1
|
Yin H, Sun L, Yuan Y, Zhu Y. PPIC-labeled CAFs: Key players in neoadjuvant chemotherapy resistance for gastric cancer. Transl Oncol 2024; 48:102080. [PMID: 39116799 PMCID: PMC11362775 DOI: 10.1016/j.tranon.2024.102080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is the fourth leading cause of cancer deaths, with advanced cases having a median survival of less than one year. Neoadjuvant chemotherapy (NCT) is vital but faces drug resistance issues, partly due to cancer-associated fibroblasts (CAFs). Yet, specific CAF subpopulations contributing to resistance are poorly understood. METHODS Differentially expressed genes (DEGs) between chemosensitive and resistant GC patients were identified using GEO2R. Single-cell sequencing (scRNA-seq) identified CAF-related genes. Immunohistochemistry verified key genes in NCT-treated GC samples, analyzing their correlation with tumor regression grade (TRG) and clinicopathological characteristics. RESULTS PPIC as a gene highly expressed in CAFs was closely associated with NCT resistance in gastric cancer. Immunohistochemistry results revealed positivity for the expression of cyclophilin C (CypC), encoded by PPIC, in the 5-fluorouracil and cisplatin NCT resistant and -sensitive groups of gastric cancer patients at rates of 69.7 % (76/109) and 43.6 % (24/55), respectively (p < 0.001). The high expression of CypC in CAFs was positively correlated to tumor size (p = 0.025), T stage (p = 0.004), TNM stage (p = 0.004), and vascular invasion (p = 0.027). In cancer cells the expression of CypC was associated with OS (p = 0.026). However, in CAFs, CypC expression was not related to OS (p = 0.671). CONCLUSIONS PPIC-labeled CAF subgroups are related to NCT resistance and poor prognosis in GC and they may cause drug resistance through signaling pathways such as glucose metabolism and extracellular matrix remodeling. However, the exact mechanism behind the involvement of PPIC-labeled CAF in drug resistance of GC requires further study.
Collapse
Affiliation(s)
- Honghao Yin
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Lili Sun
- Departments of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China.
| | - Yanmei Zhu
- Departments of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China.
| |
Collapse
|
2
|
Hamza S, Garanina EE, Alsaadi M, Khaiboullina SF, Tezcan G. Blocking the Hormone Receptors Modulates NLRP3 in LPS-Primed Breast Cancer Cells. Int J Mol Sci 2023; 24:ijms24054846. [PMID: 36902278 PMCID: PMC10002867 DOI: 10.3390/ijms24054846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
NOD-like receptor protein 3 (NLRP3) may contribute to the growth and propagation of breast cancer (BC). The effect of estrogen receptor-α (ER-α), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) on NLRP3 activation in BC remains unknown. Additionally, our knowledge of the effect of blocking these receptors on NLRP3 expression is limited. We used GEPIA, UALCAN, and the Human Protein Atlas for transcriptomic profiling of NLRP3 in BC. Lipopolysaccharide (LPS) and adenosine 5'-triphosphate (ATP) were used to activate NLRP3 in luminal A MCF-7 and in TNBC MDA-MB-231 and HCC1806 cells. Tamoxifen (Tx), mifepristone (mife), and trastuzumab (Tmab) were used to block ER-α, PR, and HER2, respectively, on inflammasome activation in LPS-primed MCF7 cells. The transcript level of NLRP3 was correlated with ER-ɑ encoding gene ESR1 in luminal A (ER-α+, PR+) and TNBC tumors. NLRP3 protein expression was higher in untreated and LPS/ATP-treated MDA-MB-231 cells than in MCF7 cells. LPS/ATP-mediated NLRP3 activation reduced cell proliferation and recovery of wound healing in both BC cell lines. LPS/ATP treatment prevented spheroid formation in MDA-MB-231 cells but did not affect MCF7. HGF, IL-3, IL-8, M-CSF, MCP-1, and SCGF-b cytokines were secreted in both MDA-MB-231 and MCF7 cells in response to LPS/ATP treatment. Tx (ER-α inhibition) promoted NLRP3 activation and increased migration and sphere formation after LPS treatment of MCF7 cells. Tx-mediated activation of NLRP3 was associated with increased secretion of IL-8 and SCGF-b compared to LPS-only-treated MCF7 cells. In contrast, Tmab (Her2 inhibition) had a limited effect on NLRP3 activation in LPS-treated MCF7 cells. Mife (PR inhibition) opposed NLRP3 activation in LPS-primed MCF7 cells. We have found that Tx increased the expression of NLRP3 in LPS-primed MCF7. These data suggest a link between blocking ER-α and activation of NLRP3, which was associated with increased aggressiveness of the ER-α+ BC cells.
Collapse
Affiliation(s)
- Shaimaa Hamza
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ekaterina E. Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Mohammad Alsaadi
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Svetlana F. Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: or (S.F.K.); (G.T.); Fax: +1-775682-8258 (S.F.K.); +90-224-294-00-78 (G.T.)
| | - Gulcin Tezcan
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Department of Fundamental Sciences, Faculty of Dentistry, Bursa Uludag University, Bursa 16059, Turkey
- Correspondence: or (S.F.K.); (G.T.); Fax: +1-775682-8258 (S.F.K.); +90-224-294-00-78 (G.T.)
| |
Collapse
|
3
|
Koyuncu MB, Ilgan M, Basir H, Tombak A, Ucar MA, Koseci T, Akdeniz A, Tiftik EN, Erel Ö. Ruxolitinib Reduces Oxidative Stress in Patients With Primary Myelofibrosis: A Multicenter Study. Cureus 2022; 14:e20929. [PMID: 35145818 PMCID: PMC8812273 DOI: 10.7759/cureus.20929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Primary myelofibrosis (PM) has a lower overall survival rate than other myeloproliferative neoplasms, and leukemic transformation is the most common cause of death. Increased oxidative stress has an important role in leukemic transformation in these patients. In this study, we aimed to find an answer to the question, "Could Ruxolitinib, which has been widely used in patients with myelofibrosis in recent years, have a role in reducing oxidative stress in these patients?". Methods A total of 106 patients with PM and 111 healthy volunteers were included in this study. We collected the serum samples of healthy volunteers and patients with myelofibrosis at the time of diagnosis and one month after the initiation of Ruxolitinib treatment. Ischemia modified albumin (IMA), native thiol, total thiol, and disulfide levels were studied. The disulfide/native thiol, disulfide/total thiol, and native thiol/total thiol ratios were calculated. Results IMA, native thiol, total thiol, disulfide levels, disulfide/native thiol, and disulfide/total thiol ratios at the time of diagnosis were significantly different in patients with myelofibrosis compared to the control group (p=0.001). Ruxolitinib significantly reduced oxidative stress when the measurements in the first month after Ruxolitinib were compared with those at the time of diagnosis (p=0.001). In patients with ASXL1 mutation, intermediate-2 risk, and high-risk according to the Dipps-plus score, the decrease in oxidative stress in the first month of treatment was more significant than at the time of diagnosis. Conclusion Ruxolitinib may be an effective treatment for reducing oxidative stress in patients with PM. The reduction in oxidative stress parameters with treatment in patients with ASXL1 mutation, intermediate-2, and high-risk patients was observed to be higher.
Collapse
|
4
|
Pedachenko Y, Gridina N, Rozumenko V, Samoylov A, Khrystosenko R, Zvyagintseva T, Gryazov A, Myronchenko S, Kot L, Ganna K. Changes in the Correlation Between Peripheral Blood Cells and Membrane Charge in Brain Gliomas and Meningiomas. ARCHIVES OF PHARMACY PRACTICE 2022. [DOI: 10.51847/hfbiljutsj] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
5
|
Kursunel MA, Taskiran EZ, Tavukcuoglu E, Yanik H, Demirag F, Karaosmanoglu B, Ozbay FG, Uner A, Esendagli D, Kizilgoz D, Yilmaz U, Esendagli G. Small cell lung cancer stem cells display mesenchymal properties and exploit immune checkpoint pathways in activated cytotoxic T lymphocytes. Cancer Immunol Immunother 2021; 71:445-459. [PMID: 34228218 PMCID: PMC8783896 DOI: 10.1007/s00262-021-02998-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/19/2021] [Indexed: 02/07/2023]
Abstract
Small cell lung cancer (SCLC) is an aggressive tumor type with early dissemination and distant metastasis capacity. Even though optimal chemotherapy responses are observed initially in many patients, therapy resistance is almost inevitable. Accordingly, SCLC has been regarded as an archetype for cancer stem cell (CSC) dynamics. To determine the immune-modulatory influence of CSC in SCLC, this study focused on the characterization of CD44+CD90+ CSC-like subpopulations in SCLC. These cells displayed mesenchymal properties, differentiated into different lineages and further contributed to CD8+ cytotoxic T lymphocytes (CTL) responses. The interaction between CD44+CD90+ CSC-like cells and T cells led to the upregulation of checkpoint molecules PD-1, CTLA-4, TIM-3, and LAG3. In the patient-derived lymph nodes, CD44+ SCLC metastases were also observed with T cells expressing PD-1, TIM-3, or LAG3. Proliferation and IFN-γ expression capacity of TIM-3 and LAG3 co-expressing CTLs are adversely affected over long-time co-culture with CD44+CD90+ CSC-like cells. Moreover, especially through IFN-γ secreted by the T cells, the CSC-like SCLC cells highly expressed PD-L1 and PD-L2. Upon a second encounter with immune-experienced, IFN-γ-stimulated CSC-like SCLC cells, both cytotoxic and proliferation capacities of T cells were hampered. In conclusion, our data provide evidence for the superior potential of the SCLC cells with stem-like and mesenchymal properties to gain immune regulatory capacities and cope with cytotoxic T cell responses. With their high metastatic and immune-modulatory assets, the CSC subpopulation in SCLC may serve as a preferential target for checkpoint blockade immunotherapy
.
Collapse
Affiliation(s)
- M Alper Kursunel
- Department of Basic Oncology, Hacettepe University Cancer Institute, 06100, Sihhiye, Ankara, Turkey.
- Max-Delbrück-Center for Molecular Medicine, Robert-Rossle Str. 10, 13125, Berlin, Germany.
| | - Ekim Z Taskiran
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ece Tavukcuoglu
- Department of Basic Oncology, Hacettepe University Cancer Institute, 06100, Sihhiye, Ankara, Turkey
| | - Hamdullah Yanik
- Department of Basic Oncology, Hacettepe University Cancer Institute, 06100, Sihhiye, Ankara, Turkey
| | - Funda Demirag
- Department of Pathology, Atatürk Chest Diseases and Thoracic Surgery Training and Research Hospital, Ankara, Turkey
| | - Beren Karaosmanoglu
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Feyza Gul Ozbay
- Department of Basic Oncology, Hacettepe University Cancer Institute, 06100, Sihhiye, Ankara, Turkey
| | - Aysegul Uner
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Dorina Esendagli
- Department of Chest Diseases, Faculty of Medicine, Baskent University, Ankara, Turkey
| | - Derya Kizilgoz
- Department of Chest Diseases, Atatürk Chest Diseases and Thoracic Surgery Training and Research Hospital, Ankara, Turkey
| | - Ulku Yilmaz
- Department of Chest Diseases, Atatürk Chest Diseases and Thoracic Surgery Training and Research Hospital, Ankara, Turkey
| | - Gunes Esendagli
- Department of Basic Oncology, Hacettepe University Cancer Institute, 06100, Sihhiye, Ankara, Turkey.
| |
Collapse
|
6
|
Lin TY, Tsai MC, Tu W, Yeh HC, Wang SC, Huang SP, Li CY. Role of the NLRP3 Inflammasome: Insights Into Cancer Hallmarks. Front Immunol 2021; 11:610492. [PMID: 33613533 PMCID: PMC7886802 DOI: 10.3389/fimmu.2020.610492] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/16/2020] [Indexed: 12/22/2022] Open
Abstract
In response to a variety of stresses, mammalian cells activate the inflammasome for targeted caspase-dependent pyroptosis. The research community has recently begun to deduce that the activation of inflammasome is instigated by several known oncogenic stresses and metabolic perturbations; nevertheless, the role of inflammasomes in the context of cancer biology is less understood. In manipulating the expression of inflammasome, researchers have found that NLRP3 serves as a deterministic player in conducting tumor fate decisions. Understanding the mechanistic underpinning of pro-tumorigenic and anti-tumorigenic pathways might elucidate novel therapeutic onco-targets, thereby providing new opportunities to manipulate inflammasome in augmenting the anti-tumorigenic activity to prevent tumor expansion and achieve metastatic control. Accordingly, this review aims to decode the complexity of NLRP3, whereby summarizing and clustering findings into cancer hallmarks and tissue contexts may expedite consensus and underscore the potential of the inflammasome in drug translation.
Collapse
Affiliation(s)
- Ting-Yi Lin
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Meng-Chun Tsai
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei Tu
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsin-Chih Yeh
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan.,Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Pin Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
7
|
Rossi F, Noren H, Jove R, Beljanski V, Grinnemo KH. Differences and similarities between cancer and somatic stem cells: therapeutic implications. Stem Cell Res Ther 2020; 11:489. [PMID: 33208173 PMCID: PMC7672862 DOI: 10.1186/s13287-020-02018-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Over the last decades, the cancer survival rate has increased due to personalized therapies, the discovery of targeted therapeutics and novel biological agents, and the application of palliative treatments. Despite these advances, tumor resistance to chemotherapy and radiation and rapid progression to metastatic disease are still seen in many patients. Evidence has shown that cancer stem cells (CSCs), a sub-population of cells that share many common characteristics with somatic stem cells (SSCs), contribute to this therapeutic failure. The most critical properties of CSCs are their self-renewal ability and their capacity for differentiation into heterogeneous populations of cancer cells. Although CSCs only constitute a low percentage of the total tumor mass, these cells can regrow the tumor mass on their own. Initially identified in leukemia, CSCs have subsequently been found in cancers of the breast, the colon, the pancreas, and the brain. Common genetic and phenotypic features found in both SSCs and CSCs, including upregulated signaling pathways such as Notch, Wnt, Hedgehog, and TGF-β. These pathways play fundamental roles in the development as well as in the control of cell survival and cell fate and are relevant to therapeutic targeting of CSCs. The differences in the expression of membrane proteins and exosome-delivered microRNAs between SSCs and CSCs are also important to specifically target the stem cells of the cancer. Further research efforts should be directed toward elucidation of the fundamental differences between SSCs and CSCs to improve existing therapies and generate new clinically relevant cancer treatments.
Collapse
Affiliation(s)
- Fiorella Rossi
- NSU Cell Therapy Institute, Nova Southeastern University, 3301 College Ave, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA
| | - Hunter Noren
- NSU Cell Therapy Institute, Nova Southeastern University, 3301 College Ave, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA
| | - Richard Jove
- NSU Cell Therapy Institute, Nova Southeastern University, 3301 College Ave, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA
| | - Vladimir Beljanski
- NSU Cell Therapy Institute, Nova Southeastern University, 3301 College Ave, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA.
| | - Karl-Henrik Grinnemo
- NSU Cell Therapy Institute, Nova Southeastern University, 3301 College Ave, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA. .,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden. .,Department of Surgical Sciences, Division of Cardiothoracic Surgery and Anaesthesiology, Uppsala University, Akademiska University Hospital, Akademiska sjukhuset, ingång 50, 4 tr, 751 85, Uppsala, Sweden.
| |
Collapse
|
8
|
Synergic Crosstalk between Inflammation, Oxidative Stress, and Genomic Alterations in BCR-ABL-Negative Myeloproliferative Neoplasm. Antioxidants (Basel) 2020; 9:antiox9111037. [PMID: 33114087 PMCID: PMC7690801 DOI: 10.3390/antiox9111037] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/06/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) have recently been revealed to be related to chronic inflammation, oxidative stress, and the accumulation of reactive oxygen species. It has been proposed that MPNs represent a human inflammation model for tumor advancement, in which long-lasting inflammation serves as the driving element from early tumor stage (over polycythemia vera) to the later myelofibrotic cancer stage. It has been theorized that the starting event for acquired stem cell alteration may occur after a chronic inflammation stimulus with consequent myelopoietic drive, producing a genetic stem cell insult. When this occurs, the clone itself constantly produces inflammatory components in the bone marrow; these elements further cause clonal expansion. In BCR-ABL1-negative MPNs, the driver mutations include JAK 2, MPL, and CALR. Transcriptomic studies of hematopoietic stem cells from subjects with driver mutations have demonstrated the upregulation of inflammation-related genes capable of provoking the development of an inflammatory state. The possibility of acting on the inflammatory state as a therapeutic approach in MPNs appears promising, in which an intervention operating on the pathways that control the synthesis of cytokines and oxidative stress could be effective in reducing the possibility of leukemic progression and onset of complications.
Collapse
|
9
|
Jasmer KJ, Hou J, Mannino P, Cheng J, Hannink M. Heme oxygenase promotes B-Raf-dependent melanosphere formation. Pigment Cell Melanoma Res 2020; 33:850-868. [PMID: 32558263 DOI: 10.1111/pcmr.12905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/09/2020] [Accepted: 06/07/2020] [Indexed: 12/22/2022]
Abstract
Biosynthesis and degradation of heme, an iron-bound protoporphyrin molecule utilized by a wide variety of metabolic processes, are tightly regulated. Two closely related enzymes, heme oxygenase 1 (HMOX1) and heme oxygenase 2 (HMOX2), degrade free heme to produce carbon monoxide, Fe2+ , and biliverdin. HMOX1 expression is controlled via the transcriptional activator, NFE2L2, and the transcriptional repressor, Bach1. Transcription of HMOX1 and other NFE2L2-dependent genes is increased in response to electrophilic and reactive oxygen species. Many tumor-derived cell lines have elevated levels of NFE2L2. Elevated expression of NFE2L2-dependent genes contributes to tumor growth and acquired resistance to therapies. Here, we report a novel role for heme oxygenase activity in melanosphere formation by human melanoma-derived cell lines. Transcriptional induction of HMOX1 through derepression of Bach1 or transcriptional activation of HMOX2 by oncogenic B-RafV600E results in increased melanosphere formation. Genetic ablation of HMOX1 diminishes melanosphere formation. Further, inhibition of heme oxygenase activity with tin protoporphyrin markedly reduces melanosphere formation driven by either Bach1 derepression or B-RafV600E expression. Global transcriptome analyses implicate genes involved in focal adhesion and extracellular matrix interactions in melanosphere formation.
Collapse
Affiliation(s)
- Kimberly J Jasmer
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA.,Christopher Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Jie Hou
- Computer Science Department, University of Missouri, Columbia, Missouri, USA
| | - Philip Mannino
- Christopher Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.,Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Jianlin Cheng
- Computer Science Department, University of Missouri, Columbia, Missouri, USA
| | - Mark Hannink
- Christopher Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.,Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
10
|
Vernot JP. Senescence-Associated Pro-inflammatory Cytokines and Tumor Cell Plasticity. Front Mol Biosci 2020; 7:63. [PMID: 32478091 PMCID: PMC7237636 DOI: 10.3389/fmolb.2020.00063] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
The well-recognized cell phenotypic heterogeneity in tumors is a great challenge for cancer treatment. Dynamic interconversion and movement within a spectrum of different cell phenotypes (cellular plasticity) with the acquisition of specific cell functions is a fascinating biological puzzle, that represent an additional difficulty for cancer treatment and novel therapies development. The understanding of the molecular mechanisms responsible for moving or stabilizing tumor cells within this spectrum of variable states constitutes a valuable tool to overcome these challenges. In particular, cell transitions between epithelial and mesenchymal phenotypes (EMT-MET) and de-and trans-differentiation processes are relevant, since it has been shown that they confer invasiveness, drug resistance, and metastatic ability, due to the simultaneous acquisition of stem-like cell properties. Multiple drivers participate in these cell conversions events. In particular, cellular senescence and senescence-associated soluble factors have been shown to unveil stem-like cell properties and cell plasticity. By modulating gradually the composition of their secretome and the time of exposure, senescent cells may have differential effect not only on tumor cells but also on surrounding cells. Intriguingly, tumor cells that scape from senescence acquire stem-like cell properties and aggressiveness. The reinforcement of senescence and inflammation by soluble factors and the participation of immune cells may provide a dynamic milieu having varied effects on cell transitions, reprogramming, plasticity, stemness and therefore heterogeneity. This will confer different epithelial/mesenchymal traits (hybrid phenotype) and stem-like cell properties, combinations of which, in a particular cell context, could be responsible for different cellular functions during cancer progression (survival, migration, invasion, colonization or proliferation). Additionally, cooperative behavior between cell subpopulations with different phenotypes/stemness functions could also modulate their cellular plasticity. Here, we will discuss the role of senescence and senescence-associated pro-inflammatory cytokines on the induction of cellular plasticity, their effect role in establishing particular states within this spectrum of cell phenotypes and how this is accompanied by stem-like cell properties that, as the epithelial transitions, may also have a continuum of characteristics providing tumor cells with functional adaptability specifically useful in the different stages of carcinogenesis.
Collapse
Affiliation(s)
- Jean Paul Vernot
- Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
11
|
Liu P, Lu Z, Liu L, Li R, Liang Z, Shen M, Xu H, Ren D, Ji M, Yuan S, Shang D, Zhang Y, Liu H, Tu Z. NOD-like receptor signaling in inflammation-associated cancers: From functions to targeted therapies. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 64:152925. [PMID: 31465982 DOI: 10.1016/j.phymed.2019.152925] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Recently, many studies have reported that some botanicals and natural products were able to regulate NOD-like receptor signaling. NOD-like receptors (NLRs) have been established as crucial regulators in inflammation-associated tumorigenesis, angiogenesis, cancer cell stemness and chemoresistance. NLRs specifically sense pathogen-associated molecular patterns and respond by activating other signaling regulators, including Rip2 kinase, NF-κB, MAPK and ASC/caspase-1, leading to the secretion of various cytokines. PURPOSE The aim of this article is to review the molecular mechanisms of NOD-like receptor signaling in inflammation-associated cancers and the NLRs-targeted botanicals and synthetic small molecules in cancer intervention. RESULTS Aberrant activation of NLRs occurs in various cancers, orchestrating the tissue microenvironment and potentiating neoplastic risk. Blocking NLR inflammasome activation by botanicals or synthetic small molecules may be a valuable way to prevent cancer progression. Moreover, due to the roles of NLRs in regulating cytokine production, NLR signaling may be correlated with senescence-associated secretory phenotype. CONCLUSION In this review, we discuss how NLR signaling is involved in inflammation-associated cancers, and highlight the NLR-targeted botanicals and synthetic small molecules in cancer intervention.
Collapse
Affiliation(s)
- Peng Liu
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Ziwen Lu
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Lanlan Liu
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Ruyan Li
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Zhiquan Liang
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Mingxiang Shen
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Han Xu
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Dewan Ren
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Mengchen Ji
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Sirui Yuan
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Dongsheng Shang
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Yibang Zhang
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China.
| | - Zhigang Tu
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
12
|
Chang Y, Wang X, Xu Y, Yang L, Qian Q, Ju S, Chen Y, Chen S, Qin N, Ma Z, Dai J, Ma H, Jin G, Zhang E, Wang C, Hu Z. Comprehensive characterization of cancer-testis genes in testicular germ cell tumor. Cancer Med 2019; 8:3511-3519. [PMID: 31070303 PMCID: PMC6601584 DOI: 10.1002/cam4.2223] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 12/20/2022] Open
Abstract
Cancer-testis (CT) genes are a group of genes restrictedly expressed in testis and multiple cancers and can serve as candidate driver genes participating in the development of cancers. Our previous study identified a number of CT genes in nongerm cell tumors, but their expression pattern in testicular germ cell tumor (TGCT), a cancer type characterized by less genomic alterations, remained largely unknown. In this study, we systematically investigated the expression pattern of CT genes in TGCT samples and evaluated the transcriptome difference between TGCT and normal testis tissues, using datasets from the UCSC Xena platform, The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) project. Pathway enrichment analysis and survival analysis were conducted to evaluate the biological function and prognostic effect of expressed CT genes. We identified that 1036 testis-specific expressed protein-coding genes and 863 testis-specific expressed long noncoding RNAs (lncRNAs) were expressed in TGCT samples, including 883 CT protein-coding genes and 710 CT lncRNAs defined previously. The number of expressed CT genes was significantly higher in seminomas (P = 3.48 × 10-13 ) which were characterized by frequent mutations in driver genes (KIT, KRAS and NRAS). In contrast, the number of expressed CT genes showed a moderate negative correlation with the fraction of copy number altered genomes (cor = -0.28, P = 1.20 × 10-3 ). Unlike other cancers, our analysis revealed that 96.16% of the CT genes were down-regulated in TGCT samples, while CT genes in stem cell maintenance related pathways were up-regulated. Further survival analysis provided evidence that CT genes could also predict the prognosis of TGCT patients with both disease-free interval and progression-free interval as clinical endpoints. Taken together, our study provided a global view of CT genes in TGCT and provided evidence that CT genes played important roles in the progression and maintenance of TGCT.
Collapse
Affiliation(s)
- Yuting Chang
- Department of Epidemiology, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjingChina
| | - Xuewei Wang
- Department of Epidemiology, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjingChina
| | - Yide Xu
- Department of Epidemiology, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjingChina
| | - Liu Yang
- Department of Bioinformatics, School of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingChina
| | - Qufei Qian
- Department of Epidemiology, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjingChina
| | - Sihan Ju
- Department of Epidemiology, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjingChina
| | - Yao Chen
- Department of Epidemiology, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjingChina
| | - Shuaizhou Chen
- Department of Epidemiology, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjingChina
| | - Na Qin
- Department of Epidemiology, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingChina
| | - Zijian Ma
- Department of Epidemiology, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingChina
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingChina
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingChina
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingChina
| | - Erbao Zhang
- Department of Epidemiology, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingChina
| | - Cheng Wang
- Department of Epidemiology, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjingChina
- Department of Bioinformatics, School of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingChina
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingChina
| |
Collapse
|
13
|
|
14
|
Huang CF, Chen L, Li YC, Wu L, Yu GT, Zhang WF, Sun ZJ. NLRP3 inflammasome activation promotes inflammation-induced carcinogenesis in head and neck squamous cell carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:116. [PMID: 28865486 PMCID: PMC5581464 DOI: 10.1186/s13046-017-0589-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 08/29/2017] [Indexed: 02/06/2023]
Abstract
Background NLRP3 inflammasome acts as a danger signal sensor that triggers and coordinates the inflammatory response. However, the roles of NLRP3 inflammasome in the tumorigenesis and development of cancer stem cells (CSCs) of squamous cell carcinoma of the head and neck (SCCHN) remain ambiguous. Methods In our study, tissue microarrays, ELISA, sphere-forming assay, colony formation assay and Western blot analysis were performed to evaluate the effect of NLRP3 inflammasome on the development of CSCs in human SCCHN tissue specimen, cell lines, and transgenic mouse SCCHN model. Results The components of NLRP3 inflammasome, namely, NLRP3, ASC, Caspase-1, and IL-18 were correlated with CSCs markers BMI1, ALDH1 and CD44 in human SCCHN specimens. Moreover, NLRP3, Caspase-1, IL-1β, and IL-18 were highly expressed in SCCHN cell lines. NLRP3 inflammasome activated by LPS and ATP promoted sphere-forming and colony formation capacities along with an upregulation of BMI1, ALDH1 and CD44. In addition, NLRP3 inflammasome blockade by NLRP3 inhibitor MCC950 reduced sphere and colony number, also decreased the expression of BMI1, ALDH1 and CD44 in SCCHN cell lines. Expression of NLRP3, ASC, Caspase-1, IL-1β, IL-18, BMI1, ALDH1 and CD44 was upregulated in Tgfbr1/Pten 2cKO mouse SCCHN model, and NLRP3 inflammasome expression was closely related to those CSCs makers in mice SCCHN. However, MCC950 treatment reduced the expression of NLRP3 inflammasome, CSCs markers BMI1, ALDH1 and CD44 in Tgfbr1/Pten 2cKO mice SCCHN. In addition, blockade of NLRP3 inflammasome can also delayed the tumor-burdened speed in SCCHN mice. Conclusions Our study demonstrates that NLRP3 inflammasome was upregulated and associated with the carcinogenesis and CSCs self-renewal activation in SCCHN. NLRP3 inflammasome can be a potential target in the development of novel approaches for head and neck squamous cell carcinoma therapy. Electronic supplementary material The online version of this article (10.1186/s13046-017-0589-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cong-Fa Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lei Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yi-Cun Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lei Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guang-Tao Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wen-Feng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China. .,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China. .,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
15
|
Sosnina AV, Autenshlyus AI, Mikhailova ES, Morozov DV, Vankhalsky AV, Shpagina LA, Varaksin NA, Lyakhovich VV. Cytokine-producing function of human blood cells in chronic atrophic gastritis and gastric adenomas and adenocarcinomas. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2016; 467:93-5. [PMID: 27193885 DOI: 10.1134/s001249661602006x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Indexed: 11/23/2022]
Abstract
The cytokine-producing potential of blood cells has been studied in the atrophic gastritis-adenoma-adenocarcinoma progression of pathological states of the stomach. It has been revealed that, at the initial stage of carcinogenesis, namely adenoma, immunocompetent cells have the highest cytokine-producing proto-oncogenic potential as compared to both atrophic gastritis, which presents a precancerous condition, and completely formed malignant tumor (gastric adenocarcinoma).
Collapse
Affiliation(s)
- A V Sosnina
- Research Institute of Molecular Biology and Biophysics, Siberian Branch, Russian Academy of Medical Sciences, Novosibirsk, 630117, Russia.
| | - A I Autenshlyus
- Research Institute of Molecular Biology and Biophysics, Siberian Branch, Russian Academy of Medical Sciences, Novosibirsk, 630117, Russia
| | - E S Mikhailova
- Research Institute of Molecular Biology and Biophysics, Siberian Branch, Russian Academy of Medical Sciences, Novosibirsk, 630117, Russia
| | - D V Morozov
- Research Institute of Molecular Biology and Biophysics, Siberian Branch, Russian Academy of Medical Sciences, Novosibirsk, 630117, Russia
| | - A V Vankhalsky
- Novosibirsk State Medical University, Novosibirsk, 630091, Russia
| | - L A Shpagina
- Novosibirsk State Medical University, Novosibirsk, 630091, Russia
| | - N A Varaksin
- Vektor-Best, Koltsovo, Novosibirsk oblast, 630559, Russia
| | - V V Lyakhovich
- Research Institute of Molecular Biology and Biophysics, Siberian Branch, Russian Academy of Medical Sciences, Novosibirsk, 630117, Russia
| |
Collapse
|
16
|
Chang TS, Chen CL, Wu YC, Liu JJ, Kuo YC, Lee KF, Lin SY, Lin SE, Tung SY, Kuo LM, Tsai YH, Huang YH. Inflammation Promotes Expression of Stemness-Related Properties in HBV-Related Hepatocellular Carcinoma. PLoS One 2016; 11:e0149897. [PMID: 26919045 PMCID: PMC4769282 DOI: 10.1371/journal.pone.0149897] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/05/2016] [Indexed: 12/21/2022] Open
Abstract
The expression of cancer stemness is believed to reduce the efficacy of current therapies against hepatocellular carcinoma (HCC). Understanding of the stemness-regulating signaling pathways incurred by a specific etiology can facilitate the development of novel targets for individualized therapy against HCC. Niche environments, such as virus-induced inflammation, may play a crucial role. However, the mechanisms linking inflammation and stemness expression in HCC remain unclear. Here we demonstrated the distinct role of inflammatory mediators in expressions of stemness-related properties involving the pluripotent octamer-binding transcription factor 4 (OCT4) in cell migration and drug resistance of hepatitis B virus-related HCC (HBV-HCC). We observed positive immunorecognition for macrophage chemoattractant protein 1 (MCP-1)/CD68 and OCT4/NANOG in HBV-HCC tissues. The inflammation-conditioned medium (inflamed-CM) generated by lipopolysaccharide-stimulated U937 human leukemia cells significantly increased the mRNA and protein levels of OCT4/NANOG preferentially in HBV-active (HBV+HBsAg+) HCC cells. The inflamed-CM also increased the side population (SP) cell percentage, green fluorescent protein (GFP)-positive cell population, and luciferase activity of OCT4 promoter-GFP/luciferase in HBV-active HCC cells. Furthermore, the inflamed-CM upregulated the expressions of insulin-like growth factor-I (IGF-I)/IGF-I receptor (IGF-IR) and activated IGF-IR/Akt signaling in HBV-HCC. The IGF-IR phosphorylation inhibitor picropodophyllin (PPP) suppressed inflamed-CM-induced OCT4 and NANOG levels in HBV+HBsAg+ Hep3B cells. Forced expression of OCT4 significantly increased the secondary sphere formation and cell migration, and reduced susceptibility of HBV-HCC cells to cisplatin, bleomycin, and doxorubicin. Taking together, our results show that niche inflammatory mediators play critical roles in inducing the expression of stemness-related properties involving IGF-IR activation, and the upregulation of OCT4 contributes to cancer migration and drug resistance of HBV-HCC cells. Findings in this paper would provide potential targets for a therapeutic strategy targeting on inflammatory environment for HBV-HCC.
Collapse
MESH Headings
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, Differentiation, Myelomonocytic/biosynthesis
- Antigens, Differentiation, Myelomonocytic/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/virology
- Cell Movement
- Cell Proliferation
- Cell Survival
- Chemokine CCL2/biosynthesis
- Chemokine CCL2/genetics
- Hep G2 Cells
- Hepatitis B virus/pathogenicity
- Hepatitis B, Chronic/complications
- Homeodomain Proteins/biosynthesis
- Homeodomain Proteins/genetics
- Humans
- Inflammation/immunology
- Inflammation/pathology
- Insulin-Like Growth Factor I/biosynthesis
- Liver Neoplasms/pathology
- Liver Neoplasms/virology
- Nanog Homeobox Protein
- Neoplastic Stem Cells/pathology
- Octamer Transcription Factor-3/biosynthesis
- Octamer Transcription Factor-3/genetics
- Phosphorylation/drug effects
- Podophyllotoxin/analogs & derivatives
- Podophyllotoxin/pharmacology
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor, IGF Type 1/biosynthesis
- Receptor, IGF Type 1/metabolism
- Signal Transduction
- Spheroids, Cellular
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Te-Sheng Chang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chi-Long Chen
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chih Wu
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jun-Jen Liu
- School of Medical Laboratory Sciences and Biotechnology, Taipei Medical University, Taipei, Taiwan
| | - Yung Che Kuo
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kam-Fai Lee
- Department of Pathology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Sin-Yi Lin
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sey-En Lin
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shui-Yi Tung
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Liang-Mou Kuo
- Department of General Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ying-Huang Tsai
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yen-Hua Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Comprehensive Cancer Center of Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Translational Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
17
|
Wang D, Fu L, Sun H, Guo L, DuBois RN. Prostaglandin E2 Promotes Colorectal Cancer Stem Cell Expansion and Metastasis in Mice. Gastroenterology 2015; 149:1884-1895.e4. [PMID: 26261008 PMCID: PMC4762503 DOI: 10.1053/j.gastro.2015.07.064] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 07/09/2015] [Accepted: 07/30/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Inflammation may contribute to the formation, maintenance, and expansion of cancer stem cells (CSCs), which have the capacity for self-renewal, differentiation, and resistance to cytotoxic agents. We investigated the effects of the inflammatory mediator prostaglandin E2 (PGE2) on colorectal CSC development and metastasis in mice and the correlation between levels of PGE2 and CSC markers in human colorectal cancer (CRC) specimens. METHODS Colorectal carcinoma specimens and matched normal tissues were collected from patients at the Mayo Clinic (Scottsdale, AZ) and analyzed by mass spectrometry and quantitative polymerase chain reaction. Human primary CRC cells and mouse tumor cells were isolated using microbeads or flow cytometry and analyzed for sphere-formation and by flow cytometry assays. LS-174T cells were sorted by flow cytometry (for CD133(+)CD44(+) and CD133(-)CD44(-) cells) and also used in these assays. NOD-scidIL-2Rγ(-/-) (NSG) mice were given cecal or subcutaneous injections of LS-174T or human primary CRC cells. Apc(Min/+) mice and NSG mice with orthotopic cecal tumors were given vehicle (controls), PGE2, celecoxib, and/or Ono-AE3-208. PGE2 downstream signaling pathways were knocked down with small hairpin RNAs, expressed from lentiviral vectors in LS-174T cells, or blocked with inhibitors in human primary CRC cells. RESULTS Levels of PGE2 correlated with colonic CSC markers (CD133, CD44, LRG5, and SOX2 messenger RNAs) in human colorectal carcinoma samples. Administration of PGE2 to Apc(Min/+) mice increased tumor stem cells and tumor burden, compared with controls. NSG mice given PGE2 had increased numbers of cecal CSCs and liver metastases compared with controls after intracecal injection of LS-174T or human primary CRC cells. Alternatively, celecoxib, an inhibitor of prostaglandin-endoperoxide synthase 2, reduced polyp numbers in Apc(Min/+) mice, liver metastasis in NSG mice with orthotopic tumors, and numbers of CSCs in Apc(Min/+) and NSG mice. Inhibitors or knockdown of PGE2 receptor 4 (EP4), phosphoinositide 3-kinase (PI3K) p85α, extracellular signal-regulated kinase 1 (ERK1), or nuclear factor (NF)-κB reduced PGE2-induced sphere formation and expansion of LS-174T and/or human primary CRC cells. Knockdown of ERK1 or PI3K p85α also attenuated PGE2-induced activation of NF-κB in LS-174T cells. An EP4 antagonist reduced the ability of PGE2 to induce CSC expansion in orthotopic tumors and to accelerate the formation of liver metastases. Knockdown experiments showed that NF-κB was required for PGE2 induction of CSCs and metastasis in mice. CONCLUSIONS PGE2 induces CSC expansion by activating NF-κB, via EP4-PI3K and EP4-mitogen-activated protein kinase signaling, and promotes the formation of liver metastases in mice. The PGE2 signaling pathway therefore might be targeted therapeutically to slow CSC expansion and colorectal cancer progression.
Collapse
Affiliation(s)
- Dingzhi Wang
- Laboratory for Inflammation and Cancer, Biodesign Institute of Arizona State University, Tempe, AZ 85287
| | - Lingchen Fu
- Laboratory for Inflammation and Cancer, Biodesign Institute of Arizona State University, Tempe, AZ 85287
| | - Haiyan Sun
- Laboratory for Inflammation and Cancer, Biodesign Institute of Arizona State University, Tempe, AZ 85287
| | - Lixia Guo
- Laboratory for Inflammation and Cancer, Biodesign Institute of Arizona State University, Tempe, AZ 85287,Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905 (the present affiliation)
| | - Raymond N. DuBois
- Laboratory for Inflammation and Cancer, Biodesign Institute of Arizona State University, Tempe, AZ 85287,Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287,Department of Research and Division of Gastroenterology, Mayo Clinic, Scottsdale, AZ 85259,Correspondence to: Raymond N. DuBois, MD. Ph.D., Executive Director of the Biodesign Institute at Arizona State University, PO Box 875001, 1001 S. McAllister Ave., Tempe, AZ 85287, Tel: 480-965-1228 and Fax: 480-727-9550,
| |
Collapse
|
18
|
Suman S, Sharma PK, Rai G, Mishra S, Arora D, Gupta P, Shukla Y. Current perspectives of molecular pathways involved in chronic inflammation-mediated breast cancer. Biochem Biophys Res Commun 2015; 472:401-9. [PMID: 26522220 DOI: 10.1016/j.bbrc.2015.10.133] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 10/25/2015] [Indexed: 02/07/2023]
Abstract
Inflammation has multifaceted role in cancer progression including initiation, promotion and invasion by affecting the immune surveillance and associated signaling pathways. Inflammation facilitates the over-expression of cytokines, chemokines and growth factors involved in progression of different cancers including breast cancer progression. Deregulation of biological processes such as oxidative stress, angiogenesis, and autophagy elicit favorable immune response towards chronic inflammation. Apart from the role in carcinogenesis, chronic inflammation also favors the emergence of drug resistance clones by inducing the growth of breast cancer stem-like cells. Immunomodulation mediated by cytokines, chemokines and several other growth factors present in the tumor microenvironment regulate chronic inflammatory response and alter crosstalk among various signaling pathways such as NF-κB, Nrf-2, JAK-STAT, Akt and MAPKs involved in the progression of breast cancer. In this review, we focused on cellular and molecular processes involved in chronic inflammation, crosstalk among different signaling pathways and their association in breast cancer pathogenesis.
Collapse
Affiliation(s)
- Shankar Suman
- Proteomics & Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-IITR Campus, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Pradeep Kumar Sharma
- Proteomics & Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-IITR Campus, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
| | - Girish Rai
- Proteomics & Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-IITR Campus, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Sanjay Mishra
- Proteomics & Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-IITR Campus, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Deepika Arora
- Proteomics & Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Department of Bioscience, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Prachi Gupta
- Proteomics & Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-IITR Campus, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Yogeshwer Shukla
- Proteomics & Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-IITR Campus, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
19
|
Crucitti A, Corbi M, Tomaiuolo PMC, Fanali C, Mazzari A, Lucchetti D, Migaldi M, Sgambato A. Laparoscopic surgery for colorectal cancer is not associated with an increase in the circulating levels of several inflammation-related factors. Cancer Biol Ther 2015; 16:671-7. [PMID: 25875151 PMCID: PMC4622611 DOI: 10.1080/15384047.2015.1026476] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/04/2015] [Accepted: 03/01/2015] [Indexed: 01/05/2023] Open
Abstract
It has been hypothesized that inflammatory response triggered by surgery might induce the release of molecules that could promote proliferation, invasion and metastasis of surviving cancer cells. To test this hypothesis, the levels of multiple inflammation-related circulating factors were analyzed in patients undergoing surgery for colorectal cancer. A Luminex xMAP system was used to simultaneously assess levels of IL-1β, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12, IL-13, IL-15, IL-17, FGF, eotaxin, G-CSF, GM-CSF, IFN-γ, IP-10, MCP-1, MIP-1α, MIP-1β, PDGF-BB, RANTES, TNF-α and VEGF in 20 colorectal cancer patients and 10 age-matched non-neoplastic patients. In cancer patients analyses were performed at baseline (before surgery) and at different time points (up to 30 days) following laparoscopic surgery. Significantly higher levels of IL-1β, IL-7, IL-8, G-CSF, IFN-γ and TNF-α were detected in colorectal cancer patients compared to controls at baseline. In colorectal cancer patients, circulating levels decreased progressively following surgery and after day 30 post-surgery were no longer different from controls. These findings suggest that expression levels of several cytokines are higher in colorectal cancer patients compared to control subjects and no significant increase in several inflammation-related circulating factors is observed following laparoscopic surgery for cancer. Confirmation and validation in a different and larger cohort of patients are warranted.
Collapse
Key Words
- CRC, Colorectal Cancer.
- CSC, Cancer Stem Cells
- EMT, Epithelial Mesenchymal Transition
- FGF-b, Fibroblast Growth Factor-basic
- G-CSF, Granulocyte Colony Stimulating Factor
- HuMCP-1, Human Monocyte Chemoattractant Protein 1
- IFN-γ, Interferon γ
- IL, Interleukin
- IP-10, IFN-γ
- Inducible Protein 10
- Luminex xMAP
- MIP-1α
- Normal T-cell Expressed Secreted
- PDGF-BB, Platelet Derived Growth Factor-BB
- RANTES, Regulated upon Activation
- Ra, Receptor antagonist
- TNF-α, Tumor Necrosis Factor-α
- VEGF, Vascular Endotelial Growth Factor
- and 1β
- and 1β, Macrophage Inflammatory Protein 1α
- cancer biology
- colon cancer
- cytokines
- inflammation
- serum markers
- surgery
Collapse
Affiliation(s)
- Antonio Crucitti
- Department of Surgery; Università Cattolica del Sacro Cuore; Rome, Italy
| | - Maddalena Corbi
- Institute of General Pathology; Università Cattolica del Sacro Cuore; Rome, Italy
| | | | - Caterina Fanali
- Institute of General Pathology; Università Cattolica del Sacro Cuore; Rome, Italy
| | - Andrea Mazzari
- Department of Surgery; Università Cattolica del Sacro Cuore; Rome, Italy
| | - Donatella Lucchetti
- Institute of General Pathology; Università Cattolica del Sacro Cuore; Rome, Italy
| | - Mario Migaldi
- Department of Pathology; Università di Modena e Reggio Emilia; Modena, Italy
| | - Alessandro Sgambato
- Institute of General Pathology; Università Cattolica del Sacro Cuore; Rome, Italy
| |
Collapse
|
20
|
Ostyn P, El Machhour R, Begard S, Kotecki N, Vandomme J, Flamenco P, Segard P, Masselot B, Formstecher P, Touil Y, Polakowska R. Transient TNF regulates the self-renewing capacity of stem-like label-retaining cells in sphere and skin equivalent models of melanoma. Cell Commun Signal 2014; 12:52. [PMID: 25223735 PMCID: PMC4172864 DOI: 10.1186/s12964-014-0052-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/26/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND It is well established that inflammation promotes cancer, including melanoma, although the exact mechanisms involved are less known. In this study, we tested the hypothesis that inflammatory factors affect the cancer stem cell (CSC) compartment responsible for tumor development and relapse. RESULTS Using an inducible histone 2B-GFP fusion protein as a tracer of cell divisional history, we determined that tumor necrosis factor (TNF), which is a classical pro-inflammatory cytokine, enlarged the CSC pool of GFP-positive label-retaining cells (LRCs) in tumor-like melanospheres. Although these cells acquired melanoma stem cell markers, including ABCB5 and CD271, and self-renewal ability, they lost their capacity to differentiate, as evidenced by the diminished MelanA expression in melanosphere cells and the loss of pigmentation in a skin equivalent model of human melanoma. The undifferentiated cell phenotype could be reversed by LY294002, which is an inhibitor of the PI3K/AKT signaling pathway, and this reversal was accompanied by a significant reduction in CSC phenotypic markers and functional properties. Importantly, the changes induced by a transient exposure to TNF were long-lasting and observed for many generations after TNF withdrawal. CONCLUSIONS We conclude that pro-inflammatory TNF targets the quiescent/slow-cycling melanoma SC compartment and promotes PI3K/AKT-driven expansion of melanoma SCs most likely by preventing their asymmetrical self-renewal. This TNF effect is maintained and transferred to descendants of LRC CSCs and is manifested in the absence of TNF, suggesting that a transient exposure to inflammatory factors imprints long-lasting molecular and/or cellular changes with functional consequences long after inflammatory signal suppression. Clinically, these results may translate into an inflammation-triggered accumulation of quiescent/slow-cycling CSCs and a post-inflammatory onset of an aggressive tumor.
Collapse
Affiliation(s)
- Pauline Ostyn
- />Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL), 1, Place de Verdun 59045, Lille Cedex, France
| | - Raja El Machhour
- />Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL), 1, Place de Verdun 59045, Lille Cedex, France
| | - Severine Begard
- />Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL), 1, Place de Verdun 59045, Lille Cedex, France
| | - Nuria Kotecki
- />Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL), 1, Place de Verdun 59045, Lille Cedex, France
| | - Jerome Vandomme
- />Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL), 1, Place de Verdun 59045, Lille Cedex, France
- />Univ Lille Nord de France, F-59000 Lille, France
| | - Pilar Flamenco
- />Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL), 1, Place de Verdun 59045, Lille Cedex, France
| | - Pascaline Segard
- />Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL), 1, Place de Verdun 59045, Lille Cedex, France
- />Univ Lille Nord de France, F-59000 Lille, France
| | - Bernadette Masselot
- />Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL), 1, Place de Verdun 59045, Lille Cedex, France
- />Univ Lille Nord de France, F-59000 Lille, France
| | - Pierre Formstecher
- />Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL), 1, Place de Verdun 59045, Lille Cedex, France
- />Univ Lille Nord de France, F-59000 Lille, France
- />CHULille, F-59000 Lille, France
| | - Yasmine Touil
- />Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL), 1, Place de Verdun 59045, Lille Cedex, France
- />SIRIC ONCOLille, Lille, France
| | - Renata Polakowska
- />Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL), 1, Place de Verdun 59045, Lille Cedex, France
| |
Collapse
|
21
|
Chronic disease burden among cancer survivors in the California Behavioral Risk Factor Surveillance System, 2009-2010. J Cancer Surviv 2014; 8:448-59. [PMID: 24715532 DOI: 10.1007/s11764-014-0350-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 02/08/2014] [Indexed: 12/18/2022]
Abstract
PURPOSE The California Behavioral Risk Factor Surveillance System estimates that 56.6 % of cancer survivors report ever being diagnosed with a chronic disease. Few studies have assessed potential variability in comorbidity by cancer type. METHODS We used data collected from a representative sample of adult participants in the 2009 and 2010 California Behavioral Risk Factor Surveillance System (n = 18,807). Chronic diseases were examined with cancer survivorship in case/non-case and case/case analyses. Prevalence ratios (PR) and corresponding 95 % confidence intervals (95 % CI) were estimated using Cox proportional hazards models, with adjustment on race, sex, age, education, smoking, and drinking. RESULTS Obesity was associated with gynecological cancers (PR 1.74; 95 % CI 1.26-2.41), and being overweight was associated with gynecological (PR 1.40; 95 % CI 1.05-1.86) and urinary (PR 2.19; 95 % CI 1.21-3.95) cancers. Arthritis was associated with infection-related (PR 1.78; 95 % CI 1.12-2.83) and hormone-related (PR 1.20; 95 % CI 1.01-1.42) cancers. Asthma was associated with infection- (PR 2.26; 95 % CI 1.49-3.43), hormone- (PR 1.46; 95 % CI 1.21-1.77), and tobacco- (PR 1.86; 95 % CI 1.25-2.77) related cancers. Chronic obstructive pulmonary disease (COPD) was associated with infection- (PR 2.16; 95 % CI 1.22-3.83) and tobacco-related (PR 2.24; 95 % CI 1.37-3.66) cancers and with gynecological cancers (PR 1.60; 95 % 1.00-2.56). CONCLUSIONS This is the first study to examine chronic disease burden among cancer survivors in California. Our findings suggest that the chronic disease burden varies by cancer etiology. IMPLICATIONS FOR CANCER SURVIVORS A clear need has emerged for future biological and epidemiological studies of the interaction between chronic disease and cancer etiology in survivors.
Collapse
|
22
|
Imbesi S, Musolino C, Allegra A, Saija A, Morabito F, Calapai G, Gangemi S. Oxidative stress in oncohematologic diseases: an update. Expert Rev Hematol 2013; 6:317-25. [PMID: 23782085 DOI: 10.1586/ehm.13.21] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An increased risk of cancer in various organs has been related to oxidative stress and several studies have revealed the mechanism by which continued oxidative stress can lead to chronic inflammation, which in turn could mediate most chronic diseases including cancer. A variety of transcription factors may be activated in consequence of oxidative stress, leading to the expression of over 500 different genes, including those for growth factors, inflammatory cytokines, chemokines, cell cycle regulatory molecules and anti-inflammatory molecules. In this review, the data related to the action of oxidative stress on the onset of various oncohematologic diseases are summarized, thus bringing together some of the latest information available on the pathogenetic role of oxidative stress in cancer. The authors evaluate the most recent publications on this topic, and, in particular, show the newest evidence of a relationship between oxidative stress and hematological malignancies, such as chronic lymphocytic leukemia, Hodgkin's lymphoma, multiple myeloma and chronic Ph-negative myeloproliferative diseases. A separate section is devoted to the implications of a change of oxidative stress in patients undergoing bone marrow transplantation. Finally, particular attention is given to the new markers of oxidative stress, such as carbonyl groups, advanced glycation end products, advanced oxidation protein products and S-nitrosylated proteins, which are certainly more stable, reliable, cheaper and more easily identifiable than those already used in clinical practice. New approaches that aim to evaluate subcellular and microenvironment redox potential may be useful in developing cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Selene Imbesi
- Department of Clinical & Experimental Medicine, School & Unit of Allergy and Clinical Immunology, University of Messina, Messina, Italy.
| | | | | | | | | | | | | |
Collapse
|
23
|
Shigdar S, Li Y, Bhattacharya S, O'Connor M, Pu C, Lin J, Wang T, Xiang D, Kong L, Wei MQ, Zhu Y, Zhou S, Duan W. Inflammation and cancer stem cells. Cancer Lett 2013; 345:271-8. [PMID: 23941828 DOI: 10.1016/j.canlet.2013.07.031] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/19/2013] [Accepted: 07/28/2013] [Indexed: 12/18/2022]
Abstract
Cancer stem cells are becoming recognised as being responsible for metastasis and treatment resistance. The complex cellular and molecular network that regulates cancer stem cells and the role that inflammation plays in cancer progression are slowly being elucidated. Cytokines, secreted by tumour associated immune cells, activate the necessary pathways required by cancer stem cells to facilitate cancer stem cells progressing through the epithelial-mesenchymal transition and migrating to distant sites. Once in situ, these cancer stem cells can secrete their own attractants, thus providing an environment whereby these cells can continue to propagate the tumour in a secondary niche.
Collapse
Affiliation(s)
- Sarah Shigdar
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3217, Australia.
| | - Yong Li
- Cancer Care Centre, St. George Hospital, and St. George Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW 2052, Australia
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Michael O'Connor
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3217, Australia
| | - Chunwen Pu
- Dalian Sixth People's Hospital, Dalian 116033, China
| | - Jia Lin
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3217, Australia
| | - Tao Wang
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3217, Australia
| | - Dongxi Xiang
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3217, Australia
| | - Lingxue Kong
- School of Medical Science and Griffith Health Institute, Griffith University, Gold Coast Campus, Southport, Australia
| | - Ming Q Wei
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria, Australia
| | - Yimin Zhu
- Suzhou Key Laboratory of Nanobiomedicine, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Shufeng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Wei Duan
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3217, Australia.
| |
Collapse
|
24
|
Adaptive and Pathogenic Responses to Stress by Stem Cells during Development. Cells 2012; 1:1197-224. [PMID: 24710551 PMCID: PMC3901130 DOI: 10.3390/cells1041197] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 11/06/2012] [Accepted: 11/07/2012] [Indexed: 02/07/2023] Open
Abstract
Cellular stress is the basis of a dose-dependent continuum of responses leading to adaptive health or pathogenesis. For all cells, stress leads to reduction in macromolecular synthesis by shared pathways and tissue and stress-specific homeostatic mechanisms. For stem cells during embryonic, fetal, and placental development, higher exposures of stress lead to decreased anabolism, macromolecular synthesis and cell proliferation. Coupled with diminished stem cell proliferation is a stress-induced differentiation which generates minimal necessary function by producing more differentiated product/cell. This compensatory differentiation is accompanied by a second strategy to insure organismal survival as multipotent and pluripotent stem cells differentiate into the lineages in their repertoire. During stressed differentiation, the first lineage in the repertoire is increased and later lineages are suppressed, thus prioritized differentiation occurs. Compensatory and prioritized differentiation is regulated by at least two types of stress enzymes. AMP-activated protein kinase (AMPK) which mediates loss of nuclear potency factors and stress-activated protein kinase (SAPK) that does not. SAPK mediates an increase in the first essential lineage and decreases in later lineages in placental stem cells. The clinical significance of compensatory and prioritized differentiation is that stem cell pools are depleted and imbalanced differentiation leads to gestational diseases and long term postnatal pathologies.
Collapse
|
25
|
Chronic inflammation as a promotor of mutagenesis in essential thrombocythemia, polycythemia vera and myelofibrosis. A human inflammation model for cancer development? Leuk Res 2012; 37:214-20. [PMID: 23174192 DOI: 10.1016/j.leukres.2012.10.020] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 08/11/2012] [Accepted: 10/24/2012] [Indexed: 12/27/2022]
Abstract
The Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) are acquired stem cell neoplasms, in which a stem cell lesion induces an autonomous proliferative advantage. In addition to the JAK2V617 mutation several other mutations have been described. Recently chronic inflammation has been proposed as a trigger and driver of clonal evolution in MPNs. Herein, it is hypothesized that sustained inflammation may elicit the stem cell insult by inducing a state of chronic oxidative stress with elevated levels of reactive oxygen species (ROS) in the bone marrow, thereby creating a high-risk microenvironment for induction of mutations due to the persistent inflammation-induced oxidative damage to DNA in hematopoietic cells. Alterations in the epigenome induced by the chronic inflammatory drive may likely elicit a "epigenetic switch" promoting persistent inflammation. The perspectives of chronic inflammation as the driver of mutagenesis in MPNs are discussed, including early intervention with interferon-alpha2 and potent anti-inflammatory agents (e.g. JAK1-2 inhibitors, histone deacetylase inhibitors, DNA-hypomethylators and statins) to disrupt the self-perpetuating chronic inflammation state and accordingly eliminating a potential trigger of clonal evolution and disease progression with myelofibrotic and leukemic transformation.
Collapse
|
26
|
Nuclear localization of COX-2 in relation to the expression of stemness markers in urinary bladder cancer. Mediators Inflamm 2012; 2012:165879. [PMID: 22577245 PMCID: PMC3337674 DOI: 10.1155/2012/165879] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 01/12/2012] [Indexed: 12/26/2022] Open
Abstract
Inflammation may activate stem cells via prostaglandin E2 (PGE2) production mediated by cyclooxygenase-2 (COX-2) expression. We performed an immunohistochemical analysis of the expression of stemness markers (Oct3/4 and CD44v6) and COX-2 in urinary bladder tissues obtained from cystitis and cancer patients with and without Schistosoma haematobium infections. Immunoreactivity to Oct3/4 was significantly higher in S. haematobium-associated cystitis and cancer tissues than in normal tissues. CD44v6 expression was significantly higher in bladder cancer without S. haematobium than in normal tissues. COX-2 was located in the cytoplasmic membrane, cytoplasm, and nucleus of the cancer cells. Interestingly, the nuclear localization of COX-2, which was reported to function as a transcription factor, was significantly associated with the upregulation of Oct3/4 and CD44v6 in bladder cancer tissues with and without S. haematobium infection, respectively. COX-2 activation may be involved in inflammation-mediated stem cell proliferation/differentiation in urinary bladder carcinogenesis.
Collapse
|
27
|
Ma N, Thanan R, Kobayashi H, Hammam O, Wishahi M, El Leithy T, Hiraku Y, Amro EK, Oikawa S, Ohnishi S, Murata M, Kawanishi S. Nitrative DNA damage and Oct3/4 expression in urinary bladder cancer with Schistosoma haematobium infection. Biochem Biophys Res Commun 2011; 414:344-9. [PMID: 21951846 DOI: 10.1016/j.bbrc.2011.09.073] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 09/14/2011] [Indexed: 01/22/2023]
Abstract
To investigate whether mutant stem cells participate in inflammation-related carcinogenesis, we performed immunohistochemical analysis to examine nitrative and oxidative DNA lesions (8-nitroguanine and 8-oxodG) and a stem cell marker Oct3/4 in bladder tissues obtained from cystitis and bladder cancer patients infected with Schistosomahaematobium (S. haematobium). We also detected the expression of nuclear factor-κB (NF-κB) and inducible nitric oxide synthase (iNOS), which lead to 8-nitroguanine formation. The staining intensity of 8-nitroguanine and 8-oxodG was significantly higher in bladder cancer and cystitis tissues than in normal tissues. iNOS expression was colocalized with NF-κB in 8-nitroguanine-positive tumor cells from bladder cancer patients. Oct3/4 expression was significantly increased in cells from S. haematobium-associated bladder cancer tissues in comparison to normal bladder and cancer tissues without infection. Oct3/4 was also expressed in epithelial cells of cystitis patients. Moreover, 8-nitroguanine was formed in Oct3/4-positive stem cells in S. haematobium-associated cystitis and cancer tissues. In conclusion, inflammation by S.haematobium infection may increase the number of mutant stem cells, in which iNOS-dependent DNA damage occurs via NF-κB activation, leading to tumor development.
Collapse
Affiliation(s)
- Ning Ma
- Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|