the role of the thioredoxin-interacting protein TXNIP, which is strongly induced by high glucose and diabetes, in cellular oxidative stress and mitochondrial dysfunction potentially leading to chromatin remodeling and ocular complications of diabetes. The identification of disease-associated genes and their epigenetic regulations will lead to potential new drugs and gene therapies as well as personalized medicine to prevent or slow down the progression of DR.
Collapse
Affiliation(s)
- Priya Pradhan
- School of Biotechnology, Rajiv Gandhi Technical University, Bhopal, Madhya Pradesh, India
| | - Nisha Upadhyay
- School of Biotechnology, Rajiv Gandhi Technical University, Bhopal, Madhya Pradesh, India
| | - Archana Tiwari
- School of Biotechnology, Rajiv Gandhi Technical University, Bhopal, Madhya Pradesh, India
| | - Lalit P Singh
- Departments of Anatomy/Cell Biology and Ophthalmology, School of Medicine, Wayne State University, Detroit, MI, USA
| |
Collapse
|
18
|
Luna P, Guarner V, Farías JM, Hernández-Pacheco G, Martínez M. Importance of Metabolic Memory in the Development of Vascular Complications in Diabetic Patients. J Cardiothorac Vasc Anesth 2016; 30:1369-78. [DOI: 10.1053/j.jvca.2016.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Indexed: 02/07/2023]
|
19
|
Epigenetic changes in diabetes. Neurosci Lett 2016; 625:64-9. [PMID: 27130819 DOI: 10.1016/j.neulet.2016.04.046] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 12/13/2022]
Abstract
The incidence of diabetes is increasing worldwide. Diabetes is quickly becoming one of the leading causes of death. Diabetes is a genetic disease; however, the environment plays critical roles in its development and progression. Epigenetic changes often translate environmental stimuli to changes in gene expression. Changes in epigenetic marks and differential regulation of epigenetic modulators have been observed in different models of diabetes and its associated complications. In this minireview, we will focus DNA methylation, Histone acetylation and methylation and their roles in the pathogenesis of diabetes.
Collapse
|
20
|
Abstract
Epigenetic regulation of gene expression allows the organism to respond/adapt to environmental conditions without changing the gene coding sequence. Epigenetic modifications have also been found to control gene expression in various diseases, including diabetes. Epigenetic changes induced by hyperglycemia in multiple target organs contribute to metabolic memory of diabetic complications. The long-lasting development of diabetic complications even after achieving glucose control has been partly attributed to epigenetic changes in target cells. Specific epigenetic drugs might rescue chromatin conformation associated to hyperglycemia possibly slowing down the onset of diabetes-related complications. The current review will describe the updated epigenetics in diabetes that can be used to personalize a more focused treatment.
Collapse
Affiliation(s)
- Adriana Fodor
- University of Medicine & Pharmacy ‘Iuliu Hatieganu’, Cluj-Napoca, Romania
| | - Angela Cozma
- University of Medicine & Pharmacy ‘Iuliu Hatieganu’, Cluj-Napoca, Romania
| | - Eddy Karnieli
- Institute of Endocrinology, Diabetes & Metabolism, Rambam Medical Center, Haifa, Israel
- Galil Center for Personalized Medicine & Medical Informatics, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
21
|
Yao XH, Nguyen KH, Nyomba BLG. Reversal of glucose intolerance in rat offspring exposed to ethanol before birth through reduction of nuclear skeletal muscle HDAC expression by the bile acid TUDCA. Physiol Rep 2014; 2:2/12/e12195. [PMID: 25538147 PMCID: PMC4332199 DOI: 10.14814/phy2.12195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Prenatal ethanol exposure causes cellular stress, insulin resistance, and glucose intolerance in adult offspring, with increased gluconeogenesis and reduced muscle glucose transporter‐4 (glut4) expression. Impaired insulin activation of Akt and nuclear translocation of histone deacetylases (HDACs) in the liver partly explain increased gluconeogenesis. The mechanism for the reduced glut4 is unknown. Pregnant rats were gavaged with ethanol over the last week of gestation and adult female offspring were studied. Some ethanol exposed offspring was treated with tauroursodeoxycholic acid (TUDCA) for 3 weeks. All these rats underwent intraperitoneal glucose tolerance and insulin tolerance tests. The expression of glut4, HDACs, and markers of endoplasmic reticulum (ER) unfolded protein response (XBP1, CHOP, ATF6) was examined in the gastrocnemius muscle fractions, and in C2C12 muscle cells cultured with ethanol, TUDCA, and HDAC inhibitors. Non‐TUDCA‐treated rats exposed to prenatal ethanol were insulin resistant and glucose intolerant with reduced muscle glut4 expression, increased ER marker expression, and increased nuclear HDACs, whereas TUDCA‐treated rats had normal insulin sensitivity and glucose tolerance with normal glut4 expression, ER marker expression, and HDAC levels. In C2C12 cells, ethanol reduced glut4 expression, but increased ER makers. While TUDCA restored glut4 and ER markers to control levels and HDAC inhibition rescued glut4 expression, HDAC inhibition had no effect on ER markers. The increase in nuclear HDAC levels consequent to prenatal ethanol exposure reduces glut4 expression in adult rat offspring, and this HDAC effect is independent of ER unfolded protein response. HDAC inhibition by TUDCA restores glut4 expression, with improvement in insulin sensitivity and glucose tolerance. Alcohol consumption during pregnancy increases nuclear expression of histone deacetylases and endoplasmic response in skeletal muscle, which reduce glucose transporter 4 and in part alter glucose tolerance in offspring. These anomalies are reversed by treatment with tauroursodeoxycholic acid.
Collapse
Affiliation(s)
- Xing-Hai Yao
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Khanh H Nguyen
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - B L Grégoire Nyomba
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
22
|
Tiernan AR, Champion JA, Sambanis A. Trichostatin A affects the secretion pathways of beta and intestinal endocrine cells. Exp Cell Res 2014; 330:212-21. [PMID: 25305500 DOI: 10.1016/j.yexcr.2014.09.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/03/2014] [Accepted: 09/23/2014] [Indexed: 01/04/2023]
Abstract
Histone deacetylase inhibitors (HDACi) were recently identified as having significant clinical potential in reversing β-cell functional inhibition caused by inflammation, a shared precursor of Type 1 and Type 2 diabetes. However, HDACi are highly complex and little is known of their direct effect on important cell secretion pathways for blood glucose regulation. The aims of the present study were to investigate the effect of HDACi on insulin secretion from β-cells, GLP-1 secretion from L-cells, and recombinant insulin secretion from engineered L-cells. The β-cell line βTC-tet, L-cell line GLUTag, or recombinant insulin-secreting L-cell lines were exposed to Trichostatin A for 24h. Effects on insulin or GLP-1 mRNA, intracellular protein content, processing efficiency, and secretion were measured by real-time PCR, ELISA, and radioimmunoassay. HDACi increased secretion per viable cell in a dose-dependent manner for all cell types. Effects on mRNA levels were variable, but enhanced intracellular polypeptide content and secretion were comparable among cell types. Enhanced recombinant insulin secretion was sustained for seven days in alginate microencapsulated L-cells. HDACi enhances β- and L-cell secretion fluxes in a way that could significantly improve blood glucose regulation in diabetes patients and holds potential as a novel method for enhancing insulin-secreting non-β or β-cell grafts.
Collapse
Affiliation(s)
- Aubrey R Tiernan
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, GA 30332, United States
| | - Julie A Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, GA 30332, United States
| | - Athanassios Sambanis
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, GA 30332, United States; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, GA, United States.
| |
Collapse
|
23
|
Rumberger JM, Arch JRS, Green A. Butyrate and other short-chain fatty acids increase the rate of lipolysis in 3T3-L1 adipocytes. PeerJ 2014; 2:e611. [PMID: 25320679 PMCID: PMC4193401 DOI: 10.7717/peerj.611] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 09/16/2014] [Indexed: 12/15/2022] Open
Abstract
We determined the effect of butyrate and other short-chain fatty acids (SCFA) on rates of lipolysis in 3T3-L1 adipocytes. Prolonged treatment with butyrate (5 mM) increased the rate of lipolysis approximately 2–3-fold. Aminobutyric acid and acetate had little or no effect on lipolysis, however propionate stimulated lipolysis, suggesting that butyrate and propionate act through their shared activity as histone deacetylase (HDAC) inhibitors. Consistent with this, the HDAC inhibitor trichostatin A (1 µM) also stimulated lipolysis to a similar extent as did butyrate. Western blot data suggested that neither mitogen-activated protein kinase (MAPK) activation nor perilipin down-regulation are necessary for SCFA-induced lipolysis. Stimulation of lipolysis with butyrate and trichostatin A was glucose-dependent. Changes in AMP-activated protein kinase (AMPK) phosphorylation mediated by glucose were independent of changes in rates of lipolysis. The glycolytic inhibitor iodoacetate prevented both butyrate- and tumor necrosis factor-alpha-(TNF-α) mediated increases in rates of lipolysis indicating glucose metabolism is required. However, unlike TNF-α– , butyrate-stimulated lipolysis was not associated with increased lactate release or inhibited by activation of pyruvate dehydrogenase (PDH) with dichloroacetate. These data demonstrate an important relationship between lipolytic activity and reported HDAC inhibitory activity of butyrate, other short-chain fatty acids and trichostatin A. Given that HDAC inhibitors are presently being evaluated for the treatment of diabetes and other disorders, more work will be essential to determine if these effects on lipolysis are due to inhibition of HDAC.
Collapse
Affiliation(s)
- John M Rumberger
- Bassett Healthcare , Cooperstown, NY , USA ; Clore Laboratory, University of Buckingham , Buckingham , UK
| | | | - Allan Green
- Department of Chemistry and Biochemistry, SUNY Oneonta , Oneonta, NY , USA
| |
Collapse
|
24
|
Zhou X, Zeng XY, Wang H, Li S, Jo E, Xue CCL, Tan M, Molero JC, Ye JM. Hepatic FoxO1 acetylation is involved in oleanolic acid-induced memory of glycemic control: novel findings from Study 2. PLoS One 2014; 9:e107231. [PMID: 25222566 PMCID: PMC4164604 DOI: 10.1371/journal.pone.0107231] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/08/2014] [Indexed: 12/13/2022] Open
Abstract
Our recent study (referred as Study 1) showed that the triterpenoid oleanolic acid (OA) was able to produce a sustained correction of hyperglycemia beyond treatment period in type 2 diabetes (T2D) mice with liver as a responsible site. To follow up the previous observations, the present study (referred as Study 2) investigated the possible role of acetylation of FoxO1 and associated events in this therapeutic memory by characterizing the pathways regulating the acetylation status during and post-OA treatments. OA treatment (100 mg/kg/day for 4 weeks, during OA treatment) reduced hyperglycemia in T2D mice by ∼87% and this effect was largely (∼70%) maintained even 4 weeks after the cessation of OA administration (post-OA treatment). During OA treatment, the acetylation and phosphorylation of FoxO1 were markedly increased (1.5 to 2.5-fold) while G6Pase expression was suppressed by ∼80%. Consistent with this, OA treatment reversed pyruvate intolerance in high-fat fed mice. Histone acetyltransferase 1 (HAT1) content was increased (>50%) and histone deacetylases (HDACs) 4 and 5 (not HDAC1) were reduced by 30–50%. The OA-induced changes in FoxO1, G6Pase, HAT1 and HDACs persisted during the post-OA treatment period when the increased phosphorylation of AMPK, SIRT1 content and reduced liver triglyceride had subsided. These results confirmed the ability of OA to control hyperglycemia far beyond treatment period in T2D mice. Most importantly, in the present study we demonstrated acetylation of FoxO1 in the liver is involved in OA-induced memory for the control of hyperglycemia. Our novel findings suggest that acetylation of the key regulatory proteins of hepatic gluconeogenesis is a plausible mechanism by the triterpenoid to achieve a sustained glycemic control for T2D.
Collapse
Affiliation(s)
- Xiu Zhou
- Molecular Pharmacology for Diabetes, Health Innovations Research Institute and School of Health Sciences, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
| | - Xiao-Yi Zeng
- Molecular Pharmacology for Diabetes, Health Innovations Research Institute and School of Health Sciences, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
| | - Hao Wang
- Molecular Pharmacology for Diabetes, Health Innovations Research Institute and School of Health Sciences, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
| | - Songpei Li
- Molecular Pharmacology for Diabetes, Health Innovations Research Institute and School of Health Sciences, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
| | - Eunjung Jo
- Molecular Pharmacology for Diabetes, Health Innovations Research Institute and School of Health Sciences, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
| | - Charlie C. L. Xue
- Molecular Pharmacology for Diabetes, Health Innovations Research Institute and School of Health Sciences, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Juan C. Molero
- Molecular Pharmacology for Diabetes, Health Innovations Research Institute and School of Health Sciences, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
| | - Ji-Ming Ye
- Molecular Pharmacology for Diabetes, Health Innovations Research Institute and School of Health Sciences, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
25
|
Cencioni C, Spallotta F, Greco S, Martelli F, Zeiher AM, Gaetano C. Epigenetic mechanisms of hyperglycemic memory. Int J Biochem Cell Biol 2014; 51:155-8. [PMID: 24786298 DOI: 10.1016/j.biocel.2014.04.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/14/2014] [Accepted: 04/16/2014] [Indexed: 12/13/2022]
Abstract
Recently the concept emerged that prolonged exposure to altered metabolic conditions, including hyperglycemia, may epigenetically imprint human cells permitting vertical or horizontal transfer to "descendants". Although mechanistically ill understood, the hyperglycemic/epigenetic memory may represent one of the major limitations for the application of cell therapy to treatment of chronic heart disease where a relatively prolonged period of ex vivo cellular expansion is required. Hyperglycemic memory, in fact, seems to contribute to the establishment of an epigenetic "reminiscence" of the altered metabolic state, to which, cells from diseased bodies have been exposed. This review summarizes the most relevant concepts and observations about the mechanisms underlying the onset of stable information inside the epigenome leading to the development of a diseased phenotype. Special attention is given to epigenetic drugs and how they have been used in experimental, preclinical and clinical settings to treat dysmetabolism, diabetes and their complications.
Collapse
Affiliation(s)
- Chiara Cencioni
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| | - Francesco Spallotta
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, Milan 20097, Italy.
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, Milan 20097, Italy.
| | - Andreas M Zeiher
- Internal Medicine Clinic III, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| | - Carlo Gaetano
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| |
Collapse
|
26
|
Milagro F, Mansego M, De Miguel C, Martínez J. Dietary factors, epigenetic modifications and obesity outcomes: Progresses and perspectives. Mol Aspects Med 2013; 34:782-812. [DOI: 10.1016/j.mam.2012.06.010] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/27/2012] [Indexed: 12/31/2022]
|
27
|
Raichur S, Teh SH, Ohwaki K, Gaur V, Long YC, Hargreaves M, McGee SL, Kusunoki J. Histone deacetylase 5 regulates glucose uptake and insulin action in muscle cells. J Mol Endocrinol 2012; 49:203-11. [PMID: 22991226 DOI: 10.1530/jme-12-0095] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The class IIa histone deacetylases (HDACs) act as transcriptional repressors by altering chromatin structure through histone deacetylation. This family of enzymes regulates muscle development and phenotype, through regulation of muscle-specific genes including myogenin and MyoD (MYOD1). More recently, class IIa HDACs have been implicated in regulation of genes involved in glucose metabolism. However, the effects of HDAC5 on glucose metabolism and insulin action have not been directly assessed. Knockdown of HDAC5 in human primary muscle cells increased glucose uptake and was associated with increased GLUT4 (SLC2A4) expression and promoter activity but was associated with reduced GLUT1 (SLC2A1) expression. There was no change in PGC-1α (PPARGC1A) expression. The effects of HDAC5 knockdown on glucose metabolism were not due to alterations in the initiation of differentiation, as knockdown of HDAC5 after the onset of differentiation also resulted in increased glucose uptake and insulin-stimulated glycogen synthesis. These data show that inhibition of HDAC5 enhances metabolism and insulin action in muscle cells. As these processes in muscle are dysregulated in metabolic disease, HDAC inhibition could be an effective therapeutic strategy to improve muscle metabolism in these diseases. Therefore, we also examined the effects of the pan HDAC inhibitor, Scriptaid, on muscle cell metabolism. In myotubes, Scriptaid increased histone 3 acetylation, GLUT4 expression, glucose uptake and both oxidative and non-oxidative metabolic flux. Together, these data suggest that HDAC5 regulates muscle glucose metabolism and insulin action and that HDAC inhibitors can be used to modulate these parameters in muscle cells.
Collapse
Affiliation(s)
- Suryaprakash Raichur
- Lilly Singapore Centre for Drug Discovery, 8A Biomedical Grove #02-05, Immunos 138648, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Yao ZG, Liu Y, Zhang L, Huang L, Ma CM, Xu YF, Zhu H, Qin C. Co-location of HDAC2 and insulin signaling components in the adult mouse hippocampus. Cell Mol Neurobiol 2012; 32:1337-42. [PMID: 22733364 PMCID: PMC11498477 DOI: 10.1007/s10571-012-9859-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 06/05/2012] [Indexed: 01/15/2023]
Abstract
As one part of epigenetics, histone deacetylases (HDACs) have been demonstrated to get into the neural events, including neurogenesis, synaptic plasticity, and neurodegeneration through regulating acetylation status of target proteins to influence protein function and gene expression. However, the recent studies indicated that HDAC2, a member of HDACs family, played a role in insulin signaling pathway and synaptic plasticity. Here, we are concerned about whether HDAC2 was co-located with insulin signaling components in postsynaptic glutamatergic neurons (PSGNs) of the adult mouse hippocampus using double immunofluorescence staining. The results displayed that HDAC2 was present in PSGNs marked by N-methyl-D-aspartate receptor subunit 2B, in which major components of insulin signaling pathway such as insulin receptor alpha and beta and insulin receptor substrate-1 were also involved. Accordingly, we speculate that the interaction of HDAC2 and insulin signaling system in PSGNs observed in the present study may serve as a potential mechanism in memory formation. We hope this could provide a valuable basis for understanding the roles of HDAC2 and insulin on cognitive impairment of diabetes mellitus, involved Alzheimer's disease, which is also called type 3 diabetes recently. And this will also benefit to the treatment of insulin-related diseases in the central nervous system.
Collapse
Affiliation(s)
- Zhi-Gang Yao
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Panjiayuan Nanli No. 5, Chaoyang District, Beijing, 100021 China
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Yu Liu
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Panjiayuan Nanli No. 5, Chaoyang District, Beijing, 100021 China
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Ling Zhang
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Panjiayuan Nanli No. 5, Chaoyang District, Beijing, 100021 China
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Lan Huang
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Panjiayuan Nanli No. 5, Chaoyang District, Beijing, 100021 China
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Chun-Mei Ma
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Panjiayuan Nanli No. 5, Chaoyang District, Beijing, 100021 China
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Yan-Feng Xu
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Panjiayuan Nanli No. 5, Chaoyang District, Beijing, 100021 China
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Hua Zhu
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Panjiayuan Nanli No. 5, Chaoyang District, Beijing, 100021 China
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Chuan Qin
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Panjiayuan Nanli No. 5, Chaoyang District, Beijing, 100021 China
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
29
|
Novotny GW, Lundh M, Backe MB, Christensen DP, Hansen JB, Dahllöf MS, Pallesen EMH, Mandrup-Poulsen T. Transcriptional and translational regulation of cytokine signaling in inflammatory β-cell dysfunction and apoptosis. Arch Biochem Biophys 2012; 528:171-84. [PMID: 23063755 DOI: 10.1016/j.abb.2012.09.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/20/2012] [Accepted: 09/22/2012] [Indexed: 12/19/2022]
Abstract
Disease is conventionally viewed as the chaotic inappropriate outcome of deranged tissue function resulting from aberrancies in cellular processes. Yet the patho-biology of cellular dysfunction and death encompasses a coordinated network no less sophisticated and regulated than maintenance of homeostatic balance. Cellular demise is far from passive subordination to stress but requires controlled coordination of energy-requiring activities including gene transcription and protein translation that determine the graded transition between defensive mechanisms, cell cycle regulation, dedifferentiation and ultimately to the activation of death programmes. In fact, most stressors stimulate both homeostasis and regeneration on one hand and impairment and destruction on the other, depending on the ambient circumstances. Here we illustrate this bimodal ambiguity in cell response by reviewing recent progress in our understanding of how the pancreatic β cell copes with inflammatory stress by changing gene transcription and protein translation by the differential and interconnected action of reactive oxygen and nitric oxide species, microRNAs and posttranslational protein modifications.
Collapse
Affiliation(s)
- Guy W Novotny
- Section of Endocrinological Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Post-translational protein modification by O-linked N-acetyl-glucosamine: its role in mediating the adverse effects of diabetes on the heart. Life Sci 2012; 92:621-7. [PMID: 22985933 DOI: 10.1016/j.lfs.2012.08.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 07/16/2012] [Accepted: 08/02/2012] [Indexed: 11/20/2022]
Abstract
The post-translation attachment of O-linked N-acetylglucosamine, or O-GlcNAc, to serine and threonine residues of nuclear and cytoplasmic proteins is increasingly recognized as a key regulator of diverse cellular processes. O-GlcNAc synthesis is essential for cell survival and it has been shown that acute activation of pathways, which increase cellular O-GlcNAc levels is cytoprotective; however, prolonged increases in O-GlcNAcylation have been implicated in a number of chronic diseases. Glucose metabolism via the hexosamine biosynthesis pathway plays a central role in regulating O-GlcNAc synthesis; consequently, sustained increases in O-GlcNAc levels have been implicated in glucose toxicity and insulin resistance. Studies on the role of O-GlcNAc in regulating cardiomyocyte function have grown rapidly over the past decade and there is growing evidence that increased O-GlcNAc levels contribute to the adverse effects of diabetes on the heart, including impaired contractility, calcium handling, and abnormal stress responses. Recent evidence also suggests that O-GlcNAc plays a role in epigenetic control of gene transcription. The goal of this review is to provide an overview of our current knowledge about the regulation of protein O-GlcNAcylation and to explore in more detail O-GlcNAc-mediated responses in the diabetic heart.
Collapse
|
31
|
Gray SG. The Potential of Epigenetic Compounds in Treating Diabetes. EPIGENETICS IN HUMAN DISEASE 2012:331-367. [DOI: 10.1016/b978-0-12-388415-2.00017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
32
|
Christensen DP, Dahllöf M, Lundh M, Rasmussen DN, Nielsen MD, Billestrup N, Grunnet LG, Mandrup-Poulsen T. Histone deacetylase (HDAC) inhibition as a novel treatment for diabetes mellitus. Mol Med 2011; 17:378-90. [PMID: 21274504 DOI: 10.2119/molmed.2011.00021] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 01/24/2011] [Indexed: 12/13/2022] Open
Abstract
Both common forms of diabetes have an inflammatory pathogenesis in which immune and metabolic factors converge on interleukin-1β as a key mediator of insulin resistance and β-cell failure. In addition to improving insulin resistance and preventing β-cell inflammatory damage, there is evidence of genetic association between diabetes and histone deacetylases (HDACs); and HDAC inhibitors (HDACi) promote β-cell development, proliferation, differentiation and function and positively affect late diabetic microvascular complications. Here we review this evidence and propose that there is a strong rationale for preclinical studies and clinical trials with the aim of testing the utility of HDACi as a novel therapy for diabetes.
Collapse
Affiliation(s)
- Dan P Christensen
- Center for Medical Research Methodology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
33
|
McGee SL, Hargreaves M. Histone modifications and skeletal muscle metabolic gene expression. Clin Exp Pharmacol Physiol 2009; 37:392-6. [PMID: 19793100 DOI: 10.1111/j.1440-1681.2009.05311.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1. Skeletal muscle oxidative function and metabolic gene expression are co-ordinately downregulated in metabolic diseases such as insulin resistance, obesity and Type 2 diabetes. Altering skeletal muscle metabolic gene expression to favour enhanced energy expenditure is considered a potential therapy to combat these diseases. 2. Histone deacetylases (HDACs) are chromatin-remodelling enzymes that repress gene expression. It has been shown that HDAC4 and 5 co-operatively regulate a number of genes involved in various aspects of metabolism. Understanding how HDACs are regulated provides insights into the mechanisms regulating skeletal muscle metabolic gene expression. 3. Multiple kinases control phosphorylation-dependent nuclear export of HDACs, rendering them unable to repress transcription. We have found a major role for the AMP-activated protein kinase (AMPK) in response to energetic stress, yet metabolic gene expression is maintained in the absence of AMPK activity. Preliminary evidence suggests a potential role for protein kinase D, also a Class IIa HDAC kinase, in this response. 4. The HDACs are also regulated by ubiquitin-mediated proteasomal degradation, although the exact mediators of this process have not been identified. 5. Because HDACs appear to be critical regulators of skeletal muscle metabolic gene expression, HDAC inhibition could be an effective therapy to treat metabolic diseases. 6. Together, these data show that HDAC4 and 5 are critical regulators of metabolic gene expression and that understanding their regulation could provide a number of points of intervention for therapies designed to treat metabolic diseases, such as insulin resistance, obesity and Type 2 diabetes.
Collapse
Affiliation(s)
- Sean L McGee
- School of Medicine, Deakin University, Geelong, Vic., Australia.
| | | |
Collapse
|
34
|
Gray SG, De Meyts P. Role of histone and transcription factor acetylation in diabetes pathogenesis. Diabetes Metab Res Rev 2005; 21:416-33. [PMID: 15906405 DOI: 10.1002/dmrr.559] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Globally, diabetes (and, in particular, type 2 diabetes) represents a major challenge to world health. Currently in the United States, the costs of treating diabetes and its associated complications exceed 100 billion US dollars annually, and this figure is expected to soar in the near future. Despite decades of intense research efforts, the genetic basis of the events involved in the pathogenesis of diabetes is still poorly understood. Diabetes is a complex multigenic syndrome primarily due to beta-cell dysfunction associated with a variable degree of insulin resistance. Recent advances have led to exciting new developments with regard to our understanding of the mechanisms that regulate insulin transcription. These include data that implicate chromatin as a critical regulator of this event. The 'Histone Code' is a widely accepted hypothesis, whereby sequential modifications to the histones in chromatin lead to regulated transcription of genes. One of the modifications used in the histone code is acetylation. This is probably the best characterized modification of histones, which is carried out under the control of histone acetyltransferases (HATs) and histone deacetylases (HDACs). These enzymes also regulate the activity of a number of transcription factors through acetylation. Increasing evidence links possible dysregulation of these mechanisms in the pathogenesis of diabetes, with important therapeutic implications.
Collapse
Affiliation(s)
- Steven G Gray
- Receptor Systems Laboratory, Hagedorn Research Institute, Gentofte, Denmark.
| | | |
Collapse
|
35
|
Abstract
Histone acetylation regulates gene transcription. Histone acetylation is a reversible process: histone acetyltransferases (HAT) transfer the acetyl moiety from acetyl coenzyme A to the lysine, and histone deacetylases (HDAC) remove the acetyl groups re-establishing the positive charge in the histones. HDAC inhibitors have antiproliferative activity against human cancer cells via cell cycle arrest, pro-differentiation, and pro-apoptosis. In recent years, many studies have shown that specific HDAC inhibitors are helpful for gastrointestinal cancer therapy.
Collapse
Affiliation(s)
- Jing Yuan Fang
- Shanghai Second Medical University Renji Hospital, Shanghai Institute of Digestive Disease, China.
| |
Collapse
|
36
|
Kaiser C, James SR. Acetylation of insulin receptor substrate-1 is permissive for tyrosine phosphorylation. BMC Biol 2004; 2:23. [PMID: 15522123 PMCID: PMC529456 DOI: 10.1186/1741-7007-2-23] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Accepted: 11/02/2004] [Indexed: 12/21/2022] Open
Abstract
Background Insulin receptor substrate (IRS) proteins are key moderators of insulin action. Their specific regulation determines downstream protein-protein interactions and confers specificity on growth factor signalling. Regulatory mechanisms that have been identified include phosphorylation of IRS proteins on tyrosine and serine residues and ubiquitination of lysine residues. This study investigated other potential molecular mechanisms of IRS-1 regulation. Results Using the sos recruitment yeast two-hybrid system we found that IRS-1 and histone deacetylase 2 (HDAC2) interact in the cytoplasmic compartment of yeast cells. The interaction mapped to the C-terminus of IRS-1 and was confirmed through co-immunoprecipitation in vitro of recombinant IRS-1 and HDAC2. HDAC2 bound to IRS-1 in mammalian cells treated with phorbol ester or after prolonged treatment with insulin/IGF-1 and also in the livers of ob/ob mice but not PTP1B knockout mice. Thus, the association occurs under conditions of compromised insulin signalling. We found that IRS-1 is an acetylated protein, of which the acetylation is increased by treatment of cells with Trichostatin A (TSA), an inhibitor of HDAC activity. TSA-induced increases in acetylation of IRS-1 were concomitant with increases in tyrosine phosphorylation in response to insulin. These effects were confirmed using RNA interference against HDAC2, indicating that HDAC2 specifically prevents phosphorylation of IRS-1 by the insulin receptor. Conclusions Our results show that IRS-1 is an acetylated protein, a post-translational modification that has not been previously described. Acetylation of IRS-1 is permissive for tyrosine phosphorylation and facilitates insulin-stimulated signal transduction. Specific inhibition of HDAC2 may increase insulin sensitivity in otherwise insulin resistant conditions.
Collapse
Affiliation(s)
- Christina Kaiser
- Section of Cell Biology, Department of Biology, Biovitrum AB, SE-112 76, Stockholm, Sweden
| | - Stephen R James
- Section of Cell Biology, Department of Biology, Biovitrum AB, SE-112 76, Stockholm, Sweden
| |
Collapse
|